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Joint sparse signal/support recovery problems

Sparse Bayesian Learning (SBL) framework
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Rényi divergence based support recovery algorithm

Distributed extensions of SBL

Conclusions and future research
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Canonical problem

e Consider the simultaneous linear equations: y; = Ax; +w;, j € [L].

X
Y A ] w
] ]
= — = +
m x L mXxn ; j Wi ~N(0,0%)
Observations (m < n) Noise
Sensing matrix — —

k-nonzero rows
n X L indexed by support set S*

Signal

e Columns of X are jointly sparse with common nonzero support.

Multiple Measurement Vector problem ‘ Joint Sparse Support Recovery

Reconstruct entire X from {Y, A} Reconstruct support(X) from {Y, A}
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Multi-sensor signal processing

e Spectrum sensing in cognitive radio network
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Joint sparsity in frequency domain
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Joint sparsity in frequency domain

e Multi-sensor data is typically highly structured or correlated
due to

e overlapped sensing regions/common sensory target.

e [Tropp, 04], [Duarte, 05] proposed joint sparsity based data
models for structured/correlated multi-sensor data.
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A generative model for multi-sensor data

Sensor 2 Data from different sensors have
Sensor 1 2 Sensor 3

= = overlapping signal subspaces.

&

approximate as
different linear combinations of the
same elementary signals

Physical process P(t)

freq-2

%f{;eq 1 § freq -3
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A generative model for multi-sensor data

Sensor 2 Data from different sensors have
Sensor 1 2 Sensor 3

= = overlapping signal subspaces.

&

approximate as
different linear combinations of the
same elementary signals

Physical process P(t)

freq-2

%{;;eq 1 § freq -3

e Simultaneous Sparse Approximation (SSA) Model: [Tropp, 04]

<«—— Joint sparse
s coefficient vectors

Yi Vz D

Multi-sensor data Dictionary X1 Xo X,
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A compression scheme for multi-sensor data

e Encoder:
[y1ay27~-~7yL] = A [51,32,...731_]
—_———
low dim. sketch me” high dimensional
(rr;a<rlen) data vectors from L sensors
e Decoder:
[y1,¥2,...,yi] =~ A D [Xi,Xz,...,%X/] (SSA approx.)
—_———
joint sparse coefficients
e Step 1: First recover joint-sparse coefficients {x1, Xz, ..., X.}.

e Step 2: Then reconstruct multi-sensor data as §; = DX;.
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Joint sparse recovery - applications

e Anomaly/sparse event localization [Jiang, 13], [Adler, 13], [Lagunas, 16]
e Cooperative spectrum sensing [Bazerque, 10], [Fanzi, 11]

e Distributed source coding [Baron, 09]

e Magnetoencephalography (MEG) [Fornasier, 08]

e Direction of arrival estimation [Tan, 14]

e MIMO wireless channel estimation [Prasad, 15], [Masood, 15]

e Hyperspectral imaging [lordache, 14]
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Main challenges and goals

Recover X or supp(X) from Y.

X
Y A %%
m X L mXxn Wi ~ N(0,0%)
(m < n)
k - sparse support
nx L

e Conditions for exact support recovery in Sparse Bayesian
Learning.
e What values of (m, n, L) allow perfect k-sparse support recovery?
e Design guidelines for sensing matrix A.

e Algorithms for efficient estimation of X or supp(X)?
e Handling extremely large signal dimensions.
e Distributed/parallel implementation.
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/o bound and beyond..

Fundamental limits on support recovery
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The /o bound

Lo: min R(X) subjecttoY = AX.
XER”XL ——"

no. of nonzero
rows in X

Unique solution when... [Chen & Huo, 06]
A k-sparse X is uniquely recoverable via Ly if

- spark(A) — 1 + rank(Y)

« 2

(¢o-bound)

spark(A):= minimum no. of linearly dependent columns in A.
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The /o bound

Lo: min R(X) subjecttoY = AX.
XER"XL ——"

no. of nonzero
rows in X

Unique solution when... [Chen & Huo, 06]
A k-sparse X is uniquely recoverable via Ly if

- spark(A) — 1 + rank(Y)

« 2

(¢o-bound)

spark(A):= minimum no. of linearly dependent columns in A.

e Supports of size up to m are uniquely recoverable....when
spark(A) = m+ 1!
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Towards ¢y bound

Mixed norm regularization [Chen & Huo, 06]
m P
Lpq: min ; (HX(/, ;)||q) subject to Y = AX.
e Joint sparse solution for p € [0,1] and g > 1.

e Unique k-sparse solution if ||ALa;|| < 1,7j ¢ S.

o k (g g) sparse X is uniquely recoverable.
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Towards ¢y bound

Mixed norm regularization [Chen & Huo, 06]

m
: NN B
Lpq: min EH: (HX(/, _)||q) subject to Y = AX.

e Joint sparse solution for p € [0,1] and g > 1.
e Unique k-sparse solution if ||ALa;|| < 1,7j ¢ S.

o k (g g) sparse X is uniquely recoverable.

Iterative hard thresholding / greedy approach [Blanchard, 14]
e Examples: SOMP, Co-SAMP, SIHT.

m
e k<O (In) sparse supports are recoverable.
og
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Meeting ¢, bound

Multi Signal Classification (MUSIC) criterion
[Peng & Bresler, 97]

e Index j € support(X*) iff
Q"a; =0 or a'Pgq)a; =0,
where the orthogonal columns of Q span the noise subspace.

e MUSIC criterion recovers any k(< m)-sparse support when
A has full spark!

e Algorithms: SA-MUSIC, CS-MUSIC.
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Beyond ¢/, bound?

Support recovery phase transition
(n =200, L =400, SNR = 20 dB)

Simultaneous Orthgonal Matching Pursuit Sparse Bayesian Learning (MSBL)

k=m
V
\ \
\ \
] o | =
01 02 03 04 05 06 07 01 02 03 04 05 06 07
Measurement rate (m/n) Measurement rate (m/n)
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Beyond ¢/, bound?

Support recovery phase transition
(n =200, L =400, SNR = 20 dB)

Simultaneous Orthgonal Matching Pursuit Sparse Bayesian Learning (MSBL)

k=m
V
\ \
\ \
] o | =
01 02 03 04 05 06 07 01 02 03 04 05 06 07
Measurement rate (m/n) Measurement rate (m/n)

Key Idea: Type-Il estimation of X using correlation aware priors.
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Sparse Bayesian Learning

Performance guarantees
&
connections to covariance matching
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Sparse Bayesian Learning (SBL)

e Y=AX+W

° X; hg N(0,T), T" = diag(y) Correlation-aware prior!
e supp(x;) = supp(y). Common covariance induces joint sparsity

e Gaussian observations: y; ~ (0, o°l + ATA").
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Sparse Bayesian Learning (SBL)

e Y=AX+W

° X; g N(0,T), T" = diag(y) Correlation-aware prior!

supp(x;) = supp(y). Common covariance induces joint sparsity

Gaussian observations: y; ~ N(0,o°l + ATA").

e Multiple Sparse Bayesian Learning (MSBL) [Wipf & Rao, 07]:

4 = argmax logp(Y;~)
YERT
= argmin Llog |01, + AI‘AT‘ +tr (YT(ozlm + AI‘AT)‘1Y)
YERT

e Nonconvex objective, 4 found via Expectation Maximization (EM).

e Support(4) declared as estimate of true support S™.
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Support recovery in SBL (nhoiseless measurements)

Support error....a large deviation event
Let x; ~ AM(0,I*) and 4 be a global maximizer of the MSBL
objective, then

P (supp(¥) # S) < exp (_%(,&Z,,p-,)) .

D, (py, P~-) := a-Rényi Divergence between Gaussian densities:

ps ~ N(0,0%lm + ATAT) and p,- ~ N (0,021, + AT*AT).
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Support recovery in SBL (nhoiseless measurements)

Support error....a large deviation event

Let x; ~ AM(0,I*) and 4 be a global maximizer of the MSBL
objective, then

P (supp(¥) # S) < exp (_%(,&Z,,p-,)) .

D, (py, P~-) := a-Rényi Divergence between Gaussian densities:

ps ~ N(0,0%lm + ATAT) and p,- ~ N (0,021, + AT*AT).

e For k-sparse vectors v*,4 € R’! with distinct supports,

D12 (P, Py+) — 00 as o

when k < spark(A) — 1.

— 0,
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Support recovery in SBL (nhoiseless measurements)

Support error....a large deviation event

Let x; ~ AM(0,I*) and 4 be a global maximizer of the MSBL
objective, then

P (supp(¥) # S) < exp (_%(,&Z,,p-,)) .

D, (py, P~-) := a-Rényi Divergence between Gaussian densities:

ps ~ N(0,0%lm + ATAT) and p,- ~ N (0,021, + AT*AT).

e For k-sparse vectors v*,4 € R’! with distinct supports,

D12 (P, Py+) — 00 as o

when k < spark(A) — 1.

— 0,

o Implication: If |S|,||%]|, < spark(A) — 1, then supp(¥) = S*

almost surely!
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Support recovery in SBL (noisy measurements)

Support error probability in MSBL

1. Let xq,X2,...,X; bei.i.d zero mean Gaussian vectors with
support §*, |S*| < k.

2. and... variance of nonzero entries in X lie in [Ymin, Ymax]-

For any MSBL solution 4 with nonzero coefficients in [Ymin, Ymax],

c1klogn)

P(supp(d) # 5*) < 26 (3 -27%),

where ¢y is a dimension free constant, and

w12
22 o min 1A © M)y 7)1 )
SCn\s* SU;§R+, (IS\S*| + |S*\S|) ( + 27maxg%ax(Asus*))

e Support error probability vanishes forn > 0and L>O <k log n).
n
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Null Space of A® A

Strong Null Space Property

Suppose the ¢>-norm columns in A € R™" lie in [1 — «, 1 + «] for
some « € (0, 1), then

1 — a)?
iaeawlE > U0 (1 1 v )

v 1 2
for all v € R” such that ||v+||||1 >4 <1 i a) . Here, v, and v_ are
—1l4 —

nonneg. vectors in R” retaining only pos. and neg. entries of v.

Saurabh Khanna Bayesian Techniques for Joint-Sparse Signal Recovery: Theory and Algorithms 19/43



Null Space of A® A

Strong Null Space Property

Suppose the ¢>-norm columns in A € R™" lie in [1 — «, 1 + «] for
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1 — a)?
iaeawlE > U0 (1 1 v )

v 1 2
for all v € R” such that ||v+||||1 >4 <1 i a) . Here, v, and v_ are
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nonneg. vectors in R” retaining only pos. and neg. entries of v.

e Implication 1: Null space of A ® A is devoid of vectors like

— *
Ay = Y - Y
~—~ ~—~
dense nonnegative  sparse nonnegative

Saurabh Khanna Bayesian Techniques for Joint-Sparse Signal Recovery: Theory and Algorithms 19/43



Null Space of A® A

Strong Null Space Property

Suppose the ¢>-norm columns in A € R™" lie in [1 — «, 1 + «] for
some « € (0, 1), then

1 — a)?
iaeawlE > U0 (1 1 v )

v 1 2
for all v € R” such that ||v+||||1 >4 <1 i Z) . Here, v, and v_ are
— 1 —

nonneg. vectors in R” retaining only pos. and neg. entries of v.

e Implication 1: Null space of A ® A is devoid of vectors like

Ay = ¥ - v
~~ ~~
dense nonnegative  sparse nonnegative
e Implication 2: For subgaussian A with m > O(log n) rows, and
large enough L, MSBL solution is only O(|S*|) sparse!

No dense MSBL solutions!
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MSBL optimization - a closer look
e MSBLs log-likelihood objective:

L
—logp(Y;v) = — Z log N (y,-; 0,02, + AI‘AT)
=

—
 log|0?l, + ATAT| + trace ((02lm + ArAT) <1LYYT)>
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MSBL optimization - a closer look
e MSBLs log-likelihood objective:

L
—logp(Y;v) = — Z log N (y,-; 0,02, + AI‘AT)
j=1

—
 log|0?l, + ATAT| + trace ((02lm + ArAT) <1LYYT)>

Log Det Bregman matrix divergence between
matrices X, Y € ST is defined as

Dy(X,Y) £ trace(XY™") —log XY~ '| —m
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MSBL optimization - a closer look
e MSBLs log-likelihood objective:

L
—logp(Y;v) = — Z log N (y,-; 0,02, + AI‘AT)
=

—
 log|0?l, + ATAT| + trace ((02lm + ArAT) <1LYYT)>

1
pBregman (LYYT7 J2|m+AI‘AT> + constant terms

— log det

Log Det Bregman Matrix Div.
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—
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MSBL optimization - a closer look
e MSBLs log-likelihood objective:

L
—logp(Y;v) = — Z log N (y,-; 0,02, + AI‘AT)
j=1

—
 log|0?l, + ATAT| + trace ((02lm + ArAT) <1LYYT)>

1
pBregman (LYYT’ Pl + AI‘AT> + constant terms

— log det

Log Det Bregman Matrix Div.

R 1
o MSBL minimizes D°7ome ZYYT , 0%l + ATAT

N param. cov mat
emp. cov mat

e Can we use other matrix divergences?
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Covariance matching framework for support recovery

e Multiple measurement vectors (MMVs): Y = AX+ W

e x; ~ N(0,diag(v)) e y; ~ N(0,0°l, + ATAT)

correlation aware prior

e Covariance matrices:

o Empirical Ry = %YYT e Parameterized 3., = o°l,, + ATA”

e Covariance Matching Principle:

4 = argmin distance R °] + ATAT A h
Ay (] ( y Lo+ + A h(7)

YERT ~ - o
empirical parameterized optional
MMV covariance MMV covariance concave penalt

support(X) + support(¥)
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Restricted Isometry of Khatri-Rao
product
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Covariance matching - a closer look

1
e Covariance matching constraint: ZYYT ~ ATA"

-y’
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Covariance matching - a closer look

1
e Covariance matching constraint: ~YY' ~ ATAT

L
1ZYYT A
r F AT
l [
1w\ H = ©
vee (LYY ) ~ = diag(T")
AOA
S independent equations! Khatri-Rao prOdUCt I
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Covariance matching - a closer look

1
e Covariance matching constraint: ~YY' ~ ATAT

L
1ZYYT A
r F AT
l [
1w\ H = ©
vee (LYY ) ~ = diag(T")
AOA
S independent equations! Khatri-Rao prOdUCt I

e Stable recovery of k-sparse ~.... possible if A ® A behaves like
an isometry for all k-sparse nonnegative vectors.
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Columnwise Khatri-Rao product

e Khatri-Rao product

aja ... ap| © by by ... bp = |lai®b;y ax®@by ... ap®bp
. | || | | | |
A B AcB
(m x p) (m x p) (n? x p)

® denotes Kronecker product

e Khatri-Rao product form arises naturally in

Sparsity pattern recovery (via covariance matching)

e Direction of arrival estimation

PARAFAC based tensor decomposition

e Estimation of power spectral density of stationary graph signals

e When does A © B satisfy the Restricted Isometry Property?
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Restricted Isometry Property (RIP)

Restricted Isometry Property of k" order (k-RIP)
Matrix A satisfies k-RIP if there exists a constant Jx € (0, 1) such
that

(1= 6¢) 1zII3 < I|Azl[3 < (1 +6¢) 123,

for all k-sparse vectors z.

e Smallest iy is called the k-RIC of A.

e How small can k-RIC of a generic Khatri-Rao matrix A © B be?
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RIP of Khatri-Rao product - an empirical study

1
A Bj~N (O, m) and m = 0.5n

—=-0f 12 =07
A8
08 ¢ 0B
0.6
"QN g
0.4
1§
° \"\x\x—7 v M
0 . 7 a K 0
100 300 500 700 900 50 100 150 200 250 300
n n

RIP improved by taking Khatri-Rao product!
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Deterministic RIC bound for A © B

Deterministic RIC bound
For m x n sized matrices A and B with unit /o2-norm columns,

Sk (A®B) < [max(6k(A),dx(B))* forall k < m.

o Mathematical tools:
e (A0B)'(A®B)=A"AcB’B

e Kantorovitch matrix inequalities

e Key features of the bound:

e bound is expressed in terms of k-RICs of the input matrices
o 5k(A®A) < (6(A))? < 5k(A). RIP improves!
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Probabilistic RIC bound for Khatri-Rao product

Probabilistic RIC bound
Let A and B be m x n sized matrices with zero mean, unit variance,
i.i.d. subgaussian entries satisfying ||A B,-,-||w2 < . Then,

/'J'Hw27|

A B 10
F( (7o 7m) 27) s o
for all v > 1, provided

m > 4cvyp32 <k|ogn) :

]

Here, ¢ is an absolute numerical constant.

klogn

e Form> O( ) one can have i, <@> < w.h.p.
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Probabilistic RIC bound for Khatri-Rao product

Probabilistic RIC bound
Let A and B be m x n sized matrices with zero mean, unit variance,
i.i.d. subgaussian entries satisfying ||A B,-,-||w2 < . Then,

/'J'Hw27|

A B 10
Plop| —0—|>0) < —
<k (\ﬁ@ ﬁ) B ) T PO e i,

Gaussian entries,

for all v > 1, provided A 1
(s () >6)<
> (klogn vm n
m > 4cyp 5 . providedc
m > 5_2(k + a)logn
Here, ¢ is an absolute numerical constant. [Foucart & Rauhut, Thm. 9.27]
klogn A A
e Form> O ,onecanhave 0y [ — ©® — | < w.h.p.
- ( ) g (\/m ﬁ) - k
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Probabilistic RIC bound for Khatri-Rao product

Probabilistic RIC bound
Let A and B be m x n sized matrices with zero mean, unit variance,
i.i.d. subgaussian entries satisfying ||A B,-,-||w2 < . Then,

/'J'Hw27|

A B 10
Plop| —0—|>0) < —
( ) (\ﬁ@ ﬁ) B ) T PO e i,

Gaussian entries,

for all v > 1, provided A 1
(s () >6)<
> (klogn vm n
m > 4cﬁyﬂ 5 . providedc
m > 5_2(k + a)logn
Here, ¢ is an absolute numerical constant. [Foucart & Rauhut, Thm. 9.27]
klogn A A
Form> O ,onecanhave 0y [ — ©® — | < w.h.p.
’ - ( ) ¢ <m m) =omne

In MSBL, O(k log n) measurements per MMV are sufficient to
guarantee exact recovery of any k-sparse support!
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Rényi divergence based support
recovery
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Support recovery using Rényi Divergence

e MMV model: Y = AX+W

o Let set S be the unknown support(X) - -
(Covarlance matrix

parameterized by
Lsupport S!

[ Xj‘ ~ ./\/’(07 fydiag(13))
o y; ~ N(0,0%ln +vAsAL)
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Support recovery using Rényi Divergence

e MMV model: Y = AX + W
o Let set S be the unknown support(X)

(Covariance matrix

e X; ~ N(0,vdiag(1s)) Lparameterized by

o y; ~ N(0,0%ln +vAsAL) support S!

e Covariance matching using «-Rényi divergence

S = argmin D, (N (0, 1LYYT> N (o, o2l + »yAsAg))

scinl
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Support recovery using Rényi Divergence

e MMV model: Y = AX + W
o Let set S be the unknown support(X)

(Covariance matrix
» parameterized by
Lsupport S!

[ Xj‘ ~ ./\/’(07 fydiag(13))
o y; ~ N(0,0%ln +vAsAL)

e Covariance matching using «-Rényi divergence

S = argmin D, (N (0, 1LYYT> N (o, o2l + »yAsAg))

scinl

e Rényi Divergence based Covariance Matching Pursuit (RD-CMP)

S = argmin log

1- a)lYYT +a (02| + 'yAsAg)
SClr

L

f(S), submodular in S

—alog |o?l + ’)’ASA]S-‘

g(S), submodular in S
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Submodular functions - a primer

e Let V be the ground set of elements.

e Set function f : V — R, is submodular, if for S C 7 C V,

e monotonicity e diminishing returns property

£(S) < F(T) (T U {a})—F(T) < f(SU {a})—-K(S) VaeWT
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e monotonicity e diminishing returns property

£(S) < F(T) (T U {a})—F(T) < f(SU {a})—-K(S) VaeWT

e Examples: rank of matrix, joint entropy
o £(S) = log ‘A n VBSBE‘ is submodular in S for A, > 0.
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Submodular functions - a primer

e Let V be the ground set of elements.

e Set function f : V — R, is submodular, if for S C 7 C V,

e monotonicity e diminishing returns property

£(S) < F(T) (T U {a})—F(T) < f(SU {a})—-K(S) VaeWT

e Examples: rank of matrix, joint entropy
o £(S) = log ‘A n VBSBE‘ is submodular in S for A, > 0.

e Maximizing a submodular function subject to cardinality constraints

e Greedy algorithm maximizes submodular f to within (1 — 15) fmax
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Submodular functions - a primer

e Let V be the ground set of elements.

Set function f : V — R, is submodular, if for S C 7 C V),

e monotonicity e diminishing returns property

£(S) < F(T) (T U {a})—F(T) < f(SU {a})—-K(S) VaeWT

Examples: rank of matrix, joint entropy
o £(S) = log ‘A n VBSBE‘ is submodular in S for A, > 0.

Maximizing a submodular function subject to cardinality constraints

e Greedy algorithm maximizes submodular f to within (1 — 15) fmax

Submodular f admits a tight modular upper bound: [Nemhauser, 78]

(S) < HX) = D () =X\ + D (F() —1(9))

jEX\S jes\x
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Rényi Divergence based Covariance Matching Pursuit (RD-CMP)

e RD-CMP objective is a difference of two submodular functions

$ = argmin log |(1 — a)Ry + a (azlm n »yASA;) ‘ —alog ‘azlm i 7ASA§‘
sCrr

submodular f(S) submodular g(S)

e Majorization-minimization procedure for support set recovery.
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Rényi Divergence based Covariance Matching Pursuit (RD-CMP)

e RD-CMP objective is a difference of two submodular functions

$ = argmin log |(1 — a)Ry + a (azlm n »yASA;) ‘ —alog ‘azlm i 7ASA§‘
sCrr

submodular f(S) submodular g(S)

e Majorization-minimization procedure for support set recovery.

o Majorization step: [k iteration]
o Majorize objective by replacing 1*" log det term £(S) with its
modular upper bound hng (S)

e Minimization step:
e Minimize the majorized objective.

Sie1 =argmin  Hs,(S) — alog |0®l + v®s®L
SCIn]

Supermodular func. minimized by greedy search
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RD-CMP performance (1/2)

Support recovery phase transition  Average runtime vs signal dimension
(SNR = 10 dB, n = 200, L = 200) (SNR = 10 dB, k = [50logy, N,
m = [0.75k], mL = [50k log;, Nn])

=N

0.9
_os8
So7
@06

205
@ 0.4

HM-SBL
0.2 !
0.1 i
!

©Co-LASSO
‘ <4-RD-CMP
T L

01 02 03 04 05 06 07 10° 10° 10* 10° 10°
Measurement Rate (m/n) Length of the sparse vectors (n)

Average Runtime (in seconds)
=X

RD-CMP can recover k-sparse RD-CMP can solve a million variable
support from m < k measurements problem in 10s of minutes.
per MMV!
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RD-CMP performance (2/2)

SNR =10 dB, n =500, k = 200, m=100

Support False Alarm Rate Support Detection Rate

00 T )]

N
=

N

hel
2
8
2 3
3 T
T g
o S 95
245 S CoLASSO 3 4
5 £-MSBL g
g s <rRD-CMP 5
© f=
£ 5 90
[}
90_1 o H=-MSBL
k; g 4-RD-CMP
: } B ©Co-LASSO
00 300 400 500 600 700 800 @ 83— s00 eo0 700 800
Number of MMVs (L) Number of MMVs (L)

RD-CMP performs better than Co-LASSO
but slightly worse than MSBL
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Distributed joint sparse signal
recovery
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Distributed Joint Sparse Signal Recovery

e Network of L sensor nodes

e Single hop communication
between nodes

Measurement model at node-j

Yi A X5 w;
m x 1 mxn m X 1
local measurement, AWGN noise
measurements T
(m < n)
nx1

unknown
sparse vector

X1 X2 X3 o o o X[

Jointly sparse
vectors

X1, Xz, ..., X, have the same
support support

e Goal: Decentralized estimation of xy,Xo, ..., X;.

e Exploit joint sparsity to reduce no. of local measurements.

Saurabh Khanna
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Decentralized MSBL

e MSBLs EM updates:
o E-step: Update the posterior p(x;|y;; v*) ~ N'(uf ", =)

—1

;

skt _ | pky—t A/ A d it = o2k ATy,

j_()+ag  and it =o0; 2 AjY,
i
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Decentralized MSBL

e MSBLs EM updates:

o E-step: Update the posterior p(x;|y;; v*) ~ N'(uf ", =)

Bl =

l

—1

ATA

j k+1 _ 25 k+1 ATy,
= ;and pi =07 BT A,
/

Saurabh Khanna

\
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Decentralized MSBL

e MSBLs EM updates:
o E-step: Update the posterior p(x;|y;; v*) ~ N'(uf ", =)

—1

k ky— j k — k T
5 = ()T + - ,and pft =022 Ay,

J
l l »| locally computed
> at each node

e M-step: Maximize the tight lower bound on log p(Y; ~)

~YER

L
A — argmax By, ~k [log p(Y, X;v)] = z; ((ﬂfk)2 +diag(2/’f+1))

k+1
a;
J
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Decentralized MSBL

e MSBLs EM updates:
o E-step: Update the posterior p(x;|y;; v*) ~ N'(uf ", =)

—1

.
skt _ | iyt A/ A d ! = o 2 ATY,
i =)+ v and pt =0 A

J
l l »| locally computed
> at each node

e M-step: Maximize the tight lower bound on log p(Y; ~)

n
yER]

L
1 B
~*1 = argmax Exj‘yjﬁk [log p(Y, X;v)] = ZZ ((;le) +d1ag(2,’-(+1))
J=1

k+1
a;
J

e Decentralized M-step: Each node maintains a local copy of ~.

L
2
k+1 : k+1 :
= argmin i—a; subj. to v = = 500 =
¥ g § H'y; f H2 j. 10 y1 =72 o

Y125 AL =y
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Decentralized MSBL

e MSBLs EM updates:
o E-step: Update the posterior p(x;|y;; v*) ~ N'(uf ", =)

—1

k ky— j k — k T
5 = ()T + - ,and pft =022 Ay,

J
l l »| locally computed
> at each node

e M-step: Maximize the tight lower bound on log p(Y; ~)

~YER

L
A — argmax By, ~k [log p(Y, X;v)] = z; ((ﬂfk)2 +diag(2/’f+1))

k+1
a;
J

e Decentralized M-step: Each node maintains a local copy of ~.

L

2
~1 = argmin H»y, = a"“H subj. oy =v2=...=~.
Fi¥2s Y 2
[Decentralized ADMM] [Local averaging ]
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Consensus Based Distributed Sparse Bayesian Learning (CB-DSBL)

e Decentralized M-step (ADMM form)

L 2
. k+1
min_ Y ||y -a H
Y1250 H’Y/ /
Yoy Yog Vb g j=1

subj. to v; =, j€[L], b€ B;

O normal node
@ bridge node

e Consensus enforced by using bridge variables.
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Consensus Based Distributed Sparse Bayesian Learning (CB-DSBL)

e Decentralized M-step (ADMM form)

L 2
. Z ki1
min —a. H
V125 L H,Y/ J
Yoy Yog Vb g j=1

subj. tov; =, j€[L],b e B;

O normal node
@ bridge node

e Consensus enforced by using bridge variables.
Local variables: — gl Y2 3 Y4 Y5 3 7 Y8 Yo Y10

Bridge variables: — b4 Ybs Vb8
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Consensus Based Distributed Sparse Bayesian Learning (CB-DSBL)

e Decentralized M-step (ADMM form)

L 2
. Z ki1
min —a. H
V125 L H,Y/ J
Yoy YooV g j=1

subj. tov; =, j€[L],b e B;

O normal node
@ bridge node

e Consensus enforced by using bridge variables.

Yba Yb5 Y8

Local variables: —

Bridge variables: —
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Consensus Based Distributed Sparse Bayesian Learning (CB-DSBL)

e Decentralized M-step (ADMM form)

k+1 H
min E
V1 V2L H’Y/

Yoy YooV g j=1

subj. tov; =, j€[L],b e B;

O normal node
@ bridge node

e Consensus enforced by using bridge variables.

Local variables: — gl Y2 3 Y4 Y5 3 Y7 Y8 Y9 Y10

\Wzar e

e Augmented Lagrangian

Bridge variables: —

extra quadratic penalty

Lo (7,76, A) ZH’YI k“H +ZZM — ) + 5 ZZH% Yoll3

J=1 beB; j=1 beB;
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ADMM convergence - bridge node topology

e Decentralized ADMM iterations converge
R-linearly

e The primal optimality gap
L

Sli- k< e
=

where ¢, — 0 monotonically
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ADMM convergence - bridge node topology

e Decentralized ADMM iterations converge
R-linearly

e The primal optimality gap
L

Sli- k< e
=

where ¢, — 0 monotonically

e Optimal ADMM parameter p

1
2

My (k=12 +4rK2+ (k—1)
Popt =
P Omaxdmin (k=12 +4rK2 — (k—1)
where
. My Lipschitz const. of Vf
S —=

my ~ strong convexity const. of f

_ 02, max # bridge nodes per node

o2~ min # bridge nodes per node

min
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ADMM convergence - bridge node topology

e Decentralized ADMM iterations converge *F == A
A -A-SNR=20dB, L=10
R-Ilnearly 2 400 \ |4A-SNR=20dB,L=20
2 \- -©-SNR=150dB, L= 10
£ 300 \-’-SNRZlSdB,L:ZO
e The primal optimality gap = o A AL §
L s \ /gg/ \ is
Dol =il <e e g |
Yi =Y |l = Cr o g
=1

i 1/2561/64 1/16 1/4 1 4 16 64 256
where ¢, — 0 monotonically Scale factor p

e . A
e Optimal ADMM parameter p -~ k‘\ Poo 5 v
1 c AN y
M (k=12 +4rK2+ (k—1) ’ \';}J-J/i \ o '47
Popt = Umax<f7min 5 5 } = " \\lr/li
(8 =1)2 +4kk5 — (k1) ) \ ;
where i =
. . 1/2561/64 1/16 1/4 4 16 64 256
iy = My Lipschitz const. of Vf Scale factor p

my ~ strong convexity const. of f

) , ADMM convergence is
omax  Max # bridge nodes per node

" oo ~ ‘min # bridge nodes per node sensitive to
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CB-DSBL performance

Support recovery probability

SNR =15dB, n = 50,
10% sparsity, network size = 10

~E+- Centralized MSBL
-A-CB-DSBL
-#%-DCSP

= DRL-1

-9~ DCOMP

Probability of exact support recovery
o o o o o o o o o
o - N W S (5 (=] ~ =] © —

0 0.2 0.3 0.4
Measurement rate per node (m/n)

Decentralized CB-DSBL matches
the performance of MSBL

Average message exchanges required
for less than 1% error

Communication complexity

SNR =30dB, n =50, m = 10,
10% sparsity, no. of trials = 500

H

o
\
L

=
[S)

—E— CBDSBL-CAMoM
—A— CBDSBL-EXTRA
©— CBDSBL-DADMM
&~ CBDSBL-bridge node ADMM

4 i
10 20

a1
=}

30
Network size (L)

Bridge node ADMM has lower
communication complexity than
D-ADMM and EXTRA
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Summarizing main contributions

e Derived new sulfficient conditions for exact support recovery in
Sparse Bayesian Learning.

e Proposed a new covariance matching framework for support
recovery.

e Derived upper bounds for restricted isometry constants of
generic Khatri-Rao product matrices.

e Proposed a novel Rényi divergence based support recovery
algorithm suitable for big data applications.

e Proposed two new decentralized SBL extensions with focus on
low communication complexity.
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Current and future research

o Restricted eigenvalues characterization for self Khatri-Rao
product A® A
o For m = O(Vk) regime.

Recovery of joint sparse vectors with inter/intra vector
correlations.
e Sample complexity of robust recovery from underdetermined
measurements.

Local minima of likelihood functions...
e |s there a phase transition phenomenon that explains the existence
of local minima?

Design of new cost functions for covariance matching.
e Which attributes of the cost function dictates the support recovery
performance?

Sample complexity of RD-CMP algorithm.
e Role of a-parameter in Rényi divergence.
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Publications

e Journal articles

e S. Khanna and C. R. Murthy, “Decentralized Joint-Sparse Signal Recovery: A Sparse
Bayesian Learning Approach,” in IEEE Trans. Signal and Info. Process. over Netw.,
vol. 3, no. 1, pp. 29-45, March 2017.

e S. Khanna and C. R. Murthy, “Communication Efficient Decentralized Sparse
Bayesian Learning of Joint Sparse Signals,” in IEEE Trans. Signal and Info. Process.
over Netw. , vol.PP, n0.99, pp.1-14.

e S. Khanna and C. R. Murthy, “On the Restricted Isometry of Column- wise Khatri-Rao
Product”, IEEE Trans. on Sig. Proc., vol. 66, no. 5, Mar. 2018

e S. Khanna and C. R. Murthy, “On the Support Recovery of Jointly Sparse Gaussian
Sources using Sparse Bayesian Learning,” (arXiv:1703.04930).

e Conference proceedings
e S. Khanna and C. R. Murthy, “Decentralized Bayesian learning of jointly sparse
signals,” 2014 |IEEE GLOBECOM Conference, Austin, TX, 2014, pp. 3103-3108.
e S. Khanna and C. R. Murthy, “Rényi Divergence based Covariance Matching Pursuit
of Joint Sparse Support” IEEE Workshop on Signal Processing SPAWC-17), Sapporo,
Japan, 2017, pp. 1-6.
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Take home insights...

MSBL objective... a Bregman matrix divergence.
Beyond ¢y-bound support recovery via covariance matching.

MSBL exactly recovers any k < spark(A) — 1 sparse support even from a
single noiseless MMV.

For subgaussian A, MSBL perfectly recovers any k sparse support from
m = O(k log n) noisy measurements per MMV, provided L = O(k® log n).

Cost function design is the key to faster inference!

Decentralized ADMM iterations converges R-linearly in a bridge node based
network topology.
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Fusion Based Decentralized Sparse Bayesian Learning (FB-DSBL)

Step 1: Local SBL iteration. Step 2: Support estimation via indexwise
« Update local posterior q(x;|y;; 7). log-likelihood ratio tests.
.« o = arg max Exyeaq 108 (Y, X5 7). o Ho: »y,(,)p(:yq,H )7{1 2(i) > 0.
= o My iflog RN > g,
"% ply;iHo) ~
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Fusion Based Decentralized Sparse Bayesian Learning (FB-DSBL)

Step 1: Local SBL iteration. Step 2: Support estimation via indexwise
log-likelihood ratio tests.

o Ho:~j(i)=0, Hi:~;(i)>0.

e Update local posterior q(x;|y;; 'y,f‘).

k+1
e v = arg max iy q log p(Y;, X;; ).
~=0 o Py M)
Hy if log ———-~ > 0.
"y o) =
Step-3: Broadcast censored copy of ~. Step-4: Fuse support estimates from other

nodes using majority rule.
(T TTTT MK et support -
S = (T T TTT B ext support -
(TIX T T T B ext. support -
CTE T TT T WM et support -

local local censored l
v supeert K (TR T T I W] fused support

[ R R
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Fusion Based Decentralized Sparse Bayesian Learning (FB-DSBL)

Step 1: Local SBL iteration. Step 2: Support estimation via indexwise
log-likelihood ratio tests.

o Ho:~j(i)=0, Hi:~;(i)>0.

e Update local posterior q(x;|y;; 'y,f‘).

k+1
e v = arg max iy q log p(Y;, X;; ).
~=0 o Py M)
Hy if log ———-~ > 0.
"y o) =
Step-3: Broadcast censored copy of ~. Step-4: Fuse support estimates from other

nodes using majority rule.
(T TTTT MK et support -
S = (T T TTT B ext support -
(T T T T B ext. support -
CTE T TT T WM et support -

local local censored l

v support v (T TT I T fused support

[ R R

Step 5: Assimilate shared information from neighboring nodes to refine local .

If the majority says /" index is zero: If the majority says /" index is non-zero:
° 7}‘“ (f) = avg. of own estimate and ° 7}‘“ (f) = avg. of own estimate and
received estimates received non-censored estimates

(censored values replaced by zero)
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FB-DSBL performance

Support recovery probability Communication complexity
SNR = 15 dB, n = 50, 10% sparsity, no. of SNR =30dB, n = 50, m = 10, 10% sparsity, no. of
nodes (L) = 10. trials = 500.
1

- —e— DRL-1

© B —&— CB-DSBL

3 2 - FB-DSBL'

® 08 -g —¥—pcomp

g s - @- FB-DSBL

§0.6 é —&—Dnesp

@ &

g ¢

304 —A— CB-DSBL £

5 8- FBDSBL! k]

2 -@-FBDSBL g

S02 —k-Dpese =

2 —k=—DRL-1 E

O —O— pcomp

A
(90 01 015 0.2 0.25 0.3 0.35 5 10 15 20 25 30 35 40
Measurement rate per node (m/n) Number of nodes (L)

FB-DSBL has “Bayesian” like performance and “Greedy” like
communication complexity
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RIP of Khatri-Rao product - an empirical study (plots with
bounds)

A Bjj~N (O, r1n> and m=0.5n

-6~ Bound for 65®Pin Theorem-1

?00 300 500 700 900

RIP improved by taking Khatri-Rao product!
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Wideband Spectrum Sensing

Frequency band of interest

j1 NERSREEEN 0] OB
i £

Secondary
secondary user #3
user

e Experimental setup

e No. primary users =5 5
e No. secondary users = §
10 .
e 11 of total 128 frequency g“ Ta onereaMSB |
subbands are in use B D
—k— DRL-1

e SNRrange: —2.4107.8
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