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Outline

• Joint sparse signal/support recovery problems

• Sparse Bayesian Learning (SBL) framework
• New theoretical results
• Covariance matching principle
• Khatri-Rao product - restricted isometry and null space

• Rényi divergence based support recovery algorithm

• Distributed extensions of SBL

• Conclusions and future research

Saurabh Khanna Bayesian Techniques for Joint-Sparse Signal Recovery: Theory and Algorithms 2 / 43



Canonical problem

• Consider the simultaneous linear equations: yj = Axj + wj , j ∈ [L].

AY

X

W

Wij ∼ N (0; σ2)m× L m× n

n× L

(m ≪ n)

k -nonzero rows
indexed by support set S∗

Observations
Sensing matrix

Signal

Noise

• Columns of X are jointly sparse with common nonzero support.

Multiple Measurement Vector problem Joint Sparse Support Recovery

Reconstruct entire X from {Y,A} Reconstruct support(X) from {Y,A}
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Multi-sensor signal processing

• Spectrum sensing in cognitive radio network

Joint sparsity in frequency domain

• Multi-sensor data is typically highly structured or correlated
due to
• overlapped sensing regions/common sensory target.

• [Tropp, 04], [Duarte, 05] proposed joint sparsity based data
models for structured/correlated multi-sensor data.
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A generative model for multi-sensor data

Physical process P(t)

freq-1
freq-2

freq-3

Sensor 1
Sensor 2

Sensor 3
Data from different sensors have
overlapping signal subspaces.

approximate as
different linear combinations of the

same elementary signals

• Simultaneous Sparse Approximation (SSA) Model: [Tropp, 04]

y1 y2 yL

. . .

≈
D

. . .

x1 x2 xLMulti-sensor data Dictionary

Joint sparse

coefficient vectors
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A compression scheme for multi-sensor data

• Encoder:

[y1,y2, . . . ,yL]︸ ︷︷ ︸
low dim. sketch

= A
m×n
frame

(m<<n)

[s1,s2, . . . ,sL]︸ ︷︷ ︸
high dimensional

data vectors from L sensors

• Decoder:

[y1,y2, . . . ,yL] ≈ A D [x1,x2, . . . ,xL]︸ ︷︷ ︸
joint sparse coefficients

(SSA approx.)

• Step 1: First recover joint-sparse coefficients {x1, x2, . . . , xL}.

• Step 2: Then reconstruct multi-sensor data as ŝj = Dx̂j .
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Joint sparse recovery - applications

• Anomaly/sparse event localization [Jiang, 13], [Adler, 13], [Lagunas, 16]

• Cooperative spectrum sensing [Bazerque, 10], [Fanzi, 11]

• Distributed source coding [Baron, 09]

• Magnetoencephalography (MEG) [Fornasier, 08]

• Direction of arrival estimation [Tan, 14]

• MIMO wireless channel estimation [Prasad, 15], [Masood, 15]

• Hyperspectral imaging [Iordache, 14]
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Main challenges and goals

Recover X or supp(X) from Y.

AY

X

W

Wij ∼ N (0; σ2)m× L m× n

n× L

(m ≪ n)

k - sparse support

• Conditions for exact support recovery in Sparse Bayesian
Learning.
• What values of (m, n, L) allow perfect k -sparse support recovery?
• Design guidelines for sensing matrix A.

• Algorithms for efficient estimation of X or supp(X)?
• Handling extremely large signal dimensions.
• Distributed/parallel implementation.
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Thesis contributions

Bayesian Techniques for
Joint Sparse Recovery

Theory
Centralized
Algorithms

Decentralized
Algorithms

Conditions for exact
support recovery in
Sparse Bayesian

Learning

Covariance matching
framework for

support recovery

Khatri-Rao matrices -
restricted eigenvalues

and null space
structure

Rényi divergence
based support

recovery

Decentralized SBL
using ADMM

Decentralized SBL
using local

averaging and
adaptive censoring
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`0 bound and beyond..
Fundamental limits on support recovery
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The `0 bound

L0 : min
X∈Rn×L

R(X)︸ ︷︷ ︸
no. of nonzero

rows in X

subject to Y = AX.

Unique solution when... [Chen & Huo, 06]
A k -sparse X is uniquely recoverable via L0 if

k <
spark(A)− 1 + rank(Y)

2
. (`0-bound)

spark(A):= minimum no. of linearly dependent columns in A.

• Supports of size up to m are uniquely recoverable....when
spark(A) = m + 1!
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Towards `0 bound

Mixed norm regularization [Chen & Huo, 06]

Lp,q : min
X

m∑
i=1

(
||X(i , :)||q

)p
subject to Y = AX.

• Joint sparse solution for p ∈ [0,1] and q ≥ 1.

• Unique k -sparse solution if ||A†Saj || < 1,∀j /∈ S.

• k
(
≤ m

2

)
sparse X is uniquely recoverable.

Iterative hard thresholding / greedy approach [Blanchard, 14]

• Examples: SOMP, Co-SAMP, SIHT.

• k ≤ O
(

m
log n

)
sparse supports are recoverable.
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Meeting `0 bound

Multi Signal Classification (MUSIC) criterion
[Peng & Bresler, 97]

• Index j ∈ support(X∗) iff

QHaj = 0 or aH
j PR(Q)aj = 0,

where the orthogonal columns of Q span the noise subspace.

• MUSIC criterion recovers any k(< m)-sparse support when
A has full spark!

• Algorithms: SA-MUSIC, CS-MUSIC.
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Beyond `0 bound?

Support recovery phase transition
(n = 200, L = 400, SNR = 20 dB)

Simultaneous Orthgonal Matching Pursuit
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Sparse Bayesian Learning (MSBL)
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Key Idea: Type-II estimation of X using correlation aware priors.
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Sparse Bayesian Learning
Performance guarantees

&
connections to covariance matching
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Sparse Bayesian Learning (SBL)

• Y = AX + W

• xj
i.i.d.∼ N (0,Γ), Γ = diag(γ) Correlation-aware prior!

• supp(xj ) = supp(γ). Common covariance induces joint sparsity

• Gaussian observations: yj ∼ N (0, σ2I + AΓAT ).

• Multiple Sparse Bayesian Learning (MSBL) [Wipf & Rao, 07]:

γ̂ = argmax
γ∈Rn

+

log p(Y;γ)

= argmin
γ∈Rn

+

L log
∣∣∣σ2Im + AΓAT

∣∣∣+ tr
(

YT (σ2Im + AΓAT )−1Y
)

• Nonconvex objective, γ̂ found via Expectation Maximization (EM).

• Support(γ̂) declared as estimate of true support S∗.
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Support recovery in SBL (noiseless measurements)

Support error....a large deviation event
Let xj ∼ N (0, Γ∗) and γ̂ be a global maximizer of the MSBL
objective, then

P (supp(γ̂) 6= S∗) ≤ exp

(
−LDα (pγ̂ ,pγ∗)

4

)
.

Dα (pγ̂ ,pγ∗) := α-Rényi Divergence between Gaussian densities:

pγ̂ ∼ N (0, σ2Im + AΓAT ) and pγ∗ ∼ N (0, σ2Im + AΓ∗AT ).

• For k -sparse vectors γ∗, γ̂ ∈ Rn
+ with distinct supports,

D1/2 (pγ̂ ,pγ∗)→∞ as σ2 → 0,

when k < spark(A)− 1.

• Implication: If |S∗|, ||γ̂||0 < spark(A)− 1, then supp(γ̂) = S∗

almost surely!
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Support recovery in SBL (noisy measurements)

Support error probability in MSBL

1. Let x1,x2, . . . ,xL be i.i.d zero mean Gaussian vectors with
support S∗, |S∗| ≤ k .

2. and... variance of nonzero entries in X lie in [γmin, γmax].

For any MSBL solution γ̂ with nonzero coefficients in [γmin, γmax],

P (supp(γ̂) 6= S∗) ≤ 2e−L
(

η
8−

c1k log n
L

)
,

where c1 is a dimension free constant, and

η , min
S⊆[n]\S∗

min
γ∈Rn

+,

supp(γ)=S

||(A� A)(γ − γ∗)||22
(|S\S∗|+ |S∗\S|)

(
σ2 + 2γmaxσ2

max(AS∪S∗)
)2 .

• Support error probability vanishes for η > 0 and L≥O
(

k log n
η

)
.
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Null Space of A� A

Strong Null Space Property

Suppose the `2-norm columns in A ∈ Rm×n lie in [1− α,1 + α] for
some α ∈ (0,1), then

||(A� A)v||22 ≥
(1− α)2

2m

(
||v+||21 + ||v−||21

)
for all v ∈ Rn such that

||v+||1
||v−||1

≥ 4
(

1 + α

1− α

)2

. Here, v+ and v− are

nonneg. vectors in Rn retaining only pos. and neg. entries of v.

• Implication 1: Null space of A� A is devoid of vectors like

∆γ = γ︸︷︷︸
dense nonnegative

− γ∗︸︷︷︸
sparse nonnegative

.

• Implication 2: For subgaussian A with m ≥ O(log n) rows, and
large enough L, MSBL solution is only O(|S∗|) sparse!

No dense MSBL solutions!
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MSBL optimization - a closer look

• MSBL’s log-likelihood objective:

− log p(Y;γ) = −
L∑

j=1

logN
(

yj ; 0, σ2Im + AΓAT
)

∝ log |σ2Im + AΓAT | + trace
((

σ2Im + AΓAT
)−1

(
1
L

YYT
))

∝ DBregman
− log det

(
1
L

YYT , σ2Im + AΓAT
)

︸ ︷︷ ︸
Log Det Bregman Matrix Div.

+ constant terms

• MSBL minimizes DBregman
− log det

 1
L

YYT︸ ︷︷ ︸
emp. cov mat

, σ2Im + AΓAT︸ ︷︷ ︸
param. cov mat

.

• Can we use other matrix divergences?
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Covariance matching framework for support recovery

• Multiple measurement vectors (MMVs): Y = AX + W

• xj ∼ N (0, diag(γ))
correlation aware prior

• yj ∼ N (0, σ2Im + AΓAT )

• Covariance matrices:

• Empirical RY =
1
L

YYT • Parameterized Σγ = σ2Im +AΓAT

• Covariance Matching Principle:

γ̂ = argmin
γ∈Rn

+

distance
(

RY︸︷︷︸
empirical

MMV covariance

, σ2I + AΓAT︸ ︷︷ ︸
parameterized

MMV covariance

)
+ λ h(γ)︸︷︷︸

optional
concave penalty

support(X)← support(γ̂)
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Restricted Isometry of Khatri-Rao
product
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Covariance matching - a closer look

• Covariance matching constraint:
1
L

YYT ≈ AΓAT

=

1
L

YYT A

Γ AT

= ⊙

vec
(

1
L

YYT
)

m2 + m
2

independent equations!

A� A
γ = diag(Γ)

Khatri-Rao product

• Stable recovery of k -sparse γ.... possible if A� A behaves like
an isometry for all k -sparse nonnegative vectors.
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L
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1
L

YYT A

Γ AT
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Columnwise Khatri-Rao product

• Khatri-Rao product | | |
a1 a2 . . . ap

| | |


︸ ︷︷ ︸

�

 | | |
b1 b2 . . . bp

| | |


︸ ︷︷ ︸

=

 | | |
a1 ⊗ b1 a2 ⊗ b2 . . . ap ⊗ bp

| | |


︸ ︷︷ ︸

A B A� B
(m × p) (m × p) (m2 × p)

⊗ denotes Kronecker product

• Khatri-Rao product form arises naturally in
• Sparsity pattern recovery (via covariance matching)
• Direction of arrival estimation
• PARAFAC based tensor decomposition
• Estimation of power spectral density of stationary graph signals

• When does A� B satisfy the Restricted Isometry Property?
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Restricted Isometry Property (RIP)

Restricted Isometry Property of k th order (k -RIP)
Matrix A satisfies k -RIP if there exists a constant δk ∈ (0,1) such
that

(1− δk ) ||z||22 ≤ ||Az||22 ≤ (1 + δk ) ||z||22 ,

for all k -sparse vectors z.

• Smallest δk is called the k -RIC of A.

• How small can k -RIC of a generic Khatri-Rao matrix A� B be?
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RIP of Khatri-Rao product - an empirical study

Ai,j ,Bi,j ∼ N
(

0,
1
m

)
and m = 0.5n
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RIP improved by taking Khatri-Rao product!
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Deterministic RIC bound for A� B

Deterministic RIC bound
For m × n sized matrices A and B with unit `2-norm columns,

δk (A� B) ≤ [max (δk (A), δk (B))]2 for all k ≤ m.

• Mathematical tools:

• (A� B)T (A� B) = AT A ◦ BT B

• Kantorovitch matrix inequalities

• Key features of the bound:

• bound is expressed in terms of k -RICs of the input matrices

• δk (A� A) ≤ (δk (A))2 < δk (A). RIP improves!
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Probabilistic RIC bound for Khatri-Rao product

Probabilistic RIC bound
Let A and B be m × n sized matrices with zero mean, unit variance,
i.i.d. subgaussian entries satisfying

∣∣∣∣Aij
∣∣∣∣
ψ2
,
∣∣∣∣Bij

∣∣∣∣
ψ2
≤ β. Then,

P
(
δk

(
A√
m
� B√

m

)
≥ δ
)
≤ 10

n2(γ−1)

for all γ ≥ 1, provided

m ≥ 4cγβ2
(

k log n
δ

)
.

Here, c is an absolute numerical constant.

• For m ≥ O
(

k log n
δ

)
, one can have δk

(
A√
m
� A√

m

)
≤ δ w.h.p.

In MSBL, O(k log n) measurements per MMV are sufficient to
guarantee exact recovery of any k -sparse support!
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Rényi divergence based support
recovery
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Support recovery using Rényi Divergence

• MMV model: Y = AX + W
• Let set S be the unknown support(X)

• xj ∼ N (0, γdiag(1S))
Covariance matrix
parameterized by
support S!• yj ∼ N (0, σ2Im + γASAT

S)

• Covariance matching using α-Rényi divergence

Ŝ = argmin
S⊆[n]

Dα
(
N
(

0,
1
L

YYT
)
,N
(

0, σ2Im + γASAT
S
))

• Rényi Divergence based Covariance Matching Pursuit (RD-CMP)

Ŝ = argmin
S⊆[n]

log

∣∣∣∣(1− α)1
L

YYT + α
(
σ2I + γASAT

S

)∣∣∣∣︸ ︷︷ ︸
f (S), submodular in S

−α log
∣∣∣σ2I + γASAT

S

∣∣∣︸ ︷︷ ︸
g(S), submodular in S
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• Rényi Divergence based Covariance Matching Pursuit (RD-CMP)
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Submodular functions - a primer

• Let V be the ground set of elements.

• Set function f : V → R+ is submodular, if for S ⊆ T ⊆ V,

• monotonicity

f (S) ≤ f (T )

• diminishing returns property

f (T ∪ {a})−f (T ) ≤ f (S ∪ {a})−f (S) ∀a ∈ V\T

• Examples: rank of matrix, joint entropy
• f (S) = log

∣∣∣A + γBSBT
S

∣∣∣ is submodular in S for A, γ > 0.

• Maximizing a submodular function subject to cardinality constraints

• Greedy algorithm maximizes submodular f to within
(

1− 1
e

)
fmax

• Submodular f admits a tight modular upper bound: [Nemhauser, 78]

f (S) ≤ f (X ) −
∑

j∈X\S
(f (X )− f (X\ {j})) +

∑
j∈S\X

(f (j)− f (φ))
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Rényi Divergence based Covariance Matching Pursuit (RD-CMP)

• RD-CMP objective is a difference of two submodular functions

Ŝ = argmin
S⊆[n]

log
∣∣∣(1− α)RY + α

(
σ2Im + γASAT

S

)∣∣∣︸ ︷︷ ︸−α log
∣∣∣σ2Im + γASAT

S

∣∣∣︸ ︷︷ ︸
submodular f (S) submodular g(S)

• Majorization-minimization procedure for support set recovery.

• Majorization step: [kth iteration]

• Majorize objective by replacing 1st log det term f (S) with its
modular upper bound hf

St−1(S)

• Minimization step:

• Minimize the majorized objective.

St+1 = arg min
S⊆[n]

hf
St (S)− α log

∣∣∣σ2I + γΦSΦ
T
S

∣∣∣︸ ︷︷ ︸
Supermodular func. minimized by greedy search

.
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RD-CMP performance (1/2)

Support recovery phase transition
(SNR = 10 dB, n = 200, L = 200)
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RD-CMP can solve a million variable
problem in 10s of minutes.
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RD-CMP performance (2/2)

SNR = 10 dB, n = 500, k = 200, m=100
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Distributed joint sparse signal
recovery
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Distributed Joint Sparse Signal Recovery

• Network of L sensor nodes

• Single hop communication
between nodes

Measurement model at node-j

m× n

(m ≪ n)

yj Aj xj wj

n× 1

m× 1m× 1

local

measurements
AWGN noisemeasurement

matrix

unknown

sparse vector

Network wide joint sparsity

Jointly sparse
vectors

x1 x2 xLx3

x1, x2, . . . , xL have the same
support support

• Goal: Decentralized estimation of x1,x2, . . . ,xL.

• Exploit joint sparsity to reduce no. of local measurements.
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Decentralized MSBL

• MSBL’s EM updates:

• E-step: Update the posterior p(xj |yj ;γ
k ) ∼ N (µk+1

j ,Σk+1
j )

Σk+1
j =

[
(Γk )−1 +

AT
j Aj

σ2
j

]−1

, and µk+1
j = σ−2

j Σk+1
j AT

j yj

• M-step: Maximize the tight lower bound on log p(Y;γ)

γk+1 = argmax
γ∈Rn

+

Exj |yj ,γ
k [log p(Y,X;γ)] =

1
L

L∑
j=1

((
µk

j

)2
+ diag

(
Σk+1

j

))
︸ ︷︷ ︸

ak+1
j

• Decentralized M-step: Each node maintains a local copy of γ.

γk+1 = argmin
γ1,γ2,...γL

L∑
j=1

∣∣∣∣∣∣γj − ak+1
j

∣∣∣∣∣∣2
2

subj. to γ1 = γ2 = . . . = γL
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Decentralized ADMM Local averaging
Saurabh Khanna Bayesian Techniques for Joint-Sparse Signal Recovery: Theory and Algorithms 37 / 43



Consensus Based Distributed Sparse Bayesian Learning (CB-DSBL)

• Decentralized M-step (ADMM form)

min
γ1,γ2,...,γL

γb1 ,γb2 ,...,γb|B|

L∑
j=1

∣∣∣∣∣∣γj − ak+1
j

∣∣∣∣∣∣2
subj. to γj = γb, j ∈ [L],b ∈ Bj

2

3
6

7

8

54

1

10

9

normal node
bridge node
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ADMM convergence - bridge node topology

• Decentralized ADMM iterations converge
R-linearly

• The primal optimality gap
L∑

j=1

∣∣∣∣γj − γ∗j
∣∣∣∣2

2 ≤ cr ,

where cr → 0 monotonically

• Optimal ADMM parameter ρ

ρopt =
Mf

σmaxσmin


√

(κ− 1)2 + 4κκ2
f + (κ− 1)√

(κ− 1)2 + 4κκ2
f − (κ− 1)


1
2

where

κf =
Mf

mf
=

Lipschitz const. of ∇f
strong convexity const. of f

κ =
σ2

max
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CB-DSBL performance

Support recovery probability

SNR = 15 dB, n = 50,
10% sparsity, network size = 10
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Communication complexity

SNR = 30 dB, n = 50, m = 10,
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Summarizing main contributions

• Derived new sufficient conditions for exact support recovery in
Sparse Bayesian Learning.

• Proposed a new covariance matching framework for support
recovery.

• Derived upper bounds for restricted isometry constants of
generic Khatri-Rao product matrices.

• Proposed a novel Rényi divergence based support recovery
algorithm suitable for big data applications.

• Proposed two new decentralized SBL extensions with focus on
low communication complexity.
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Current and future research

• Restricted eigenvalues characterization for self Khatri-Rao
product A� A
• For m = O(

√
k) regime.

• Recovery of joint sparse vectors with inter/intra vector
correlations.
• Sample complexity of robust recovery from underdetermined

measurements.

• Local minima of likelihood functions...
• Is there a phase transition phenomenon that explains the existence

of local minima?

• Design of new cost functions for covariance matching.
• Which attributes of the cost function dictates the support recovery

performance?

• Sample complexity of RD-CMP algorithm.
• Role of α-parameter in Rényi divergence.
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Publications

• Journal articles
• S. Khanna and C. R. Murthy, “Decentralized Joint-Sparse Signal Recovery: A Sparse

Bayesian Learning Approach,” in IEEE Trans. Signal and Info. Process. over Netw.,
vol. 3, no. 1, pp. 29-45, March 2017.

• S. Khanna and C. R. Murthy, “Communication Efficient Decentralized Sparse
Bayesian Learning of Joint Sparse Signals,” in IEEE Trans. Signal and Info. Process.
over Netw. , vol.PP, no.99, pp.1-14.

• S. Khanna and C. R. Murthy, “On the Restricted Isometry of Column- wise Khatri-Rao
Product”, IEEE Trans. on Sig. Proc., vol. 66, no. 5, Mar. 2018

• S. Khanna and C. R. Murthy, “On the Support Recovery of Jointly Sparse Gaussian
Sources using Sparse Bayesian Learning,” (arXiv:1703.04930).

• Conference proceedings
• S. Khanna and C. R. Murthy, “Decentralized Bayesian learning of jointly sparse

signals,” 2014 IEEE GLOBECOM Conference, Austin, TX, 2014, pp. 3103-3108.
• S. Khanna and C. R. Murthy, “Rényi Divergence based Covariance Matching Pursuit

of Joint Sparse Support,” IEEE Workshop on Signal Processing SPAWC-17), Sapporo,
Japan, 2017, pp. 1-6.
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Take home insights...

MSBL objective... a Bregman matrix divergence.

Beyond `0-bound support recovery via covariance matching.

MSBL exactly recovers any k < spark(A)− 1 sparse support even from a
single noiseless MMV.

For subgaussian A, MSBL perfectly recovers any k sparse support from
m = O(k log n) noisy measurements per MMV, provided L = O(k2 log n).

Cost function design is the key to faster inference!

Decentralized ADMM iterations converges R-linearly in a bridge node based
network topology.
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Fusion Based Decentralized Sparse Bayesian Learning (FB-DSBL)

Step 1: Local SBL iteration.
• Update local posterior q(xj |yj ;γ

k
j ).

• γk+1
j = arg max

γ�0
Exj∼qj log p(yj , xj ;γ).

Step 2: Support estimation via indexwise
log-likelihood ratio tests.
• H0 : γj(i) = 0, H1 : γj(i) > 0.

• H1 if log
p(yj ;H1)

p(yj ;H0)
≥ θ.

Step-3: Broadcast censored copy of γ.

local
γ

local
support

censored
γ

Step-4: Fuse support estimates from other
nodes using majority rule.

fused support

ext. support - 1

ext. support - 2

ext. support - 3

ext. support - 4

Step 5: Assimilate shared information from neighboring nodes to refine local γ.

If the majority says i th index is zero:

• γk+1
j (i) = avg. of own estimate and

received estimates
(censored values replaced by zero)

If the majority says i th index is non-zero:

• γk+1
j (i) = avg. of own estimate and

received non-censored estimates
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FB-DSBL performance

Support recovery probability
SNR = 15 dB, n = 50, 10% sparsity, no. of

nodes (L) = 10.
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Communication complexity
SNR = 30 dB, n = 50, m = 10, 10% sparsity, no. of

trials = 500.
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RIP of Khatri-Rao product - an empirical study (plots with
bounds)

Ai,j ,Bi,j ∼ N
(

0,
1
m

)
and m = 0.5n

100 300 500 700 900
0

0.2

0.4

0.6

0.8

1

n

δ
2

 

 

δA2
δB2
δA⊙B
2

Bound for δA⊙B
2 in Theorem-1

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

n

δ
3

RIP improved by taking Khatri-Rao product!
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Wideband Spectrum Sensing

• Experimental setup
• No. primary users = 5
• No. secondary users =

10
• 11 of total 128 frequency

subbands are in use
• SNR range: −2.4 to 7.8

dB.
• Compression ratio =

12.5
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