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Abstract

This thesis contributes new theoretical results, solution concepts, and algorithms concern-

ing the Bayesian recovery of multiple joint sparse vectors from noisy and underdetermined

linear measurements.

The thesis is written in two parts. The first part focuses on the recovery of nonzero

support of multiple joint sparse vectors from their linear compressive measurements, an

important canonical problem in multi-sensor signal processing. The support recovery

performance of a well known Bayesian inference technique called Multiple Sparse Bayesian

Learning (MSBL) is analyzed using tools from large deviation theory. New improved

sufficient conditions are derived for perfect support recovery in MSBL with arbitrarily high

probability. We show that the support error probability in MSBL decays exponentially

fast with the number of joint sparse vectors and the rate of decay depends on the restricted

eigenvalues and null space structure of the self Khatri-Rao product of the sensing matrix

used to generate the measurements. New insights into MSBL’s objective are developed

which enhance our understanding of MSBL’s ability to recover supports of size greater

than the number of measurements available per joint sparse vector. These new insights

are formalized into a novel covariance matching framework for sparsity pattern recovery.

Next, we characterize the restricted isometry property of a generic Khatri-Rao product

matrix in terms of its restricted isometry constants (RICs). Upper bounds for the RICs

of Khatri-Rao product matrices are of independent interest as they feature in the sample

complexity analysis of several linear inverse problems of fundamental importance, includ-

ing the above support recovery problem. We derive deterministic and probabilistic upper

bounds for the RICs of Khatri-Rao product between two matrices. The newly obtained

RIC bounds are then used to derive performance bounds for MSBL based support recovery.

Building upon the new insights about MSBL, a novel covariance matching based support
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recovery algorithm is conceived. It uses a Rényi divergence objective which reverts to the

MSBL’s objective in a special case. We show that the Rényi divergence objective can be

expressed as a difference of two submodular set functions, and hence it can be optimized via

an iterative majorization-minimization procedure to generate the support estimate. The

resulting algorithm is empirically shown to be several times faster than existing support

recovery methods with comparable performance.

The second part of the thesis focuses on developing decentralized extensions of MSBL

for in-network estimation of multiple joint sparse vectors from linear compressive mea-

surements using a network of nodes. A common issue while implementing decentralized

algorithms is the high cost associated with the exchange of information between the net-

work nodes. To mitigate this problem, we examine two different approaches to reduce the

amount of inter-node communication in the network. In the first decentralized extension

of MSBL, the network nodes exchange information only via a small set of predesignated

bridge nodes. For this bridge node based network topology, the MSBL optimization is then

performed using decentralized Alternating Directions Method of Multipliers (ADMM).

The convergence of decentralized ADMM in a bridge node based network topology for

a generic consensus optimization is separately analyzed and a linear rate of convergence

is established. Our second decentralized extension of MSBL reduces the communication

complexity by adaptively censoring the information exchanged between the nodes of the

network by exploiting the inherent sparse nature of the exchanged information. The per-

formance of the proposed decentralized schemes is evaluated using both simulated as well

as real-world data.



Glossary

AIC : Analog-to-Information-Converter
ADMM : Alternating Directions Methods of Multipliers
CB-DSBL : Consensus Based Distributed Sparse Bayesian Learning
DCS : Distributed Compressive Sensing
EM : Expectation Maximization
FB-DSBL : Fusion Based Distributed Sparse Bayesian Learning
FC : Fusion Center
i.i.d. : Independent and Identically Distributed
JSM : Joint Sparsity Model
JSSR : Joint Sparse Signal Recovery
KR : Khatri-Rao
KL : Kullback-Leibler
LASSO : Least Angle Absolute Shrinkage and Selection Operator
LHS : Left Hand Side
LLRT : Log Likelihood Ratio Test
MAP : Maximum a Posteriori
MIMO : Multiple-Input Multiple-Output
ML : Maximum Likelihood
MMSE : Minimum Mean Squared Error
MMV : Multiple Measurement Vector
MSBL : Multiple Sparse Bayesian Learning
NMSE : Normalized Mean Squared Error
NP-hard : Non-deterministic Polynomial-time hard
NSER : Normalized Support Error Rate
OMP : Orthogonal Matching Pursuit
PFA : Probability of False Alarm
RD-CMP : Rényi Divergence Based Covariance Matching Pursuit
RHS : Right Hand Side
RIC : Restricted Isometry Constant
RIP : Restricted Isometry Property
ROC : Receiver Operating Characteristics
SBL : Sparse Bayesian Learning
SMV : Single Measurement Vector
SNR : Signal-to-Noise Ratio
SOMP : Simultaneous Orthogonal Matching Pursuit
w.h.p. : With High Probability
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Notation

Vectors and scalar random variables are denoted by boldface lowercase alphabets. Scalar

variables are denoted by lowercase alphabets. Matrices are denoted by uppercase boldface

alphabets and sets are denoted by uppercase script letters. The rest of the notation is

listed in the table below:

Fields

R : Field of real numbers

C : Field of complex numbers

Rn : Set of all n-dimensional vectors

Rn
+ : Set of all real n-dimensional nonnegative vectors

Sn+ : Set of all n× n real positive semidefinite matrices

Sn++ : Set of all n× n real positive definite matrices

Sets

[n] : {1, 2, . . . , n} for any positive integer n

|A| : Cardinality of set A
Ac : Complement of set A
A ∪ B : Union of sets A and B
A ∩ B : Intersection of sets A and B
A\B : A ∪ Bc, i.e., elements of A that are not in B

For any vector x ∈ Rn

x̄ : Elementwise complex conjugate of x

x(i) : Element of x in ith row

vi



Notation vii

xj : Vector x at node/agent j

xkj : Vector x at node/agent j in kth iteration

supp(x) : Index set of nonzero rows in the vector x

xS : |S| × 1 sized vector retaining elements in x

indexed by S
||x||0 : `0 norm of x, evaluated as the number of

nonzero elements in x

||x||1 : `1 norm of x, evaluated as
∑n

i=1 |xi|
||x||2 : `2 norm of x, evaluated as

√∑n
i=1 x2

i

diag(x) : Matrix with x as its principle diagonal and

rest of the entries set to zero

x � a : All entries of x are greater than or equal to scalar a

For any two real vectors x

and y

x ◦ y : Hadamard or Schur product between x and y

x⊗ y : Kronecker product between x and y

〈x,y〉 : Inner product of x and y

evaluated as xTy

x ≤ y or y ≥ x : All entries in y − x are nonnegative

x < y or y > x : All entries in y − x are strictly positive

Matrices

AT : Transpose of A

AH : Complex conjugate transpose of A

Ā : Elementwise complex conjugate of A

A−1 : Matrix inverse of A

A† : Generalized inverse of A

Aij : Element of A in row i and column j

Ai : ith column of A unless specified otherwise

AS : Submatrix comprising columns of A indexed

by S



Notation viii

tr(A) : Trace of matrix A

|A| or det(A) : Determinant of A

rank(A) : Rank of matrix A

spark(A) : Spark of matrix A

krank(A) : Kruskal rank of matrix A

supp(A) : Index set of nonzero rows in the matrix A

Null(A) : Null space of A

Col(A) : Subspace spanned by columns of A

Row(A) : Subspace spanned by rows of A

vec(A) : Vector obtained by columwise stacking of

columns of A

R(X) : Index set of nonzero rows in the matrix A

|||A|||2 : Spectral norm of A, evaluated as supx
||Ax||2
||x||2

|||A|||F : Frobenius norm of A, evaluated as the square-root

of sum of squared elements in A

|||A|||1 : Maximum absolute column sum of A

|||A|||∞ : Maximum absolute row sum of A

For any two real matrices

A and B

A ◦B : Hadamard or Schur product between A and B

A⊗B : Kronecker product between A and B

A�B : Columnwise Khatri-Rao product between A and B

〈A,B〉 : Matrix inner product of A and B

evaluated as tr(ATB)

A ≤ B or B ≥ A : B−A is positive semidefinite

A < B or B > A : B−A is positive definite

Probability

N (µ, σ2) : Gaussian distribution with mean µ and variance σ2

E[·] : Expectation operator

E[x|y] or Ey[x] : Conditional expectation of random variable x



Notation ix

conditioned on random variable y

P (E) : Probability of event E
p(x) : Probability density function of random variable x

p(x|y) : Conditional probability density function of

random variable x given y

p(x; τ) : Probability density function of random variable x

parameterized by deterministic variable τ

Calculus

∇f : First order derivative (gradient) of function f

∇2f : Second order derivative (Hessian) of function f

∂f
∂x

: First order partial derivative of a multi-variate

function f with respect to variable x

∂2f
∂x2

: Second order partial derivative of a multi-variate

function f with respect to variable x

Constants

In : n× n sized identity matrix

0n : n× 1 sized all-zero vector

1n : n× 1 sized all-ones vector

Miscellaneous

|x| : magnitude of scalar x
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Matching Pursuit of Joint Sparse Support,” Proc. IEEE 18th Workshop on Sig-

nal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan,

Jul. 2017.

xx



Chapter 1

General introduction

In which joint sparsity is everywhere...

1.1 Introduction

Rapid progress in sensing technology has led to the development of sensors that are capable

of taking measurements at increasingly higher resolutions. The high dimensional sensor

data thus generated poses several challenges concerning its storage and processing using a

resource constrained hardware. Issues originating from large data dimensionality become

even more apparent in the backdrop of multi-sensor signal processing, wherein data streams

from multiple high-resolution sensors have to be processed simultaneously.

In the multi-sensor signal processing paradigm, signal processing and inference related

tasks are peformed on data generated by multiple sensors. These sensors can be co-

located, e.g., an antenna sensor array, or they can be physically separated in space as

in a wireless sensor network. An important and widely used premise in multi-sensor

signal processing is that data generated by different sensors exhibits significant structure:

the data collected across the sensors could be highly correlated, or occupy a common

1
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subspace, etc. Structure in the multi-sensor data could arise due to overlapping sensing

regions, or due to the inherent spatiotemporal coupling of the sensed physical process.

An interesting question thus arises: how to efficiently acquire and store a set of high

dimensional structured signals? The answer to this question depends on the type of

structure that exists among the signals. This thesis focuses on one type of structure,

namely, that of joint sparsity, which is described next.

Latent Joint Sparse Structure in Multi-Sensor Signals

A recurring scenario in multi-sensor signal processing considers a network of sensors, where

each sensor is tasked with learning the true signal subspace of a low dimensional physical

process P (x). The variable x here, for instance, can be a time or a spatial coordinate.

The low-dimensional subspace associated with process P as perceived by different sensors1

usually coincides with a common ground truth. This results in an interesting consequence:

the signals acquired by the sensors can be closely approximated by different linear combi-

nations of the same elementary signals. The elementary signals that model the mutual

low dimensional structure of the sensor signals often come from an orthonormal or an

overcomplete dictionary. Motivated by this viewpoint, the Simultaneous Sparse Approxi-

mation (SSA) multi-signal model was introduced by Tropp et al. in [5]. In the SSA model,

depicted in Fig. 1.1, the signals s1, s2, . . . , sL ∈ Rp from L distinct sensors are assumed to

be generated according to the linear model:

sj = Dxj + ej, 1 ≤ j ≤ L. (1.1)

1A linear sensing modality is assumed for all the sensors.
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s1 s2 sL

. . . =

D

. . . +

x1 x2 xL e1 e2 eL

. . .

Figure 1.1: Simultaneous Sparse Approximation (SSA) model for multi-sensor signal en-
semble s1, s2, . . . , sL. Notice the common sparsity profile of the individual coefficient vec-
tors x1,x2, . . . ,xL.

D here is a p×n sized dictionary matrix whose columns represent the elementary signals,

a small fraction of whom can linearly approximate all of the sensor signals simultaneously.

The vector ej ∈ Rp models the process noise due to any mismatch between the ground

truth sj and its linear approximation Dxj. Since the sensor signals s1, s2, . . . , sL are

approximated by different linear combinations of the same k(� p) columns of D, as

depicted in Fig. 1.1, the coefficient vectors x1,x2, . . . ,xL ∈ Rn contain exactly k nonzero

entries belonging to the same set of rows. In other words, the coefficient vectors are jointly

sparse.

Two or more sparse2 vectors are said to be jointly sparse, if they share the same nonzero

support, i.e., their nonzero coefficients belong to the same rows. The common index set

of nonzero rows is referred to as the support of the jointly sparse vectors. A more realistic

form of joint sparsity is the approximate joint sparsity, wherein the large coefficients of

the vectors, which are few in number, belong to the same rows. Fig. 1.2 gives an example

for each type of joint sparsity.

2A sparse vector has most of its coefficients equal to zero. A k-sparse vector has exactly k nonzero

coefficients, and the rest of them are zero.
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Figure 1.2: The left diagram shows an example of perfectly joint sparse signals. The
right plot shows approximately joint sparse frequency domain representation of the signals
received by 8 different secondary cell users in a cognitive radio application.

Compressive Acquisition of Multi-Sensor Signals

In many practical situations, the SSA model turns out to be a reasonably accurate model

for structured multi-sensor signals. In that case, a simple compressive acquisition scheme

for high-dimensional multi-sensor signals can be envisaged. The acquisition scheme enlists

a linear encoder which inputs multi-sensor signal vectors {sj}Lj=1 ∈ Rp, and outputs its

low-dimensional linear projections {yj}Lj=1 ∈ Rm(m� p), as

yj = Φsj, 1 ≤ j ≤ L. (1.2)

The encoder matrix Φ ∈ Rm×p is fixed and does not change with the applied input. In this

regard, the encoding process is non-adaptive, which is a desirable feature. As for decoding,

the multi-sensor signal vectors {sj}Lj=1 can be reconstructed from their low-dimensional

projections {yj}Lj=1 in the following two steps.

1. First, the coefficient vectors {xj}Lj=1 in the SSA based representation of {sj}Lj=1 are



Chapter 1. 5

recovered from {yj}Lj=1. From (1.1), it follows that

yj = Φ (Dxj + ej) ,

or yj = Axj + nj, 1 ≤ j ≤ L. (1.3)

The matrix A = ΦD is an m× n sized matrix which is typically known at the time

of signal recovery. Vector nj(= Φej) is the additive noise in the linear projections

arising due to SSA model mismatches.3 The first stage of decoding entails recovery

of the joint sparse coefficient vectors x1,x2, . . . ,xL from their underdetermined linear

measurements y1,y2, . . . ,yL generated according to (1.3).

2. Once the estimate of the coefficient vectors, i.e., {x̂j}Lj=1 are available, the unknown

joint sparse signal vectors {sj}Lj=1 are reconstructed as their linear approximations

ŝj = Dx̂j.

Practical implementation of the above multi-sensor signal acquisition and reconstruction

scheme entails solving the following canonical problem: How to efficiently recover a joint

sparse signal ensemble from its noisy and underdetermined linear measurements? This

comes under the purview of compressive sensing theory for multiple joint sparse vectors,

which is the main focus of this thesis.

Compressive Sensing of a Joint Sparse Ensemble

According to the modern viewpoint in compression theory, a signal ensemble can be ac-

quired or stored non-adaptively at a rate commensurate with its collective information

3In practice, the noise due to signal model mismatches is negligible in comparison to the measurement

noise added while taking linear projections, and therfore it is ignored. For ease of analysis, going forward,

we will assume that model mismatch noise is absent, i.e., nj ≈ 0 in (1.3).
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content, which is typically several orders of magnitude smaller than the ambient sig-

nal dimension. This key idea underpins the widely popular theory of compressive sens-

ing (CS) [6], which suggests that a high dimensional sparse vector can be sketched4 to

a small number of random linear projections. The sparsity of the signal allows one to

reconstruct the original sparse vector from its linear projections in polynomial time.

The CS theory extends naturally to sketching of joint sparse signal ensembles, as first

demonstrated in [7]. An ensemble of high dimensional joint sparse vectors in Rn can

be embedded in a low dimensional subspace Rm(m � n), in the form of their linear

projections onto an m-sized fixed set of vectors and subsequently reconstructed back when

needed. Here, we could ask the following questions.

� How to choose the fixed set of vectors used in obtaining the linear projections of the

high dimensional jointly sparse vectors?

� What is the minimum number of linear projections that is necessary or sufficient for

stable recovery of the original joint sparse signal ensemble?

� How to design polynomial time algorithms capable of recovering a joint sparse signal

ensemble from its linear projections?

In this thesis, we build on the compressive sensing theory for joint sparse signal ensembles,

which deals with answering such fundamental questions.

4The term “sketching” is borrowed from the machine learning literature. A signal sketch has the same

connotation as compressed, low dimensional representation of the signal. A sketch comprises multiple

linear projections of the signal.
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1.2 Multiple Measurement Vector Problem

Traditionally, the multiple measurement vector (MMV) problem refers to the estimation

of a joint sparse signal ensemble from underdetermined linear measurements. The MMV

problem and the term MMV itself were both first introduced in [7] by Cotter et al. In

the MMV problem, the signal of interest is a matrix X = [x1,x2, . . . ,xL] ∈ Rn×L whose

columns xj are known to be joint sparse vectors in Rn. As a result, X is a row sparse

matrix with only a fraction of its rows containing nonzero elements and the rest of the

rows made up entirely of zeros. The goal is to recover X from its noisy, linear observations

Y = [y1,y2, . . . ,yL] ∈ Rm×L, generated according to the linear model:

Y = AX + W, (1.4)

where A ∈ Rm×n is a known measurement matrix and W = [w1,w2, . . . ,wL] ∈ Rm×L is

additive measurement noise. For L = 1, the MMV problem reverts to its single measure-

ment vector (SMV) form, which deals with the recovery of a single sparse vector from its

linear compressive measurements. The columns of Y are generated by linearly projecting

the individual columns of X onto the m rows of A, i.e., yj = Axj + wj for 1 ≤ j ≤ L.

For m < n, the above linear system is underdetermined and therefore has infinitely many

solutions for X. However, if A satisfies certain isometry5 properties, one can still obtain

a unique row-sparse solution for X.

In many real-world applications involving multi-sensor signal processing, the underlying

core problem can be cast as the canonical MMV problem. Important application areas in-

clude magnetoencephalography [8], MIMO channel estimation [9,10], event detection and

5Here isometry refers to the norm preserving behavior of a matrix.
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target localization [11], radar signal processing [12], hyperspectral imaging [13], coopera-

tive spectrum sensing [14,15] distributed source coding [16], multi-modal recognition [17],

anomaly detection [18], and one can imagine many other applications involving different

types of multi-sensor processing.

1.3 Joint Sparse Support Recovery Problem

In many practical situations, the emphasis is primarily on correctly locating the nonzero

rows of X in (1.4) rather than on recovering the entire X. For instance, consider a cognitive

radio network application, where the secondary cell users perform sub-Nyquist wideband

spectrum sensing to estimate the spectrum usage of the primary cell users. This problem

can be formulated as an MMV problem wherein finding the frequency bands occupied by

the primary cell users is equivalent to locating the nonzero rows or the row-support of X.

This gives rise to the joint sparse support recovery (JSSR) problem where the goal is

to find the nonzero rows or the row support of X, given Y in (1.4). Interestingly, unlike

the nonzero coefficients in a k-sparse X which are recoverable only when m ≥ k, the

row-support of X can be uniquely identified even from m < k measurements. In fact,

in [16] it is shown that for i.i.d. Gaussian entries in A and X, a non-iterative, correlation

based algorithm called One Step Greedy Algorithm recovers the true support using only

m ≥ 1 measurement per signal with probability approaching one as L → ∞. However,

from a practitioner’s viewpoint, one is more interested in non-asymptotic support recovery

guarantees. In particular, we would like to examine the necessary and sufficient conditions

for exact recovery of a k-sparse row support of X in the noisy MMV problem, for a fixed k.
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1.4 The Evolution of MMV and JSSR Algorithms

In the following, we present a bird’s eye view of the theory and algorithms developed for

the canonical MMV and JSSR problems over the last decade.

1.4.1 Uniqueness under `0 norm

The earliest theoretical work focused on seeking guarantees for a unique joint sparse solu-

tion to the canonical `0 norm minimization problem:

L0 : min
X∈Rm×L

||X||0 s.t. AX = Y, (1.5)

where ||X||0 denotes the number of nonzero rows in X. In [7,19], the authors showed that

if rank(Y) ≤ m and k < d(spark(A) −1 + rank(Y)) /2e, then the L0 problem admits

a unique k-sparse solution. The sparsity bound depends on spark(A), which is defined

as the smallest integer p such that there exist p linearly dependent columns in A. This

result confirmed for the first time that the SMV bottleneck of k < m/2 for `0 norm based

unique support recovery can be removed if multiple measurement vectors are used. Since

spark(A) can be as high as m + 1 and rank(Y) can also be as high as m, the above

condition on k implies that supports of size k < m are potentially uniquely recoverable.

In the sequel, this limit on the maximum size of uniquely recoverable support will be

referred to as the `0 bound. Since this early result, several joint sparse signal and support

recovery algorithms have been proposed in the quest to meet the `0 bound.
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1.4.2 Half way to the `0 bound

To circumvent the combinatorial hardness of the L0 problem, [20] proposed using the

mixed `p,q norm of X as a proxy for the `0 norm. Variants of the `p,q norm minimization

problem with different combinations of p and q have been investigated independently in

several works [7,19,21,22]. For p ≥ 1, q = 1, it is shown in [19] that the `p,q norm minimiza-

tion problem has a unique k-sparse solution, provided the measurement matrix A satisfies
∣∣∣
∣∣∣A†Saj

∣∣∣
∣∣∣
1
< 1, for all j /∈ S and for all S ⊂ [n], |S| ≤ k, where A†S =

(
AT
SAS

)−1
AT
S . This

also serves as a sufficient condition for exact support recovery in Simultaneous Orthogo-

nal Matching Pursuit (SOMP) [23], a greedy support reconstruction algorithm. In [24],

the support recovery performance of various correlation based greedy and iterative hard-

thresholding type algorithms is studied in the noiseless MMV setup. The authors obtain

sufficient conditions for exact support recovery in terms of the asymmetric restricted isom-

etry constants of the measurement matrix A.

A limitation of the above algorithms is that their worst case performance6 does not im-

prove with rank(Y), and therefore they are called rank-blind [25]. However, their average

case performances do improve with an increase in the number of MMVs [26]. These rank-

blind methods fail to meet the `0-norm uniqueness criterion, i.e., k < m, and so far can

guarantee a unique k-sparse solution only up to k < m/2.

1.4.3 Meeting the `0 bound

Inspired by the use of the popular MuSiC technique in sampling of multi-band signals [27]

and in array signal processing, the authors in [25] propose two rank aware subspace pursuit

6For example, when all columns of the signal matrix X are the same.
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algorithms: Rank Aware Orthogonal Matching Pursuit (RA-OMP) and Rank Aware Order

Recursive Matching Pursuit (RA-ORMP), both capable of exact recovery of any k-sparse

support from noiseless measurements as long as k < spark(A) − 1 and rank(X) = k.

For the rank defective case, i.e., rank(X) < k, compressed sensing MuSiC (CS-MuSiC)

[28] and subspace-augmented MuSiC (SA-MuSiC) [29] are capable of recovering any k <

spark(A) − 1 sized support as long as k − rank(X) partial support can be estimated by

another sparse signal recovery algorithm.

1.4.4 Beyond the `0 bound

A key insight was propounded in [30], that there often exists a latent structure in the MMV

problem: the nonzero entries of X are uncorrelated. This signal structure is enforced by

assuming that each column of X is i.i.d. N (0, diag(γ)), where γ ∈ Rn
+ is a non-negative

vector of the variance parameters. Under this source model, identifying the nonzero rows

of X is tantamount to estimating the support of γ. In [30], the Co-LASSO algorithm was

proposed for the recovery of γ. Instead of working directly with linear observations Y,

Co-LASSO uses their covariance form, 1
L
YYT , as input, and γ is recovered as a solution

of the following non-negative `1 norm minimization problem:

min
γ∈Rn+

||γ||1 s.t. (A�A)γ = vec

(
1

L
YYT − σ2Im

)
. (1.6)

In (1.6), the linear constraints are the vectorized form of the second order moment con-

straints, written as the covariance matching equation: 1
L
YYT = Adiag(γ)AT + σ2Im,

where σ2Im denotes the noise covariance matrix. The psuedo-measurement matrix A�A

is the m2 × n self Khatri-Rao product of A in (1.4) with itself. Since the constraints
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in (1.6) comprise up to (m2 + m)/2 linearly independent equations7, sparse γ with sup-

port size as high as O(m2) is potentially recoverable. To uniquely recover the maxi-

mum level of sparsity, k = (m2 + m)/2, a necessary condition derived in [30, 31] dictates

that the columnwise self Khatri-Rao product matrix A �A has full Kruskal rank,8 i.e.,

Krank(A�A) = (m2 +m)/2.

Another highly popular MMV algorithm, MSBL [32], also imposes a shared Gaussian

prior on the columns of X, i.e.,

xj
i.i.d∼ N (0,Γ) ; Γ = diag(γ), (1.7)

and hence it implicitly exploits the common support and the latent uncorrelatedness of the

nonzero entries in X. In MSBL, the hyperparameter vector γ is estimated by maximizing

the type-II log-likelihood log p(Y;γ). Interestingly, similar to Co-LASSO, the support

recovery performance of M-SBL is also closely tied to the properties of the psuedo mea-

surement map, the self Khatri-Rao product, A�A in (1.6). One of the key contributions

of this thesis is to flesh out the explicit form of this relationship.

1.5 Bayesian Recovery of Joint Sparse Signals

A significant portion of this thesis is devoted towards developing new practical algorithms

for solving the MMV and JSSR problems. We adopt the Bayesian inference approach to

recover X and its sparse row-support from underdetermined, noisy linear measurements

Y in (1.4). The signal of interest, X, is treated as random and distributed according to

7A�A has at most (m2 +m)/2 linearly independent rows.
8The Kruskal rank of an m × n matrix A is the largest integer k such that any k columns of A are

linearly independent.
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a columnwise joint sparsity inducing prior parameterized by hyperparameters Θ. Instead

of generating a point estimate of X, Bayesian inference outputs its posterior distribution,

which is computed using the prior p(X; Θ∗), where Θ∗ maximizes the Bayesian evidence

p(Y; Θ) [33]. Two popular signal priors that have already been explored in the MMV

literature are the Bernoulli-Gaussian prior (also known as the spike and slab prior) [34]

and the Gaussian prior [32], as described in (1.7). The MMV algorithms that are based

on these priors possess the automatic relevance determination9 property [33], a hallmark

of any Bayesian inference technique.

The choice of the Gaussian prior for X used in MSBL [32], and as depicted in (1.7), is

particularly interesting from both theoretical and practical viewpoints. Since X is zero

mean, the diagonal of the covariance matrix Γ directly represents the row-support of X.

Thus, finding the row-support of X from Y is tantamount to estimating the covariance

matrix of X from its compressive measurements Y. This covariance matrix estimation

view of the support recovery problem proves to be very helpful, especially given the vast

amount of literature available on the topic of covariance matrix estimation.

With a few modifications to the MSBL’s Gaussian prior, one can easily model inter/intra

column correlations within X as demonstrated in [35, 36]. The Gaussian prior is also

conducive to Kalman filter based online implementations of Bayesian inference of X as

shown in [9,37]. Perhaps the most convenient feature of the Gaussian prior is that it always

results in an analytically friendly Gaussian likelihood of Y as long as the measurement

process is linear. In light of the above, it therefore becomes necessary to further our

theoretical understanding about Bayesian inference of X and its row-support under the

9Automatic Relevance Determination (ARD) here refers to the ability of an algorithm to correctly

learn the number of nonzero rows in X directly from the observations Y.
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MSBL like Gaussian signal prior.

1.6 Distributed Estimation of Joint Sparse Signals

Recent years have witnessed an upward trend in the use of large sensor networks for per-

forming important signal processing and inference tasks. This trend is primarily being

fueled by the easy availability of low-cost sensors equipped with energy efficient communi-

cation radios and processors for local computations. Given the broad applicability of the

MMV framework in the areas of signal processing, learning and inference, it is pertinent

to develop efficient techniques for solving the MMV problem in a distributed fashion using

a network of computing nodes.

A distributed version of the MMV problem deals with in-network estimation of multiple

joint sparse vectors by a network of nodes where each network node is interested in esti-

mating its local sparse vector from noisy, underdetermined, linear measurements. Since

the local sparse vectors at the individual nodes share a common support, they can be

jointly estimated from significantly fewer measurements compared to their independent

reconstruction by their respective nodes.

In order to exploit the network-wide joint sparsity, the nodes can collaborate in a central-

ized or a decentralized fashion based on the underlying network topology. In a centralized

approach, each node communicates its local observations to a central node or a fusion cen-

ter which then recovers the unknown joint sparse vectors and transmits the reconstructed

signals back to their respective nodes [7,32,38–40]. In contrast, decentralized implementa-

tion yields the same solution as the centralized approach, while processing the observations

locally at each node and exchanging messages between one-hop neighbors in the network.
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In addition to being inherently robust to node failures, decentralized implementations also

tend to be more energy efficient when implemented over large networks.

The latter half of this thesis is devoted to developing new decentralized extensions of the

MSBL algorithm that can be implemented over a network of computing nodes.

1.7 Thesis Outline and Contributions

This thesis has two parts. The first part discusses new theory, solution concepts and

algorithms for solving the MMV problem, with the focus on the support recovery aspect

of the problem. The second part of the thesis is devoted to developing new decentralized

schemes for signal recovery in the MMV problem and addressing some of the common

issues concerning their practical implementation.

In the following, we describe the main contributions of this thesis in a chapterwise fashion.

1.7.1 A New Perspective on Sparse Bayesian Learning

In chapter 2, we make an interesting connection between the MSBL algorithm and the

Bregman matrix divergence minimization problem. The log-likelihood objective of MSBL

is interpreted as a Bregman matrix divergence which reveals MSBL’s relationship with

the covariance matching approach, a popular technique in array signal processing. A

formal framework for covariance matching based support recovery in the MMV problem

is proposed and some preliminary observations are presented.

1.7.2 Restricted Isometry of Columnwise Khatri-Rao Product

In chapter 3, we study the restricted isometry property (RIP) of the Khatri-Rao product

matrix form. The Khatri-Rao product (or columnwise Kronecker product) is an important
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matrix type, that serves as a structured sensing matrix in many fundamental linear inverse

problems. In context of the MMV problem, the restricted isometry constants (RICs) of

the self Khatri-Rao product of the measurement matrix A, denoted by A � A, feature

in the support recovery performance analysis of MSBL and other covariance matching

based support recovery techniques. Two types of upper bounds are derived for the kth

order RIC of a generic Khatri-Rao product matrix for different values of k. The first RIC

bound is computed in terms of the individual RICs of the input matrices that participate

in the Khatri-Rao product. The second RIC bound is probabilistic, and is specified in

terms of the input matrix dimensions. A key result shown is that for a pair of m × n

sized random matrices comprising independent and identically distributed subgaussian

entries, their Khatri-Rao product satisfies k-RIP with arbitrarily high probability, provided

m ≥ O(k log n). Our RIC bounds theoretically confirms that the Khatri-Rao product

exhibits stronger restricted isometry compared to its constituent matrices for the same

RIP order, thereby making a strong case for the use of covariance matching techniques

for support recovery in the MMV problem. The proposed RIC bounds are of far-reaching

consequence as they feature in the sample complexity analysis of several structured signal

recovery and tensor decomposition problems.

1.7.3 New Support Recovery Guarantees in Sparse Bayesian

Learning

In chapter 4, we investigate the support recovery performance of the MSBL algorithm

in the MMV problem. We show that any global maximizer of MSBL’s log-likelihood

objective perfectly recovers the true common support of joint sparse Gaussian sources

with arbitrarily high probability using only finitely many MMVs. In fact, the support
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error probability decays exponentially fast with the number of MMVs, and the decay

rate depends on the restricted eigenvalues and null space structure of the self Khatri-Rao

product of the measurement matrix. Our analysis theoretically confirms that MSBL can

recover k-sparse supports of joint sparse vectors from m ≥ O(k log n) measurements per

vector. In the special case of noiseless measurements, we show that a single MMV suffices

for perfect recovery of arbitrary k-sparse support in MSBL, provided any k + 1 columns

of the measurement matrix are linearly independent. Unlike existing support recovery

guarantees for MSBL, our sufficient conditions are valid for the non-asymptotic settings,

and do not require the orthogonality of the nonzero rows of the joint sparse signals.

1.7.4 Rényi Divergence Based Sparse Support Recovery

In chapter 5, we propose a novel joint sparse support recovery algorithm called Rényi

Divergence based Covariance Matching Pursuit (RD-CMP). The proposed algorithm re-

covers the common support of the joint sparse signals as a “set” hyperparameter of a

joint sparsity inducing Gaussian signal prior. The support hyperparameters are learned

as a set-valued solution to a novel reverse information projection problem based on the

α-Rényi information divergence. We show that the α-Rényi divergence objective is ex-

pressible as a difference of two submodular functions, and thus can be optimized via an

iterative majorization-minimization procedure, with each iteration involving a greedy op-

timization step. Compared to existing covariance matching based joint sparse support

recovery methods, RD-CMP is empirically shown to be orders of magnitude faster for

signal dimensions in the ‘big-data’ regime.
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1.7.5 Decentralized Joint Sparse Signal Recovey - An SBL Ap-

proach

In chapter 6, we propose a novel decentralized, iterative, sparse Bayesian learning al-

gorithm named Consensus-Based Distributed Sparse Bayesian Learning (CB-DSBL) for

in-network estimation of multiple joint sparse vectors by a network of nodes, using noisy

and underdetermined linear measurements. It exploits the network-wide joint sparsity of

the unknown sparse vectors to recover them from a significantly fewer number of local

measurements compared to standalone sparse signal recovery schemes. In order to reduce

the amount of internode communication and the associated overheads, the network nodes

exchange messages with only a small set of bridge nodes. Under such a communication

scheme, the convergence of the underlying bridge node-based alternating direction method

of multiplier (ADMM) iterations used in our proposed algorithm is analyzed, and a lin-

ear convergence rate is shown. The convergence analysis results are used to optimize the

convergence rate of the proposed decentralized MMV algorithm. Using Monte Carlo simu-

lations as well as real-world-data-based experiments, we show that the proposed CB-DSBL

algorithm has superior performance compared to existing decentralized algorithms.

1.7.6 Distributed Joint Sparse Signal Recovery Under Commu-

nication Constraints

Decentralized MMV algorithms suffer from high communication overheads due to frequent

exchange of messages between network nodes. In chapter 7, we propose a decentralized

extension of MSBL called Fusion-Based Distributed Sparse Bayesian Learning (FB-DSBL),

in which the nodes collaborate by exchanging highly compressed messages to learn a
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common joint sparsity inducing signal prior. The learnt signal prior is subsequently used

by the nodes to compute maximum a posteriori probability (MAP) estimates of their local

sparse vector. The size of the messages exchanged between nodes is substantially reduced

by exchanging only those local signal prior parameters which are associated with the

nonzero support detected via multiple composite log-likelihood ratio tests. The average

message size is empirically shown to be proportional to the information rate of the unknown

vectors. The proposed algorithm is interpreted as a degenerate case of a distributed

consensus-based stochastic approximation algorithm for finding a fixed point of a function.

1.7.7 Conclusion and Future Work

The thesis is concluded in chapter 8, where we provide a brief summary of the main results

in this thesis, and outline some new problems and directions for future investigations.



Chapter 2

Support Recovery Using Sparse

Bayesian Learning - A Covariance

Matching Viewpoint

In which MSBL objective is a Bregman matrix

divergence & sparse supports are recovered by

matching covariances...

The MSBL algorithm [32] was proposed by Wipf and Rao in 2007 as an extension of

the Sparse Bayesian Learning (SBL) framework [41,42] to solve the multiple measurement

vector (MMV) problem. In 2014, Balkan et al. [43] made an interesting observation about

MSBL based support reconstruction in the noiseless MMV problem. They proved that the

MSBL algorithm can recover supports of size larger than m, where m denotes the number

of measurements per joint sparse vector in the MMV problem. Compared to the maximum

size limit of m for uniquely recoverable supports in the conventional MMV algorithms,

this was a significant improvement. In the present and next two chapters, we carry out

an in-depth investigation seeking a better understanding of the superior support recovery

performance of the MSBL algorithm.

20



Chapter 2. 21

In this chapter, we present a fresh perspective on support recovery using MSBL. At its

core, MSBL is a Bayesian inference technique to recover the common support of multiple

joint sparse signals from their underdetermined linear measurements. The support is recov-

ered indirectly in the form of hyperparameters of a joint sparsity inducing Gaussian signal

prior. We show that the maximum likelihood (ML) estimation of the hyperparameters

in the MSBL algorithm can be interpreted as a Bregman matrix divergence minimization

problem. This new interpretation of the MSBL algorithm unveils its connection with the

covariance matching approach from array signal processing. Building further upon new

insights about MSBL, we propose a general framework for sparse support recovery in the

MMV setup. The new framework has the potential to spawn several new joint sparse

support recovery algorithms.

2.1 Multiple Sparse Bayesian Learning (MSBL)

In this section, we review the Multiple Sparse Bayesian Learning (MSBL) algorithm [32], a

type-II maximum likelihood (ML) procedure for estimation of joint sparse column vectors

of X from linear compressive measurements in Y. In MSBL, the columns of X are assumed

to be i.i.d. N (0,Γ) distributed, i.e.,

p(X;γ) =
L∏

j=1

p(xj;γ) =
L∏

j=1

N (0,Γ), (2.1)

where Γ = diag(γ), and γ = [γ(1),γ(2), . . . ,γ(n)]T is an n length nonnegative vector

of variance parameters. The parameter γ(i) models the common variance of the xj(i)

for 1 ≤ j ≤ L, and the elements of γ are collectively called hyperparameters as they

represent the parameters of the signal prior. Since the signal priors p(xj;γ) for different j
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are parameterized by a common γ, if γ has a sparse support S, then the MAP estimates

of x1,x2, . . . ,xL are also jointly sparse with the same support S. The joint Gaussian

prior in (2.1) promotes sparsity as it can be interpreted as a parameterized variational

approximation of a sparsity inducing Student’s t-distributed prior, as shown in [44]. In

MSBL, the hyperparameters in γ are selected such that they maximize the Bayesian

evidence p(Y;γ). This is tantamount to finding a maximum likelihood (ML) estimate of

γ. Let γ̂ML denote the ML estimate of γ, i.e.,

γ̂ML = arg max
γ∈Rn+

log p(Y;γ). (2.2)

Due to the linearity of the measurement model in (1.4), the Gaussian prior assumed for

xj induces Gaussian measurements, i.e., p(yj;γ) ∼ N (0, σ2Im + AΓAT ). For a fixed γ,

the measurement vectors yj are mutually independent and it follows that

log p(Y;γ) =
L∑

j=1

log p(yj;γ)

∝ −L log |Σγ | − Tr
(
Σ−1

γ YYT
)
, (2.3)

where Σγ = σ2Im+AΓAT . The log-likelihood log p(Y;γ) in (2.3) is a nonconvex function

of γ and its global maximizer γ̂ML cannot be obtained in closed form. However, its local

maximizer can be found using fixed point iterations or the Expectation-Maximization

(EM) procedure.

2.1.1 EM updates in MSBL

We now discuss the main steps of the EM algorithm for finding γ̂ML. Let qθ(X) denote the

variational approximation of true conditional density p(X|Y,γ) with variational parameter
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set θ =
(
{µ̃}Lj=1 , Σ̃

)
. The variational parameters µ̃j and Σ̃ denote the conditional mean

and covariance of xj given yj. Then, as shown in [45], the log likelihood in (2.3) admits

the following decomposition.

log p(Y;γ) =

∫
qθ(X) log

p(Y,X;γ)

qθ(X)
dX + D (qθ(X) || p(X|Y;γ)) (2.4)

where the term D(qθ||p) =
∫
qθ(X) log qθ(X)

p(X|Y;γ)
dX is the Kullback-Leibler (KL) divergence

between the probability densities qθ(X) and p(X|Y;γ). Due to the non-negativity of

D(qθ||p) [46], the log likelihood is lower bounded by the first term in the RHS. In the

E-step, we choose θ to make this variational lower bound tight by minimizing the KL

divergence term.

θk+1 = arg min
θ

D(qθ(X) || p(X|Y,γk)). (2.5)

Here, k denotes the iteration index of EM algorithm. From the LMMSE theory [47],

p(xj|yj,γk) is Gaussian with mean µk+1
j and covariance Σk+1

j given by

Σk+1 = Γk − ΓkAT
(
σ2Im + AΓkAT

)−1
AΓk

µk+1
j = σ−2Σk+1ATyj. (2.6)

By choosing θk+1 =
({

µk+1
j

}L
j=1

,Σk+1
)

and qθk+1(X) ∼ ∏L
j=1N (xj;µ

k+1
j ,Σk+1), the KL

divergence term in (2.5) can be driven to its minimum value of zero.

In the M-step, we choose γ which maximizes the tight variational lower bound obtained

from the E-step:

γk+1 = arg max
γ

∫
qθk+1(X) log

p(Y,X;γ)

qθk+1(X)
dX
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= arg max
γ

EX∼q
θk+1

[log p(Y,X;γ)] . (2.7)

As shown in Appendix D.1, the optimization problem (2.7) can be recast as the following

minimization problem.

γk+1 = arg min
γ∈Rn+

L∑

j=1

n∑

i=1

(
log γ(i) +

Σk(i, i) + µk
j (i)

2

γ(i)

)
. (2.8)

From the zero gradient optimality condition in (2.8), the M-step reduces to the following

update rule:

γk+1(i) =
1

L

L∑

j=1

(
Σk+1(i, i) + µk+1

j (i)2
)

for 1 ≤ i ≤ n. (2.9)

By repeatedly iterating between the E-step (2.6) and the M-step (2.9), the EM algorithm

converges to either a local maximum or a saddle point of log p(Y;γ) [48]. The MAP

estimate of xj is then obtained by substituting γ̂ML in the expression for µj in (2.6). It

has been empirically observed that as the EM algorithm converges, the γ(i)’s belonging

to the inactive support tend to zero, resulting in sparse MAP estimates. In [32], it is

empirically demonstrated that the EM procedure faithfully recovers the true row-support

of X as supp(γ̂ML), provided m and L are sufficiently large. The sufficient conditions for

perfect support recovery in terms of m and L are derived in Chapter 4.

2.2 A New Interpretation of MSBL

We now present an interesting interpretation of MSBL’s log-marginalized likelihood ob-

jective in (2.3) which facilitates a deeper understanding of what is accomplished by its
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maximization. We begin by introducing the Bregman matrix divergence Dϕ(X,Y) be-

tween any two n× n positive definite matrices X and Y as

Dϕ(X,Y) , ϕ(X)− ϕ(Y)− 〈∇ϕ(Y),X−Y〉, (2.10)

where ϕ : Sn++ → R is a convex function with ∇ϕ(Y) as its first order derivative evaluated

at point Y. In (2.10), the matrix inner product 〈X,Y〉 is evaluated as tr
(
XYT

)
. For

the specific case of ϕ(·) = − log | · |, a strongly convex function, we obtain the Bregman

LogDet matrix divergence given by

Dlogdet(X,Y) = tr
(
XY−1

)
− log

∣∣XY−1
∣∣− n. (2.11)

By termwise comparison of (2.3) and (2.11), we observe that the negative log likelihood

− log p(Y;γ) and Dlogdet(Ryy,Σγ) are the same up to a constant. In fact, it is shown

in [49, 50] that every regular exponential family of probability distributions is associated

with a unique Bregman divergence. For more details about the connection between the

exponential family of distributions and Bregman divergences, the readers are referred to

the excellent exposition in [50].

In the divergence term Dlogdet(Ryy,Σγ), the first argument Ryy , 1
L
YYT is the sample

covariance matrix of the observations Y and the second argument Σγ = σ2I + AΓAT is

the parameterized covariance matrix of Y. This connection between MSBL’s log likelihood

cost and the LogDet divergence reveals that by maximizing the MSBL cost, we seek a γ

that minimizes the distance between Ryy and Σγ , with pointwise distances measured using

the Bregman LogDet divergence. Thus, the MSBL algorithm, at its core, is essentially

a second order moment matching or covariance matching procedure which selects γ such
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that the associated covariance matrix Σγ is closest to the sample covariance matrix, in the

Bregman LogDet divergence sense. In chapter 4, we theoretically show that if the second

moment matching equations are too ill-conditioned, then MSBL fails to recover the true

support of the joint sparse columns of X.

The above interpretation of the MSBL cost as a Bregman matrix divergence beckons two

interesting questions:

i Are there other matrix divergences besides LogDet Bregman matrix divergence which

are better suited for covariance matching?

ii How to exploit the structural similarities between the MSBL cost and the Bregman

(LogDet) matrix divergence to devise faster and more robust techniques for the type-II

maximum likelihood procedure?

It is our strong opinion that evaluating the performance of other matrix divergences for

covariance matching is a worthwhile exercise to pursue which can lead to the development

of new, improved algorithms for the JSSR problem.

2.3 Covariance Matching Framework for Sparse

Support Recovery

The Bregman matrix divergence minimization view of MSBL optimization can be formal-

ized as the covariance matching framework for sparse support recovery in the canonical

MMV problem. Some of the concepts that we present here are exploratory in nature and

their in-depth investigation while merited is relegated to future work. We now describe

the general framework as follows.
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Just like in MSBL, the columns of X are assumed to be i.i.d. N (0,Γ) distributed, where

Γ = diag(γ),γ ∈ Rn
+. As highlighted in [30], the diagonal covariance matrix Γ naturally

captures the common support across the columns as well as the the uncorrelatedness of

the nonzero coefficients within the individual columns of X. Another convenient feature

of the Gaussian prior for X is that it induces Gaussian measurements yj
i.i.d.∼ N (0,Σγ),

where Σγ , σ2Im+AΓAT . In the sequel, we shall refer to Σγ as the parameterized MMV

covariance matrix as it depends on the hyperparameters γ. Further, let R̂yy , 1
L
YYT

denote the empirical MMV covariance matrix of the MMVs.

Consider a matrix function d : Sm+ × Sm+ → R+, which inputs two positive definite ma-

trices and outputs a nonnegative real number that represents the degree of “nearness” or

“distance” between the input matrices. Suitable candidates for d include matrix diver-

gences, matrix norms, etc. In covariance matching framework, the row-support of X is

recovered as supp(γ̂) where γ̂ is a solution of following constrained optimization.

γ̂ , arg min
γ∈Rn

d


R̂yy, σ

2Im + AΓAT

︸ ︷︷ ︸
Σγ


 + λh(γ)

subject to γ � 0, (2.12)

where λ is a positive constant and h : Rn → R serves as a penalty function designed

to regularize the solution space of γ. In our case, h is a sparsity promoting function

of γ. Thus, in (2.12), we seek a sparse nonnegative vector γ such that the parameterized

covariance Σγ is a good approximation of the empirical covariance R̂yy. Finally, supp(γ̂)

is declared as an estimate of the true row-support of X.

Theorem 2.1. If h is a concave and n ≥ m2+m
2

, then γ̂ in (2.12) satisfies ||γ̂||0 ≤ m2+m
2

.

Proof. Suppose γ∗ is a solution of (2.12). Then, γ∗ is also a solution to the following
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constrained optimization problem.

Pd,h : maximize
γ

− h(γ)

such that AΓ∗AT = AΓAT and γ � 0. (2.13)

To see this, first note that γ∗ is Pd,h feasible. Furthermore, for λ > 0, h(γ) ≤ h(γ∗) as

d(R̂yy,Σγ) = d(R̂yy,Σγ∗) for all feasible γ in Pd,h.

Note that (2.13) seeks maximization of a convex function −h(γ) over a bounded convex

polytope A =
{
γ ∈ Rn : γ � 0,AΓ∗AT = AΓAT

}
. By [51, Chapter 7, Theorem 3], any

solution of (2.13) is an extremum point of polytope A, and thus a basic feasible solution

of the vectorized linear constraints, vec(AΓ∗AT ) = (A�A)γ. Since A�A is an m2 × n

matrix, for n ≥ m2+m
2

, it has at most m2+m
2

linearly independent rows. Therefore, any basic

feasible solution of (2.13) (including γ̂) must have at most m2+m
2

nonzero elements.

From Theorem 2.1, one can conclude that any concave penalty function h induces a

sparse solution γ̂ in (2.13), assuming m2 < n. The following theorem lays foward the

sufficient conditions under which the support of γ̂ in (2.12) equals the true row-support

of X.

Theorem 2.2. Suppose E
[
xjx

T
j

]
= diag(γ∗) and ||γ∗||0 ≤ k. Then, for L → ∞, if

||γ̂||0 ≤ k, then γ̂ = γ∗, provided Krank(A�A) ≥ 2k.

Proof. Let γ̂ 6= γ∗ be a k-sparse solution of (2.12). Then, γ̂ is also a solution of Pd,h, and

therefore it must satisfy the feasibility condition: vec(R̂yy) = (A�A)γ̂. Since the sample

covariance R̂yy is an asymptotically consistent estimate of the true covariance, it follows

that as L→∞, R̂yy = Adiag(γ∗)AT , or equivalently vec(R̂yy) = (A�A)γ∗. Therefore,
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as L→∞, we have (A�A)γ∗ = (A�A)γ̂ or equivalently (A�A)(γ̂ − γ∗) = 0. Since

both γ̂ and γ∗ are at most k-sparse, γ̂ − γ∗ is at most 2k sparse. This implies that there

exists a 2k or less sparse vector in Null(A �A), which contradicts Krank(A �A) ≥ 2k.

Hence γ̂ must be equal to γ∗.

From Theorem 2.2, when the output of (2.12) is a k-sparse vector and k ≤ bKrank(A�A)
2

c,

the constrained optimization problem in (2.12) correctly recovers the true row-support

of X. In chapter 4, for the MSBL algorithm, we motivate how similar exact support

recovery guarantees can be obtained for noisy measurements and finite L, albeit under a

stronger condition based on a restricted null space property of A�A.

2.4 Examples of Covariance Matching Algorithms

The covariance matrices Σγ and R̂yy together with matrix nearness function d and penalty

function h are the building blocks of the covariance matching framework. Different choices

of d and h result in different support recovery algorithms.

2.4.1 The MSBL Algorithm

The MSBL optimization of log-likelihood function in (2.3) can be cast as the canoni-

cal covariance matching problem in (2.12) by choosing d(R̂yy,Σγ) = tr
(
Σ−1R̂yy

)
−m,

h(γ) = log |Σγ | and λ = 1. In chapter 4, we derive nonasymptotic probabilistic guarantees

for perfect support recovery in MSBL.
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2.4.2 Covariance Matching using Rényi Divergence

An interesting technique to recover hyperparameter vector γ is to solve the optimization:

γ̂ = arg min
γ∈Rn+

Dα (p̃, pγ) (2.14)

whereDα (p̃, pγ) is the α-Rényi divergence between the multivariate Gaussians p̃ ∼ N (0, R̂yy)

and pγ ∼ N (0,Σγ). The objective function Dα(p̃, pγ) evaluates as

Dα(p̃, pγ) =
1

2(1− α)

(
log
∣∣∣(1− α)R̂yy + αΣγ

∣∣∣− α log |Σγ | − (1− α) log
∣∣∣R̂yy

∣∣∣
)

∝ log
∣∣∣(1− α)R̂yy + αΣγ

∣∣∣− α log |Σγ |+ terms indep. of γ. (2.15)

We observe that by choosing d(R̂yy,Σγ) = log
∣∣∣(1− α)R̂yy + αΣγ

∣∣∣, h(γ) = − log |Σγ |

and λ = α, the Rènyi divergence minimization in (2.14) can be expressed as a canonical

covariance matching problem for recovering γ and its sparse support. Based upon these

observations, in chapter 5, we propose a novel support recovery algorithm called Rènyi

Divergence Covariance Matching Pursuit.

2.4.3 Co-LASSO

Perhaps the most natural choices for functions d and h are d(R̂yy,Σγ) = |||R̂yy −Σγ |||2F

and h(γ) = ||γ||1, which gives rise to the Co-LASSO problem.

Co-LASSO: γ̂ = arg min
γ∈Rn]

|||R̂yy −Σγ |||2F + λ||γ||1. (2.16)

Proposed in [30] by Pal and Vaidyanathan, the Co-LASSO algorithm is capable of re-

covering supports of size as high as O(m2) from only m measurements per joint sparse
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column of X. The sample complexity of Co-LASSO for successful support recovery has

been analyzed in [30].

2.5 Chapter Summary

In this chapter, we presented new insights about support recovery in the MSBL algorithm.

We showed that the optimization of MSBL’s log-likelihood objective can be interpreted as

a Bregman matrix divergence minimization problem. This new interpretation of MSBL

allows us to exploit the vast literature on Bregman divergence minimization in devising

faster, more robust algorithms towards minimizing the MSBL cost function. We also pro-

posed a general covariance matching based framework for support recovery using MMVs.

Development of new support recovery algorithms using this framework along with their

corresponding performance and complexity analysis could be an exciting research direc-

tion.



Chapter 3

Restricted Isometry of Columnwise

Khatri-Rao Product

In which the Khatri-Rao product loves sparse

vectors more...

3.1 Introduction

In the previous chapter, we discussed how the restricted isometry of the self Khatri-Rao

product of the measurement matrix effects the performance of covariance matching based

support recovery in the MMV problem. In general, the Khatri-Rao product of two matrices

is an important matrix type which plays the role of a structured sensing matrix in several

linear inverse problems of fundamental importance.

In this chapter1, we analyze the restricted isometry property (RIP) of a generic colum-

nwise Khatri-Rao product by seeking upper bounds for its kth order restricted isometry

1Parts of this chapter have been published as S. Khanna and C. R. Murthy, “On the Restricted

Isometry of Column-wise Khatri-Rao Product”, IEEE Transactions on Signal Processing, vol. 66, no. 5,

Mar. 2018. The discussion related to probabilistic RIC bounds for Khatri-Rao matrices is different and

more up to date than in the published work.

32
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constant (k-RIC) for different values of k. We derive two kinds of RIC bounds for a generic

columnwise Khatri-Rao product matrix. The first RIC bound is a deterministic one and

is computed in terms of the individual RICs of the input matrices participating in the

Khatri-Rao product. The second RIC bound is probabilistic, and is specified in terms of

the dimensions of the random input matrices. We show that the Khatri-Rao product of a

pair of m × n sized random matrices comprising independent and identically distributed

subgaussian entries satisfies k-RIP with arbitrarily high probability, provided m exceeds

O(k log n). We also theoretically confirm that the self Khatri-Rao product of a matrix ex-

hibits a stronger restricted isometry property compared to the input matrix for the same

RIP order.

Lately, in several machine learning problems, the necessary and sufficient conditions for

successful signal recovery have been reported in terms of the RICs of a certain Khatri-Rao

product matrix serving as a pseudo sensing matrix [52,53]. In light of this, the RIC bounds

proposed in this chapter are quite timely, and pave the way towards obtaining order-wise

tight sample complexity bounds for several fundamental learning problems.

3.2 Background

The Khatri-Rao product, denoted by the symbol �, is a columnwise Kronecker product,

which was originally introduced by Khatri and Rao in [54]. For any two matrices A =

[a1, a2 . . . , ap] and B = [b1,b2 . . . ,bp] of sizes m×p and n×p, respectively, the columnwise

Khatri-Rao product A�B is a matrix of dimension mn× p defined as

A�B = [a1 ⊗ b1 a2 ⊗ b2 . . . ap ⊗ bp] , (3.1)
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where a ⊗ b denotes the Kronecker product [55] between vectors a and b. That is, each

column of A � B is the Kronecker product between the respective columns of the two

input matrices A and B. In this chapter and elsewhere, we shall refer to the columnwise

Khatri-Rao product as simply the Khatri-Rao product or the KR product. Since the

Kronecker product A ⊗B comprises all pairwise Kronecker product combinations of the

columns of the input matrices, it can be shown that A � B = (A ⊗ B)J, where J is a

p2 × p selection matrix with columns as a subset of the standard basis in Rp2 [56].

The Khatri-Rao product form is encountered in several linear inverse problems of funda-

mental importance. Recent examples include compressive sensing [57,58], covariance ma-

trix estimation [59,60], direction of arrival estimation [52] and tensor decomposition [61].

In each of these examples, the KR product A�B, for certain m×n sized system matrices

A and B, plays the role of the sensing matrix used to generate linear measurements y of

an unknown signal vector x according to

y = (A�B) x + w, (3.2)

where w represents the additive measurement noise. It is now well established in the

sparse signal recovery literature [6, 62, 63] that, if the signal of interest, x, is a k-sparse2

vector in Rn, it can be stably recovered from its noisy underdetermined linear observations

y ∈ Rm2
(m2 < n) in polynomial time provided that the sensing matrix (here, A � B)

satisfies the restricted isometry property defined next.

2A vector is said to be k-sparse if at most k of its entries are nonzero.
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Restricted Isometry Property

A matrix Φ ∈ Rm×n is said to satisfy the Restricted Isometry Property (RIP) [64] of order

k, if there exists a constant δk(Φ) ∈ (0, 1), such that for all k-sparse vectors z ∈ Rn,

(1− δk(Φ))||z||22 ≤ ||Φz||22 ≤ (1 + δk(Φ))||z||22. (3.3)

The smallest constant δk(Φ) for which (3.3) holds for all k-sparse z is called the kth

order Restricted Isometry Constant or the k-RIC of Φ. Matrices with small k-RICs are

good encoders for storing/sketching high dimensional vectors with k or fewer nonzero

entries [65]. For example, δk(A�B) < 0.307 is a sufficient condition for a unique k-sparse

solution to (3.2) in the noiseless case, and its perfect recovery via the `1-norm minimization

technique [66]. As pointed out earlier, in many structured signal recovery problems, the

primary sensing matrix can be expressed as a columnwise Khatri-Rao product between

two matrices. Thus, from a practitioner’s viewpoint, it is pertinent to study the restricted

isometry property of a columnwise Khatri-Rao product matrix.

Finding the exact kth order RIC of any matrix entails searching for the smallest and

largest singular values among all possible k-column submatrices of the input matrix, which

is, in general, an NP hard task [67]. Hence, we follow an alternative approach to analyzing

the RIP of a KR product matrix by deriving tight upper bounds for its RICs.

3.2.1 Applications Involving Khatri-Rao Matrices

We briefly describe some practical examples where it is required to show the restricted

isometry property of a KR product matrix.
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Joint sparse support recovery from underdetermined linear measurements

Suppose x1,x2, . . . ,xL are unknown joint sparse signals in Rn with a common k-sized

support denoted by an index set S. A canonical problem in multi-sensor signal processing

is concerned with the recovery of the common support S of the unknown signals from their

noisy underdetermined linear measurements y1,y2, . . . ,yL ∈ Rm generated according to

yj = Axj + wj, 1 ≤ j ≤ L, (3.4)

where A ∈ Rm×n(m < n) is a known measurement matrix, and wj ∈ Rn models the

noise in the measurements. This problem arises in many practical applications such as

MIMO channel estimation, cooperative wideband spectrum sensing in cognitive radio net-

works, target localization, and direction of arrival estimation. In [30], the support set S

is recovered as the support of γ̂, the solution to the Co-LASSO problem:

Co-LASSO: min
γ�0

∣∣∣
∣∣∣vec(R̂yy)− (A�A)γ

∣∣∣
∣∣∣
2

2
+ λ ||γ||1 , (3.5)

where R̂yy , 1
L

∑L
j=1 yjy

T
j . From compressive sensing theory [62], the RIP of A�A (also

called the self Khatri-Rao product of A) determines the stability of the sparse solution

in the Co-LASSO problem. In MSBL [32], a different support recovery algorithm, A�A

satisfying 2k-RIP guarantees unique k-sparse support recovery as L→∞ [53].

Sparse sampling of stationary graph signals

Let x = [x1,x2, . . . ,xn]T ∈ Cn be a stochastic, zero mean and second-order stationary

graph signal defined on n vertices of a graph G. This implies that the graph signal x can

be modeled as x = Hn, where H is any valid graph filter [68], and n ∼ N (0, In). The
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covariance matrix Rxx = E[xxH ] can then be expressed as

Rxx = HE[nnH ]HH = HHH

= Udiag(p)UH , (3.6)

where the nonnegative vector p refers to the graph power spectral density of the stationary

graph signal x and the columns of U form Fourier like orthonormal basis for the graph

signal.

As motivated in [68], in many applicaions, we are interested in reconstructing the sparse

graph power spectral density p by observing a small subset of the graph vertices. Let

y1,y2, . . . ,yL denote the L independent obervations of the subsampled graph signal x,

i.e.,

yj = Φxj, 1 ≤ j ≤ L, (3.7)

where Φ ∈ {0, 1}m×n is referred to as a binary subsampling matrix with m(� n) rows, each

row containing exactly one nonzero unity element. To recover the graph power spectral

density p from the subsampled observations, we note that

1

L

L∑

j=1

yjy
H
j ≈ ΦRxxΦT = ΦUdiag(p)UHΦT

or, vec

(
1

L

L∑

j=1

yjy
H
j

)
≈ (ΦU∗ �ΦU)p, (3.8)

the superscript ∗ denoting conjugation without transpose. Here again, the recovery of

a unique r-sparse solution for p in (3.8) can be guaranteed if the Khatri-Rao product

ΦU∗ �ΦU satisfies the RIP of order 2r.
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PARAFAC model for low-rank three-way arrays

Consider an I × J ×K tensor X of rank r. We can express X as the sum of r rank-one

three way arrays as X =
∑r

i=1 ai ◦bi ◦ ci, where ai,bi, ci are loading vectors of dimension

I, J,K, respectively, and ◦ denotes the vector outer product. The tensor X itself can be

arranged into a matrix as X = [vec(X1), vec(X2), . . . , vec(XK)]. In the parallel factor

analysis (PARAFAC) model [69], the matrix X can be approximated as

X ≈ (A�B)CT , (3.9)

where A,B and C are the loading matrices with columns as the loading vectors ai, bi

and ci, respectively. In many problems such as direction of arrival estimation using a

2D-antenna array, the loading matrix C turns out to be row-sparse matrix [70]. In such

cases, the uniqueness of the PARAFAC model shown in (3.9) depends on the restricted

isometry property of the Khatri-Rao product A�B.

3.2.2 Related work

Perhaps the most direct way to analyze the RICs of the KR product matrix is to use

the eigenvalue interlacing theorem [71], which relates the singular values of any k-column

submatrix of the KR product to the singular values of the Kronecker product. This is

possible because any k columns of the KR product put together can be interpreted as

a submatrix of the Kronecker product. However, barring the maximum and minimum

singular values of the Kronecker product, there is no explicit characterization of its non-

extremal singular values available yet that can be used to obtain tight bounds on the

k-RIC of the KR product. Bounding the RICs of KR product using the extreme singular
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values of the Kronecker product turns out to be too loose to be useful. In this context,

it is noteworthy to mention that an upper bound for the k-RIC of the Kronecker product

matrix has been derived in terms of the k-RICs of the input matrices in [57,72]. However,

the k-RIC of the KR product matrix has not been characterized yet.

Recently, [73, 74] gave probabilistic lower bounds for the minimum singular value of the

columnwise KR product between two or more matrices. These bounds are limited to

randomly constructed input matrices, and are polynomial in the matrix size. In [75], it

is shown that for any two matrices A and B, the Kruskal-rank3 of A � B has a lower

bound in terms of K-rank(A) and K-rank(B). In fact, Krank(A�B) is at least as high as

max (K-rank(A),K-rank(B)), thereby suggesting that A�B satisfies a stronger restricted

isometry property than both A and B. The RIC bounds proposed in this chapter ratify

this fact.

A closely related yet weaker notion of restricted isometry constant is the τ -robust K-

rank, denoted by K-rankτ . For a given matrix Φ, the K-rankτ (Φ) is defined as the largest

k for which every n × k submatrix of Φ has its smallest singular value larger than 1/τ .

In [73], it is shown that the τ -robust K-rank is super-additive, implying that the K-rankτ

of the Khatri-Rao product is strictly larger than individual K-rankτ of the input matrices.

The `1-RIP of the Kronecker product A⊗B was analyzed in [60] with respect to vector-

ized d-distributed sparse matrices, when the input matrices A and B are the adjacency

matrices of two independent uniformly random δ-left regular bipartite graphs. In the se-

quel, we instead analyze the RIP of the KR product A � B, which is equivalent to the

RIP of Kronecker product A⊗B with respect to vectorized sparse diagonal matrices.

3The Kruskal rank of any matrix A is the largest integer r such that any r columns of A are linearly

independent.
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3.2.3 Contributions

In this chapter, we derive the following bounds on the k-RIC of the columnwise KR product

of two m× n sized matrices A and B.

1) A deterministic upper bound for the k-RIC of A�B in terms of the k-RICs of the

input matrices A and B. The bound is valid for k ≤ m, and for complex valued

input matrices with unit `2-norm columns.

2a) A probabilistic upper bound for the k-RIC of A�B in terms of k and the input matrix

dimensions (m,n), for A,B as real valued random matrices with i.i.d subgaussian

elements. The probabilistic bound is polynomially tight with respect to the input

matrix dimension n.

2b) A probabilistic upper bound for the k-RIC of the self KR product A�A in terms of

m,n, and k, for A as a real valued random matrix with i.i.d. subgaussian elements.

The derivation of the RIC bound for the self KR product is more intricate as it

involves showing sharp concentration inequalities for functions of dependent random

variables.

A key idea used in our RIC analysis is the fact (stated formally as Proposition 3.1) that

for any two matrices A and B, the Gram matrix of their KR product (A�B)H(A�B)

can be interpreted as the Hadamard product (element wise multiplication) between AHA

and BHB. The Hadamard product form turns out to be more analytically tractable than

columnwise Kronecker product form of the KR matrix.
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3.3 Deterministic k-RIC Bound

In this section, we present a deterministic upper bound on the k-RIC of a generic colum-

nwise KR product A�B, for any two same-sized and complex valued matrices A and B

with normalized columns. The bound is computed in terms of the k-RICs of A and B.

Theorem 3.1. Let A and B be m × n sized complex-valued matrices with unit `2-norm

columns and satisfying the kth order restricted isometry property with constants δA
k and

δB
k , respectively. Then, their columnwise Khatri-Rao product A�B satisfies the restricted

isometry property with k-RIC at most δ2, where δ , max
(
δA
k , δ

B
k

)
, i.e.,

(1− δ2)||z||22 ≤ ||(A�B)z||22 ≤ (1 + δ2)||z||22 (3.10)

holds for all k-sparse vectors z ∈ Cn.

Proof. The proof is given in Section 3.4.

Remark 1: The RIC bound for A � B in Theorem 3.1 is relevant only when δk(A)

and δk(B) lie in (0, 1), which is true only for k ≤ m. In other words, the above k-RIC

characterization for A�B requires the input matrices A and B to be k-RIP compliant.

Remark 2: Since the input matrices A and B satisfy k-RIP with δk(A), δk(B) ∈ (0, 1),

it follows from Theorem 3.1 that δk(A�B) is strictly smaller than max (δk(A), δk(B)). If

B = A, the special case of self Khatri-Rao product A�A arises, for which

0 < δk(A�A) < δ2
k(A). (3.11)

Above implies that the self Khatri-Rao product A � A is a better restricted isometry

compared to A itself. This observation is in alignment with the expanding Kruskal rank
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and shrinking mutual coherence of the self Khatri-Rao product reported in [30]. In fact,

for k = 2, the 2-RIC bound (3.11) exactly matches the mutual coherence bound shown

in [30].

The k-RIC bound in Theorem 3.1 is useful only when k ≤ m. For k ∈ (m,m2], us-

ing ( [76], Theorem 1), one can show that δk(A � B) ≤
(√

k + 1
)
δ√k, where δ√k =

max
(
δ√k(A), δ√k(B)

)
. This bound, however, loses its tightness and quickly becomes

unattractive for larger values of k. Finding a tighter k-RIC upper bound for the k > m

case remains an open problem.

To gauge the tightness of the proposed k-RIC bound for A�B, we present its simulation-

based quantification for the case when the input matrices A and B are random Gaussian

matrices with i.i.d. N (0, 1/m) entries. Fig. 3.1 plots δk(A), δk(B), δk(A � B) and the

upper bound δk(A�B) = (max (δk(A), δk(B)))2 for a range of input matrix dimension m.

The aspect ratio m/n of the input matrices is fixed to 0.5.4 For computational tractability,

we restrict our analysis to the cases k = 2 and 3. The RICs: δk(A), δk(B) and δk(A�B)

are computed by exhaustively searching for the worst conditioned submatrix comprising

k columns of A, B and A�B, respectively. From Fig. 3.1, we observe that the proposed

k-RIC upper bound becomes tighter as the input matrices grow in size. Interestingly,

the experiments suggest that the KR product A�B satisfies k-RIP in spite of the input

matrices A and B failing to do so. A theoretical confirmation of this empirical observation

remains an open problem.

4While the m × n matrices A and B may represent highly underdetermined linear systems (when

m � n), their m2 × n sized Khatri-Rao product A �B can become an overdetermined system. In fact,

many covariance matching based sparse support recovery algorithms [30, 32, 77] exploit this fact to offer

significantly better support reconstruction performance.
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Figure 3.1: Variation of k-RICs of A, B, A � B and the proposed upper bound with
increasing input matrix dimensions. The top and the bottom plots are for k = 2 and 3,
respectively. Each data point is averaged over 10 trials.



Chapter 3. 44

3.4 Proof of the Deterministic k-RIC Bound

(Theorem 3.1)

We recommend a quick perusal of the preliminary mathematical concepts and results in

Appendix A before proceeding with the derivation of the deterministic RIC bound in The-

orem 3.1. The key idea used in bounding the k-RIC of the columnwise KR product A�B

is the observation that the Gram matrix of A�B can be interpreted as a Hadamard prod-

uct between the two correlation matrices AHA and BHB, as mentioned in the following

proposition.

Proposition 3.1 (Rao and Rao [78]). For A,B ∈ Cm×n,

(A�B)H(A�B) = (AHA) ◦ (BHB) (3.12)

Proof. See [78, Proposition 6.4.2].

Then, by using the forward and reverse Kantorovich matrix inequalities presented in

Appendix A, we obtain the proposed upper bound for k-RIC of A�B in Theorem 3.1 as

explained in the following arguments.

Without loss of generality, let S ⊂ [n] be an arbitrary index set representing the nonzero

support of z in (3.10), with |S| ≤ k. Let AS denote them×|S| submatrix of A, constituting

|S| columns of A indexed by the set S. Let BS be constructed similarly. Since δk(A),

δk(B) < 1, both AS, BS have full column rank, and consequently the associated Gram

matrices AH
S AS, BH

S BS are Hermitian positive definite. Further, since A and B have unit

norm columns, both AH
S AS and BH

S BS are correlation matrices with unit diagonal entries.
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Using Proposition 3.1, we can write

(AS �BS)H(AS �BS) = AH
S AS ◦BH

S BS. (3.13)

Next, for k ≤ m, by applying Lemma A.1 to the positive definite matrices (AH
S AS)1/2

and (BH
S BS)1/2, we get,

AH
S AS ◦BH

S BS ≤
(
(AH

S AS)
1
2 ◦(BH

S BS)
1
2

)2

+
1

4
(M−m)2Ik

≤ Ik +
1

4
(M −m)2Ik, (3.14)

where the second inequality is a consequence of the unity bound on the spectral radius of

the Hadamard product between correlation matrices, shown in Proposition A.5. In (3.14),

M and m are upper and lower bounds for the maximum and minimum eigenvalues of

(AH
S AS)1/2 ⊗ (BH

S BS)1/2, respectively. From the restricted isometry of A and B, and by

application of Proposition A.1, the minimum and maximum eigenvalues of (AH
S AS)1/2 ⊗

(BH
S BS)1/2 are lower and upper bounded by

√
(1− δA

k )(1− δB
k ) and

√
(1 + δA

k )(1 + δB
k ),

respectively. By introducing δ , max(δA
k , δ

B
k ), it is easy to check that the eigenvalues of

(AH
S AS)1/2⊗ (BH

S BS)1/2 also lie inside the interval [1− δ, 1 + δ]. Plugging m = 1− δ and

M = 1 + δ in (3.14), and by using (3.13), we get

(AS �BS)H(AS �BS) ≤
(
1 + δ2

)
Ik. (3.15)

Similarly, by applying Lemma A.2 to AH
S AS and BH

S BS with m = 1− δ and M = 1 + δ,

we obtain

(AH
S AS)1/2 ◦ (BH

S BS)1/2 ≥
(√

1− δ2
)

Ik.
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From Proposition A.3, we have AH
S AS ◦BH

S BS ≥
(
(AH

S AS)1/2 ◦ (BH
S BS)1/2

)2
. Therefore,

we can write

AH
S AS ◦BH

S BS ≥
(
1− δ2

)
Ik.

Further, using (3.13), we get

(AS �BS)H(AS �BS) ≥
(
1− δ2

)
Ik. (3.16)

Finally, Theorem 3.1’s statement follows from (3.15) and (3.16).

3.5 Probabilistic k-RIC Bound

The deterministic RIC bound for the columnwise KR product discussed in the Section 3.3

is useful only when the input matrices have unit norm columns. While using column

normalized sensing matrices is standard practice in compressive sensing, we are often

interested in the restricted isometry properties of Khatri-Rao product of randomly con-

structed matrices which adhere to the column normalization constraint only in the average

sense. This concern is addressed to an extent by our second RIC bound for the columnwise

KR product. This second RIC bound is probabilistic and is applicable to the KR product

of random input matrices with i.i.d. subgaussian entries. Below, we define a subgaussian

random variable and state some of its properties.

Definition 3.1. (Subgaussian Random Variable): A zero mean random variable x is called

subgaussian, if its tail probability is dominated by that of a Gaussian random variable. In

other words, there exist constants C,K > 0 such that P(|x| ≥ t) ≤ Ce−t
2/K2

for t > 0.

Gaussian, Bernoulli and all bounded random variables are subgaussian random variables.
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For a subgaussian random variable, its pth order moment grows no faster than O(pp/2) [79].

In other words, there exists K1 > 0 such that

(E |x|p)
1
p ≤ K1

√
p, p ≥ 1. (3.17)

The minimum such K1 is called the subgaussian or ψ2 norm of the random variable x,

i.e.,

||x||ψ2
= sup

p≥1
p−1/2 (E |x|p)

1
p . (3.18)

Given a pair of random input matrices with i.i.d. subgaussian entries, Theorem 3.2

presents a new upper bound on the k-RIC of their columnwise KR product.

Theorem 3.2. Suppose A and B are m× n random matrices with real i.i.d. subgaussian

entries, such that EAij = 0, EA2
ij = 1, and ||Aij||ψ2

≤ κ, and similarly for B. Then, the

kth order restricted isometry constant of A√
m
� B√

m
, denoted by δk, satisfies δk ≤ δ with

probability at least 1− 10n−2(γ−1) for any γ > 1, provided that

m ≥ 4cγκ2

(
k log n

δ

)
,

where c a universal positive constant.

Proof. The proof is provided in Appendix E.1.

The normalization constant
√
m used while computing the KR product A√

m
� B√

m
en-

sures that the columns of the input matrices A√
m

, B√
m

have unit average energy, i.e.

E ||ai/
√
m||22 = E ||bi/

√
m||22 = 1 for 1 ≤ i ≤ n. Column normalization is a key as-

sumption towards correct modelling of the isotropic, norm-preserving nature of the effec-

tive sensing matrix 1
m

(A � B), an attribute found in most sensing matrices employed in
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practice.

Theorem 3.2 implies that

δk

(
A√
m
� B√

m

)
≤ O

(
k log n

m

)
(3.19)

with arbitrary high probability. Thus, the above k-RIC bound decreases as m increases,

which is intuitively appealing. Interestingly, for fixed k and n, the above k-RIC upper

bound for A√
m
� B√

m
decays as O( 1

m
). This is a significant improvement over the O( 1√

m
)

decay rate [62] already known for the individual k-RICs of the input subgaussian matrices

A√
m

and B√
m

. Thus, for anym, the Khatri-Rao product A√
m
� B√

m
exhibits stronger restricted

isometry property, with significantly smaller k-RICs compared to the k-RICs for the input

matrices.

3.5.1 RIC bounds for the self Khatri-Rao product

In some applications, the effective sensing matrix can be expressed as the self-Khatri Rao

product X � X of a certain column normalized system matrix X with itself [30]. In

Theorem 3.3 below, we present the k-RIC bound for the special case of self-Khatri-Rao

product matrices.

Theorem 3.3. Let A be an m × n random matrix with real i.i.d. subgaussian entries,

such that EAij = 0, EA2
ij = 1, and ||Aij||ψ2

≤ κ. Then, the kth order restricted isometry

constant of the column normalized self Khatri-Rao product A√
m
� A√

m
satisfies δk ≤ δ with

probability at least 1− 5n−2(γ−1) for any γ ≥ 1, provided

m ≥ 4c′γκ2

(
k log n

δ

)
.
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Here, c′ > 0 is a universal constant.

Proof. See Appendix E.2.

Theorem 3.3 implies that

δk

(
A√
m
� A√

m

)
≤ O

(
k log n

m

)
(3.20)

with very high probability. The above k-RIC bound for the self Khatri-Rao product scales

with m,n, and k in a similar fashion as the asymmetric Khatri-Rao product.

Remark 3: From Theorem 3.3, the k− RIC of the columnwise Khatri-Rao product of

two m × n sized subgaussian matrices becomes less than unity for m = O (k log n). We

suspect that the k-RIC of the Khatri-Rao product continues to be less than unity even for

m < k. However, proving this is beyond the scope of the thesis.

3.6 Chapter Summary

In this chapter, we analyzed the restricted isometry property of the columnwise Khatri-

Rao product matrix in terms of its restricted isometry constants. We gave two upper

bounds for the k-RIC of a generic columnwise Khatri-Rao product matrix. The first k-RIC

bound, a deterministic bound, is valid for the Khatri-Rao product of an arbitrary pair of

complex valued input matrices of the same size with normalized columns. It is conveniently

computed in terms of the k-RICs of the input matrices. We also gave a probabilistic RIC

bound for the columnwise KR product of a pair of random matrices with i.i.d. subgaussian

entries. The probabilistic RIC bound is one of the key components needed for computing

tight sample complexity bounds for several machine learning algorithms.
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The analysis of the RIP of Khatri-Rao product matrices in this chapter can be extended

in multiple ways. The current RIC bounds can be extended to the Khatri-Rao product of

three or more matrices. More importantly, in order to relate the RICs to the dimensions

of the input matrices, we had to resort to the randomness in their entries. Removing this

randomness aspect of our results could be an interesting direction for future work.
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Support Recovery Guarantees for

Sparse Bayesian Learning

In which supports of size more than number of

measurements are recoverable...

4.1 Introduction

In this chapter, we investigate the support recovery performance of the Multiple Sparse

Bayesian Learning (MSBL) algorithm in the multiple measurement vector (MMV) frame-

work. We derive new, improved sufficient conditions under which MSBL successfully

recovers the correct nonzero support of a joint sparse Gaussian ensemble with vanishing

support error probability. We show that the support error probability decays exponen-

tially fast with the number of MMVs, and the decay exponent depends on the restricted

eigenvalues and null space structure of self Khatri-Rao product of the measurement ma-

trix. In the particular case of noiseless measurements, we show that a single MMV suffices

for perfect recovery of the k-sparse support in MSBL, provided any k + 1 columns of the

51
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measurement matrix are linearly independent. Unlike the existing support recovery guar-

antees for MSBL, the new sufficient conditions derived in this chapter are non-asymptotic

and cover a broader class of source signals than before.

4.2 Prior Work

MSBL’s support recovery performance has been earlier investigated in [32] for k < m,

and in [31, 43] for k ≥ m. In these studies, it is assumed that the nonzero rows of X are

mutually orthogonal. For finite L, the row-orthogonality condition is too restrictive for

a deterministic X and almost never valid for a continuously distributed random source.

Thus, the present support recovery guarantees for MSBL are in reality only applicable in

the asymptotic sense when L→∞. Furthermore, the earlier analysis is restricted only to

noiseless measurements. In contrast, the new sufficient conditions derived in this chapter

are non-asymptotic, do not assume row orthogonality in the signal matrix X, and account

for the presence of measurement noise.

4.2.1 Information Theoretic Results on Support Recovery

There exist a handful of information theoretic results concerning the fundamental limits

of sparse support recovery in the MMV problem. In [81], the support recovery problem is

formulated as a multiple hypothesis testing problem. Necessary and sufficient conditions

for perfect support recovery with high probability are derived under the assumption that

the columns of X are i.i.d. N (0, diag(1S)), where S denotes the unknown support set.

For m = Ω
(
k log n

k

)
, it is shown that L � logn

log logn
suffices for vanishing support error

probability. In this chapter, we extend this result to a more general signal prior on X. Our
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analysis indicates that reliable support recovery is possible even when m scales sublinearly

in the support size k.

In [82], the support recovery problem is analyzed as a single-input-multi-output MAC

communication problem. For number of nonzero rows fixed to k, m = k logn
c(X)

is shown to

be both necessary and sufficient for successful support recovery as the problem size tends

to infinity. The quantity c(X) is a capacity like term that depends on the elements of

the nonzero rows in X and the noise power. In [83], it has been shown that even fewer

measurements m = Ω( k
L

log n) are sufficient when support size k grows sublinearly with n

and each measurement vector is generated using a different sensing matrix.

Complementary to the existing results, our goal here is to analyze the support recovery in

the MMV problem for a non-asymptotic setup. In particular, we seek sufficient conditions

for vanishing support error probability in MSBL in terms of properties of the measurement

matrix and the number of MMVs.

4.2.2 Contributions

The following are the main contributions of this chapter.

1. We derive new sufficient conditions under which a constrained version of MSBL with

bounded hyperparameters perfectly recovers the true support of the joint sparse

vectors with arbitrarily high probability in the noisy MMV problem.

2. We theoretically show that the support error probability decays exponentially with

the number of MMVs. The error exponent is related to a restricted eigenvalue

property and the null space structure of A � A, the self Khatri-Rao product of
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the measurement matrix A. Explicit upper bounds on the number of MMVs suf-

ficient for vanishing support error probability in MSBL in both noisy and noiseless

measurement cases are derived.

A key feature of our analysis is that our sufficient conditions are applicable to both

random as well as deterministic constructions of A.

4.3 Measurement and Source Models

4.3.1 Measurement Model

Suppose x1,x2, . . . ,xL are L distinct joint-sparse vectors in Rn with a common nonzero

support denoted by the index set S∗ ⊆ [n]. We are interested in the recovery of the true

support S∗ from noisy underdetermined linear measurements y1,y2, . . . ,yL generated as

yj = Axj + wj, 1 ≤ j ≤ L. (4.1)

The measurement matrix A ∈ Rm×n is assumed to be a non-degenerate matrix, with

m ≤ n. By non-degeneracy of A, it is implied that any m columns of A are linearly

independent, or spark(A) = m+ 1. The noise vector w ∈ Rm is assumed to be zero mean

Gaussian distributed with diagonal covariance matrix σ2Im. The linear measurement

model in (4.1) can be rewritten in a compact MMV form as Y = AX + W, where

Y = [y1,y2, . . . ,yL], X = [x1,x2, . . . ,xL] and W = [w1,w2, . . . ,wL] are the observation,

signal and noise matrices, respectively. Since the columns of X are jointly sparse with

support S∗, X is a row sparse matrix, and its row-support S∗ denoted by R(X) is equal

to S∗.
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4.3.2 Signal Model

We make the following assumption about the unknown signal matrix X.

Assumption 1: If the ith row of the unknown signal matrix X is nonzero, then it is

a Gaussian ensemble of L i.i.d. zero mean random variables with a common vari-

ance γ∗(i) belonging to the interval [γmin, γmax].

Let K denote the maximum number of nonzero rows in X, i.e., |S∗| ≤ K. Then, an

immediate consequence of (A1) is that there exists a bounded, nonnegative, and at most

K sparse vector, γ∗ ∈ Rn
+, such that the columns xj are i.i.d. N (0,Γ∗) with Γ∗ , diag(γ∗).

Note that under the assumption (A1), the nonzero elements in X are pairwise uncorrelated

within and across its nonzero rows. Hence, X is compatible with the joint sparsity model

JSM-2 proposed in [16].

Compared to [81] which also considers a Gaussian source model but with binary valued

variance parameters, ours is a more general source model that allows for real valued and

distinct row-variances. In fact, the signal model in [81] can be obtained as a special case

by setting γmin = γmax = 1 in the assumption (A1).

4.4 Support Error Probability Analysis

We now proceed with the analysis of support recovery probability incurred by MSBL based

support reconstruction. Under assumption (A1), we derive an MSBL specific Chernoff

bound for the support error probability. We begin by introducing some of the frequently

used notation in the table below.
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Symbol Description

K Maximum number of nonzero rows in X

Sk Collection of all support sets of k or lesser size, i.e., Sk = {S ⊆ [n], |S| ≤ k}

Θ(S) A bounded hyperparameter set associated with the support set S, formally
defined as Θ(S) ,

{
γ ∈ Rn+ : supp(γ) = S,γmin � γS � γmax

}
.

Θ Collection of all nonnegative vectors in Rn+ whose nonzero elements belong to
[γmin,γmax]. Also, Θ =

⋃
S∈Sn Θ(S).

S∗ True row-support of X.

γ∗ Principal diagonal of the common covariance matrix Γ∗ of the i.i.d. columns
in X. Also, supp(γ∗) = S∗.

By assumption A1 on X, we have γ∗ ∈ Θ. Thus, in order to recover γ∗ from Y,

we consider solving the following constrained version of the MSBL optimization problem

in (2.2):

cMSBL: γ̂ = arg max
γ∈Θ

L(Y;γ). (4.2)

In the above, the objective L(Y;γ) , log p(Y;γ) is the same as the MSBL log-likelihood

cost in (2.3). The row-support of X is then estimated as supp(γ̂), where γ̂ is a solution

of (4.2). Let us consider the set of bad MMVs,

ES∗ ,
{
Y ∈ Rm×L : supp (γ̂) 6= S∗

}
, (4.3)

which result in erroneous estimation of the true support. In other words, ES∗ is the collec-

tion of undesired MMVs for which MSBL’s log-likelihood objective is globally maximized

by γ ∈ Θ(S), S 6= S∗. Therefore, one can rewrite ES∗ as

ES∗ =
⋃

S∈Sn\{S∗}

{
Y : max

γ∈Θ(S)
L(Y;γ) ≥ max

γ′∈Θ(S∗)
L(Y;γ ′)

}
. (4.4)

We are interested in identifying the conditions under which P(ES∗) can be made arbitrarily
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small. Since max
γ′∈Θ(S∗)

L(Y;γ ′) ≥ L(Y;γ∗), it follows that

ES∗ ⊆
⋃

S∈Sn\{S∗}

{
Y : max

γ∈Θ(S)
L(Y;γ) ≥ L(Y;γ∗)

}

=
⋃

S∈Sn\{S∗}

⋃

γ∈Θ(S)

{Y : L(Y;γ)− L(Y;γ∗) ≥ 0} . (4.5)

The continuous union over infinitely many elements of Θ(S) in (4.5) can be relaxed to a

finite sized union by using the following ε-net argument.

Consider Θε(S), a finite sized ε-net of the hyperparameter set Θ(S), such that for any

γ ∈ Θ(S), there exists an element γ ′ ∈ Θε(S) such that |L(Y;γ)− L(Y;γ ′)| ≤ ε. Propo-

sition 4.1 gives an upper bound on the size of such an ε-net.

Proposition 4.1. Given a support set S ⊆ [n], there exists a finite set Θε(S) ⊂ Θ(S)

such that it simultaneously satisfies

i. For any γ ∈ Θ(S), there exists a γ ′ ∈ Θε(S) such that |L(Y;γ)− L(Y;γ ′)| ≤ ε.

ii. |Θε(S)| ≤ max

{
1,

(
3CL,S(γmax−γmin)

√
|S|

ε

)|S|}
, where CL,S is the Lipschitz constant of

L(Y;γ) with respect to γ in the bounded domain Θ(S).

The set Θε(S) is an ε-net of Θ(S).

Proof. See Appendix F.1.

From Proposition 4.1-(ii), we observe that the construction of Θε(S) depends on the

Lipschitz continuity of the log-likelihood function L(Y;γ) with respect to γ over the

domain Θ(S). By virtue of the data-dependent nature of L(Y;γ), its Lipschitz constant

CL,S depends on the instantaneous value of Y. To make the rest of the analysis independent

of Y, we introduce a new MMV set G, conditioned on which, the Lipschitz constant CL,S
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is uniformly bounded solely in terms of the second order statistics of Y. A possible choice

of G could be

G ,

{
Y ⊂ Rm×L :

∣∣∣∣
∣∣∣∣
∣∣∣∣
1

L
YYT

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ 2E
[
y1y

T
1

]}
. (4.6)

For Y ∈ G, L(Y;γ) is uniformly Lipschitz continuous irrespective of Y, and hence the

ε-net Θε(S) can now be constructed entirely independent of Y.

Since for arbitrary sets A and B, A ⊆ (A ∩ B) ∪ Bc, the RHS in (4.5) relaxes as

ES∗ ⊆





⋃

S∈Sn\S∗

⋃

γ∈Θ(S)

{L(Y;γ)− L(Y;γ∗) ≥ 0} ∩ G



 ∪ G

c. (4.7)

Let Θε(S)|G denote an ε-net of Θ(S) constructed under the assumption that Y ∈ G. Then,

the continuous union over Θ(S) relaxes to a finite sized union over Θε(S)|G as shown below.

ES∗ ⊆





⋃

S∈Sn\S∗

⋃

γ∈Θε(S)|G

{L(Y;γ)− L(Y;γ∗) ≥ −ε} ∩ G



 ∪ G

c

⊆





⋃

S∈Sn\S∗

⋃

γ∈Θε(S)|G

{L(Y;γ)− L(Y;γ∗) ≥ −ε}



 ∪ G

c.

By applying the union bound, we obtain

P (ES∗) ≤ P (Gc) +
∑

S∈Sn\S∗

∑

γ∈Θε(S)|G

P (L(Y;γ)− L(Y;γ∗) ≥ −ε) (4.8)

From (4.8), P(ES∗) will be small if each of the constituent probability terms P (L(Y;γ)−

L(Y;γ∗) ≥ −ε), γ ∈ Θε(S)|G are sufficiently small so that their collective contribution

remains small, and P(Gc) is small. In Theorem 4.1, we show that each event within the

summation in (4.8) is a large deviation event which occurs with an exponentially decaying

probability.
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Theorem 4.1. Let pγ(y) denote the marginal probability density of the columns of Y

induced by the joint sparse columns of X drawn independently from N (0, diag(γ)). Then,

the log-likelihood L(Y;γ) =
∑L

j=1 log pγ(yj) satisfies the following large deviation property.

P (L(Y;γ)− L(Y;γ∗) ≥ −ε) ≤ exp
(
−Lψ∗

(
− ε
L

))
, (4.9)

where ψ∗(·) is the Legendre transform1 of ψ(t) , (t− 1)Dt(pγ , pγ∗), and Dt is the t-Rényi

divergence (of order t > 0) between the probability densities pγ and pγ∗.

Proof. See Appendix F.2.

Note that, when the measurement noise is Gaussian, the marginal density pγ(yj) of

the individual observations is also Gaussian with zero mean and covariance matrix Σγ =

σ2Im + AΓAT . If σ2 > 0, both marginals pγ and pγ∗ are non-degenerate and hence

the Rényi divergence term Dt(pγ , pγ∗) in Theorem 4.1 is well defined. We now restate

Theorem 4.1 as Corollary 4.1, which is the final form of the large deviation result for

L(Y;γ) that will be used later for bounding P(ES∗).

Corollary 4.1. For an arbitrary γ ∈ Rn
+, and the true variance parameters γ∗, let the

associated marginal densities pγ and pγ∗ be as defined in Theorem 4.1, and suppose σ2 > 0.

Then, the log-likelihood L(Y;γ) satisfies the large deviation property

P
(
L(Y;γ)− L(Y;γ∗) ≥ −LD1/2(pγ , pγ∗)

2

)
≤ exp

(
−LD1/2 (pγ , pγ∗)

4

)
. (4.10)

Proof. The large deviation result is obtained by replacing ψ∗
(
− ε
L

)
in Theorem 4.1 by its

lower bound − tε
L
− ψ (t), followed by setting t = 1/2 and ε = LD1/2(pγ , pγ∗)/2.

1For any convex function f : X → R on a convex set X ⊆ Rn, its Legendre transform is the function

f∗ defined by f∗(z) = supx∈X (〈z,x〉 − f(x)).
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Note that, in the above, we have used the sub-optimal choice t = 1/2 for the Chernoff

parameter t, since its optimal value is not available in closed form. However, this subop-

timal selection of t is inconsequential as it figures only as a multiplicative constant in the

final sample complexity. By using Corollary 4.1 in (4.8), we can bound P (ES∗) as

P(ES∗) ≤
∑

S∈Sn\S∗

∣∣Θε(S)|G
∣∣ exp

(
−LD

∗
S

4

)
+ P (Gc) , (4.11)

where ε =
LD∗S

2
, D∗S defined as

D∗S , inf
γ∈Θ(S)

D1/2 (pγ , pγ∗) . (4.12)

Suppose the support S differs from S∗ in exactly kS,S
∗

d locations, then

P(ES∗) ≤
∑

S∈Sn\S∗
exp

(
−LkS,S∗d

(
D∗S

4kS,S
∗

d

− log
∣∣Θε(S)|G

∣∣
LkS,S

∗

d

))
+ P (Gc)

≤
∑

S∈Sn\S∗
exp

(
−LkS,S∗d

(η
4
− κcov

L

))
+ P (Gc) , (4.13)

where

η , min
S⊆[n]

(
D∗S
kS,S

∗

d

)
, (4.14)

and κcov , max
S⊆[n]

(
log
∣∣ΘLD∗S (S)|G

∣∣
kS,S

∗

d

)
. (4.15)

Theorem 4.2. Suppose S∗ is the true row support of the unknown X satisfying assump-

tion A1. Then, for any δ ∈ (0, 1), P(ES∗) ≤ 2δ, if

L ≥ max

{
8

η
log

(
3enK

(
1 + δ

δ

))
,
8κcov
η

, C log
2

δ

}
, (4.16)



Chapter 4. 61

where η and κcov are as defined in (4.14) and (4.15), respectively, and C > 0 is a universal

numerical constant.

Proof. Since L ≥ C log (2/δ), by Proposition C.2, P(Gc) ≤ δ. Combined with L ≥ 8κcov
η

,

(4.13) can be rewritten as

P(ES∗) ≤
∑

S∈Sn\S∗
exp

(
−Lk

S,S∗
d η

8

)
+ δ. (4.17)

The total number of support sets belonging to Sn\S∗ which differ from the true support S∗

in exactly kd locations is
∑kd

j=0

(
n−|S∗|

j

)(
j+|S∗|

min(kd,j+|S∗|)

)
, which can be further upper bounded

by (3enK)kd . Thus, we can rewrite (4.17) as

P(ES∗) ≤ δ +

n−|S∗|∑

kd=1

∑

S∈Sn\S∗,
|(S\S∗)∪(S∗\S)|=kd

exp

(
−ηLkd

8

)

≤ δ +

n−|S∗|∑

kd=1

(3enK)kd
(
e−

ηL
8

)kd
. (4.18)

Since L ≥ 8
η

log
(
3enK

(
1+δ
δ

))
, P(ES∗) can be bounded by an infinite geometric series as

P(ES∗) ≤ δ +
∞∑

kd=1

(
δ

1 + δ

)kd
≤ δ + δ = 2δ.

This completes the proof.

In Theorem 4.2, we finally have an abstract bound on the sufficient number of MMVs,

L, which guarantees vanishing support error probability in cMSBL, for a fixed true sup-

port S∗. However the MMV bound is meaningful only when η is strictly positive. We now

proceed to deduce the conditions for

i. η > 0 (bounded away from zero by a strictly positive constant),
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ii. η and κcov scaling favorably with the system dimensions.

4.4.1 Bounds for η and κcov

To understand how large η as defined in (4.14) can be, we first derive a lower bound for D∗S .

The following proposition provides a lower bound for D∗S for any S ⊆ [n].

Proposition 4.2. Let pγ denote the parameterized multivariate Gaussian density with

zero mean and covariance matrix Σγ = σ2I + AΓAT , Γ = diag(γ). For any γ,γ∗ ∈ Θ

such that S = supp(γ) and S∗ = supp(γ∗), the 1
2
-Rényi divergence between pγ and pγ∗

satisfies

D1/2 (pγ , pγ∗) ≥
||(A�A)(γ − γ∗)||22

(σ2 + 2γmaxσ
2
max(AS∪S∗))

2 ,

where A � A denotes the columnwise Khatri-Rao product of A with itself and σmax(·)

denotes maximum singular value of the input matrix.

Proof. See Appendix F.4.

From Proposition 4.2, it can be observed that as long as the null space of A � A is

devoid of any vectors of the form γ − γ∗ (i.e., difference of a nonnegative vector and a

nonnegative sparse vector), then η = min
S∈[n],S6=S∗

min
γ∈Θ(S)

D 1
2

(pγ , pγ∗) /k
S,S∗
d is always strictly

positive. This condition can be formalized as a restricted null space property of A �A,

defined next.

Definition 4.1. A matrix is said to satisfy the non-negative restricted null space property

(NN-RNSP) of order k if its null space does not contain any vectors that are expressible as

a difference between k (or lesser) sparse nonnegative vector and an arbitrary nonnegative

vector.
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From Proposition 4.2, it is evident that if the self Khatri-Rao product A�A satisfies the

NN-RNSP of order K, we have η > 0. We now show that if the `2 norm of the columns

vectors in A are close to unity, then A�A partially satisfies the NN-RNSP.

Theorem 4.3. Let A be an m × n sized real matrix with columns ai satisfying ||ai||22 ∈

[1− α, 1 + α] for some α ∈ (0, 1) for i ∈ [n]. Then, the self Khatri-Rao product A �A

satisfies the following restricted null space property:

||(A�A)v||22 ≥
(1− α)2

2m

(
||v+||21 + ||v−||21

)
(4.19)

for all v ∈ Rn such that ||v+||1 ≥ 4
(

1+α
1−α

)2 ||v−||1.

Here, v+ and v− are nonnegative vectors containing the absolute values of the positive

and negative elements of v, respectively, such that v = v+ − v−.

Proof. See Appendix F.3.

An interesting consequence of Theorem 4.3 is that as long as A is approximately column

normalized, the null space of A � A does not contain any vectors of the form γ − γ∗

when ||γ||0 ≥ 4
(

γmax

γmin

) (
1+α
1−α

)2 ||γ∗||0. However, when the support sizes of γ and γ∗ are

comparable, it is not as straightforward to ascertain the conditions under which γ − γ∗

does not lie in the null space of A �A. In Proposition 4.3, we state verifiable sufficient

conditions that subsume the NN-RNSP condition for A�A, which in turn guarantees a

strictly positive η.

Proposition 4.3. Let the measurement matrix A satisfy the following two properties2

2Condition 1 ensures that Null(A�A) does not contain any vectors of the form γ−γ∗, where ||γ||0 ≥
K +Kthreshold, whereas condition 2 ensures that NN-RNSP of order k holds for ||γ||0 < K +Kthreshold.
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1. ∃α ∈ (0, 1) such that ||ai||22 ∈ [1− α, 1 + α] ,∀i ∈ [n].

2. For 1 ≤ k ≤ (K + Kthreshold), there exists a scalar β > 0 such that ||(A�A)v||22 ≥

β ||v||22, for all k-sparse vectors v ∈ Rn.

Then, η as defined in (4.14) is bounded as

η ≥ γ2
min

(σ2 + 2γmax)
2 min


 β

δ2
(K+Kthreshold)

,
1

4mδn
min
S⊆[n],

|S\S∗|+|S∗\S|>Kthreshold

|S ∪ S∗|
δ|S∪S∗|


 , (4.20)

where Kthreshold ,
(

1 + 4γmax

γmin

(
1+α
1−α

)2
)
K and δk , max

S⊆[n]:|S|≤k

∣∣∣∣∣∣AT
SAS

∣∣∣∣∣∣
2
.

Proof. See Appendix F.5.

The lower bound for η in (4.20) can be used in Proposition 4.1 to obtain the following

upper bound for κcov.

Proposition 4.4. For the same setting as Proposition 4.3,

κcov ≤ (K + 1) log

(
6
√

2m
√
K(γmax − γmin) (3σ2 + 2γmax) δK

γminσ
2η

)
, (4.21)

where η is bounded according to (4.20).

Proof. See Appendix F.6.

The above abstract bounds for η and κcov are applicable for both deterministic as well as

random measurement matrix A. To get clarity on how η and κcov scale with the problem

dimensions, we now consider the scenario where A is randomly constructed. The following

corollary states the simplified bounds for η and κcov, when A is drawn from a Gaussian

ensemble.
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Corollary 4.2. Let A be an m×n sized matrix with independent and identically distributed

N
(

0, 1√
m

)
entries. Then, for m ≥ O(K log n), we have

η ≥ c1γ
2
min

(σ2 + 2γmax)
2

(
K

n

)
,

and κcov ≤ (K + 1) log

(
c2n
√
K log n(γmax − γmin) (3σ2 + 2γmax)

3

γ3
minσ

2

)
,

with probability exceeding 1−c3n
−2. Here c1, c2 are positive numerical constants and c3 > 1

is a constant independent of the problem dimensions.

Proof. See Appendix F.8.

From Corollary 4.2, one can conclude that for m ≥ O(K log n), κcov overall scales as

O(K log n). It can be further shown that the simplified bounds for η and κcov derived for

a Gaussian measurement matrix in Corollary 4.2 retain their orderwise relationship with

respect to m,n and K, even for subgaussian measurement matrices.

Remark 1: While proving Corollary 4.2, it is required to show the existence of a strictly

positive β that satisfies condition 2 of Proposition 4.3, which is tantamount to showing

that any submatrix of A�A obtained by sampling its K or fewer columns is nonsingular.

This is indeed true for a subgaussian measurement matrix A with m ≥ O(K log n) rows,

as a direct consequence of A � A satisfying the Kth order restricted isometry property

(Theorem 3.3). We conjecture that A � A continues to satisfy the left-sided K-RIP

(condition 2 in Proposition 4.3) even when m scales as O(
√
K) for a fixed n. However,

currently, a formal proof for such a result remains elusive.
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4.5 Sufficient Conditions for Support Recovery

Equipped with explicit bounds for η and κcov, we can now state the sufficient conditions

for vanishing support error probability in cMSBL as the following theorem.

Theorem 4.4. Under assumption (A1), suppose X has row support S∗, |S∗| ≤ K. Let γ̂

be the solution of cMSBL. Then, supp (γ̂) = S∗ with probability exceeding 1− 2δ, for any

δ ∈ (0, 1), provided the following two conditions are satisfied.

C1. The measurement matrix A satisfies the conditions 1 and 2 in Proposition 4.3 with

strictly positive parameters α and β.

C2. The number of MMVs, L, satisfies

L ≥ 8

η
max

(
log

(
6enK

δ

)
, κcov

)
,

where η and κcov are bounded according to (4.20) and (4.21), respectively.

Proof. C1 ensures that η is strictly positive and bounded as per (4.20). Further, C2

ensures that the abstract MMV bound in (4.16) is satisfied. Then, by Theorem 4.2, it

follows that P(ES∗) ≤ 2δ.

In the following corollary, we state an extra condition besides C1 and C2 which extends

the above cMSBL result to MSBL based support recovery.

Corollary 4.3. For the same setting as Theorem 4.4, let γ̂ be the output of MSBL opti-

mization in (2.2). If the conditions C1 and C2 hold for a given δ ∈ (0, 1), and γ̂ ∈ Θ,

then supp(γ̂) = S∗ with probability exceeding 1− 2δ.
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Proof. Since γ̂ belongs to Θ and simultaneously maximizes the MSBL objective log p(Y;γ),

it follows that γ̂ is also a solution to the cMSBL optimization in (4.2). Hence, the state-

ment of Corollary 4.3 follows directly from Theorem 4.4 provided C1 and C2 are satis-

fied.

According to Corollary 4.3, MSBL exhibits vanishing support error probability under

conditions C1 and C2, however only in a retrospective sense, i.e., when the MSBL output

γ̂ belongs to the bounded domain Θ.

4.5.1 Average error probability

So far, we have analyzed the support error probability for the case where the true row

support of X is fixed to S∗. In reality, R(X) can assume any one of the
(
n
1

)
+
(
n
2

)
+· · ·+

(
n
K

)

possible supports in the collection SK . The support error probability averaged over all

possible supports can be evaluated as

P err
avg =

∑

S∗∈SK

P(R(X) = S∗)P (ES∗) , (4.22)

where ES∗ is as defined in (4.3). For example, if all supports in SK are equiprobable, then

P err
avg ≤ 2δ under C1 and C2 specified by Theorem 4.4.

4.6 Discussion

In this section, we interpret the sufficiency conditions C1 and C2 in Theorem 4.4 for

vanishing support error probability in the context of various interesting cases.
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4.6.1 The Case of Binary Hyperparameters

In [81], Tang and Nehorai formulated support recovery using MMVs as a multiple hypoth-

esis testing problem by assuming that each column of X is i.i.d. N (0, diag(1S∗)), where S∗

is the k-sparse support set of X. For this set parameterized signal prior, finding the true

support via type-II likelihood maximization as in (2.2) is no longer a continuous variable

optimization but rather a combinatorial search over all k-sparse vertices of the hypercube

{0, 1}n, as described below.

γ̂ = arg max
γ∈{0,1}n,||γ||0=k

log p (Y;γ). (4.23)

The binary valued, k-sparse hyperparameters can be accommodated as a special case of

our signal model by setting γmin = γmax = 1. For γmin = γmax, according to Proposition

4.1, the ε-net Θε(S) collapses to a single point for all S ∈ Sn, which ultimately amounts

to κcov = 1. Further, in [81], the correct support has to be identified from
(
n
K

)
possible

candidate support hypothesis. For this restrained support recovery problem, the lower

bound for η in (4.20) simplifies to

η ≥ β

δ2
2K

(
1

σ2 + 2

)
, (4.24)

and from Theorem 4.4, the support error probability P(ES∗) is guaranteed to at most 2ε,

provided

L ≥ 8
(
σ2 + 2

)(δ2
2K

β

)
log

(
6enK

ε

)
, (4.25)

for an arbitrary ε > 0. For the measurement matrix A containing i.i.d N (0, 1/
√
m)

entries and m = O(K log n) rows, from (F.24) and (F.27), both β and δ2K behave as Θ(1).
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Therefore, from (4.25), it can be concluded that L = O(log(n/ε)) suffices to guarantee

P(ES∗) ≤ 2ε. Compared to the sufficient condition, L� logn
log logn

derived in [81], our MMV

complexity bound contains an additional log log n multiplicative factor.

4.6.2 The Case of Continuous Valued Hyperparameters

For the case of continuous valued hyperparameters, as the difference γmax−γmin increases,

the κcov term starts to dominant in condition C2, and that term, along with η, dictates the

overall MMV complexity. Further, if the measurement matrix A contains i.i.d N
(

0, 1√
m

)
,

it satisfies condition C1 with constants α and β behaving as Θ(1) (as shown in (F.24) and

(F.27)), with high probability, provided m ≥ O (K log n). Using the bounds for η and κcov

from Corollary 4.2 and condition C2, we can conclude that

m ≥ O(K log n) and L ≥ O(n log n) (4.26)

together guarantee P(ES∗) ≤ 2ε. Further, if it can be shown that the output of MSBL or

cMSBL is at most p-sparse, then the required MMV complexity relaxes to L ≥ O(p log n).

4.6.3 The case when n = Rank(A�A)

From [30, 73], there exist both random as well as deterministic constructions of m × n

measurement matrix A for which A�A is full column rank when n ≤ m2+m
2

. If so, then

A�A satisfies NN-RNSP of order K (Definition 4.1) by default, for K up to m2+m
2

. This

in turn implies that η in (4.14) is always strictly positive. Thus, from Theorem 4.2, it

follows that P(ES∗) vanishes for any S∗ ⊆ [n] for sufficiently large L.
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4.6.4 The case when n > Rank(A�A)

For n > Rank(A�A) or n > m2+m
2

, A�A becomes rank-deficient. In [31], it is argued

that this leads to parameter identifiability issue in MSBL, i.e., the parameterized MSBL

objective can assume a same value for different γ. Thus, for n > m2+m
2

, the MSBL

objective may foster multiple global maxima. However, in [31], the non-negativity of the

hyperparameter γ was not taken into account. Proposition 4.3 shows that as long as A�A

satisfies NN-RNSP of order K (Definition 4.1), η is strictly positive and therefore it is

possible to guarantee perfect K-sparse support recovery with arbitrarily high probability

using only finitely many MMVs. Interestingly, the NN-RNSP condition can hold even

when A � A is column rank deficient. This allows cMSBL and MSBL to reconstruct

K-sparse supports even when n > m2+m
2

. In fact, in the previous subsection, we have

already showed that m ≥ O(K log n) suffices for consistent K-sparse support recovery

using finitely many MMVs.3

4.6.5 Support Recovery from Noiseless Measurements

For K < spark(A) − 1, it can be shown that as the noise variance σ2 → 0, the support

error exponent D1/2 (pγ , pγ∗) in (4.10) grows in an unbounded fashion for all γ ∈ Θ\Θ(S∗).

This is formally proved below.

The 1/2-Rényi divergence between two multivariate Gaussian densities pγi(y) ∼ N (0,Σγi),

i = 1, 2 is given by

D1/2

(
pγ1

, pγ2

)
= log

∣∣∣∣
Σγ1

+ Σγ2

2

∣∣∣∣−
1

2
log
∣∣Σγ1

Σγ2

∣∣

3Supported by the empirical performance of MSBL, we suspect that for subgaussian measurement

matrix A, A�A satisfies NN-RNSP of order K even when m = O(
√
K) for fixed n.
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= log

∣∣∣∣∣
H

1
2 + H−

1
2

2

∣∣∣∣∣. (4.27)

where H , Σ
1
2
γ1

Σ−1
γ2

Σ
1
2
γ1

is referred to as the discrimination matrix. Since H is a normal

matrix, it is unitarily diagonalizable. Let H = UΛUT , where Λ = diag(λ1, . . . , λm) with

λi’s being the strictly positive eigenvalues of H, and U being a unitary matrix with the

eigenvectors of H as its columns. The 1/2-Rényi divergence can be expressed in terms of

λi as

D1/2

(
pγ1

, pγ2

)
=

m∑

i=1

log
((
λ

1/2
i + λ

−1/2
i

)
/2
)

≥ log

(
1

2

(
(λmax(H))1/2 + (λmax(H))−1/2

))
. (4.28)

The above inequality is obtained by dropping all positive terms in the summation except

the one term which corresponds to λmax(H), the maximum eigenvalue of H. Proposi-

tion 4.5 below relates λmax(H) to the noise variance σ2.

Proposition 4.5. If K < spark(A)−1, then for any K or lesser sparse γ1,γ2 ∈ Rn
+ such

that supp(γ1)\supp(γ2) 6= φ, the maximum eigenvalue of H , Σ
1
2
γ1

Σ−1
γ2

Σ
1
2
γ1

satisfies

λmax (H) ≥ c1

σ2
(4.29)

for some constant c1 > 0 independent of σ2.

Proof. See Appendix F.9.

According to Proposition 4.5, in the limit σ2 → 0, λmax(H) → ∞, and consequently,

D1/2

(
pγ1

, pγ2

)
grows unbounded (due to (4.28)) whenever supp(γ1) 6= supp(γ2) and

K < spark(A) − 1. Based on this observation, we now state Theorem 4.5 which lays
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forward the sufficient conditions for exact support recovery in the noiseless case.

Theorem 4.5. Consider the noiseless MMV problem, with observations Y = AX corre-

sponding to an unknown X satisfying assumption (A1). Suppose S∗ is the true nonzero

row support of X with |S∗| ≤ K. Further, let γ̂ be a K or lesser sparse solution of

the MSBL optimization problem in (2.2), then supp(γ̂) = S∗ almost surely, provided that

K < spark(A)− 1. This result holds even in the SMV case, i.e., when L = 1.

Proof. Under assumption A1, there exists a γ∗ ∈ Θ such that every column in X is i.i.d.

N (0, diag(γ∗)), and supp(γ∗) = S∗. Since γ̂ globally maximizes the MSBL objective

L(Y;γ), it follows that L(Y; γ̂) ≥ L(Y;γ∗) if γ̂ 6= γ∗. Moreover, the following chain of

implications holds.

{supp(γ̂) 6= S∗} = {supp(γ̂) 6= supp(γ∗)}

⊆ {γ̂ 6= γ∗}

⊆ {L (Y; γ̂) ≥ L (Y;γ∗)} .

By applying Corollary 4.1, this further implies that

P (supp(γ̂) 6= S∗) ≤ P (L (Y; γ̂) ≥ L (Y;γ∗))

≤ exp

(
−LD1/2 (pγ̂ , pγ∗)

4

)
.

By using the lower bound (4.28) for D1/2 (pγ̂ , pγ∗), we have

P (supp(γ̂) 6= S∗) ≤
[

1

2

(
√
λmax(H) +

1√
λmax(H)

)]−L
4

, (4.30)
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where H = Σ
1/2
γ̂ Σ−1

γ∗Σ
1/2
γ̂ . Since γ∗ is at most K-sparse, as long as K < spark(A)− 1, by

Proposition 4.5, σ2 → 0 results in λmax (H)→∞ which in turn drives the RHS in (4.30)

to zero for L ≥ 1.

From Theorem 4.5, we conclude that, in the noiseless scenario and for X satisfying

assumption A1, MSBL requires only a single measurement vector (L = 1) to perfectly

recover any K < spark(A) − 1 sized support. If the measurement matrix A contains

independent entries drawn from a continuous probability distribution, then A has full

spark, i.e. spark(A) = m+ 1 almost surely. When A has full spark, both SBL and MSBL

can recover m−1 or lesser sparse supports exactly from m noiseless measurements per joint

sparse vector. This result is in line with the sufficient conditions identified for successful

support recovery by MSBL in [32, Theorem 1]. However, unlike in [32], the nonzero rows

of X need not be orthogonal. Also, our result improves over the k ≤ m/2 condition shown

in [81].

4.6.6 Impact of Measurement Noise on Sufficient MMVs

For σ2 > 0, the error exponent term D∗S in (4.11) is always bounded from above. This

implies that unlike in the noiseless case, a single MMV is no longer sufficient, and multiple

MMVs are needed to drive the error probability to zero.

A close inspection of the abstract MMV bound in (4.16) reveals that the noise variance

influences the error probability in a twofold manner: (i) through η, and (ii) through the

size of the ε-net or κcov. As σ2 increases, η decreases polynomially (see (4.20)) while κcov

increases at most logarithmically (see (4.21)). The overall effect is captured by condi-

tion C2 in Theorem 4.4, which suggests that if the noise variance is very high relative to
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γmax, it is sufficient to have a roughly quadratically larger number of MMVs to guarantee

the desired probability of error. As the noise variance approaches zero, the MMV bound

in C2 loosens and is not informative.

4.7 Chapter Summary

In this chapter, we have derived new improved sufficient conditions for vanishing support

error probability in the MMV problem for MSBL based support reconstruction. The

sufficient conditions are specified in terms of the number of MMVs and properties of the

measurement matrix. The new conditions cater to a wider, more useful class of Gaussian

signals, and dispenses with the restrictive row-orthogonality condition on the signal matrix

required in the previous results [32, 43].
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Rényi Divergence Based Sparse

Support Recovery

In which Rényi divergence meets submodularity

& covariance matching becomes faster...

5.1 Introduction

In this chapter1, we propose a novel covariance matching based algorithm to recover the

common nonzero support of multiple joint sparse signal vectors from their noisy linear

compressive measurements. In the proposed algorithm, the true support of the unknown

joint sparse vectors is recovered by minimizing a novel Rényi divergence cost function

which is inspired from MSBL’s type-II log likelihood objective. Interestingly, the Rényi

divergence objective is expressible as a difference of two submodular set functions with

the unknown support as a set variable. This allows us to efficiently optimize the Rényi

1This chapter is based on S. Khanna and C. R. Murthy, “Rényi Divergence Based Covariance Matching

Pursuit of Joint Sparse Support”, Proc. IEEE 18th Workshop on Signal Processing Advances in Wireless

Communications (SPAWC), Sapporo, Japan, Jul. 2017

75
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divergence objective via an iterative majorization-minimization (MM) procedure to re-

cover the sparse signal support. The resulting support recovery scheme is called Rényi

Divergence based Covariance Matching Pursuit or RD-CMP. Compared to existing covari-

ance matching based support recovery methods, RD-CMP is empirically shown to have

lower computational complexity as well as a lower rate of increase of complexity with the

ambient signal dimension.

5.2 Issues with Existing Support Recovery Algorithms

Extensive effort have been spent in the recent years towards developing fast MMV solvers

for the joint sparse signal/support recovery problem. Popular techniques include greedy

strategies for support reconstruction [24, 38], regularization of the solution space using

convex and non convex penalties [21,84], subspace methods based on the MuSiC criterion

[28,29], and Bayesian maximum a posterior probability (MAP) inference [32,34]. Among

these techniques, the greedy methods are typically computationally the fastest ones while

the Bayesian MAP inference based methods have the state of the art performance.

A major limitation of most of the existing JSSR methods is that they implicitly assume

the number of measurements acquired per joint sparse vector to be more than the size of

the common support. In the previous chapters, we provided a preliminary justification of

how it is possible to recover any k-sized support from fewer than k measurement per MMV

using the covariance matching approach. Notable examples of covariance matching based

MMV algorithms are MSBL [32] and Co-LASSO [30], both of which enforce a common

Gaussian prior with a parameterized diagonal covariance matrix on the unknown signal

vectors for the purpose of inducing a joint sparse solution. The diagonal nature of the



Chapter 5. 77

covariance matrix encapsulates the latent uncorrelatedness of the nonzero coefficients of

the joint sparse vectors [30], while the diagonal entries themselves are representative of

their common support. The parameterized covariance matrix can be learned directly from

the measurements via the covariance matching technique which seeks to robustly minimize

a certain distance between the empirical and the parameterized covariance matrices of the

measurements. In MSBL, the covariance parameters are estimated via a type-II likelihood

maximization procedure which can be interpreted as minimizing the Log-Det Bregman

divergence between the empirical and the parameterized measurement covariance matrices.

Likewise, Co-LASSO recovers the diagonal covariance parameters as the minimum `1 norm

solution of the covariance matching constraints. Despite their superior support recovery

performance compared to conventional MMV solvers, both MSBL and Co-LASSO suffer

from high computational complexity, and hence are not suitable for large dimensional

signals.

5.3 Mathematical Preliminaries

In this section, we present some preliminary concepts and results which will be used in

the discussion later.

5.3.1 α-Rényi Divergence

Let (X ,F) be a measurable space and P and Q be two probability measures on F with

densities p and q, respectively with respect to the dominating Lebesgue measure µ on F .

Then, for α ∈ R+\ {1}, the Rényi divergence of order α between P and Q denoted by
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Dα (p||q) is defined as

Dα(p||q) , 1

(1− α)
log

∫

X
p(x)αq(x)1−αµ(dx). (5.1)

ForDα(p||q) finite, it is a nondecreasing function of α. For α ∈ [0, 1), Dα(p||q) < DKL(p||q),

with limα→1Dα(p||q) = DKL(p||q), [85], where DKL is the Kullback-Leibler divergence.

When p = N (0,Σ1) and q = N (0,Σ2), the α-Rényi divergence admits the following

closed form expression [86],

Dα(p||q) =
1

2(1− α)
log
|(1− α)Σ1 + αΣ2|
|Σ1|1−α |Σ2|α

. (5.2)

where | . | denotes the determinant of the input matrix.

5.3.2 Submodular Set Functions and Related Properties

Let f : 2V → R be a set function defined over the subsets of a ground set V . Then f is

monotone if and only if

∀S ⊆ T ⊆ V , f(S) ≤ f(T ).

The set function f : 2V → R is submodular if for every A,B ⊆ V satisfying A ⊆ B and

any x ∈ V\B, it is true that

f(B ∪ {x})− f(B) ≤ f(A ∪ {x})− f(A). (5.3)

In other words, f satisfies the law of diminishing returns property. If f is submodular,

then −f is supermodular which implies that it satisfies the inequality (5.3) in the reverse

direction. If (5.3) holds with equality, then f is called modular.
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The following theorem by Nemhauser et al. discusses a recipe for approximate maxi-

mization of a submodular function subject to cardinality constraints.

Theorem 5.1. Let f be a monotone, submodular and non-negative function on V. For a

fixed K, let

S∗ ∈ max
S⊆V,|S|≤K

f(S). (5.4)

Then, an iterative greedy algorithm which starts with an empty solution set S = φ and adds

a new element x ∈ V\S to the current solution set S which results in maximal increment

f(S ∪{x})−f(S) in every iteration is a (1− 1/e)-approximation algorithm for (5.4), i.e.,

after K iterations,

f(S) ≥ (1− 1/e) f(S∗), ∀S ⊆ V , |S| ≤ K. (5.5)

Proof. See [87].

Proposition 5.1. For any positive definite matrix A ∈ Rn×n, a generic n×p matrix B and

constant β > 0, the set function f(S) = log |A + βBSB
T
S | is monotone and submodular.

Proof. Given in Appendix G.1.

5.4 System and Source Models

5.4.1 System Model

In this chapter, we consider the joint sparse support recovery problem corresponding to

the linear MMV measurement model: Y = AX + W, with exactly the same definitions

and assumptions as in section 4.3.1. Recall that X = [x1,x2, . . . ,xL] is the n × L sized

row-sparse matrix of interest here, and Y = [y1,y2, . . . ,yL] and W = [w1,w2, . . . ,wL] are
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the m× L sized observation and noise matrices, respectively. The goal here is to recover

the true row support of X given the knowledge of Y, A and σ2.

5.4.2 Signal Prior Design

For the sake of algorithm development, we assume that the joint sparse columns of X are

drawn independently from a common parameterized Gaussian distribution, i.e.,

p(xj) ∼ N (0, γIS), 1 ≤ j ≤ L, (5.6)

where IS = diag(1S), and 1S is the binary support vector with ones at the index locations

specified by set S, and zeros elsewhere. Due to their common covariance matrix, all xj’s

share the same support denoted by S. The scalar variable γ models the common variance

of the nonzero signal coefficients in X. Thus, the support set S and the common variance

γ together constitute the entire hyperparameters which parameterize the signal prior. The

conditions for exact support recovery under this particular signal prior (and γ = 1) has

been studied earlier in [81].

The Gaussian signal prior considered here is a special case of the MSBL signal prior [32].

Unlike in MSBL where each row of X is assigned a distinct variance parameter, here we

assume that all nonzero elements in X share a common variance. In the following, we

discuss how to learn the support set S directly from the observations Y. The case of

unknown variance hyperparameter γ is also discussed separately.
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5.4.3 Type-II Maximum Likelihood Estimation of Support

Given the support set hyperparameter S, the marginal probability density of the observa-

tions Y is given by

p(Y;S) =
L∏

j=1

N (yj; 0,Σ(S)) , (5.7)

where Σ(S) , σ2Im + γASA
T
S is the common measurement covariance matrix param-

eterized by set S. In the Bayesian inference approach, the set hyperparameter S with

maximal Bayesian evidence p(Y;S) is selected to be the final estimate of the true support

and is used for computing the maximum a posteriori (MAP) estimate of the unknown joint

sparse columns of X. Let ŜML denote the set hyperparameter with the highest Bayesian

evidence, i.e.,

ŜML = arg max
S⊆[n]

log p(Y;S). (5.8)

The above hyperparameter selection technique is called the type-II likelihood maximization

where rather than maximizing the joint likelihood p(Y,X;S), we instead maximize the

marginalized likelihood p(Y;S). By using the expression (5.7) in (5.8) and dropping all

terms independent of S, we obtain

ŜML = arg min
S⊆[n]

log |Σ(S)|+ tr
(
Σ(S)−1R̂yy

)
, (5.9)

where R̂yy = 1
L
YYT denotes the sample covariance matrix of the measurements. The

above optimization is an NP-hard problem which requires a combinatorial search over

all possible combinations of the support set S in order to find the set that maximizes

the log-likelihood cost. In the following section, we present an alternative to the above

log-likelihood cost which can be approximately optimized in polynomial time.
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5.5 Rényi Divergence based Information Projection

for Joint Sparse Support Recovery

Consider the reverse information projection problem:

Ŝ = arg min
S⊆[n]

Dα(p̃(Y), p(Y;S)), (5.10)

where Ŝ corresponds to the reverse information projection of p̃(Y) =
∏L

j=1N (yj; 0, R̂yy)

onto the set of parameterized probability densities p(Y;S) =
∏L

j=1N (yj; 0, σ2Im+γASA
T
S ).

The above information projection is defined with respect to the α-Rényi divergenceDα(p̃, p)

which is evaluated as per (5.1). The α-Rényi divergence based reverse-I projection problem

generalizes the type-II likelihood maximization in the sense that as α → 1, the α-Rényi

divergence converges to the Kullback-Leibler (KL) divergence [85], which is same as the

negative of the type-II log-likelihood objective in (5.9).

By using the closed form (5.2) of the α-Rényi divergence between two zero mean mul-

tivariate Gaussian distributions, and dropping terms independent of S, the reverse I-

projection in (5.10) simplifies to

Ŝ = arg min
S⊆[n]

log
∣∣∣(1− α)R̂yy + α

(
σ2Im + γASA

T
S
)∣∣∣− α log

∣∣σ2Im + γASA
T
S
∣∣. (5.11)

Similar to the type-II ML optimization (5.9), the above reverse I-projection is also an NP

hard problem and involves searching over all possible subsets of [n]. However, by using

Proposition 5.1, the Rényi divergence objective in (5.11) can be interpreted as a difference

of two submodular set functions with respect to the set variable S. This interesting ob-

servation facilitates the abstraction of the reverse I-projection into the following canonical
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set optimization problem:

Ŝ = arg min
S⊆[n]

f(S)− g(S), (5.12)

where f(S) = log
∣∣∣(1− α)R̂yy + α (Σ(S))

∣∣∣ and g(S) = α log |Σ(S)| are submodular set

functions with respect to the set variable S. Based on this decomposition, we now propose

a polynomial time algorithm to find a support set Ŝ which approximately minimizes the

difference objective.

5.5.1 Minimizing Difference of Two Submodular Functions

In [88, 89], the Supermodular-Submodular (Sup-Sub) procedure is proposed as a poly-

nomial time algorithm for approximate minimization of a set function expressible as a

difference of two submodular set functions. Given a ground set V , suppose f : 2V → R

and g : 2V → R are two submodular set functions. Consider the following canonical

problem:

S∗ = arg min
S⊆V

f(S)− g(S), (5.13)

where S is the optimization variable. In the Sup-Sub method, every iteration entails

minimizing a supermodular upper bound q(S) of the objective function in (5.13). If the

upper bound q(S) is tight at Sk−1, the previous iterate value, then it follows that

f(Sk−1)− g(Sk−1) = q(Sk−1) ≥ q(Sk) ≥ f(Sk)− g(Sk), (5.14)

where Sk is the minimizer of q(S) at the kth iteration. Thus, the objective decreases

monotonically in every iteration, a hallmark of any majorization-minimization technique.

In the SupSub procedure, the upper bound for the difference objective in (5.13) is ob-

tained by replacing the submodular f(S) with its tight modular upper bound. For any
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submodular f , there exists a tight modular upper bound hfX at point X [87, 88] which is

defined as follows:

f(S) ≤ hfX (S) , f(X )−
∑

j∈X\S

f(j|X\ {j}) +
∑

j∈S\X

f(j|φ), (5.15)

where f(A|B) is evaluated as f(A ∪ B) − f(B). The above bound is tight at X , i.e.,

hfX (X ) = f(X ) and hfX (S) ≥ f(S) for any S 6= X ,S ⊆ V .

Finally, in the kth iteration of the Sup-Sub procedure, by invoking Theorem 5.1, the

support set estimate Sk is updated as the approximate minimizer of the majorized super-

modular objective q(S) = hfSk−1
(S)− g(S) obtained via greedy search.

5.5.2 RD-CMP Algorithm

Since the Rényi divergence cost in (5.11) is expressible as a difference of two submodular

set functions, we can apply the Sup-Sub procedure just described to find the support set Ŝ

which minimizes it. We call this support set recovery scheme the Rényi Divergence based

Covariance Matching Pursuit (RD-CMP). The kth iteration of RD-CMP comprises two

steps:

1. Majorization: Construct a modular upper bound hfSk−1
(S) for the Rényi divergence

objective’s first term f(S) = log
∣∣∣(1− α)R̂yy + α (Σ(S))

∣∣∣ which satisfies hfSk−1
(S) ≥

f(S) for all S ⊆ [n], with equality at Sk−1. Here, Sk denotes the estimated row

support of X at the end of the kth iteration of the RD-CMP algorithm.

2. Minimization: Update the support estimate according to:

Sk = arg min
S⊆[n]

hfSk−1
(S)− α log

∣∣σ2Im + γASA
T
S
∣∣.
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By executing steps 1 and 2 repeatedly, the above iterations converge to a local minimizer of

the Rényi divergence cost in (5.11). We now flesh out the majorization and minimization

steps of RD-CMP in a greater detail.

Majorization Step

Let k denote the current iteration index. In the majorization step, the Rényi diver-

gence objective in (5.11) is majorized by replacing the submodular component f(S) =

log
∣∣∣(1− α)R̂yy + α

(
σ2Im + γASA

T
S
)∣∣∣ with its modular upper bound which is tight at

Sk−1. Using (5.15), we construct a modular upper bound of f , which after dropping

irrelevant constant terms has the following simplified form.

hfSk−1
(S) ,

∑

j∈Sk−1\S

log
∣∣1− αρaTj T−1

k−1aj
∣∣ +

∑

j∈S\Sk−1

log
∣∣1 + αρaTj H−1aj

∣∣, (5.16)

where ρ = γ
σ2 , H =

(
αIm + (1− α)σ−2R̂yy

)
and Tk =

(
H + αγσ−2ASkA

T
Sk

)
. The inter-

mediate steps involved in the derivation of the final form of modular hfSk−1
in (5.16) are

detailed in appendix G.2. By construction, for any S ⊆ [n], we have hfSk−1
(S) ≥ f(S)

with equality at S = Sk−1.

Minimization Step

In this step, the support set estimate is updated to be the minimizer of the majorized

Rényi divergence objective or equivalently the maximizer of the negative objective as

shown below.

Sk = arg max
S⊆[n]

g(S)− hfSk−1
(S), (5.17)
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where g(S) = α log
∣∣σ2Im + γASA

T
S
∣∣. Since the first and second terms of the objective in

(5.17) are submodular and modular, respectively, the overall objective is submodular in

S. Consequently, its approximate maximizer can be constructed in a greedy manner by

invoking Theorem 5.1.

The greedy construction of the solution of (5.17) begins with an empty set S0. At

iteration t of the greedy procedure, a new index rt is added to the support estimate St−1

such that

rt = arg max
r∈[n]\St−1

g(St−1 ∪ {r})− hfSk−1
(St−1 ∪ {r}). (5.18)

Here, k denotes the iteration index of the outer majorization-minimization loop of RD-

CMP. The greedy procedure is terminated when the newly added column art of A ceases

to increase the likelihood of observations Y, i.e., p(Y;St−1

⋃ {art}) < p(Y;St−1), which

is formalized as

log
(

1 + γaTrtP
−1
St−1

aTrt
)
>

aTrtP
−1
St−1

RYP−1
St−1

aTrt

γ−1 + aTrtP
−1
St−1

aTrt
, (5.19)

where PSt−1 = (σ2Im + γASt−1A
T
St−1

). The objective in (5.18) can be computed efficiently

using rank one recursive updates of the log-determinant function, resulting in very low

overall computational complexity of the proposed algorithm.

5.5.3 Unknown signal and noise variance

If the common variance γ of the nonzero elements in X and the noise variance σ2 are

unknown, they can be estimated as additional hyperparameters along with the support S

directly from the observations. Starting with suitably chosen initial values γ0 and σ2
0, the

hyperparameters γ, σ2 are updated using the fixed point iterative updates below, which

are derived from the zero gradient optimality conditions associated with their respective
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likelihood maximization,

γk =
tr
(
ASkQSk(RY − σ2

k−1Im)QT
SkA

T
Sk

)
∣∣∣∣AT

SkQSkASk
∣∣∣∣2
F

, (5.20)

σ2
k =

tr
(
ASkQSk(RY − γkASkA

T
Sk)Q

T
SkA

T
Sk

)

||QSk ||2F
(5.21)

where QSk = AT
Sk

(
σ2
k−1Im + γk−1ASkA

T
Sk

)−1
. Finally, Algorithm 1 summarizes the step-

wise implementation of RD-CMP.

Algorithm 1 Rényi Divergence based Covariance Matching Pursuit (RD-CMP)

Input: Y, A, σ2 and α
Notation: f(S, γ) = log

∣∣(1− α)RY + α
(
σ2Im + γASA

T
S
)∣∣,

g(S, γ) = α log
∣∣σ2Im + γASA

T
S
∣∣

Initialization: k ← 0, Sk = {φ}, γk =
1
L

tr(YYT )−mσ2

||A||2F
1: while not converged (i.e., Sk 6= Sk−1) do
2: Compute the modular bound hfSk−1

according to (5.16).

3: Initialize greedy search to find the approximate maximizer of g(X , γk−1)− hfSk−1
(X ):

t← 0,Xt = {φ}
4: repeat
5: rt = arg max

r∈[n]\Xt−1

g(Xt−1 ∪ {r} , γk−1)− hfSk−1
(Xt−1 ∪ {r})

6: Xt = Xt−1 ∪ {rt}
7: t← t+ 1.
8: until stopping criterion in (5.19) is met.
9: Update γk according to (5.20).

10: k ← k + 1
11: end while
Output: Ŝ = Sk.

The performance of RD-CMP is sensitive to the choice of the parameter α which de-

fines the order of the Rényi divergence used in the information projection step. While

a theoretical analysis of α’s effect on the support recovery performance is warranted, we

conjecture that α controls how much importance is assigned to the observations Y while

learning the support hyperparameters. At lower SNRs, it is preferable to choose a higher

value of α and vice versa. In our experiments, α = σ2 was found to perform uniformly
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well over a wide range of SNR and signal dimensions, and it is also the value used in all

of our experiments.

5.5.4 Fast Recursive RD-CMP Updates

By exploiting the rank-one update property of the log det function, one can compute the

submodular objective g(St−1∪{r})−hfSk−1
(St−1∪{r}) in (5.18) in a fast recursive manner

as discussed below.

We note that the first objective term g(St−1 ∪ {r}) decomposes as

g(St−1 ∪ {r})

= α log
∣∣σ2Im + γASt−1∪{r}A

T
St−1∪{r}

∣∣

= α log
∣∣σ2Im + γASt−1A

T
St−1

+ γara
T
r

∣∣

= α log
∣∣σ2Im + γASt−1A

T
St−1

∣∣+ α log
∣∣Im + γara

T
r (σ2Im + γASt−1A

T
St−1

)−1
∣∣

= α log
∣∣σ2Im + γASt−1A

T
St−1

∣∣+ α log
∣∣1 + γaTr (σ2Im + γASt−1A

T
St−1

)−1ar
∣∣ . (5.22)

Since the first term in (5.22) does not depend on r, only the Rayleigh terms Rt(r) ,

aTr (σ2Im + γASt−1A
T
St−1

)−1ar have to be compuated for all r ∈ [n]. The Rayleigh terms

Rt(r) can be computed directly from Rt−1(r) using the following recursive updates.

Initialization: Z0 = Im and R0(r) = ||ar||22 ∀r ∈ [n] (5.23)

wt−1 = Z−1
t−1art−1 (5.24)

bt−1 = ATwt−1 (5.25)

Zt = Zt−1 −
wt−1w

T
t−1

σ2

γ
+ bt−1(rt−1)

(5.26)
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Rt(r) = Rt−1(r)− bt−1(r)2

σ2

γ
+ bt−1(rt−1)

∀r ∈ [n] (5.27)

where rt−1 is the new index added to the support set estimate (Step 5 in Algorithm 1) in

the (t− 1)th iteration of the greedy search executed every RD-CMP iteration.

Likewise, from (5.15), we observe that the modular upper bound hfSk−1
(St−1 ∪ {r}) can

be rewritten as

hfSk−1
(St−1 ∪ {r}) = hfSk−1

(St−1)− I{r∈Sk−1} [f(Sk−1)− f(Sk−1\ {r})]

+I{r/∈Sk−1} [f({r})− f(φ)]

= hfSk−1
(St−1) + I{r∈Sk−1} log

(
1− αρaTr T−1

k−1ar
)

+I{r/∈Sk−1} log
(
1 + αρaTr H−1ar

)
. (5.28)

From (5.28), the outer loop of RD-CMP (indexed by k) requires computation of only

the incremental terms. The quadratic terms aTr T−1
k−1ar and aTr H−1ar in (5.28) can be

evaluated with O(m3 + nm2) computational complexity.

Table 5.1 provides a step-wise breakdown of the computational complexity incurred in a

single iteration of RD-CMP. Interestingly, the per-iteration computational complexity of

RD-CMP does not depend on L, which can be beneficial in situations where the number

of MMVs is very large.

5.5.5 Convergence

The RD-CMP algorithm is a majorization-minimization procedure designed to minimize

the Rényi divergence objective in (5.11). In the minimization step, the greedy search based

optimization of the submodular objective in (5.17) is however only in the approximate
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Table 5.1: Per Iteration Computational Complexity of RD-CMP

Steps in RD-CMP iteration Computational
complexity

Computation of g(S) O(nm+m2)

Computation of hfSk−1
(S) O(nm2 +m3 + n)

Greedy search in (5.17) O(n)
Stopping criterion in (5.19) O(m2)
Update γ acc. to (5.20) O(nm2)

sense. This makes it difficult to analyze the convergence of RD-CMP algorithm. However,

in our experiments, the RD-CMP algorithm always converges within 10-20 iterations of

its outer loop.

5.5.6 Possible Extensions

An interesting variation of the proposed RD-CMP algorithm is to use an MSBL like

vector prior prescribed in (2.1) for support inference. In this case, RD-CMP reverts to the

following multivariate optimization problem,

γ̂ = arg min
γ∈Rn+

log
∣∣∣(1− α)R̂yy + α

(
σ2Im + AΓAT

)∣∣∣− α log
∣∣σ2Im + AΓAT

∣∣, (5.29)

where Γ = diag(γ). Since, for any positive definite matrix B, the function − log |B +

AΓAT | is a strongly convex with respect to γ, the objective in (5.29) can be viewed as

a difference of two convex functions. This allows the objective to be minimized via DC

(Difference of Convex functions) programming [90]. Once γ̂ is obtained, supp(γ̂) can be

declared as an estimate of the true support.
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5.5.7 Distributed Implemetation

One can also envisage a distributed or parallel implementation of the RD-CMP algorithm

using a network of computing nodes, where each node has access to a single measurement

vector. In the distributed setup, each nodes execute an independent instantiation of

the RD-CMP algorithm using a rank one sample covariance computed from the locally

observed measurement vector. At the end of every RD-CMP’s outer loop iteration, the

nodes in the network can exchange their local support estimates with the neighboring

nodes based on the underlying network topology. Each node can then refine its local

support estimate by fusing the support estimates from the neighboring nodes using voting

based support fusion and refinement rules discussed in [91] and [92].

5.6 Numerical Experiments

In this section, we present the simulation results comparing RD-CMP with existing co-

variance matching based MMV solvers, namely MSBL [32], Co-LASSO [30] and SParse

Iterative Covariance-based Estimation (SPICE) [93] in terms of their support recovery

performance and computational complexity. Non-COMET algorithms are not considered

here as they fail completely when the support size k is larger than m. In each experiment,

the nonzero entries of X and the elements of A are independently drawn according to a

zero mean Gaussian distribution with variance 1 and 1/m, respectively. In MSBL and

Co-LASSO, the final support estimate is declared to be the set of indices whose variance

exceeds the average of estimated signal and noise variances.

Fig. 5.1 plots the phase transition of support recovery performance of RD-CMP at an

SNR of 10 dB. We observe that RD-CMP, due to its covariance matching roots, is able to
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recover k-sparse supports from fewer than k measurements. Furthermore, the quadratic

nature of the phase transition boundary suggests that RD-CMP can recover of size as high

as O(m2).
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Figure 5.1: Support recovery phase transition plot of RD-CMP. The yellow region marks
the measurement rate (m/n) and the sparsity rate (k/n) combinations for which RD-CMP
successfully recovers the true support of X up to 99% accuracy. The green region marks
the (m/n, k/n) tuples for which support recovery accuracy is below 99%. Simulation
parameters: n = 200, L = 200, SNR = 10 dB and number of trials = 100.

Fig. 5.2 compares the support detection and false alarm rates of different MMV algo-

rithms. We note that SPICE and MSBL offers the most balanced performance in terms

of tradeoff between support detection and false alarm rates. However, they are also the

most computationally intensive algorithms. RD-CMP has lower false alarm rates than

Co-LASSO and M-SBL. It also has a better detection rate compared to Co-LASSO. In

Fig. 5.3, we compare average run-times of the MMV algorithms for a wide range of sig-

nal dimensions spanning n = 102 to 106. We were unable to run Co-LASSO and SPICE

beyond n = 104 due to their prohibitively high memory requirements. Co-LASSO re-

quires storing an m2 × n sized A � A Khatri-Rao matrix in the memory which renders

it impractical for large signal dimensions. To mimic a typical sparse setting, the support



Chapter 5. 93

size K scales as d50 log10 ne and the number of effective MMV measurements scales as

mL = d50K log10 ne. We observe that the average runtimes for RD-CMP are the lowest

among the MMV algorithms considered here, and scales favorably with increasing signal

dimension n.
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Figure 5.2: Average false alarm (top) and detection rates (bottom) for the recovered
support versus the number of MMVs. Other parameters: n = 500, K (no. of nonzero
rows in X) = 200, m = 100, SNR = 10 dB, and #trials = 100.
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Figure 5.3: Average runtime of the MMV algorithms versus signal dimension n. Other
simulation parameters: K = d50 log10 ne, m = d3K

4
e, L = d50K

m
log10 ne, and SNR = 10 dB.

5.7 Chapter Summary

In this chapter, we proposed a novel covariance matching based MMV solver called RD-

CMP which recovers the true support of unknown joint sparse vectors from their compres-

sive measurements by minimizing a novel Rényi divergence objective which serves as an

approximation to the marginalized log-likelihood of the measurements. The proposed algo-

rithm is capable of recovering k-sparse support from fewer than k measurements. Based on

simulation results, we can conclude that the proposed RD-CMP algorithm is significantly

faster compared to existing covariance matching based MMV algorithms such as MSBL

and Co-LASSO, making it a better candidate for handling large dimensional signals.
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Decentralized Joint Sparse Signal

Recovery - An SBL Approach

In which joint sparse signal recovery gets

decentralized...

6.1 Introduction

In this chapter1, we solve the multiple measurement vector problem in a distributed set-

ting. The distributed MMV problem deals with the estimation of multiple joint sparse

vectors from their noisy underdetermined linear measurements using a network of com-

puting nodes. Each vector in the joint sparse ensemble is estimated by a distinct node in

the network with access to its linear measurements. Additionally, the nodes are allowed

to collaborate among themselves in order to exploit the network-wide joint sparsity, and

1This chapter is based on S. Khanna and C. R. Murthy, “Decentralized Joint-Sparse Signal Recovery:

A Sparse Bayesian Learning Approach”, IEEE Transactions on Signal and Information Processing over

Networks , vol. 3, no. 1, pp. 29–45, Sept. 2016.

95
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jointly estimate their local sparse vectors using fewer measurements and with better ac-

curacy. In [38], it has been shown that as the network grows in size, a k-sparse ensemble

can be recovered exactly from as few as k noiseless measurements per node. Any such

substantial reduction in the number of required measurements is an attractive proposition,

especially for applications where the measurement acquisition costs are of concern.

In this chapter, we assume that the joint sparse vectors follow the Type-2 Joint Sparsity

Model (JSM-2) [38], i.e., the nonzero coefficients within and across the vectors are uncor-

related. Distributed estimation of JSM-2 signals has many real-world applications such as

MIMO channel estimation [9, 10, 94], cooperative spectrum sensing [14, 95], decentralized

event detection [84] and acoustic source localization [96].

To further motivate the joint sparsity signal structure in a distributed setup, consider

the problem of detection/classification of randomly occurring events in a field by multiple

sensor nodes. Each sensor node j, 1 ≤ j ≤ L, employs a dictionary Ψj = [ψ1
j ;ψ

2
j . . . ψ

n
j ],

whose each column ψij is the signature corresponding to the ith event, one out of the n

events which can potentially occur. In many cases, due to the inability to accurately model

the sensing process, the signature vectors ψij are simply chosen to be the past recordings of

jth sensor corresponding to standalone occurrence of the ith event, averaged across multiple

experiments [97]. This procedure can result in distinct dictionaries at the individual nodes.

For any k (� n) events occurring simultaneously, a noisy sensor recording might belong to

multiple subspaces, each spanned by different subsets of columns of the local dictionary. In

such a scenario, enforcing joint sparsity across the sensor nodes can resolve the ambiguity

in selecting the correct subset of columns at each sensor node.

Distributed algorithms for JSM-2 signal recovery come in two flavors - centralized and
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decentralized. In the centralized approach, each node transmits its local measurements to

a fusion center (FC) which runs a joint-sparse signal recovery algorithm. The FC then

transmits the reconstructed sparse signal estimates back to their respective nodes. In

contrast, in a decentralized approach, the goal is to obtain the same centralized solution

at all nodes by allowing each node to exchange information with its single-hop neighbors

in addition to processing its local measurements. Besides being inherently robust to node

failures, decentralized schemes also tend to be more energy efficient as the inter-node

communication is restricted to relatively short ranges covering only single communication

links. Here, we focus on the decentralized approach for solving the sparse signal recovery

problem under the JSM-2 signal model.

We propose a decentralized extension of the Multiple Sparse Bayesian Learning (MSBL)

algorithm [32] for estimation of multiple joint sparse vectors from their noisy and un-

derdetermined linear measurements. The proposed algorithm, called Consensus Based

Distributed Sparse Bayesian Learning or CB-DSBL, exploits the network-wide joint spar-

sity of the unknown sparse vectors to recover them using a significantly fewer number of

local measurements compared to standalone sparse signal recovery schemes. To reduce

the amount of inter-node communication and the associated overheads, the nodes are per-

mitted to exchange messages with only a small set of predesignated bridge nodes. Using

Monte Carlo simulations as well as real-world data based experiments, we demonstrate

the superior signal reconstruction performance of CB-DSBL compared to the existing

decentralized algorithms.
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6.2 Background on Decentralized Joint Sparse Signal

Recovery

6.2.1 Literature Survey

In this section, we review the existing decentralized algorithms for JSM-2 signal recovery.

Early work in this area focused on the development of decentralized extensions of exist-

ing centralized MMV algorithms. DCOMP [92] and DCSP [98] belong to this category,

they are the decentralized versions of greedy MMV algorithms SOMP [38] and SSP [98],

respectively. Both these algorithms have very low computational complexity but they do

not perform as well as convex relaxation and Bayesian recovery methods. Moreover, both

DCOMP and DCSP assume a priori knowledge of the size of the nonzero support set,

which could be unknown or hard to estimate. In [99], three distributed greedy pursuit

algorithms: DiOMP, DiSP and DiFROGS have been proposed, and an extensive simula-

tion based performance comparison study has been conducted for a wide range of network

connection densities. Among these three algorithms, DiOMP turns out to be the best all-

round performer. However, DCOMP is more accurate than DiOMP in terms of support

detection, as demonstrated in [92].

DR-LASSO [100] is an iterative decentralized algorithm which uses alternating minimiza-

tion to optimize a convex regularized objective which includes a mixed `1-`2 norm based

joint sparsity inducing penalty. In [95], the same `1-`2 norm penalty is used in a coopera-

tive spectrum sensing setup to estimate the sparse spectral occupancy patterns perceived

by multiple cognitive radios via independent channels. The decentralized re-weighted `1

norm minimization algorithm or DRL-1 [84] employs a sum-log-sum penalty to induce a

joint-sparse solution. The non-convex objective of DRL-1 is better at promoting sparsity



Chapter 6. 99

than the `1 norm penalty [101]. In DRL-1, the non-convex objective is minimized by re-

placing it with a surrogate convex function made up of weighted `1 norm terms, and the

weights are updated in each iteration. In both DR-LASSO and DRL-1, the sparsity of the

solution is controlled by a regularization parameter λ which biases the joint sparsity in-

ducing penalty term in the objective. The correct amount of regularization or the optimal

value of λ is typically chosen via cross-validation, which is not practical unless additional

training data is available.

In Bayesian approach, the amount of regularization is tuned automatically by the pro-

cedure of selecting an appropriate member prior from a parameterized family of joint

sparsity inducing priors. The selected prior is the one with the maximal Bayesian evi-

dence [33,102]. The learned signal prior is subsequently used to compute the maximum a

posteriori probability (MAP) estimate of the sparse vectors. DCS-AMP [103] is one such

Bayesian algorithm which uses approximate message passing to efficiently learn the param-

eters of a joint sparsity inducing Bernoulli-Gaussian family of priors. DCS-FBMP [104]

also uses a Bernoulli-Gaussian signal prior, and constructs the sparse support incremen-

tally by using a greedy approach to maximize the log-posterior probability of the support

parameters. However, it is designed to work only with star and ring topology networks.

Turbo Bayesian Compressive Sensing (Turbo-BCS) [105], another decentralized algorithm,

adopts a more relaxed zero mean Gaussian signal prior, with the variance hyperparame-

ters themselves distributed according to an exponential distribution. The relaxed signal

prior improves the MSE performance without compromising on the sparsity of the solu-

tion. Turbo-BCS, however, involves direct exchange of signal estimates between the nodes,

which renders it unsuitable for applications where it is necessary to preserve the privacy
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Table 6.1: Comparison of decentralized joint-sparse signal recovery algorithms

Decentralized
algorithm

Per node, per
iteration

computational
complexity

Per node,
per iteration
communica-

tion
complexity

Privacy of
local
signal

estimates

Tunable
parame-
ters (if
any)

Assumes a
priori

knowledge
of sparsity

level

DCSP [107] O(mn+ ζn+ k logn+m2) O(ζn+ k logn) Yes None Yes
DCOMP [92] O(nζ + L) O(ζn+ L) Yes None Yes
DRL-1 [84] O((n2 +m3 + nm2)rmax + ζn) O(ζn) Yes Yes No
DR-LASSO [100] O(n2mT1 + ζnT2) O(ζnT2) Yes Yes No
Turbo-BCS [105] O(n3 + nL+ nk2 + k3 +mk) O(kL) No None No
DCS-AMP [103] O(mn+ ζn+ c1n) O(ζn) Yes Yes No
CB-DSBL (proposed) O(n2 +m3 + nm2 + ζnrmax) O(ζnrmax) Yes None No

1. n,m, k and L stand for the dimension of unknown sparse vector, number of local measurements per node,
number of nonzero coefficients in the true support and network size, respectively.

2. ζ is the maximum number of communication links activated per node, per communication round.
3. rmax is the number of inner loop ADMM iterations executed per CB-DSBL iteration.
4. In DRL-1, rmax is the number of inner loop ADMM iterations used to obtain an inexact solution to the
weighted `1 norm based subproblem.

5. T1 and T2 denote the number of iterations of the two different inner loop iterations executed per DR-LASSO iteration.

of the local signals.

For a more up-to-date review of existing decentralized JSM-2 algorithms, the readers are

referred to an excellent survey article [106] by Wimalajeewa et al.

6.2.2 Contributions

Our main contributions in this chapter are as follows:

1. We propose a novel decentralized, iterative, Bayesian joint-sparse signal recovery al-

gorithm called Consensus Based Distributed Sparse Bayesian Learning or CB-DSBL.

Our proposed algorithm works by establishing network wide consensus with respect

to the estimated parameters of a joint sparsity inducing signal prior. The learnt

signal prior is subsequently used by the individual nodes to obtain MAP estimates

of their local sparse signal vectors.

2. The proposed algorithm employs the Alternating Direction Method of Multipliers

(ADMM) to solve a series of iteration dependent consensus optimization problems
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which require the nodes to exchange messages with each other. To reduce the as-

sociated communication overheads, we adopt a bandwidth efficient inter-node com-

munication scheme. This scheme entails the nodes exchanging messages with a

predesignated subset of its single-hop neighbors identified as bridge nodes, as moti-

vated in [1]. In this connection, we analytically establish the relationship between

the selected set of bridge nodes and the convergence rate of the ADMM iterations.

For the bridge-node based inter-node communication scheme, we show a linear rate

of convergence for the ADMM iterations when applied to a generic consensus op-

timization problem. The analysis is useful in obtaining a closed form expression

for the tunable parameter of our proposed joint sparse signal recovery algorithm,

ensuring its fast convergence.

3. We empirically demonstrate the superior MSE and support recovery performance of

CB-DSBL compared to existing decentralized algorithms. The experimental results

are presented for both synthetic and real world data. In the latter case, we illus-

trate the performance of the different algorithms for the application of cooperative

wideband spectrum sensing in cognitive radios.

In Table 6.1, we compare the existing decentralized joint-sparse signal recovery schemes

with respect to their per iteration computational and communication complexity, pri-

vacy of local estimates, presence/absence of tunable parameters and dependence on prior

knowledge of the sparsity level. As highlighted in the comparison in Table 6.1, CB-DSBL

belongs to a handful of decentralized algorithms for joint-sparse signal recovery which do

not require a priori knowledge of the sparsity level, rely only on single-hop communication,
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and do not involve direct exchange of local signal estimates between network nodes. Be-

sides this, unlike loopy Belief Propagation (BP) or Approximate Message Passing (AMP)

based Bayesian algorithms, CB-DSBL does not suffer from any convergence issues even

when the local measurement matrix at each node is dense or not randomly constructed.

6.3 System Model

We consider L computing nodes connected as a network described by a bi-directional graph

G = (J ,A), where J = {1, 2, . . . , L} is the set of vertices in G, each vertex representing

a distinct node in the network. Set A contains the edges in G, each edge representing a

single-hop error-free communication link between a distinct pair of nodes. Each node is

interested in estimating an unknown k-sparse vector xj ∈ Rn from m locally acquired noisy

linear measurements yj ∈ Rm. The local measurement vector yj at node j is generated

according to the linear model

yj = Φjxj + wj, 1 ≤ j ≤ L (6.1)

where, Φj ∈ Rm×n is a full row rank sensing matrix and wj ∈ Rm is the measurement

noise modeled as zero mean Gaussian distributed with covariance matrix σ2
j Im. The sparse

vectors x1,x2, . . . ,xL at different nodes follow the JSM-2 signal model [16]. This implies

that all xj share a common support, represented by the index set S. From the JSM-2

model, it also follows that the nonzero coefficients of the sparse vectors are independent

within and across the vectors.

The goal is to recover the sparse vectors x1,x2, . . . ,xL at the respective nodes using

decentralized processing. In addition to processing the locally available data
{
yj,Φj, σ

2
j

}
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at jth node, each node must collaborate with its single-hop neighboring nodes to exploit

the network wide joint sparsity of the sparse vectors. Ideally, the decentralized algorithm

should be able to generate the centralized solution at each node, as if each node has access

to the global information, i.e.,
{
yj,Φj, σ

2
j

}
j∈J .

6.4 Centralized Bayesian Learning of JSM-2 Signals

In this section, we briefly recall the centralized MSBL algorithm [32] for JSM-2 signal

recovery and extend it to support distinct measurement matrices Φj and noise variances σ2
j

at each node. The centralized algorithm runs at an FC, which assumes complete knowledge

of network wide information,
{
yj,Φj, σ

2
j

}L
j=1

. For ease of notation, we introduce two

variables X , {x1,x2, . . . ,xL} and Y , {y1,y2, . . . ,yL} to be used in the sequel. Similar

to MSBL, each of the sparse vectors xj, j ∈ J is assumed to be distributed according to

a parameterized signal prior p(xj;γ) shown below.

p(xj;γ) =
n∏

i=1

p (xj(i);γ) =
n∏

i=1

1√
2πγ(i)

exp

(
−xj(i)

2

2γ(i)

)
.

Further, the joint signal prior p(X;γ) is assumed to be

p(X;γ) =
∏

j∈J

p(xj;γ). (6.2)

In the above, γ = (γ(0),γ(1), . . . ,γ(n))T is an n dimensional hyperparameter vector,

whose ith entry, γ(i), models the common variance of xj(i) for 1 ≤ j ≤ L. Since the signal

priors p(xj;γ) are parameterized by a common γ, if γ has a sparse support S, then the

MAP estimates of x1,x2, . . . ,xL will also be jointly sparse with common support S. Just

like in MSBL, the hyperparameter vector γ is estimated as the the maximizer of the total
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Bayesian evidence or the network-wide log-likelihood log p(Y;γ).

Let γ̂ML denote the maximum likelihood (ML) estimate of hyperparameters of the joint

source prior:

γ̂ML = arg max
γ�0

log p(Y;γ) (6.3)

where p(Y;γ) is a type-2 likelihood function obtained by marginalizing the joint density

p(Y,X;γ) with respect to the unknown vectors in X as shown below.

p(Y;γ) =
L∏

j=1

∫
p(yj|xj)p(xj;γ)dxj =

L∏

j=1

N
(
0,ΦjΓΦT

j + σ2
j Im
)
. (6.4)

Here Γ = diag(γ). We note that γ̂ML cannot be derived in closed form by directly max-

imizing the likelihood in (6.4) with respect to γ. Hence, as suggested in the SBL frame-

work [41], we use the expectation maximization (EM) procedure to maximize log p(Y;γ)

by treating X as hidden variables. Each EM iteration comprises the following two steps:

E step: Q(γ|γk) = EX|Y,γk [log p(Y,X;γ)]

M step: γk+1 = arg max
γ∈Rn+

Q(γ|γk) (6.5)

where k denotes the iteration index of EM algorithm. From the LMMSE theory [47],

we know that the conditional density p(xj|yj,γk) used to compute Q(γ|γk) is Gaussian

distributed with mean µk+1
j and covariance Σk+1

j given by

Σk+1
j = Γk − ΓkΦT

j

(
σ2
j Im + ΦjΓ

kΦT
j

)−1
ΦjΓ

k

µk+1
j = σ−2

j Σk+1
j ΦT

j yj. (6.6)

As shown in Appendix H.1, the M-step optimization in (6.5) can be recast as the following



Chapter 6. 105

minimization problem.

γk+1 = arg min
γ∈Rn+

∑

j∈J

n∑

i=1

(
log γ(i) +

Σk
j (i, i) + µk

j (i)
2

γ(i)

)
. (6.7)

From the zero gradient optimality condition in (6.7), the M-step reduces to the following

update rule:

γk+1(i) =
1

L

∑

j∈J

(
Σk+1
j (i, i) + µk+1

j (i)2
)

for 1 ≤ i ≤ n. (6.8)

By repeatedly iterating between the E-step (6.6) and the M-step (6.8), γk converges to

either a local maximum or a saddle point of log p(Y;γ) [48]. Once γ̂ML is obtained, the

MAP estimate of xj is evaluated by substituting γ̂ML in the expression for µj in (6.6). It

has been observed empirically that as the EM algorithm converges, the γ(i)’s belonging

to the inactive support tend to zero, hence resulting in a sparse ML estimate of γ.

6.5 Decentralized Bayesian Learning of JSM-2

Signals

6.5.1 Algorithm Development

In this section, we develop a decentralized version of the centralized algorithm discussed

in the previous section. For notational convenience, we introduce an n length vector

akj =
(
akj,1, a

k
j,2, . . . , a

k
j,n

)T
maintained at node j, where akj,i = Σk

j (i, i)+µk
j (i)

2 with Σk
j and

µk
j as defined in (6.6).

We observe that the solution of the M-step optimization in (6.8) can be interpreted as

computing an average of the L vectors
{
ak+1
j

}L
j=1

. The same solution can also be obtained
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by solving a different minimization problem

γk+1 = arg min
γ∈Rn+

∑

j∈J

‖γ − ak+1
j ‖2

2. (6.9)

Unlike the non-convex M-step objective function in (6.7), the surrogate objective function

in (6.9) is convex in γ and therefore can be minimized in a distributed manner using pow-

erful convex optimization techniques. An alternate form of (6.9) amenable to distributed

optimization is given by

min
γj∈Rn+, j∈J

∑

j∈J

‖γj − ak+1
j ‖2

2

subject to γj = γj′ ∀ j ∈ J , j′ ∈ Nj (6.10)

where Nj denotes the set of single-hop neighbors of node j. The equality constraints

in (6.10) ensure its equivalence to the unconstrained optimization in (6.9). Here, the

number of equality constraints is equal to |A|, the total number of single-hop links in

the network. In a naive decentralized implementation of (6.10), the number of messages

exchanged between the nodes grow linearly with the number of consensus constraints. By

restricting the nodes to exchange information only through a small set of pre-designated

nodes called bridge nodes, the number of consensus constraints can be drastically reduced

while preserving the equivalence of (6.9) and (6.10). Let B ⊆ J denote the set of all

bridge nodes in the network and Bj ⊆ B denote the set of bridge nodes which are single-

hop neighbors of node j, then (6.10) can be rewritten as

minimize
γj∈Rn+, j∈J

∑

j∈J

‖γj − ak+1
j ‖2

2

subject to γj = γb ∀ j ∈ J , b ∈ Bj. (6.11)
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The auxiliary variables γb, called bridge parameters, are used to establish consensus

among γj. Each bridge parameter γb is a non negative n length vector maintained by

the bridge node b. Fig. 6.1 illustrates the selection of bridge nodes according to Lemma

6.1, in a sample network. As motivated in [1], [108], using bridge nodes to impose network

wide consensus allows us to trade off between the communication cost and robustness of

the distributed optimization algorithm.2 The following Lemma provides sufficient condi-

tions on the choice of the bridge node set B under which (6.9) and (6.11) are equivalent.

The proof for the Lemma can be found in [1].

Lemma 6.1. For a connected graph G, if the bridge node set B ⊆ J satisfies the following

conditions

1. Each node j must be connected to at least one bridge node in B, i.e., Bj 6= φ for any

j ∈ J , and,

2. If two nodes j1 and j2 are single-hop neighbors, then Bj1
⋂Bj2 6= φ for any j1, j2 ∈ J ,

then, in the solution to (6.11), γj’s are equal for all j ∈ J .

We employ the Alternating Directions Method of Multipliers (ADMM) algorithm [109]

to solve the convex optimization problem in (6.11). ADMM is the state of the art dual

ascent algorithm for solving constrained convex optimization problems, offering a linear

convergence rate and a natural extension to a decentralized implementation. We start by

2In an alternate embodiment of the proposed algorithm, the message exchanges could be restricted to

occur only through the (trustworthy) bridge nodes, thereby avoiding direct communication between the

nodes. In this case, the role of the bridge nodes could be to enforce consensus in γ across the nodes, and

these nodes need not directly participate in signal reconstruction.
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Figure 6.1: Selection of bridge nodes in a sample network consisting of 10 nodes. In the
proposed scheme, only those edges that have at least one of the vertices as a bridge node
are used for communication. The remaining edges are not used for communication. For
example, node 9 communicates only with bridge nodes 4 and 8.

constructing an augmented Lagrangian, Lρ, given by

Lρ(γJ ,γB,λ) ,
∑

j∈J

‖γj − ak+1
j ‖2

2

+
∑

j∈J

∑

b∈Bj

(λbj)
T (γj − γb) +

ρ

2

∑

j∈J

∑

b∈Bj

‖γj − γb‖2
2, (6.12)

where λbj denotes the n× 1 sized Lagrange multiplier vector corresponding to the equality

constraint γj = γb and ρ is a positive scalar which biases the quadratic consensus penalty

term. For lighter notation, we define concatenated vectors γJ = {γT1 ,γT2 , . . . ,γTL}T and

γB = {γTb1 , . . . ,γTb|B|}T . We also define the nNC × 1 concatenated Lagrange multiplier

vector λ, where NC is the number of equality constraints in (6.11). The solution to (6.11)

is then obtained by executing the following ADMM iterations until convergence:

γr+1
J = arg min

γJ

Lρ(γJ ,γ
r
B,λ

r) (6.13)

γr+1
B = arg min

γB

Lρ(γ
r+1
J ,γB,λ

r) (6.14)

(λbj)
r+1 = (λbj)

r + ρ(γr+1
j − γr+1

b ) (6.15)
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∀j ∈ J , b ∈ Bj. Here, r denotes the ADMM iteration index. In (6.13-6.14), the primal

variables, γJ and γB, are updated in a Gauss-Seidel fashion by minimizing the augmented

Lagrangian, Lρ, evaluated at the previous estimate of the dual variable λ. By adding an

extra quadratic penalty term to the original Lagrangian, the objective in (6.14) is no

longer affine in γB and hence has a bounded minimizer. The dual variable λ is updated

via a gradient-ascent step (6.15) with a step-size equal to the ADMM parameter ρ. This

particular choice of step-size ensures the dual feasibility of the iterates {γr+1
J ,γr+1

B ,λr+1}

for all r [109]. Since the augmented Lagrangian Lρ is strictly convex with respect to γJ

and γB individually, the zero gradient optimality conditions for (6.13) and (6.14) translate

into simple update equations for γj and γb:

γr+1
j =

2ak+1
j +

∑
b∈Bj

(
ργrb − (λbj)

r
)

2 + ρ|Bj|
∀ j ∈ J

γr+1
b =

∑
j∈Nb(ργ

r+1
j + (λbj)

r)

ρ|Nb|
∀ b ∈ B. (6.16)

Here Nb denotes the set of nodes connected to bridge node b. As shown in Appendix H.2,

by eliminating the Lagrange multiplier terms from (6.15) and (6.16), the update rule for

γb can be further simplified to

γr+1
b =

1

|Nb|
∑

j∈Nb

γr+1
j ∀ b ∈ B. (6.17)

In section 6.5.6, we compare the bridge node based ADMM discussed above with other

decentralized optimization techniques in the literature. We show empirically that the

bridge node based ADMM scheme is able to flexibly trade off between communication

complexity, robustness to node failures, speed of convergence, and signal reconstruction

performance. Moreover, the ADMM iterations (6.13)-(6.15) can be adapted to handle time
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Algorithm 2 Consensus Based Distributed Sparse Bayesian Learning (CB-DSBL)

Input: k ← 0
γk
j ← 10−31n×1 ∀j ∈ J

γk
b , (λb

j)
k ← 0 ∀j ∈ J , b ∈ Bj

while (k < kmax) &
(
∆γJ > ε

)
do

E step: Each node sj , j ∈ J , updates ak
j according to (6.6).

M step: r ← 0, γr
J ← γk

J , γr
B ← γk

B, (λ)r ← (λ)k

while r < rmax do
1. All nodes sj∈J update their local estimate of hyperparameters γr

j according to (6.16).

2. All nodes sj∈J transmit the updated γr+1
j estimate to connected bridge nodes sb∈Bj

.
3. Each bridge node sb∈B updates its bridge variable γr

b according to (6.17).
4. All bridge nodes sb∈B transmit updated bridge hyperparameters γr+1

b to nodes in their
neighborhood Nb.
5. All nodes sj∈J update their Lagrange multipliers (λb

j)
r, b ∈ Bj according to (6.15).

6. r ← r + 1
end while
γk
J ← γr

J , γk
B ← γr

B, (λ)k ← (λ)r

k ← k + 1
∆γJ ← ||γk

J − γk−1
J ||2

end while

Output: γk
J .

varying, asynchronous networks, as suggested in [110]. During asynchronous operation,

the dynamic assignment of bridge nodes can be avoided by treating all nodes as bridge

nodes.

6.5.2 Consensus Based Distributed Sparse Bayesian Learning

We now propose the CB-DSBL algorithm. Essentially, it is a decentralized EM algorithm

for finding the ML estimate of the hyperparameters γ. The algorithm comprises two nested

loops. In the outer loop, each node performs the E-step (6.6) in a standalone manner.

In the inner loop, ADMM iterations are performed to solve the M-step optimization in

a decentralized manner. Upon convergence of the outer loop, each node j ∈ J has the

same ML estimate of γ, which is then used to obtain a MAP estimate of the local sparse

vector xj, similar to the centralized algorithm. The steps of the CB-DSBL algorithm are

detailed in Algorithm 1.
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Each ADMM iteration in the M-step of the CB-DSBL algorithm involves two rounds

of communication (Steps 2 and 4) between the nodes. In the first communication round,

each node j ∈ J transmits γj ∈ Rn to its |Bj| single-hop neighbors. In the second

communication round, each bridge node b ∈ B transmits γb ∈ Rn to its |Nb| single-hop

neighbors. Thus, in each M-step, 2n
∑

j∈J |Bj| real numbers are exchanged between the

nodes and their respective bridge nodes. A pragmatic way to select the bridge node set B

is to sort the nodes in decreasing order of their nodal degrees and retain the least number

of top most |B| nodes satisfying the conditions in Lemma 6.1. In section 6.6, we show

empirically that this method of selecting bridge nodes is able to significantly reduce the

overall communication complexity of the algorithm.

The inter-node communication can be further optimized by executing only a finite num-

ber of ADMM iterations per M-step.3 In a practical embodiment of the algorithm, running

a single ADMM iteration per M-step is sufficient for the CB-DSBL to converge. As shown

in Fig. 6.2, beyond two or three ADMM iterations per M-step, there is only a marginal

improvement in the quality of solution as well the convergence speed. Fig. 6.3 shows

that even with a single ADMM iteration per M-step, CB-DSBL typically converges quite

rapidly to the centralized solution.

It is also noteworthy to mention that, in CB-DSBL, the nodes are allowed to exchange

only their local estimates of the common hyperparameter γ. Thus, the proposed algorithm

is well suited for applications which require the nodes to keep their local signal estimates

private.

3Even further reduction in internode communication is possible in subsequent rounds of ADMM

(r ≥ 2). Each node j needs to exchange only incremental changes in γr
j , as the initial value γ0

j is already

available at the neighboring nodes from the first round of communication.
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Figure 6.2: This plot illustrates the sensitivity of CB-DSBL’s outer loop iterations to the
number of ADMM iterations executed per M-step in the inner loop of the algorithm. Each
point in the curve represents the average number of overall CB-DSBL iterations needed to
achieve less than 1% signal reconstruction error for a given number of ADMM iterations
executed in the inner loop. Simulation parameters used: n = 100, m = 10, L = 10, 5%
sparsity, SNR = 30 dB and #trials = 100.

6.5.3 Convergence of ADMM Iterations

In this section, we analyze the convergence of the ADMM iterations (6.15), (6.16) and

(6.17) derived for the M-step optimization in CB-DSBL. By doing so, we aim to highlight

the effects of the bridge node set B and the augmented Lagrangian parameter ρ on the

convergence of the ADMM iterations.

ADMM has been a popular choice for solving both convex [1, 3, 84, 109, 111] and more

recently non-convex [112] optimization problems as well, in a distributed setup. In its

classical form, ADMM solves the following constrained optimization problem:

min
x,z

f(x) + g(z)

subject to Ax + Bz = c, (6.18)

where x ∈ Rn and z ∈ Rm are the primal variables. The matrices A,B and the vector c
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Figure 6.3: Convergence of decentralized CB-DSBL to centralized MSBL solution for
different network sizes and SNRs. The CB-DSBL variant used here executes a single
ADMM iteration per EM iteration. Other simulation parameters: n = 50, m = 10 and
10% sparsity.

appearing in the linear equality constraint are of appropriate dimensions. The functions

f : Rn → R and g : Rm → R are convex with respect to x and z, respectively. In [113],

the authors have shown linear convergence rate for the classical ADMM iterations under

the assumptions of strict convexity and Lipschitz gradient on one of f or g, along with

full row rank assumptions for the matrix A. However, in the ADMM formulation of a

decentralized consensus optimization problem, the coefficient matrix A is seldom of full row



Chapter 6. 114

rank. In [114], the full row rank condition of A was relaxed and linear rate of convergence

was established for decentralized ADMM iterations for a generic convex optimization with

linear consensus constraints similar to (6.10). In [115], the convergence of ADMM for

solving an average consensus problem has been analyzed for both noiseless and noisy

communication links. In both [114] and [115], the secondary variables indicated by the

entries of z have a one to one correspondence with the communication links between the

network nodes. However, such a bijection is not valid for the bridge variables used in our

work for enforcing consensus between the primal variables. Due to this, the convergence

results of [114, 115] are not applicable to our case. In the sequel, we present the analysis

of the convergence of decentralized ADMM iterations for the bridge node based internode

communication scheme.

We start by defining block matrices E1 = C1 ⊗ In and E2 = C2 ⊗ In of sizes nNC × nL

and nNC × n|B|, respectively. The rows of C1 and C2 encode the NC equality constraints

in (6.11) such that if the ith equality constraint is γj = γbk , bk ∈ B, then C1(i, j) = 1

and C2(i, k) = −1; with the rest of the entries in the ith row equal to zero. It can be

shown that the minimum and maximum number of bridge nodes connected to any node

in the network is the same as the minimum and maximum eigenvalues of ET
1 E1, denoted

by σ2
min and σ2

max, respectively. Fig. 6.4 illustrates the construction of the block matrices

E1 and E2 for an example network consisting of 5 nodes. Using the newly defined terms,

the optimization problem in (6.11) can be rewritten compactly as

min
γJ ,γB

f(γJ ) s.t. E1γJ + E2γB = 0 (6.19)

where f : RnL → R denotes the objective function in (6.11), which depends only on γJ .
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
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

Figure 6.4: Construction of block matrices E1 and E2 for a sample 5 node network. The
matrices E1 and E2 are together used to enforce the linear consensus constraints in (6.10),
as shown in (6.19). Note the correspondence between the diagonal coefficients of ET

1 E1

and the number of bridge node connections per node.

The augmented Lagrangian Lρ corresponding to (6.19) can also be rewritten compactly

as

Lρ(γJ ,γB,λ) = f(γJ ) + λT (E1γJ + E2γB)

+
ρ

2
(E1γJ + E2γB)T (E1γJ + E2γB). (6.20)

By construction, the block matrix E1 has full column rank, as all its columns are mutually

disjoint in support. However, E1 can be row rank deficient due to repeated rows caused

by a node being connected to multiple bridge nodes, which is often the case. Theorem 6.1

below summarizes the convergence of the ADMM iterations (6.15), (6.16) and (6.17) to

their fixed point. The result in Theorem 6.1 holds for any f that is strongly convex with

strong convexity constant mf , and has a Lipschitz continuous gradient with Lipschitz

constant Mf .

Theorem 6.1. Let {γ∗J , γ∗B} and λ∗ denote the unique primal and dual optimal solutions

of (6.19), and vector u be constructed as u = [(E2γB)T λT ]T (similarly for ur,u∗). Then,
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it holds that

1. The sequence ur is Q-linearly4 convergent to u∗, i.e.,

‖ur+1 − u∗‖G ≤
1

1 + δ
‖ur − u∗‖G (6.21)

where δ is evaluated as

δ = max
µ,ν≥1



min


 2mf

νM2
f

ρ(ν−1)σ2
min

+ µρσ2
max

,
σ2
min

νσ2
max

,
µ− 1

µ





 . (6.22)

2. The primal sequence γrJ is R-linearly5 convergent to γ∗J , i.e.,

‖γr+1
J − γJ ∗‖2 ≤

1

2mf

‖ur − u∗‖G (6.23)

where ‖·‖G is the weighted norm with respect to the diagonal matrix G = diag(ρIn|B|, ρ
−1INC ).

Proof. See Appendices H.3 and H.4.

According to Theorem 6.1, the primal optimality gap ||γrJ −γ∗J ||2 decays R-linearly with

each ADMM iteration. Moreover, since γ∗J is primal feasible, there is consensus among

γj, j ∈ J upon convergence, implying that each node effectively minimizes the centralized

M-step cost function in (6.7).

4A sequence xk : Z+ → R is said to be Q-linearly convergent to L, if there exists a µ ∈ (0, 1) such

that lim
k→∞

|xk+1−L|
|xk−L| = µ [114].

5A sequence xk : Z+ → R is said to be R-linearly convergent to L, if there exists a Q-linearly

convergent sequence yk which converges to zero such that lim
k→∞

|xk − L| ≤ yk.
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6.5.4 Selection of the Augmented Lagrangian Parameter ρ

From (6.21) and (6.23) in Theorem 6.1, we observe that to optimize the decay of the primal

optimality gap between γrJ and γ∗J in each ADMM iteration, the augmented Lagrangian

parameter ρ has to be chosen such that it maximizes δ in (6.22). Theorem 6.2 reveals the

optimal value of ρ and the corresponding value of δ.

Theorem 6.2. The optimal value of augmented Lagrangian parameter ρ which uniquely

maximizes the δ as defined in (6.22) is given by

ρopt =
Mf

σmaxσmin




√
(κ− 1)2 + 4κκ2

f + (κ− 1)
√

(κ− 1)2 + 4κκ2
f − (κ− 1)




1
2

. (6.24)

The corresponding maximal value of δ is given by

δopt =
2(

κ+ 1 +
√

(κ− 1)2 + 4κκ2
f

) (6.25)

where κf =
Mf

mf

represents the condition number of the objective function in (6.19) and

κ =
σ2
max

σ2
min

is the ratio of the maximum and minimum eigenvalues of ET
1 E1.

Proof. See Appendix H.5.

From (6.25), we observe that the convergence rate of the ADMM iteration in the M-step

of the CB-DSBL algorithm depends upon two factors: κ and κf . κ close to its minimum

value of unity results in faster convergence of the ADMM iterations. Since the ratio

κ = σ2
max\σ2

min is also equal to the ratio of maximum and minimum number of bridge

nodes per node in the network, a rule of thumb for bridge node selection would be to

ensure that each node is connected to more or less the same number of bridge nodes.
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The convergence rate also depends upon κf , the parameter that determines how well

conditioned the function f is. For the case where f is the objective function in (6.11), it

is easy to check that mf = Mf = 2 and κf = 1. Thus, specific to CB-DSBL, the optimal

ADMM parameter ρ is given by ρopt = 2
σ2
min

and the corresponding δopt = 1
κ+1

. For a given

network connectivity graph G, this ρopt can be computed off-line and programmed in each

node. As shown in Fig. 6.5, the average MSE and mean number of iterations vary widely

with ρ, an inappropriate choice of ρ resulting in slow convergence and poor reconstruction

performance. Also, the ρopt computed in (6.24) is very close to the ρ that results in both

the fastest convergence as well as the lowest average MSE.
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Figure 6.5: Left and right plots show the sensitivity of the number of iterations required
for convergence and NMSE, respectively with respect to the ADMM parameter ρ. The
scale factor ρ = 1 corresponds to ρopt in (6.24).

6.5.5 Computational Complexity of CB-DSBL

In this section, we discuss the computational complexity of the steps involved in a single

iteration of the CB-DSBL algorithm. The local E-step requires O(n2 + nm2 + m3) ele-

mentary operations at each node. The M-step is executed as multiple (say, rmax) ADMM
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iterations. A single ADMM iteration involves updating of the local hyperparameter esti-

mate γj and Lagrange multipliers, which takes O(ζn) computations per node, ζ being the

highest number of bridge nodes assigned per node in the network. Further, each bridge

node b ∈ B has to perform an additional O(ζn) computations to update the local bridge

parameters γb in every ADMM iteration. Thus, the overall computational complexity of

a single CB-DSBL algorithm at each node is O(n2 + nm2 +m3 + ζnrmax). As desired, the

computational complexity does not scale with L, i.e., the total number of nodes in the

network.

6.5.6 Other CB-DSBL Variations

There are several alternatives to the aforementioned bridge node based ADMM technique

that could potentially be used to solve the M-step optimization in (6.10). In this section,

we present empirical results comparing the performance and communication complexity

of four different variations of the proposed CB-DSBL algorithm based on (i) bridge node

based ADMM [1] (ii) Distributed ADMM (D-ADMM) [3] (iii) Consensus averaging Method

of Multipliers (CA-MoM) [2], and (iv) EXact firsT ordeR Algorithm (EXTRA) [4]. The

first three ADMM implementations differ in their use of auxiliary variables in enforcing the

consensus constraints in (6.10). Each of these decentralized algorithms is endowed with

at least O( 1
k
) convergence rate, where k stands for the iteration count. Besides these four,

there are proximal gradient based methods [116,117] relying on Nesterov-type acceleration

techniques which also offer linear convergence rates. However, these algorithms require

the objective function to be bounded and involve multiple communication rounds per
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iteration, which is of major concern in our setup. As shown in Fig. 6.6, the proposed CB-

DSBL variant relying on the bridge node based ADMM scheme is the most communication

efficient one.
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Figure 6.6: Comparison of the communication complexity of CB-DSBL variants based on
‘bridge node’ ADMM [1], CA-MoM [2], D-ADMM [3] and EXTRA [4] algorithms. The
plot shows the average number of messages exchanged between nodes in order to achieve
less than 1% signal reconstruction error (−20 dB NMSE). Other simulation parameters:
n = 50, m = 10, 10% sparsity, SNR = 30 dB, # trials = 500.

6.5.7 Implementation Issues

The CB-DSBL algorithm can be seen as a decentralized EM algorithm to find the ML

estimate of the hyperparameters γ of a sparsity inducing prior. CB-DSBL, not surprisingly,

also inherits the property of the EM algorithm of converging to a local maximum of the ML

cost function log p(Y;γ). However, getting trapped in a local maximum is not an issue,

as it has been shown in [41] that all local maxima of the log p(Y;γ) are at most m-sparse

and hence qualify as reasonably good solutions to our original sparse model estimation

problem. In our work, we initialize the EM algorithm with γ whose all entries are close
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to zero.

In practice, hard thresholding of γ is required to identify the nonzero support set. In

this work, we remove all coefficients from the active support set for which γ(i), 1 ≤ i ≤ n

is below the local noise variance. It must be noted that if the local noise variance at each

node is unknown, it can also be estimated along with γ within the EM framework, as

discussed in [32].

Another common issue is that of the wide variation in the energy of the nonzero entries of

xj across the network. Specifically, in distributed event classification by sensors of different

types [97], each sensor node may employ its own distinct sensing modality and hence may

perceive a different SNR. In such cases, a preconditioning step which normalizes the local

response vector to unit energy is recommended for fast convergence of the CB-DSBL

algorithm. The final signal estimates can be re-adjusted to undo the pre-conditioning.

6.6 Simulations

In this section, we present simulation results to examine the performance and complexity

aspects of the proposed CB-DSBL algorithm when compared with existing decentralized

algorithms: DRL-1 [84], DCOMP [92] and DCSP [107]. The centralized MSBL [32] is

also included in the study as a performance benchmark for CB-DSBL. Since DRL-1 [84]

has been shown to have superior performance compared to the mixed `1-`2 norm penalty

based algorithms, we skip ADM-MMV [39] from our comparisons. The CB-DSBL variant

considered here executes two ADMM iterations in the inner loop for every EM iteration in

the outer loop. The value of the augmented Lagrangian parameter, ρ, is chosen according

to (6.24). For each experiment, the set B of bridge nodes is selected as described in section
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6.5.2. The local measurement matrices Φj are chosen to be normalized Gaussian random

matrices. The nonzero signal coefficients are sampled independently from the Rademacher

distribution, unless mentioned otherwise. For each trial, the connections between the nodes

are assumed according to a randomly generated Erdös-Renyi graph with a node connection

probability of 0.8. In the final step of MSBL and CB-DSBL algorithms, the active support

is identified by element-wise thresholding the local hyperparameter vector γj at node j

using the threshold 4σ2
j , where σ2

j denotes the local measurement noise variance.

6.6.1 Performance versus SNR

In the first set of experiments, we compare the normalized mean squared error (NMSE)

and the normalized support error rate (NSER) of different algorithms for a range of SNRs.

The support-aware LMMSE estimator sets the MSE performance benchmark for all the

support agnostic algorithms considered here. The NMSE and NSER error metrics are

defined as

NMSE =
1

L

L∑

j=1

||xj − x̂j||22
||xj||22

NSER =
1

L

L∑

j=1

|S\Ŝj|+ |Ŝj\S|
|S|

where S is the true common support and Ŝj is the support estimated at node j. The net-

work size is fixed to L = 10 nodes. As seen in Fig. 6.7, CB-DSBL matches the performance

of centralized MSBL in all cases. For higher SNR (≥ 15 dB), it can be seen that both

MSBL and proposed CB-DSBL are MSE optimal. CB-DSBL also outperforms DRL-1 and

DCOMP in terms of both MSE and support recovery. This is attributed to the fact that

the Gaussian prior used in CB-DSBL with its alternate interpretation as a parameterized
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variational approximation of the sparsity inducing Student’s t-distribution is more capa-

ble of inducing sparsity in comparison to the sum-log-sum penalty used in DRL-1. The

poor performance of DCOMP is primarily due to its sequential approach towards support

recovery which prevents any corrections to be applied to the support estimate at each step

of the algorithm. Contrary to [107], DCSP fails to perform better than DCOMP. This is

because DCSP works only when the number of measurements exceeds 2k, where k is the

size of the nonzero support.

6.6.2 Tradeoff between Measurement Rate and Network Size

In the second set of experiments, we characterize the NMSE phase transition of the dif-

ferent algorithms in the L-(m/n) plane to identify the minimum measurement rate (m/n)

needed to ensure less than 1% signal reconstruction error (or, NMSE ≤ −20 dB), for dif-

ferent network sizes (L), and a fixed sparsity rate (k/n = 0.1). As shown in Fig. 6.8, for

the same network size, CB-DSBL is able to successfully recover the unknown signals at a

much lower measurement rate compared to DRL-1, DCOMP and DCSP. This plot brings

out the significant benefit of using collaboration between nodes and taking advantage of

the JSM-2 model in reducing the number of measurements required per node for successful

signal recovery.

6.6.3 Performance versus Measurement Rate (m/n)

In the third set of experiments, we compare the algorithms with respect to their ability

to recover the exact support for different undersampling ratios. As seen in Fig. 6.9, for a

similar network size, CB-DSBL is able to exploit the joint sparsity structure better than

DCOMP, DCSP and DRL-1, and can correctly recover the support from significantly fewer
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Figure 6.7: Left and right figures in the above plot the NMSE and NSER, respectively for
different SNRs. Other simulation parameters: L = 10 nodes, n = 50, m = 10 and 10%
sparsity.

number of measurements per node. Once again, CB-DSBL has identical support recovery

performance as the centralized MSBL, which was one of our design goals.

6.6.4 Robustness to Random Node Failures

Here, we demonstrate empirically that increasing the number of bridge nodes in the CB-

DSBL algorithm makes it more robust to random node failures. As shown in Fig. 6.10, by
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Figure 6.8: NMSE phase transition plots of different algorithms illustrating the dependence
of minimum measurement rate required to guarantee less than 1% signal reconstruction er-
ror on the network size, for signal sparsity rate fixed at 10%. Other simulation parameters:
n = 50 and SNR = 30 dB.

gradually increasing the density of bridge nodes in the network, the CB-DSBL algorithm is

able to tolerate higher rates of node failures without compromising on signal reconstruction

performance. More interestingly, only a relatively small fraction of nodes need to be bridge

nodes (< 10% of the total network size) to ensure that CB-DSBL operates robustly in the

face of random node failures.

6.6.5 Communication Complexity

Lastly, we compare the decentralized algorithms with respect to the total number of mes-

sages exchanged between the nodes during the estimation of the unknown vectors. As

seen in Fig. 6.11, the greedy algorithms DCSP and DCOMP are the most communication

efficient algorithms as these algorithms have the lowest per iteration communication com-

plexity (see Table 6.1) and run for very few iterations. CB-DSBL and DRL-1 on the other
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hand have higher communication complexity, with the proposed scheme requiring fewer

overall message exchanges compared to DRL-1.
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Figure 6.10: Plot illustrating the trade off between the density of bridge nodes and the
robustness of the proposed CB-DSBL algorithm to random node failures. For a given
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average node failure rate that can be tolerated by CB-DSBL while still achieving less than
1% signal reconstruction error.
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6.7 Distributed Wideband Spectrum Sensing - A Real

World Example

To find out how CB-DSBL and other competing distributed JSM-2 algorithms perform in

a real world setup, we consider the wideband spectrum sensing problem described below.

In wideband spectrum sensing, the goal is to efficiently estimate the occupancy of radio

spectrum spanning a wide range of frequencies. Spectrum sensing is a crucial component

in the implementation of cognitive radio (CR) networks. In a CR network, the secondary

users perform spectrum sensing in order exploit the spectral opportunities which arise due

to sparse utilization of the radio spectrum by the primary/licensed users [14,15,118–120].

6.7.1 Compressive Wideband Spectrum Sensing System Model

Consider a CR network comprising P primary users and L secondary users. The total

available radio spectrum is partitioned into B frequency sub-bands of equal size. The

secondary users sense the spectrum to determine the spectrum holes, i.e., the sub-bands

that are not occupied by primary users. Most spectrum sensing techniques consist of two

main steps [119,120]. The first step is to obtain a frequency domain representation of the

received wideband signal. This is followed by multiple sub-band level energy detection

tests in order to estimate the wideband spectral occupancy of the primary users. Given

below is the frequency domain representation of the sampled baseband signal received by

the jth secondary user:

rfj =
P∑

i=1

Df
p,js

f
p + wf

j (6.26)

where Df
p,j = diag

(
hfp,j

)
is an n×n diagonal channel gain matrix representing the wireless

channel between primary user p and secondary user j. The diagonal matrix Df
p,j alludes to
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the frequency selective nature of channel across the sub-bands, but a flat fading behavior

within sub-bands. The n × 1 sized complex vectors: sfp , rfj and wf
j denote the frequency

domain versions of the signal transmitted by the pth primary user, and the signal and

noise received at the jth secondary user, respectively. Since the primary users collectively

transmit in very few of the B sub-bands, each sfp , 1 ≤ p ≤ P can be modeled as an

approximately sparse vector with most of its coefficients close to zero, and with a few large

coefficients coinciding with the sub-band(s) occupied by the primary user p. Consequently,

the vector Df
p,js

f
p is also approximately sparse, and so is the summation

∑P
i=1 Df

p,js
f
p

in (6.26).

Since the received signal component xfj =
∑P

i=1 Df
p,js

f
p in (6.26) is a wideband signal,

acquiring it at Nyquist or higher rate can be prohibitive. Often, due to bandwidth and

sampling rate constraints, the secondary users resort to sliding-window, narrow-band pro-

cessing, i.e., covering a small number of sub-bands at a time, in order to determine the band

spectrum occupancy [121]. In a compressive sensing based approach [15], each secondary

user implements an Analog-to-Information-Converter (AIC), which directly outputs low

rate compressive measurements of the received wideband signal. Each secondary user ac-

quires m compressive measurement samples in the form of an m × 1 vector ytj as shown

below,

ytj = Φjr
t
j, 1 ≤ j ≤ L, (6.27)

where rtj is the discrete-time representation of the received signal sampled at Nyquist rate,

fS. Φj is them×n sized compressive sampling matrix. Sincem� n, the effective sampling

rate (m/n)fS is significantly lower than the conventional sampling rate fS. Combining
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(6.26) and (6.27), we can write,

ytj = ΦjF
H

(
P∑

i=1

Df
p,js

f
p

)
+ ΦjF

Hwf
j = ΦjF

Hxfj + w̃t
j (6.28)

where F is the DFT matrix of order n, w̃t
j is the effective measurement noise vector

of length m, and xfj =
∑P

i=1 Df
p,js

f
p is an n × 1 vector denoting the frequency domain

representation of the received signal collectively transmitted by all primary users. Since

the secondary users perceive a common spectral occupancy pattern associated with the

primary users, the frequency domain vectors xf1 ,x
f
2 , . . . ,x

f
L exhibit joint sparsity, and

therefore can be recovered efficiently by a JSM-2 signal recovery algorithm.

6.7.2 Experimental Setup

For collecting experimental data, Universal Software Radio Peripheral (USRP) units

(model N-210) were used to realize the primary and the secondary users. Due to the lim-

ited bandwidth of the USRP hardware, a scaled down version of the wideband spectrum

sensing problem is considered, where the total available frequency band of 1 MHz, centered

at 1.1 GHz, is divided into 128 non-overlapping, 7.8125 KHz wide sub-bands. A single

USRP unit was configured to mimic five primary users transmitting QPSK modulated

RF signal in sub-bands {(−59,−49), (−21), (−7), (2, 3, 4, 5, 6, 7), (21)} (see Fig. 6.12). A

separate USRP unit was configured to collect n = 256 samples of down-converted base-

band signal, sampled at twice the Nyquist rate. A Random Modulator Pre-Integrator

(RMPI) based AIC [122] was simulated in Matlab by taking Φj to be a column normal-

ized Bernoulli (p = 0.5) random matrix with ±1 entries, to generate m = 32 compressive
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Figure 6.12: Top left: a USRP unit configured as a wideband transmitter, transmitting
in 11 out of 128 frequency sub-bands. Top right: a mobile USRP station configured to
capture the entire wideband signal at Nyquist sampling rate. Bottom: frequency spectrum
of the down-converted baseband signal received by one of the secondary users. The five
peaks correspond to the five active primary users.

measurements according to (6.27), which were then fed to the recovery algorithms. Mul-

tiple recordings were taken at 10 distinct spatial locations, one for each secondary user, in

order to capture the effect of both temporal and spatial variations of the wireless channel.

The SNR recorded at the CR nodes varied from −2.4dB to 7.8dB. The SNR here is defined

as the ratio of total power in signal sub-bands to that in noise sub-bands. All performance

metrics are averaged over 100 independent trials.

6.7.3 Performance Analysis

We compare the Receiver Operating Characteristics (ROC) of various decentralized JSM-2

recovery algorithms. For MSBL, CB-DSBL, and DRL-1, the ROC plots are obtained by
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sweeping the threshold value used to identify the occupied frequency bins. For DCOMP

and DCSP, the ROC plots are obtained by sweeping the sparsity size k input to these

greedy algorithms. To account for spectral leakage, we adopt a pragmatic approach for

computing the detection and false alarm probabilities. If a frequency bin is declared as

active, it qualifies as a successful detection provided that the detected bin or one of its

immediate left or right bins coincides with one of the signal sub-bands. Otherwise, a

false alarm is declared. Fig. 6.13 compares the ROCs of different recovery schemes for

measurement compression rate of 12.5%. Due to the hard-sparse nature of the output of

DCOMP and DCSP algorithms, their false alarm rates never attain the maximal value of

one, as reflected in the figure. In spectrum sensing, the goal is to achieve high detection

probability while maintaining a low false alarm rate. In this regard, both centralized

M-SBL and the proposed CB-DSBL outperform DCOMP, DCSP and DRL-1. In our

experiments, both M-SBL and CB-DSBL are able to identify occupied spectrum bins and

spectrum holes with 90% and 80% accuracy, respectively. In comparison, for DCSP and

DRL-1, in order to achieve the same accuracy of detecting 90% of the occupied bins, these

algorithms miss 35% of the unoccupied bins. Also, when fed with the correct sparsity

level (k), the greedy algorithms DCSP and DCOMP have poor detection performance

(less than 60% accuracy). In contrast, owing to their automatic relevance determination

property [102], both CB-DSBL and M-SBL are able to correctly infer the sparsity level of

the occupied spectrum directly from the measurements, resulting in superior performance.
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Figure 6.13: ROC performance for 12.5% measurement compression ratio, L = 10, and
SNR ranging from −2.4dB to 7.8dB across the secondary users.

6.8 Chapter Summary

In this chapter, we proposed a novel iterative Bayesian algorithm called CB-DSBL for

decentralized estimation of joint-sparse signals by multiple nodes in a network. The CB-

DSBL algorithm is an ADMM based decentralized EM procedure to efficiently learn the

parameters of a joint sparsity inducing signal prior which is shared by all the nodes, and

is subsequently used in the MAP estimation of the local signals. From the simulation

results, we can conclude that CB-DSBL outperforms existing decentralized algorithms:

DRL- 1, DCOMP and DCSP, in terms of both signal reconstruction error as well as

support recovery.

We also established the R-linear convergence of the underlying decentralized ADMM

iterations. For the bridge node based network topology considered in this chapter, our

ADMM convergence results are of independent interest and are applicable to any consensus

driven optimization of a strongly convex and separable objective function.
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Decentralized Joint Sparse Signal

Recovery under Communication

Constraints

In which sharing becomes intelligent and

decentralization becomes efficient...

7.1 Introduction

In this chapter1, we revisit the topic of decentralized joint sparse signal recovery from

the communication complexity standpoint. Decentralized algorithms often incur a high

communication cost associated with the exchange of messages between the network nodes.

Most existing decentralized algorithms for joint sparse signal recovery involve multiple ex-

changes of O(n) sized messages between the network nodes, where n is the dimension of

the unknown sparse vectors. Since n is typically large, the O(n) scaling of message size

1This chapter is based on S. Khanna and C. R. Murthy, “Communication Efficient Decentralized Sparse

Bayesian Learning of Joint Sparse Signals”, IEEE Transactions on Signal and Information Processing

over Networks, vol. 3, no. 3, pp. 617–630, Nov. 2016.

134
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poses a severe bottleneck concerning the communication cost of in-network signal recov-

ery. In practice, each network node needs to operate within a limited budget for time and

power resources dedicated towards inter-node communications. Thus, any sizable reduc-

tion in the amount of information exchanged between the nodes is highly desirable as it

has a direct positive impact on the operating lifetime of the network. Herein lies the chal-

lenge of devising schemes for reconstruction of sparse signals locally at their parent nodes,

while exploiting their joint sparsity to improve the accuracy of their joint reconstruction,

by using minimal communication between the nodes. Further, in many security-related

applications, it is also vital to ensure that the messages exchanged between the nodes

cannot be misused by a malicious node or an eavesdropper to reconstruct the signal vector

of another node in the network. Thus, it is preferable to consider decentralized schemes

which maintain the privacy of local measurements and local signal estimates.

To address the above challenges, in this chapter we propose an iterative, decentralized

Bayesian algorithm called Fusion Based Distributed Sparse Bayesian Learning (FB-DSBL)

in which the network nodes collaborate by exchanging highly compressed messages to learn

a common joint sparsity inducing signal prior from local observations. The learnt signal

prior is subsequently used by each node to compute the maximum a posteriori probability

(MAP) estimate of its respective sparse vector. Since the inter-node communication can

be expensive, the size of the messages exchanged between nodes is reduced substantially by

exchanging only those local signal prior parameters which are associated with the nonzero

support detected via multiple composite log-likelihood ratio tests. The average message

size is empirically shown to be proportional to the information rate of the unknown vec-

tors. The proposed Sparse Bayesian Learning (SBL) based distributed algorithm allows
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the nodes to exploit the underlying joint sparsity of their local signal vectors. In turn,

this enables the nodes to recover sparse vectors with a significantly lower number of mea-

surements compared to the standalone SBL algorithm. Using Monte Carlo simulations,

we demonstrate that the proposed FB-DSBL has superior MSE and support recovery per-

formance compared to the existing decentralized algorithms that are of similar or higher

communication complexity.

7.2 Background

7.2.1 Literature Survey

In Chapter 6, we surveyed the existing decentralized algorithms that have been proposed in

the literature for joint sparse signal recovery. Except for DCSP [98] with itsO(s log n) sized

message, where s denotes the size of the nonzero support of unknown joint sparse signals,

all other distributed algorithms involve an exchange of O(n) sized messages per iteration

between the nodes. In this chapter, we aim to fill a gap in the existing literature for a

decentralized algorithm which is well endowed in terms of both signal recovery performance

as well as low communication complexity.

7.2.2 Contributions

Our main contributions in this chapter are as follows:

1. We propose a novel, decentralized, iterative algorithm for in-network estimation

of joint sparse vectors. We call our algorithm Fusion based Decentralized Sparse

Bayesian Learning (FB-DSBL) to emphasize that the algorithm fuses the support

estimates across the nodes, is decentralized and is based on the sparse Bayesian
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learning algorithm. In the proposed algorithm, each node computes the MAP esti-

mate of its local sparse vector, using a network-wide joint parameterized prior. The

parameterized prior is itself learned on-the-fly using highly compressed messages ex-

changed over the network. The combined effect of exchanging compressed messages

and using a joint parameterized prior is accurate reconstruction of the sparse vectors

at the individual nodes using far fewer measurements compared to their independent

reconstruction at every node.

2. In order to reduce the communication complexity, we propose a scheme to reduce

the size of the messages exchanged between the nodes. Each node shares with its

single-hop neighbors, only those components of the joint parameterized prior which

are associated with the active locations in the local instantaneous estimate of the

true support. These active locations are identified via multiple log-likelihood ratio

tests. We also propose a scheme for refinement of the local estimates of the joint prior

by using the compressed messages received from the single-hop neighbors. We show

empirically that FB-DSBL requires the exchange of only O(s log n) sized messages

between the nodes, where s is the size of the nonzero support.

3. We show that FB-DSBL can be analyzed under the stochastic approximation frame-

work by interpreting its iterations as degenerate distributed Robbins-Monro itera-

tions for finding a fixed point of a certain function. Based upon this interpretation,

we also propose FB-DSBL†, a stochastic approximation inspired generalization of

the FB-DSBL algorithm. Through simulations, we show that its performance is

marginally better, but its convergence is slower, and the communication cost is

higher compared to the FB-DSBL algorithm.
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Unlike DCSP and DCOMP, FB-DSBL does not require the actual sparsity level to be

known apriori, nor does it require the exchange of the raw measurements or sparse vector

estimates between the nodes. Thus, it is suitable for applications where data privacy needs

to be protected.

7.3 System Model

The system model remains unchanged from section (6.3). A network consisting of L

computing nodes is considered where the nodes are enumerated by the index set J =

{1, 2, . . . , L}. The network connectivity is represented by an undirected graph G whose

vertices have a one-to-one correspondence with the network nodes. An edge between the

ith and jth vertices of G represents an error free communication link between node i and

node j. Each node j ∈ J communicates only with its single-hop neighboring nodes,

belonging to an index set denoted by Nj.

Each sensor node j is interested in estimating an unknown s-sparse vector xj ∈ Rn

from its m(� n) noisy linear measurements yj ∈ Rm, generated according to the local

measurement model:

yj = Φjxj + wj, j ∈ J . (7.1)

Here, Φj is an m × n measurement matrix which is assumed to be known locally at

node j. The measurement noise vector wj is assumed to be zero mean Gaussian with

known covariance matrix σ2
j Im. The sparse vectors x1,x2, . . . ,xL are assumed to be joint

sparse i.e., their nonzero coefficients belong to the same but unknown index set S ⊂ [n],

with |S| = s. In accordance with JSM-2 [38], the nonzero coefficients are uncorrelated

within and across the vectors.
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The goal here is to estimate the local sparse vector xj at node j, for each j ∈ J , in a

decentralized fashion. Decentralized processing here implies that each node is capable of

processing its local measurements and is allowed to exchange messages with only its single

neighbors. In particular, we seek to devise algorithms that (a) exploit the joint sparsity

structure of the vectors to be recovered; and (b) require minimal communication overhead

between the nodes.

7.3.1 Sparse Bayesian Learning - A Recap

We now briefly review the Sparse Bayesian Learning (SBL) framework [41] which lies at

the core of our proposed decentralized algorithm. The SBL algorithm is suitable when

each node j estimates its local unknown sparse vector xj in a standalone fashion, using

only local measurements yj generated according to (7.1). In SBL, a MAP estimate of the

unknown sparse vector xj is sought by imposing a fictitious parameterized signal prior on

xj as shown below.

p(xj;γ) =
n∏

i=1

1√
2πγ(i)

exp

(
−|xj(i)|

2

2γ(i)

)
. (7.2)

The hyperparameter γ(i) models the variance of xj(i). The unknown hyperparameter

vector γ ∈ Rn
+ is chosen to maximize the Bayesian evidence p(yj;γ), which is equivalent

to maximum likelihood (ML) estimation of γ. The ML estimate of γ is obtained via the

iterative Expectation-Maximization (EM) procedure, comprising the following two steps:

E-step: Q(γ|γk) = Exj |yj ,γk [log p(yj,xj;γ)]

M-step: γk+1 = arg max
γ∈Rn+

Q(γ|γk), (7.3)
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where k denotes the EM iteration index. The expectation in the E-step is evaluated

using the a posteriori probability density p(xj|yj,γk), with mean µk
j and covariance Σk

j .

According to the LMMSE theory [47], µk
j and Σk

j are given by

Σk
j =

(
(
Γk
)−1

+
ΦT
j Φj

σ2
j

)−1

µk
j = σ−2

j Σk
jΦ

T
j yj, (7.4)

where Γ = diag(γ). The M-step optimization yields the following update rule for γ:

γk+1 =
(
µk
j

)2
+ diag

(
Σk
j

)
. (7.5)

By repeatedly iterating between (7.4) and (7.5), the EM algorithm converges to a local

maximum (γ̂ML) of the ML cost log p(yj;γ). Once γ̂ML is found, the MAP estimate of the

local sparse vector xj is given by the posterior mean µj in (7.4) evaluated at γ̂ML. In [41],

it has been shown that all local maxima of log p(yj;γ) are at most m-sparse and hence,

the SBL algorithm promotes a sparse2 MAP estimate of xj.

SBL can be easily extended to handle the estimation of multiple joint sparse vectors,

resulting in its multiple measurement vector or MMV variant called MSBL [32]. As dis-

cussed in great detail in previous chapters, MSBL is a centralized algorithm which enforces

joint sparsity of x1,x2, . . . ,xL by assuming each vector xj to be drawn independently

from a common N (0,Γ) signal prior, where Γ = diag(γ). Thus, the joint distribution of

2In practice, to obtain a hard-sparse estimate, estimated coefficients with variance at least one order

of magnitude lower than noise variance are forced to zero and excluded from the active support.
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X = [x1,x2, . . . ,xL] is given by

p(X;γ) =
L∏

j=1

p(xj;γ) =
L∏

j=1

1

(2π)
n
2 |Γ| 12

exp

(
−1

2
xTj Γ−1xj

)
. (7.6)

Once again, the ML estimate of γ is sought by maximizing the joint log-likelihood log p(Y;γ) =

∑L
j=1 log p(yj;γ), where p(yj;γ) = N (0, σ2

j Im + ΦjΓΦT
j ). As shown in [32], an iterative

EM procedure can be derived to obtain the ML estimate of γ in the MMV setup using

the following M-step update rule:

γk+1 =
1

L

L∑

j=1

((
µkj
)2

+ diag
(
Σk
j

))
. (7.7)

Here, µkj and Σk
j are evaluated according to (7.4). A näıve centralized implementation of

MSBL would be a fusion center (FC) based approach, in which each node j communicates

its O(m) sized local measurement vector yj to the FC. The FC recovers all the joint sparse

vectors and transmits the recovered vectors back to their respective nodes. In the case of

distinct measurement matrices at the nodes, each node incurs an additional communication

cost of sending its local m× n sized measurement matrix to the FC. The communication

cost associated with the exchange of measurement matrices between the nodes and FC

can become prohibitively high, especially if the measurement matrices vary with time. To

keep the communication costs low, we seek a decentralized implementation of the MSBL

algorithm. In previous chapter, we proposed a decentralized algorithm called CB-DSBL,

for in-network estimation of the common hyperparameters γ. Although closely matching

MSBL in performance, its each iteration entailed an exchange of n×1 sized vectors between

the single-hop neighboring nodes. In the following section, we propose a new decentralized

extension of the SBL algorithm called FB-DSBL, which can estimate the common γ with
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significantly reduced communication complexity.

7.4 FB-DSBL Algorithm

In this section, we propose the FB-DSBL algorithm, in which each network node learns

the same joint sparsity inducing signal prior as the centralized MSBL algorithm, but in

a decentralized fashion. Each node j(∈ J ) maintains a separate SBL type signal prior

p(xj) ∼ N (0, diag(γj)) for its local sparse vector xj of interest. Here, γj denotes the n×1

hyperparameters of the local SBL prior at node j. We introduce two quantities: hard

support estimate and soft support estimate, which will be used in the sequel. The hard

support estimate bj ∈ {0, 1}n, is an estimate of true binary support S of the sparse vector

at node j. Its computation is discussed in Section 7.4.1. For a given bj at node j, we

define the soft support estimate gj , γj ◦ bj, where ◦ is the element-wise multiplication

operator. To take advantage of the common support of the unknown signal vectors, each

node j shares its soft support estimate gj with its single-hop neighbors after every local

SBL iteration. Unlike γj, its censored copy gj is highly sparse and hence, node j can

share it with its one-hop neighbors at a substantially lower communication cost. The soft

support estimates gathered from the neighboring nodes are subsequently used by node j

to refine its local estimate of γj obtained from a standalone EM step.

We now outline the main steps involved in a single iteration of FB-DSBL:

Step-1 Each node j updates its local hyperparameters γj according to the local SBL

update rule given by (7.4) and (7.5).

Step-2 Each node j generates a local hard support estimate bj. Node j broadcasts the

soft support estimate gj = γj ◦ bj to its single-hop neighbors in Nj.
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Step-3 Upon receiving gl from all of its neighboring nodes l in Nj, each node j fuses the

hard support estimates bl = supp(gl) to generate an improved binary estimate of

the true support S denoted by bfused
j .

Step-4 Each node j updates its local hyperparameters γj to assimilate the available

extrinsic information {gl | l ∈ Nj} conditioned on bfused
j .

Step-5 Repeat steps 1-4 until convergence.

Step 1 is the standard EM (SBL) iteration executed locally by each node in a standalone

fashion using its local observations and its past local estimate of the hyperparameters.

The remaining steps update the hyperparameters at each node based on the coarse infor-

mation about the common support received from the neighboring nodes, for use in the

next iteration of SBL. Since the network is connected, the neighborhoods Nj, j ∈ J are

partially overlapping, which allows FB-DSBL to exploit the joint sparsity across the entire

network. The details of the computations involved in steps 2, 3 and 4 are fleshed out in

the subsections 7.4.1, 7.4.2 and 7.4.3, respectively.

7.4.1 Computation of Local Hard Support Estimates

Since, under the JSM-2 model, a common γ is sought across the nodes, it is desirable that,

at the end of the iterations, the estimates of γj(i)
′s across the nodes are equal if i ∈ S, and

0 otherwise. Hence, we essentially want to exchange the values of the entries of γkj that are

likely to correspond to the true common support S, which is a real valued vector of length

s, where s is the sparsity of the vectors to be recovered. If the set of indices that contain

the true support S with high probability, along with their corresponding hyperparameter

values, is exchanged across the nodes, that would suffice for estimating/updating the local
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estimate of γ. Hence, the first step is to estimate the true support S, which we denote

by bj, at node j. We do this by setting up a hypothesis test for each of the indices, as

described in the sequel.

Recall that bj is an n length binary vector representing an estimate of the support

at node j, and is computed locally at the node based on its measurements. The ith

coefficient of bj is detected through a composite hypothesis test, by testing hypothesis H0,

that the coefficient is zero, against hypothesis H1, that the coefficient is nonzero. Such

an approach was first used in [124], where the authors proposed index-wise log-likelihood

ratio tests (LLRTs) to prune the hyperparameters corresponding to the inactive coefficients

for faster convergence of the EM iterations in the SBL algorithm in a centralized setup.

Unlike in [124], our goal here is to use the LLRTs to identify the set of hyperparameters

corresponding to the most likely support which will be exchanged with other nodes. For

an index i ∈ [n], we setup the following hypothesis test:

H0 : xj(i) = 0

H1 : xj(i) 6= 0 (7.8)

or equivalently,

H0 : γj(i) = 0

H1 : γj(i) > 0. (7.9)

To keep the notation light, the specificity of the hypotheses H0 and H1 to node j and coef-

ficient i is not highlighted, however, it is implicitly assumed. Unlike (7.8), the hypothesis

test in (7.9) is a one sided test, and hence, a uniformly most powerful (UMP) test may
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exist. For the ith index, we decide in favor of H1, if

log
p(yj;H1)

p(yj;H0)
≥ θ (7.10)

where θ is the detection threshold. Note that, the likelihood p(yj;γ) equals N (0, σ2
j Im +

ΦjΓ̃
k
j,iΦ

T
j +γj(i)Φj,iΦ

T
j,i) under H1 and N (0, σ2

j Im+ΦjΓ̃
k
j,iΦ

T
j ) under H0. Here, k denotes

the current iteration index and, Γ̃k
j,i = diag

(
γkj (1), . . . ,γkj (i− 1), 0,γkj (i+ 1), . . . ,γkj (n)

)
,

with the (i, i)th diagonal entry set equal to zero. By substituting the likelihood functions

and simplifying the LLR, it is shown in Appendix I.1 that the above hypothesis test decides

in favor of H1 for index i if

T ij (yj) =

{
ΦT
j,i

(
σ2
j Im + ΦjΓ̃

k
j,iΦ

T
j

)−1

yj

}2

≥ θ
′
, (7.11)

and decides in favor of H0 otherwise. Here, θ
′

denotes the detection threshold. Since the

detection test metric T ij is independent of the parameter under test, i.e., γj(i), a UMP

test for γj(i) exists. We normalize the detection test metric T ij to a standard chi-squared

distributed random variable with a single degree of freedom under H0, resulting in the

following Neyman-Pearson (NP) test:

Decide H1 for index i if T̄ ij =

{
ΦT
j,i

(
σ2
j Im + ΦjΓ̃

k
jΦ

T
j

)−1

yj

}2

ΦT
j,i

(
σ2
j Im + ΦjΓ̃k

j,iΦ
T
j

)−1

Φj,i

≥ θ̄. (7.12)

For a desired probability of false alarm (PFA) α ∈ [0, 1], the normalized threshold θ̄ is

computed offline as

θ̄ =
(
Q−1

(α
2

))2

, (7.13)
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where Q(·) is the standard Q-function. In the proposed scheme, α is an algorithm param-

eter which is common across all the network nodes.

In the kth iteration of the proposed algorithm, node j generates its hard support estimate

bkj by performing the NP test (7.12) for each index i = 1 to n. Subsequently, node j also

computes the corresponding soft support estimate gkj = γkj ◦ bkj , and broadcasts it to its

single-hop neighboring nodes in Nj.

Remark: In [125], the active coefficients are identified by performing component-wise

maximization of marginalized likelihood across individual hyperparameters. In this

scheme, node j declares ith index as active if the ratio q2
j,i/sj,i is greater than one, where

qj,i = ΦT
j,i

(
σ2
j Im + ΦjΓ̃

k
jΦ

T
j

)−1

yj and sj,i = ΦT
j,i

(
σ2
j Im + ΦjΓ̃

k
j,iΦ

T
j

)−1

Φj,i. The ratio

q2
j,i/sj,i is shown to be a proxy for SNR of the ith component, thereby suggesting that the

active indices must have associated SNR greater than 0 dB. In [126], this rule is general-

ized to q2
j,i/sj,i > η, where η is the predefined SNR of the ith component. It is interesting

to note that the ratio q2
j,i/sj,i is the same as the chi-squared LLRT statistic (7.12) derived

for the proposed FB-DSBL algorithm. In fact, if η is set equal to the NP threshold θ̄,

as defined in (7.13), we obtain the LLRT based criterion for active support detection.

Hence, the selection of the PFA parameter α in FB-DSBL offers a principled mechanism

to control the sparsity of the hard support estimates, and consequently, the size of the

messages exchanged between the network nodes.

7.4.2 Fusion of Hard Support Estimates from Local Neighbor-

hood

In this subsection, we discuss how node j combines the soft support estimates
{
gkl | l ∈ Nj

}

received from its single-hop neighbors to obtain a more accurate estimate of the true
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binary support S. In each iteration of the proposed algorithm, node j computes a fused

binary support estimate called bfused
j by applying an element-wise majority rule to the

locally available binary support estimates bl = supp(gl), where l ∈ Nj ∪ {j}. For index

1 ≤ i ≤ n,

bfused,k
j (i) ,





1 if |Aj,ki | >
⌈ |Nj|

2

⌉

0 otherwise

(7.14)

where Aj,ki ,
{
l ∈ Nj ∪ {j} : bkl (i) = 1,bkl = supp(gkl )

}
. The above fused estimate of S is

subsequently used in section 7.4.3 to further refine the local hyperparameter estimate γkj

obtained from the local SBL update.

In the proposed algorithm, element-wise majority rule has been used to fuse the binary

support estimates from the neighboring nodes. The primary reason for this choice is the

lack of knowledge of the probability of detection PD associated with the binary support

estimates of the one-hop neighbors. Since the direct exchange of local measurements and

measurement matrices between network nodes is not allowed, the optimal “K-out-of-N”

fusion rule is not implementable. Further motivation for choice of majority fusion rule

comes from [127] where it has been shown that the optimal fusion rule for the binary

decisions from non-identical sensors has a similar structure as the majority rule.

7.4.3 Updating Local Hyperparameters using Extrinsic Infor-

mation

Now, we present a scheme to update the hyperparameters estimate γkj at node j by

assimilating the available extrinsic information. The extrinsic information at node j refers

to
{
gkl | l ∈ Nj

}
, i.e., the collection of soft support estimates gathered from the neighboring

nodes. From [32,128], the optimal scheme to update the local hyperparameter estimate γkj
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at node j is to replace it with the average of the current hyperparameter estimates from

all network nodes. However, the optimal scheme cannot be implemented as each node has

access to only censored copies of the current hyperparameter estimates of its single-hop

neighbors.

The problem of parameter estimation from censored measurements in a distributed setup

has been studied in the literature [129, 130]. One of the ways to circumvent the non-

availability of hyperparameters associated with indices under the H0 hypothesis is to

replace the missing hyperparameters with their respective ML estimates. We observe that

the probability of detection PD for a one sided LLRT (similar to (7.12)) for ith index

is functionally dependent on γj(i). Then, under the assumption that the expression for

PD(γ(i)) is the same for all the neighboring nodes, the missing γ(i) can be chosen such

that the associated PD maximizes the likelihood of locally available binary decisions from

the neighboring nodes regarding the ith index. However, this scheme is not suitable for the

current situation where PD of a neighboring node also depends on its local measurement

matrix and local measurement noise power, which are not available globally. Moreover, for

a practical network topology, the number of available binary decisions can be insufficient

for robust estimation of the missing parameters.

We now propose a suboptimal but pragmatic rule to update the current local hyperpa-

rameter estimate γkj (i), i ∈ [n]. The proposed update rule is designed to approximate the

MSBL update rule (7.7). Conditioned on the majority vote bfused,k
j (i) computed according

to (7.14), we propose separate update rules in the following two cases.

Case I: bfused,k
j (i) = 0 If the majority vote bfused,k

j (i) suggestsH0 at the ith location in the

kth iteration, γkj (i) at node j is set equal to the average of the estimated hyperparameter



Chapter 7. 149

of all nodes in Nj, with censored hyperparameters replaced with zero. The updated local

hyperparameter γ̄kj (i) is given by:

γ̄kj (i) =
γkj (i) +

∑
l∈Nj gkl (i)

1 + |Nj|
. (7.15)

For index i /∈ S, since γkj (i) finally converges to zero for all j ∈ J , replacing the missing

hyperparameters with zero turns out be a good approximation.

Case II: bfused,k
j (i) = 1 If the majority vote bfused,k

j (i) suggests H1 at the ith location

in the kth iteration, we propose to set the hyperparameter γkj (i) at node j to equal the

average of its own hyperparameter γkj (i) and the hyperparameters received from only

those neighboring nodes that are in agreement with the majority vote. The updated local

hyperparameter γ̄kj (i) is given by:

γ̄kj (i) =
γkj (i) +

∑
l∈Nj gkl (i)

1 +
∑

l∈Nj bl(i)
. (7.16)

The selective averaging in (7.16) can be seen as an unbiased approximation of the hy-

perparameter update (7.7) used in the centralized MSBL algorithm by allowing only the

neighboring nodes that are in agreement with the majority vote, bfused,k
j (i), to contribute

to the average. Note that, for a fully connected network, when α equals one, the proposed

FB-DSBL algorithm is tantamount to executing the M-step update (7.7) via a decen-

tralized local averaging algorithm. Finally, we summarize the steps involved in proposed

FB-DSBL algorithm as Algorithm 1. In Table 7.1, we provide a stepwise breakdown of

the per iteration computational and communication complexity of the algorithm.

In the above exposition, a majority vote based selective averaging procedure has been
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Algorithm 3 FB-DSBL: Fusion Based Decentralized Sparse Bayesian Learning

Input: {yj ,Φj , σj}Lj=1 , and α Initializations: k ← 1 γ0
j ← 10−3 · 1n×1 ∀ j ∈ J ∆ = 2ε

while (k < kmax) and (∆ > ε) do

1a. Local E step: Each node j updates its posterior mean µk−1
j and variance Σk−1

j

according to (7.4).

1b. Local M step: Each node j updates it local hyperparameter vector:
γk
j = diag(Σk−1

j ) + (µk−1
j )2 .

2a. Each node j generates hard support estimate bj by performing index-wise LLRTs
as shown in (7.12).

2b. Each node j computes the soft support estimate gk
j = γk

j ◦ bk
j and broadcasts it

to all the nodes in Nj .

3. Each node j computes bfused
j by fusing

{
bl , supp(gl)

}
l∈Nj

using the majority

rule (7.14).

4. Each node j assimilates available extrinsic information by updating γk
j to γ̄k

j

according to: For 1 ≤ i ≤ n,

If bfused
j (i) = 0: γ̄k

j (i) =
γk

j (i)+
∑

l∈Nj
gk
l (i)

1+|Nj |

If bfused
j (i) = 1: γ̄k

j (i) =
γk

j (i)+
∑

l∈Nj
gk
l (i)

1+
∑

l∈Nj
bl(i)

5. γk
j ← γ̄k

j , ∆← min
j∈J

||γk
j − γk−1

j ||2
||γk−1

j ||2
and k ← k + 1.

end while

Output: For 1 ≤ j ≤ L, x̂j,MAP ← µk
j

proposed which combines both the available censored soft samples and the associated hard

decisions to estimate the index wise local average of the unknown variance parameter γ(i).

The proposed updates can be understood as a solution to a theoretical formalism which

we will now discuss independently in a simpler setup.

Consider a toy problem in which the goal is to find the average of L scalar random

variables xi, generated according to the model xi = xtrue + wi, 1 ≤ i ≤ L, where xtrue

is an unknown nonnegative parameter and wi is a zero mean measurement noise with

an unknown probability distribution. Without any knowledge about the statistics of the

measurement noise, a reasonable estimator of xtrue is the sample average x̄ which can be
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computed by solving the optimization: x̄ = arg min
x

1
L

∑L
i=1(x − xi)

2. Say, in addition

to the soft samples xi, we also have access to side information {bi}i∈[L], where each bi is

an independently generated hard decision variable which takes values 0 or 1 to indicate

wheather xtrue is zero or nonzero, respectively. The hard decisions bi could be in error,

and as motivated from many practical setups similar to ours, the associated type-1 and

type-2 error probabilities are unknown. A natural formalism which incorporates this extra

side information for improved estimation of xtrue is to solve the regularized optimization

problem:

x̂ = arg min
x

1

L

L∑

i=1

(x− xi)2 + λx2 (7.17)

where a quadratic penalty x2 has been introduced to attract the solution towards zero,

with the strength of attraction governed by a regularization parameter λ ≥ 0. Clearly,

the value of λ must reflect the available side information {bi}i∈[L]. Intuitively, λ should

increase with the number of hard decisions indicating xtrue to be zero.

It is easy to check that (7.17) has a closed form solution: x̂ = x̄
(

1
1+λ

)
. The multiplicative

factor 1
1+λ

causes shrinkage of the original unregularized solution x̄, thereby accounting

for the side information which may be suggesting xtrue to be zero. To ensure that the

shrinkage is proportional to the number of zero hard decisions, we suggest choosing λ as

the ratio: λ = Z
NZ

, where Z and NZ = (L − Z) denote the number of hard decisions

bi equal to zero and nonzero, respectively. Note that this choice of λ allows the penalty

term to completely disappear when all hard decisions suggest xtrue to be nonzero, resulting

in x̂ = x̄. Next, we complicate the toy problem further by censoring those soft samples

xi, for which the associated bi is zero. Due to the censoring of the soft samples, the

solution x̂ of the regularized optimization (7.17) can no longer be computed, as x̂ depends
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on x̄ whose evaluation requires the uncensored values of all soft samples. To proceed,

we evaluate x̂ = x̄
(

1
1+λ

)
with x̄ replaced with its unbiased proxy, x̃ = 1

NZ

∑
i:bi 6=0 xi

computed only using uncensored soft samples. Thus, we obtain the regularized estmate

x̂ =
(

1
NZ

∑
i:bi 6=0 xi

) (
NZ

Z+NZ

)
= 1

L

∑
i:bi 6=0 xi, which interestingly is also the FB-DSBL

update (7.15) with xi’s and bi’s representing the per index soft and hard support estimates,

respectively.

To account for potential errors in the hard decisions bi’s, the regularized solution (7.17) is

accepted only if Z > NZ, i.e., when the majority of the hard decisions indicate that xtrue

is zero, otherwise the unregularized but unbiased estimate x̃ = 1
NZ

∑
i:bi 6=0 xi is accepted

to be the solution. This also provides a theoretical underpinning for the other FB-DSBL

update (7.16). In the absence of of knowledge of the type-1 and type-2 error probabilities,

the majority rule based selection between the regularized and unregularized solutions turns

out to be surprisingly effective in practice, as illustrated via simulations in Section 7.6.

Table 7.1: Computational & communication complexity analysis of a single iteration of
FB-DSBL

Steps in
FB-DSBL
iteration

Computational
complex-

ity
per node

Communication
complex-

ity
per node

Local E-step (7.4) O(n2m+m3) 0
Local M-step (7.5) O(n) 0
Compute bj,gj (7.12) O(nm3) 0
Compute bfused

j (7.14) O(nL) O(sL log n)
Compute γ̄j (7.15, 7.16) O(nL) 0
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Table 7.2: Comparison in terms of communication cost

Decentralized algorithm Total number of
message

exchanges per iteration

FB-DSBL (proposed) O(sL2 log n)
DCSP [98] O(sL2 log n)
DCOMP [92] O(nL2)
CB-DSBL [128] O(nL2)
DRL-1 [84] O(nL2)

7.4.4 Inter-node Communication

As discussed in Section 7.4.1, in every FB-DSBL iteration, each node j broadcasts its

local soft support estimate gj to its single-hop neighbors in Nj. Although gj is an n

length vector, in practice, it is found to be a highly sparse vector i.e., most of its entries

are equal to zero. From Fig. 7.1, it can be seen that for a fixed sparsity rate (s/n),

the fraction of nonzero coefficients in the soft support estimate remains roughly constant

with increasing signal dimension n, which is desirable. Further, from Fig. 7.2, it can

be seen that the sparsity of the soft support estimates grows linearly with the sparsity

rate (s/n) of the unknown vectors for fixed signal dimension n. Figures 7.1 and 7.2

together imply that by encoding the locations and magnitudes of only the nonzero entries

of gj, the size of the messages exchanged amongst the network nodes can be restricted to

O(s log n). The additional log n bits are needed to encode the locations of the individual

nonzero coefficients in the soft support estimates. Fig. 7.3 shows one such example of

a frame structure for encoding gj using O(s log n) information bits. Compared to O(n)

sized messages exchanged in existing decentralized joint sparse signal recovery algorithms

[84,92,128], the proposed algorithm requires significantly lower communication bandwidth
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for the recovery of the jointly sparse vectors at the individual nodes. [ht]
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Figure 7.1: Fraction of nonzero entries in the soft support estimate gj plotted against
increasing value of n. The fraction of nonzero entries in gj displayed here is averaged
across nodes and iterations. The sparse soft support estimates are exchanged between
the nodes in each FB-DSBL iteration. The flat curves indicate that the sparsity of the
soft support estimates does not change with increasing signal dimension n. Here, SNR =
20 dB, the network size L = 10 nodes and the number of measurements at each node is
m = s log n/s.

7.5 A Stochastic Approximation View of FB-DSBL

We now present an interesting interpretation of the proposed FB-DSBL algorithm as a

degenerate case of a stochastic approximation based distributed algorithm for maximum

likelihood estimation of the unknown model parameters γ. We show that the FB-DSBL

updates are a special case of a distributed Robbins-Monro type stochastic approximation

updates [131, 132], when the PFA parameter α is set to one. For α = 1, the threshold

θ̄ used in the index wise LLRT (7.12) is zero. This in turn causes the hard support

estimates bj’s to be evaluated as 1n, by each node. Thus, the nodes exchange their local

hyperparameters estimates as is, without any censoring. In this case, the kth iteration of
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Figure 7.2: Fraction of nonzero entries in the soft support estimate gj plotted against
increasing value of sparsity rate (s/n) for fixed n equal to 200. The fraction of nonzero
entries in gj displayed here is averaged across nodes and iterations. Here, SNR = 20
dB, the network size L = 10 nodes and the number of measurements at each node is
m = s log n/s.

Fixed
length
header

No. of non
zero entries

in gj

Index and
value of 1th

non zero
entry in gj

Index and
value of 2nd

non zero
entry in gj

Index and
value of last
non zero

entry in gj

c1 bits log n bits log n+ c2
bits

log n+ c2
bits

log n+ c2
bits

Figure 7.3: O(s log n) sized example data packet format encoding the local soft support
estimate gj, which is broadcast by node j. The scalar constant c2 controls the quantization
noise of nonzero entries of gj.

FB-DSBL at node j comprises the following two steps:

Combined EM step: γ̃kj = Gj(γ
k−1
j ,yj), (7.18)

Consensus step: γkj =
1

|Nj|
∑

l∈Nj

γ̃kl . (7.19)
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The function Gj : Rn
+ × Rm → Rn

+ replaces the combination of the local E and M-steps

given by (7.4) and (7.5), respectively, and is evaluated as

Gj(γ,y) = diag



(

Γ−1 +
ΦT
j Φj

σ2
j

)−1

+
1

σ4

(
Γ−1 +

ΦT
j Φj

σ2

)−1

ΦT
j yyTΦj

(
Γ−1 +

ΦT
j Φj

σ2
j

)−1



where Γ = diag(γ). Let us define the function G : RnL
+ × RmL → RnL

+ as

G(γ	,y	) = [G1(γ1,y1), G2(γ2,y2), . . . , GL(γL,yL)]T , (7.20)

where γ	 =
(
γT1 ,γ

T
2 , . . . ,γ

T
L

)T
and y	 =

(
yT1 ,y

T
2 , . . . ,y

T
L

)T
are nL × 1 and mL × 1

sized concatenated vectors representing the local hyperparameter estimates and the local

observations, respectively. With these new definitions, we can rewrite the network wide

FB-DSBL iterations in a compact vector form,

γk	 = (W ⊗ In)G
(
γk−1
	 ,y	

)
, (7.21)

where ⊗ denotes the Kronecker product, and W is an L×L matrix with entry Wjl = 1
|Nj |+1

when l ∈ Nj ∪{j} and 0 otherwise. The weight matrix W defined in this manner encodes

the local averaging based consensus step described in (7.19). Other consensus strategies

can be realized in this framework by appropriately choosing the entries of W. For example,

by modeling W as an appropriate random matrix, the vector representation in (7.21) can

support the α 6= 1 case. In the ensuing arguments, we elucidate the structural similarities

between the FB-DSBL vector iterations in (7.21) and the distributed Robbins-Monro

stochastic approximation algorithm proposed in [131].

We begin by observing that the EM iterations (7.4), (7.7) in centralized MSBL can be
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rewritten as a fixed point iteration:

γk+1 =
L∑

j=1

Gj(γ
k,yj)

= 〈G(1L ⊗ γk,y	)〉 (7.22)

where 〈x〉 , (1TL ⊗ In)x is a vector in Rn for any vector x in RnL. From the conver-

gence property of EM [133], the above fixed point iteration (7.22) converges to one of the

stationary points of the log-likelihood log p(Y,γ).

We now setup a distributed stochastic approximation algorithm to find the fixed point

of 〈G(1L⊗γk,y	)〉. As proposed in [131], let us consider a distributed algorithm in which

each node j implements a “local step” followed by a “gossip step” as described below:

Local step: γ̃kj = γk−1
j + ak

(
Gj(γ

k−1
j ,ukj )− γk−1

j

)
(7.23)

Gossip step: γk =
1

|Nj|
∑

j∈Nj

γ̃kl (7.24)

where ak is an iteration dependent positive step size satisfying
∑∞

k=1 ak = ∞ and

∑∞
k=1 a

2
k <∞. In (7.23), the observation vectors ukj s are drawn independently by node j

according to some distribution pj(u) in every iteration. The distribution pj(u) depends

on the measurement model and measurement noise distribution at node j. Once again,

we can rewrite the update equations (7.23) and (7.24) together in a compact vector form

as

γk	 = (W ⊗ In)
[
γk−1
	 + ak

(
G(γk−1

	 ,uk	)− γk−1
	
)]

(7.25)
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where u	 =
(
uT1 ,u

T
2 , . . . ,u

T
L

)T
is mL× 1 sized concatenated vector representing the com-

bined observations across the nodes. For the above distributed Robbins-Monro type up-

date [134], we introduce the associated mean field function h(γ) : Rn
+ → Rn

+ as

h(γ) = E1n⊗γ

[
1

L
(〈G(1L ⊗ γ,u	)〉 − 〈1L ⊗ γ〉)

]
. (7.26)

where the expectation is evaluated as a conditional mean given the past observations [132].

In [131], the authors have shown that under certain assumptions related to the step size ak,

the weight matrix W and the function G, the distributed update in (7.25) converges to one

of the zeros/roots of the mean field function h. Further, there is network wide consensus

between the nodes with respect to their local hyperparameters γj upon convergence [131,

132].

In our distributed setup, the nodes have access to only a single observation, and hence

are forced to use the same observation repeatedly in all iterations of the stochastic update

(7.25). This repeated use of the observations is modeled as each node j drawing its local

observations ukj independently according to the degenerate Dirac-delta distribution, i.e.,

pj(u) = δ(u − yj). Under this modeling assumption, the stochastic update in (7.25)

follows a deterministic trajectory and converges to the zero of the mean field function

1
L
〈G(1L⊗γ,y	)〉−〈1L⊗γ〉, or equivalently, to one of the fixed points of 〈G(1L⊗γ,y	)〉.

From (7.22), we recall that every fixed point of 〈G(1L ⊗ γ,y	)〉 is also a stationary point

of the log-likelihood cost considered in MSBL. Hence, the pseudo-stochastic3 updates

proposed in (7.25) converge to the centralized MSBL solution.

3The prefix pseudo here emphasizes the fact that the stochastic updates are driven by repeated use

of the same observations at every node.
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It is interesting to note that for a constant step size ak = 1 and pj(u) = δ(u − yj),

the distributed Robbins-Monro stochastic updates in (7.23)-(7.24) revert to the FB-DSBL

updates in (7.18)-(7.19) when the censoring threshold is set to zero (i.e., α = 1). In

fact, in Section 7.6, we demonstrate through simulations that the proposed FB-DSBL

updates with a constant step size (ak = 1) converge significantly faster compared to its

stochastic approximation based variant which uses (7.23) instead of (7.4)-(7.5). In the

sequel, we refer to the FB-DSBL variant with the local EM step (7.4)-(7.5) replaced with

the Robbins-Monro update (7.23) as FB-DSBL†. A detailed performance comparison of

FB-DSBL and FB-DSBL† is presented via simulations in the next section.

7.6 Simulations

We now present simulation results to illustrate the efficacy of the proposed FB-DSBL

algorithm and compare its performance against the following decentralized joint sparse

signal recovery algorithms.

1. DRL-1 - Decentralized Re-weighted `1 Norm Minimization algorithm [84].

2. DCOMP - Distributed and Collaborative Orthogonal Matching Pursuit [92].

3. DCSP - Decentralized and Collaborative Subspace Pursuit [98].

4. CB-DSBL - Consensus Based Distributed Sparse Bayesian Learning [128].

5. FB-DSBL† - The FB-DSBL variant with the local M-step (7.5) replaced with the

stochastic approximation inspired update given by (7.23).

For each trial, the node connectivity in the network is dictated by a randomly generated

Erdős-Renyi graph with a connection probability of p = 0.8. The joint sparse vectors
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x1,x2, . . . ,xL to be estimated are assumed to be of length n = 50 and sharing a common

nonzero support which is obtained by randomly selecting s = 5 distinct indices out of the

set [n]. Unless specified otherwise, the nonzero coefficients of the joint sparse vectors are

drawn independently from the Rademacher distribution.

Among the algorithms compared here, DCOMP and DCSP require prior knowledge of s,

i.e., the size of nonzero support. In the final step of CB-DSBL and FB-DSBL algorithms,

the active support is identified by element-wise thresholding the local hyperparameter

vector γj at node j using the thresholds 4σ2
j and 0.25σ2

j , respectively, where σ2
j denotes

the local measurement noise variance. For FB-DSBL, the per index probability of false

detection, α, is set to 10−4 for all the nodes. In FB-DSBL†, the step size ak is set to k−0.51,

where k is the iteration index.

7.6.1 Performance vs. SNR

In the first set of experiments, we compare the average normalized mean squared error

(NMSE) of the signals reconstructed by different algorithms over a wide range of SNRs.

The performance benchmark is set by the support-aware linear minimum mean squared

error (SA-LMMSE) estimator which assumes knowledge of the true support S. We define

the NMSE as

NMSE =
1

L

L∑

j=1

||xj − x̂j||22
||xj||22

. (7.27)

Here, the size of the network is fixed to L = 10 nodes. Fig. 7.4 compares the NMSE

achieved by the different algorithms, averaged over 200 trials. Both CB-DSBL and the

proposed FB-DSBL closely match the benchmark performance of SA-LMMSE at moder-

ate to high SNRs. It is interesting to note that despite exchanging only O(s log n) sized
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messages between the nodes, FB-DSBL is able to outperform DCSP, DRL-1 and DCOMP,

which are of similar or higher communication complexity. Fig. 7.5 shows a similar trend

in the relative performances of the algorithms when the nonzero coefficients of the un-

known sparse vectors are drawn from the standard Gaussian distribution. The plots also

highlight that even when the number of available measurements is not sufficient for inde-

pendent signal reconstruction as depicted by the complete breakdown of the standalone

SBL algorithm, the decentralized algorithms are able to recover the signals by exploiting

their joint sparsity. Although not shown in the plots to avoid clutter, FB-DSBL† matches

the performance of FB-DSBL in case of both the source distributions.
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Figure 7.4: Normalized mean squared error of the signals (nonzero coefficients from the
Rademacher distribution) reconstructed by different algorithms versus the measurement
SNR. Other simulation parameters: n = 50, m = 10, s = 5 and L = 10 nodes, and 200
trials.

7.6.2 Support Recovery Performance

In the second set of experiments, we compare the support recovery performance of the

decentralized algorithms. From Fig. 7.6, it is evident that FB-DSBL is able to recover
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Figure 7.5: Normalized mean squared error of the signals (nonzero coefficients from the
standard Gaussian distribution) reconstructed by different algorithms versus the measure-
ment SNR. Other simulation parameters: n = 50, m = 10, s = 5, L = 10 nodes, and 100
trials.

the correct support of the unknown sparse vectors using fewer number of measurements

per node compared to DRL-1, DCOMP and DCSP. Its stochastic approximation inspired

variant FB-DSBL† performs equally well. CB-DSBL has the best support recovery perfor-

mance among all the decentralized algorithms discussed here, but also has a much higher

communication cost compared to FB-DSBL (see Table 7.2).

7.6.3 Phase Transition Characteristics

Here, we compare the phase transition characteristics [135] of the different algorithms

under MSE and support recovery based pass/fail criteria. Fig. 7.7 plots the MSE phase

transition curves of different algorithms. Any point below the phase transition curve rep-

resents a sparsity rate (k/n) and measurement rate (m/n) tuple which results in less than

1% signal reconstruction error. Similarly, in Fig. 7.8, points below the support recovery
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Figure 7.6: Probability of exact support recovery versus the measurement rate (m/n) for
different decentralized algorithms. Other simulation parameters: n = 50, s = 5, L = 10
nodes, SNR = 15 dB, α = 10−4 and number of trials = 400.

phase transition curve represent (k/n,m/n) tuples which result in more than 90% ac-

curate nonzero support reconstruction across all the nodes. From their phase transition

behaviors, we conclude that the proposed FB-DSBL is able to recover the support and

nonzero signal coefficients from fewer measurements per node compared to DRL-1, DCSP

and DCOMP. As before, the CB-DSBL algorithm has the best phase transition character-

istics, at the cost of the O(nL2) communication complexity per iteration. An interesting

observation is that FB-DSBL† has slightly better NMSE and support recovery phase tran-

sition characteristics compared to FB-DSBL. This is not surprising, as the filtered updates

used in FB-DSBL† are more robust in the presence of measurement noise.

7.6.4 Communication Complexity

We also compare the communication overhead of the aforementioned decentralized algo-

rithms. From Fig. 7.9, the overall communication complexity of FB-DSBL is lower than
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Figure 7.7: MSE phase transition for the different algorithms. For a given measurement
rate, the phase transition curves represent the maximum sparsity rate of the unknown
sparse vectors that can be recovered with at most 1% reconstruction error. Other simu-
lation parameters: n = 50, L = 5 nodes, SNR = 30 dB, α = 10−4 and number of trials =
200.

CB-DSBL, DRL-1, DCOMP and FB-DSBL†, while DCSP still remains the most commu-

nication efficient algorithm amongst all the algorithms compared here. As pointed out in

Section 7.4.4, in the proposed FB-DSBL algorithm, the nonzero coefficients of the censored

vector gj broadcast by node j can be represented using a finite number of bits. We study

the impact of quantization of the nonzero coefficients of gj on the performance of the FB-

DSBL algorithm. Here, we have assumed uniform quantization of gj in the logarithmic

domain in the range 10−10 to 105. From the MSE phase transition plot in Fig. 7.10, we

observe that there is negligible drop in signal reconstruction performance when 4 or more

bits are used to represent the nonzero coefficients of the censored vector.
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Figure 7.8: Support recovery phase transition for the different algorithms. For a given
measurement rate, the phase transition curves represent the maximum sparsity rate of
the unknown sparse vectors whose nonzero support can be recovered with at least 90%
accuracy. Other simulation parameters: n = 50, L = 5 nodes, SNR = 30 dB, α = 10−4

and number of trials = 200.

7.6.5 Comparison of Convergence Rates

For a decentralized algorithm, the total cost of inter node communication also depends on

the number of iterations required for convergence. The centralized MSBL on which the

proposed FB-DSBL is based inherits the convergence guarantees of the underlying EM

iterations, which always converge to a local minimum of the log-likelihood objective. An-

alyzing the convergence of FB-DSBL is non-trivial due to use of censored hyperparameter

estimates in the decentralized implementation of (7.7). However, in practice, it converges

within 10-30 iterations, as shown in Fig. 7.11. FB-DSBL†, on the other hand, converges

slower than FB-DSBL, but is faster than CB-DSBL and DRL-1. In comparison to CB-

DSBL, the variance hyperparameters belonging to the non-active support set converge

to zero significantly faster in the FB-DSBL, resulting in its faster overall convergence.

As expected, due to their greedy approach towards support estimation, both DCSP and
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Figure 7.9: Average number of messages exchanged between the nodes versus the size of
the network. Simulation parameters: n = 50, m = 10, s = 5, SNR = 20 dB.

DCOMP require the least number of iterations to converge.

From Fig. 7.12, we observe a small improvement in FB-DSBL’s convergence speed as

the network becomes increasingly densely connected, with fastest convergence observed

in the case of a fully connected network. More importantly, the reconstruction error

(measured in NMSE) remains constant independent of the density of node connections

in the network, which is a highly desirable attribute for a distributed algorithm. From

these experiments, we conclude that FB-DSBL exhibits stable performance and converges

under wide variations in network size and node connection density, provided the network

remains connected.

7.6.6 Selection of parameter α

The FB-DSBL parameter α has a direct impact on the size of messages exchanged between

the nodes. As described in section 7.4.1, α represents the probability of false alarm used

in the index-wise LLRTs for generation of hard support estimates at each node. Choosing
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Figure 7.10: MSE phase transition for FB-DSBL variants using 2, 3, 4 bit quantization and
analog transmission to encode the nonzero coefficients of soft support estimates exchanged
between the nodes. Other simulation parameters: n = 50, L = 5 nodes, SNR = 30 dB,
α = 10−4 and number of trials = 1000.

a lower value for α biases the index-wise LLRTs towards the H0 hypothesis, leading to

sparser hard/soft support estimates, and consequently, smaller message size. Likewise,

higher values of α lead to larger message size. In fact, for α = 1, there is no censoring of

the locally estimated hyperparameters γ exchanged between the nodes. In this case, the

FB-DSBL algorithm reverts to a local averaging based distributed implementation of the

MSBL update rule (7.7). Fig. 7.13 illustrates the effect of α on the MSE performance

and the communication cost of the FB-DSBL algorithm. As seen in the plots, there exists

a stable range of α between 10−2 to 10−4, where one can obtain the twin benefits of low

communication complexity and good reconstruction performance. A good rule-of-thumb

value of α is 0.01/n, which corresponds to approximately 1% chance of observing a false

alarm in one of the n hypothesis tests performed at each node.
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algorithms. Simulation parameters: n = 50, m = 10, s = 5 and SNR= 20 dB.

7.7 Chapter Summary

Most of the existing decentralized algorithms for joint sparse signal recovery entail inter-

node exchange of messages whose size is proportional to n, the ambient signal dimen-

sion, which is typically very high. Thus the nodes have to expend a significant share of

their limited time/energy resources for inter node communications. In this chapter, we

have addressed this issue, by proposing a highly communication efficient, decentralized

joint sparse signal recovery algorithm called FB-DSBL which requires exchange of only

O(s log n) sized messages between the network nodes. We also showed that the proposed

algorithm can be seen as a degenerate case of a distributed consensus based stochastic

approximation algorithm. From the extensive simulation results presented in this chapter,

we can conclude that the proposed FB-DSBL algorithm outperforms existing decentralized

algorithms DRL-1, DCSP, and DCOMP while at the same time has an attractively low

communication complexity.
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Figure 7.12: Illustration of the robustness of FB-DSBL’s performance and convergence
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to a fully connected network. Simulation parameters: n = 100, m = 10, s = 5, L = 20
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Chapter 8

Conclusion

In which we conclude & look ahead...

8.1 Summary of Main Results

This thesis contributes new theoretical results, solution concepts, and algorithms concern-

ing the estimation of joint sparse signals and their common nonzero support from linear

compressive measurements using the Bayesian approach. The following is a summary of

the main results in the thesis.

New Perspective on Support Recovery using Sparse Bayesian Learning

(Chapter 2)

� MSBL’s log-likelihood objective can be interpreted as negative Log-Det Bregman

matrix divergence between the empirical and parametrized MMV covariance matri-

ces.

� MSBL optimization minimizes the gap between the empirical and parameterized

covariance matrices of the observations, where pointwise distances between matrices
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are measured in the Log-Det Bregman matrix divergence sense. Thus, MSBL is

essentially a covariance matching algorithm for sparse support recovery.

� In covariance matching based sparse support recovery, the maximum size of uniquely

recoverable sparse support is determined by the Kruskal-Rank of columnwise Khatri-

Rao product of the measurement matrix with itself.

Restricted Isometry Of Khatri-Rao Product (Chapter 3)

� Sensing matrices expressible as a Khatri-Rao product of two matrices appear in

many fundamental inverse problems.

� The restricted isometry property (RIP) of a matrix is characterized in terms of

upper bounds on its restricted isometry constants (RICs). RICs of Khatri-Rao ma-

trices feature in sample complexity analysis of several machine learning and signal

processing problems including the MMV problem.

� For m×n sized column normalized, RIP compliant matrices A and B, when k ≤ m,

we have k-RIC(A�B) ≤ (max (k-RIC(A), k-RIC(B)))2.

� For an m× n sized column normalized, RIP compliant matrix A, when k ≤ m, we

have k-RIC(A �A) ≤ (k-RIC(A))2 for k ≤ m. Hence, taking Khatri-Rao product

of a RIP compliant matrix with itself strengthens the restricted isometry property.

� For m × n sized random matrices A and B containing i.i.d. subgaussian entries,

A � B satisfies the restricted isometry property of order k with high probability

provided m ≥ O(k log n). A similar orderwise result exists for the self Khatri-Rao

product A�A.
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New Sufficient Conditions for Perfect Support Recovery in Sparse Bayesian

Learning (Chapter 4)

� For Gaussian sources, the support error probability in MSBL decays exponentially

fast with the number of joint sparse vectors.

� The exponent of MSBL’s exponentially decaying support error probability depends

on the restricted null space property of the Khatri-Rao product of the measurement

matrix with itself.

� For a random m × n sized measurement matrix with i.i.d N
(

0, 1√
m

)
and m =

O(K log n) rows, any K-sparse support can perfectly recovered with arbitrarily high

probability using finitely many MMVs by maximizing the MSBL’s log-likelihood cost

function.

� In the noiseless case, MSBL can perfectly recover any k < spark(A)−1 sized support

even from a single measurement vector.

Rényi Divergence Based Joint Sparse Support Recovery (Chapter 5)

� The α-Rényi divergence objective generalizes MSBL’s log-likelihood objective.

� The α-Rényi divergence between empirical and parameterized multivariate Gaussian

densities can be expressed as a difference of submodular set functions of the unknown

signal support.

� The above α-Rényi divergence can be optimized by a fast majorization-minimization

procedure to recover the unknown support. The algorithm is named Rényi Diver-

gence based Covariance Matching Pursuit or RD-CMP.
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� Due to its recursive, rank one updates, and overall greedy approach towards support

reconstruction, RD-CMP is significantly faster than existing covariance matching

based support recovery algorithms.

Two Decentralized Extensions of MSBL (Chapters 6 & 7)

� We proposed the CB-DSBL algorithm which is a decentralized implementation of

MSBL for in-network estimation of multiple joint sparse signals from linear com-

pressive measurements using a network of processing nodes or sensors. CB-DSBL

uses Alternating Directions Method of Multipliers (ADMM) to optimize the MSBL

log-likelihood objective in a decentralized fashion.

� The inter-node communication is controlled by adopting a bridge node based net-

work topology which allows convenient trade-off between communication cost and

robustness to node failures.

� CB-DSBL is empirically shown to match the performance of the centralized MSBL

algorithm.

� We proposed the FB-DSBL algorithm, another decentralized extension of MSBL,

with low communication complexity as a key feature. In FB-DSBL, sparse cen-

sored messages are exchanged between the network nodes resulting in a significant

reduction in the overall communication complexity of the decentralized algorithm.

� Using Monte-Carlo simulations, we showed that FB-DSBL offers Bayesian inference

like signal reconstruction performance while at the same time its communication

complexity is comparable to greedy reconstruction methods.
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� The convergence behavior of FB-DSBL is analyzed by interpreting it as a distributed

consensus based stochastic approximation algorithm.

Convergence Of Decentralized ADMM In Bridge Node Network Topology

(Chapter 6)

� We proved that decentralized ADMM iterations converge R-linearly in a bridge node

based network topology.

� Our convergence analysis reveals the optimal choice for the ADMM parameter ρ

and how the ADMM convergence rate is impacted by the selection of the bridge

nodes. These results are of independent interest and applicable whenever decentral-

ized ADMM is used to minimize a strongly convex separable objective in a bridge

node based network topology.

8.2 Future Work

Some possible avenues for future work are:

� Covariance Matching Based Support Recovery In High Dimensions

The existing algorithms based on the covariance matching principle are still not

computationally fast enough to handle large signal dimensions encountered in big

data applications. Development of fast scalable covariance matching based support

recovery methods is an important problem.

� Open Questions On Sparse Bayesian Learning

There remain a few open questions about MSBL’s support recovery performance:
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i. What are necessary conditions for exact support recovery in terms of the number

of required MMVs?

ii. Under what conditions do all local maxima of the MSBL objective yield the

correct support estimate?

iii. How is the support recovery performance impacted by inter and intra vector

correlations in the signals?

� Restricted Null Space Property of Khatri-Rao product

For an m× n subgaussian matrix A, when does the self Khatri-Rao product A�A

satisfies the NN-RNSP condition of order k (Definition 4.1). We conjecture that for

A with i.i.d subgaussian entries and n fixed, if m scales as O(
√
k), then A�A will

satisfy NN-RNSP of order k with high probability.

� Support Recovery Sample Complexity of RD-CMP

Sample complexity of RD-CMP algorithm is currently unknown. The optimal value

for α, the Rényi divergence order, is also unknown. Studying the support recovery

behavior of RD-CMP for α > 1 would also be interesting.



Appendix A

Mathematical Review for Chapter 3

(Part 1)

In this appendix, we present some preliminary concepts and results which are necessary

for proving the deterministic k-RIC bound in Theorem 3.1. For the sake of brevity, we

provide proofs only for claims that have not been explicitly shown in their cited sources.

A.0.1 Properties of the Kronecker and Hadamard product

For any two matrices A and B of dimensions m × n and p × q, the kronecker product

A⊗B is the mp× nq matrix

A⊗B =




a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB



. (A.1)

The following Proposition relates the spectral properties of the Kronecker product and

its constituent matrices.
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Proposition A.1 (7.1.10 in [55]). Let A ∈ Cn×n and B ∈ Cp×p admit eigenvalue decom-

positions UAΛAUH
A and UBΛBUH

B , respectively. Then,

(UA ⊗UB)(ΛA ⊗ ΛB)(UA ⊗UB)H

yields the eigenvalue decomposition for A⊗B.

For any two matrices of matching dimensions, say m×n, their Hadamard product A◦B

is obtained by elementwise multiplication of the entries of the input matrices, i.e.,

[A ◦B]i,j = aijbij for i ∈ [m], j ∈ [n]. (A.2)

The Hadamard product A ◦B is a principal submatrix of the Kronecker product A⊗B

[56, 137]. For n× n sized square matrices A and B, one can write,

A ◦B = JT (A⊗B)J, (A.3)

where J is an n2 × n sized selection matrix constructed from 0’s and 1’s and satisfying

JTJ = In.

In Proposition A.2, we present an upper bound on the spectral radius of a generic

Hadamard product.

Proposition A.2. For every A,B ∈ Cm×n, we have

σmax (A ◦B) ≤ rmax(A)cmax(B) (A.4)

where σmax(·), rmax(·) and cmax(·) are the largest singular value, the largest row `2-norm

and the largest column `2-norm of the input matrix, respectively.
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Proof. See Theorem 5.5.3 in [138].

We now state an important result about the Hadamard product of two positive semidef-

inite matrices.

Proposition A.3 (Mond and Pec̆arić [139]). Let A and B be positive semidefinite n× n

Hermitian matrices and let r and s be two nonzero integers such that s > r. Then,

(As ◦Bs)1/s ≥ (Ar ◦Br)1/r . (A.5)

In Propositions A.4 and A.5, we state some spectral properties of correlation matrices

and their Hadamard products. Correlation matrices are Hermitian positive semidefinite

matrices with diagonal entries equal to one. Later on, we will exploit the fact that the

singular values of the columnwise KR product are related to the singular values of the

Hadamard product of certain correlation matrices.

Proposition A.4. If A is an n× n sized Hermitian correlation matrix, then A1/2 ◦ Ā1/2

is a doubly stochastic matrix. Here, Ā denotes the elementwise complex conjugate of A.

Proof. Since A is a Hermitian correlation matrix, it admits the Schur decomposition,

A = UΛUH , with unitary U and eigenvalue matrix Λ = diag(λ1, λ2, . . . , λn). Since A is

positive semi-definite, its nonnegative square-root exists and is given by A1/2 = UΛ1/2UH .

Consider

A1/2 ◦ Ā1/2 =
n∑

i=1

λ
1/2
i uiu

H
i ◦

n∑

j=1

λ
1/2
j ujuHj

=
n∑

i=1

n∑

j=1

λ
1/2
i λ

1/2
j

(
uiū

T
i

)
◦
(
ūju

T
j

)
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=
n∑

i=1

n∑

j=1

λ
1/2
i λ

1/2
j (ui ◦ ūj) (ūi ◦ uj)

T . (A.6)

The second equality above follows from the distributive property of the Hadamard prod-

uct and the last step follows from Fact 7.6.2 in [55]. Using (A.6), we can show that the

rows and columns of A1/2 ◦ Ā1/2 sum to one, as follows:

(A1/2 ◦ Ā1/2)1 =
n∑

i=1

n∑

j=1

λ
1/2
i λ

1/2
j (ui ◦ ūj) (ūi ◦ uj)

T 1

=
n∑

i=1

n∑

j=1

λ
1/2
i λ

1/2
j (ui ◦ ūj) (ūi ◦ 1)T uj

=
n∑

i=1

n∑

j=1

λ
1/2
i λ

1/2
j (ui ◦ ūj) uHi uj

=
n∑

i=1

λi (ui ◦ ūi) = d (say).

The above arguments follow from the orthonormality of the columns of U, and repeated

application of Fact 7.6.1 in [55]. Note that for k ∈ [n], d(k) =
∑n

i=1 λ(i) |ui(k)|2 =

[UΛUH ]kk = Akk = 1. Thus, we have shown that (A1/2 ◦ Ā1/2)1 = 1. Likewise, it can be

shown that 1T (A1/2 ◦ Ā1/2) = 1T . Thus, A1/2 ◦ Ā1/2 is doubly stochastic.

Proposition A.5 (Werner [140]). For any Hermitian correlation matrices A and B of

the same size, we have A1/2 ◦B1/2 ≤ I, where A1/2 and B1/2 are the positive square roots

of A and B, respectively.

Proof. Since A is a correlation matrix, from Proposition A.4, it follows that A1/2 ◦A1/2

is doubly stochastic. Since the rows and columns of A1/2 ◦ A1/2 sum to unity, we have

rmax(A1/2) = cmax(A1/2) = 1. Similarly, rmax(B1/2) = cmax(B1/2) = 1. Then, from

Proposition A.2, it follows that the largest eigenvalue of A1/2 ◦B1/2 is at most unity.
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A.0.2 Matrix Kantorovich Inequalities

Matrix Kantorovich inequalities relate positive definite matrices by inequalities in the sense

of the Löwner partial order.1 These inequalities can be used to extend the Löwner partial

order to the Hadamard product of positive definite matrices. Our proposed RIC bound

relies on the tightness of these Kantorovich inequalities and their extensions.

A matrix version of the Kantorovich inequality was first proposed by Marshall and Olkin

in [141]. It is stated below as Proposition A.6.

Proposition A.6 (Marshall and Olkin [141]). Let A be an n×n positive definite Hermitian

matrix. Let A admit the Schur decomposition A = UΛUH with unitary U and Λ =

diag(λ1, λ2, . . . , λn) such that λi ∈ [m,M ]. Then, we have

A2 ≤ (M +m)A−mMIn. (A.7)

The above inequality (A.7) is the starting point for obtaining a variety of forward and

reverse Kantorovich-type matrix inequalities for positive definite matrices. In Proposi-

tions A.7 and A.8, we state specific forward and reverse inequalities, respectively, which

are relevant to us.

Proposition A.7 (Liu and Neudecker [142]). Let A be an n×n positive definite Hermitian

matrix, with eigenvalues in [m,M ]. Let V be an n×n matrix such that VHV = In. Then,

VHA2V −
(
VHAV

)2 ≤ 1

4
(M −m)2In. (A.8)

1The Löwner partial order here refers to the relation “≤”. For positive definite matrices A and B,

A ≤ B if and only if B−A is a positive semi-definite matrix.
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Proposition A.8 (Liu and Neudecker [143]). Let A and B be n×n positive definite Hermi-

tian matrices. Let m and M be the minimum and maximum eigenvalues of B1/2A−1B1/2.

Let X be an n× p matrix. Then, we have

(XHBX)(XHAX)†(XHBX) ≥ 4mM

(M +m)2
XHBA−1BX. (A.9)

Proposition A.7 can be proved using (A.7) by pre- and post-multiplying by VH and V,

respectively, followed by completion of squares for the right hand side terms. The proof

of Proposition A.8 is given in [143].

A.0.3 Matrix Kantorovich Inequalities for the Hadamard Prod-

ucts of Positive Definite Matrices

Lemmas A.1 and A.2 stated below extend the Kantorovich inequalities from the previous

section to Hadamard products.

Lemma A.1 (Liu and Neudecker [142]). Let A and B be n×n positive definite Hermitian

matrices, with m and M denoting the minimum and maximum eigenvalues of A⊗B. Then,

we have

A2 ◦B2 ≤ (A ◦B)2 +
1

4
(M −m)2In. (A.10)

Proof. Let J be the selection matrix such that JTJ = In and A◦B = JT (A⊗B)J. Then,

by applying Proposition A.7 with A replaced with A ⊗ B, and V replaced with J, we

obtain

JT (A⊗B)2J− (JT (A⊗B)J)2 ≤ 1

4
(M −m)2In.
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Using Fact 8.21.29 in [55], i.e., (A⊗B)2 = A2 ⊗B2, we get

JT (A2 ⊗B2)J− (A ◦B)2 ≤ 1

4
(M −m)2In,

Finally, by observing that JT (A2 ⊗B2)J = A2 ◦B2, we obtain the desired result.

Lemma A.2 (Liu [144]). Let A, B be n × n positive definite Hermitian correlation ma-

trices. Then,

A1/2 ◦B1/2 ≥ 2
√
mM

m+M
In (A.11)

where the eigenvalues of A1/2 and B1/2 lie inside [m,M ].

Lemma A.2 follows from Proposition A.8, by replacing A with In⊗B, B with A1/2⊗B1/2,

and X with J, where J is the n2 × n binary selection matrix such that JTJ = In and

A ◦B = JT (A⊗B)J.
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Mathematical Review for Chapter 3

In this appendix, we present the celebrated Hanson-Wright inequality [145, 146] and its

corollary characterizing the tail probability of functions of independent subgaussian ran-

dom vectors. These results are used in the proofs of Theorems 3.2 and 3.3.

B.1 The Hanson-Wright Inequality

The following theorem states the Hanson-Wright inequality.

Theorem B.1 (Rudelson and Vershynin [146]). Let x = (x1,x2, . . . ,xn) ∈ Rn be a random

vector with independent components xi satisfying Exi = 0 and ||xi||ψ2
≤ κ. Let A be an

n× n matrix. Then, for every t ≥ 0,

P
{∣∣xTAx− ExTAx

∣∣ > t
}
≤ 2 exp

[
−cmin

(
t2

κ4 ||A||2HS
,

t

κ2 |||A|||2

)]

where c is a universal positive constant.

The following corollary of the Hanson-Wright inequality characterizes the tail probability

of weighted inner product between two independent subgaussian vectors.
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Corollary B.1. Let u = (u1,u2, . . . ,un) ∈ Rn and v = (v1,v2, . . . ,vn) ∈ Rn be indepen-

dent random vectors with independent subgaussian components satisfying Eui = Evi = 0

and ||ui||ψ2
≤ κ, ||vi||ψ2

≤ κ. Let D be an n× n matrix. Then, for every t ≥ 0,

P
{∣∣uTDv

∣∣ > t
}
≤ 2 exp

[
−cmin

(
t2

κ4 ||D||2HS
,

t

κ2 |||D|||2

)]

where c is a universal positive constant.

Proof. Use Hanson-Wright inequality in Theorem B.1 with x =
[
uT vT

]T
and

A = [0n×n | D; 0n×n | 0n×n] to obtain the desired tail bound.
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Mathematical review for chapter 4

In this appendix, we introduce some key definitions and results which are used in chapter 4.

C.1 Restricted Isometry Property

A matrix A ∈ Rm×n is said to satisfy the restricted isometry property (RIP) of order k if

there exists a constant δA
k ∈ (0, 1) such that

(1− δA
k ) ||x||22 ≤ ||Ax||22 ≤ (1 + δA

k ) ||x||22 (C.1)

holds for any k-sparse vector x ∈ Rn. The smallest such δA
k is called the kth order restricted

isometry constant (RIC) of A. The RIP condition δA
k < 1 implies that spark(A) > k and

K-rank(A) ≥ k.

C.2 ε-Cover, ε-Net and Covering Number

Suppose T is a set equipped with a pseudo-metric d. For any set A ⊆ T , its ε-cover

is defined as the coverage of A with open balls of radius ε and centers in T . The set

Aε comprising the centers of these covering balls is called an ε-net of A. The minimum
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number of ε-balls which can cover A is called the ε-covering number of A, and is given by

N ε
cov (A, d) = min {|Aε| : Aε is an ε-net of A} (C.2)

In computational theory of learning, ε-net constructs are often useful in converting a union

over the elements of a continuous set to a finite sized union.

Proposition C.1 ( [147]). Let B(0, 1) be a unit ball in Rn centered at 0. Then, its ε-

covering number with respect to the standard Euclidean metric is bounded as

N ε
cov (B(0, 1), ||·||2) ≤

(
3

ε

)n
. (C.3)

C.3 α-Rényi Divergence

Let (X ,F) be a measurable space and P and Q be two probability measures on F with

densities p and q, respectively, with respect to the dominating Lebesgue measure µ on F .

For α ∈ R+\1, the Rényi divergence of order α between P and Q, denoted Dα(p||q), is

defined as

Dα(p||q) =
1

α− 1
log

∫

X
p(x)αq(x)1−αµ(dx). (C.4)

Dα(p||q) is a nondecreasing function of α. For α ∈ [0, 1), Dα(p||q) < DKL(p||q), with

limα→1Dα(p||q) = DKL(p||q), where DKL is the Kullback-Leibler divergence [85].

For p = N (0,Σ1) and q = N (0,Σ2), the α-Rényi divergence Dα(p||q) is available in

closed form [86],

Dα(p||q) =
1

2(1− α)
log
|(1− α)Σ1 + αΣ2|
|Σ1|1−α |Σ2|α

. (C.5)
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C.3.1 Lower Bound for α-Rényi Divergence Between Multivari-

ate Gaussian Distributions

Theorem C.1 provides a lower bound for the Rényi divergence between two multivariate

Gaussian distributions.

Theorem C.1. Let p1 and p2 be two multivariate Gaussian distributions with zero mean

and positive definite covariance matrices Σ1 and Σ2, respectively. Then, the 1
2
-Rényi

divergence between p1 and p2 satisfies

D1/2(p1, p2) ≥ 1

2
tr
(
(Σ1 −Σ2) (Σ1 + Σ2)−1 (Σ1 −Σ2) (Σ1 + Σ2)−1) .

Proof. From (C.5), by using the property: log |XY| = log |X| + log |Y| for any positive

definite matrices X and Y, we have

D1/2(p1, p2) = log

∣∣∣∣
Σ1 + Σ2

2

∣∣∣∣−
1

2
log |Σ1| −

1

2
log |Σ2|

= log

∣∣∣∣∣
Im + Σ

−1/2
1 Σ2Σ

−1/2
1

2

∣∣∣∣∣+
1

2
log |Σ1| −

1

2
log |Σ2|

= log

∣∣∣∣∣
Im + Σ

−1/2
1 Σ2Σ

−1/2
1

2

∣∣∣∣∣+
1

2
log
∣∣∣Σ1/2

1 Σ−1
2 Σ

1/2
1

∣∣∣

= log

∣∣∣∣
Im + H−1

2

∣∣∣∣+
1

2
log |H| = log

∣∣∣∣
H1/2 + H−1/2

2

∣∣∣∣ , (C.6)

where H , Σ
1/2
1 Σ−1

2 Σ
1/2
1 . Suppose H admits the eigenvalue decomposition H = UΛUT

with the real and positive diagonal entries of Λ = diag (λ1, λ2, . . . , λm) denoting the eigen-

values of H, and the orthonormal columns of U denoting the eigenvectors of H. By non-

negativity of KL divergence, for any positive definite matrix X, log |X| ≥ tr (I−X−1).
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Therefore, using (C.6), we have

D1/2 (p1, p2) ≥ tr

(
Im −

(
H1/2 + H−1/2

2

)−1
)

=
m∑

i=1


1−

(
λ

1/2
i + λ

−1/2
i

2

)−1



=
m∑

i=1

(
1− 2

√
λi

λi + 1

)

=
m∑

i=1

(
√
λi − 1)2

λi + 1

=
m∑

i=1

(λi − 1)2

(1 + λi)(1 +
√
λi)2

≥
m∑

i=1

(λi − 1)2

2(1 + λi)2

=
1

2
tr
(
(Λ− Im)(Im + Λ)−1(Λ− Im)(Im + Λ)−1

)

=
1

2
tr
(
(H− Im)(Im + H)−1(H− Im)(Im + H)−1

)
. (C.7)

Plugging H = Σ
1/2
1 Σ−1

2 Σ
1/2
1 back in (C.7), we obtain the desired lower bound for

D1/2(p1, p2) as shown below.

D1/2 (p1, p2) ≥ 1

2
tr
(

(Σ
1/2
1 Σ−1

2 Σ
1/2
1 − Im)(Im + H)−1(Σ

1/2
1 Σ−1

2 Σ
1/2
1 − Im)(Im + H)−1

)

=
1

2
tr
(
Σ

1/2
1 (Σ−1

2 −Σ−1
1 )Σ

1/2
1 (Im + H)−1Σ

1/2
1 (Σ−1

2 −Σ−1
1 )Σ

1/2
1 (Im + H)−1

)

=
1

2
tr
(
Σ−1

1 (Σ1 −Σ2)Σ−1
2 Σ

1/2
1 (Im + H)−1Σ

1/2
1 Σ−1

1 (Σ1 −Σ2)Σ−1
2 Σ

1/2
1 (Im + H)−1Σ

1/2
1

)

=
1

2
tr
[
(Σ1 −Σ2)

(
Σ−1

2 Σ
1/2
1 (Im + H)−1Σ

−1/2
1

)
(Σ1 −Σ2)

(
Σ−1

2 Σ
1/2
1 (Im + H)−1Σ

−1/2
1

)]

=
1

2
tr
[
(Σ1 −Σ2)

(
Σ−1

2 (Im + Σ1Σ
−1
2 )−1

)
(Σ1 −Σ2)

(
Σ−1

2 (Im + Σ1Σ
−1
2 )−1

)]

=
1

2
tr
[
(Σ1 −Σ2) (Σ2 + Σ1)−1 (Σ1 −Σ2) (Σ2 + Σ1)−1] .
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C.4 Concentration of Sample Covariance Matrix

Proposition C.2 (Vershynin [79]). Let y1,y2, . . . ,yL ∈ Rm be L independent samples

from N (0,Σ), and let ΣL = 1
L

∑L
j=1 yjy

T
j denote the sample covariance matrix. Then, for

any ε > 0,

|||ΣL −Σ|||2 ≤ ε |||Σ|||2 , (C.8)

holds with probability exceeding 1−δ provided L ≥ C
ε2

log 2
δ
. Here, C is an absolute constant.

C.5 Spectral Norm Bound for Gaussian Matrices

Proposition C.3 (Corollary 5.35 in [79]). Let A be an m × n matrix whose entries are

independent standard normal random variables. Then for every t ≥ 0, with probability at

least 1− 2e−t
2/2, one has

|||A|||2 ≤
√
m+

√
n+ t.

The following corollary discusses a probabilistic bound for the spectral norm of a sub-

matrix of an m× n sized Gaussian matrix obtained by sampling any of its k columns.

Corollary C.1. Let A be an m× n sized matrix whose entries are independent standard

normal random variables. Then, for any S ⊆ [n], |S| ≤ k, the submatrix AS obtained by

sampling the columns of A indexed by S satisfies

|||AS |||2 ≤
√
m+

√
k +

√
6k log n.

with probability exceeding 1− 2n−k.
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Proof. For a fixed support S, |S| ≤ k, from Proposition C.3, we have

P
(
|||AS |||2 ≥

√
m+

√
k +

√
6k log n

)
≤ 2e−3k logn. (C.9)

Taking the union bound over all
(
n
1

)
+
(
n
2

)
+ . . .+

(
n
k

)
≤
(

3en
2

)k
submatrices of A containing

k or fewer columns, we get

P


 ⋃

S⊂[n]:|S|≤k

{
|||AS |||2 ≥

√
m+

√
k +

√
6k log n

}



≤
(

3ne

2

)k
P
(
|||AS |||2 ≥

√
m+

√
k +

√
6k log n

)

≤ 2e−3k logn+k log(3ne/2) ≤ 2

nk
. (C.10)

for n > 5.
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Appendix for Chapter 2

D.1 Derivation of the M-step Cost Function

The conditional expectation in (2.7) can be simplified as:

EX

[
log p(Y,X;γ)|Y;γk

]
= EX|Y;γk [log p(Y|X) + log p(X;γ)]

= EX|Y;γk log p(Y|X) +
∑

j∈J

E[xj |yj ;γk] log p(xj;γ).

(D.1)

Using (2.1), and discarding the terms independent of γ in (D.1), the M-step objective

function Q(γ|γk) is given by

Q(γ|γk) =
∑

j∈J

Exj |yj ,γk

(
−1

2
log |Γ| − 1

2
xTj Γ−1xj

)

= −1

2

∑

j∈J

(
log |Γ|+

n∑

i=1

Exj∼N (µk+1
j ,Σk+1)xj(i)

2

γ(i)

)

= −1

2

∑

j∈J

n∑

i=1

(
log γ(i) +

Σk+1(i, i) + µk+1
j (i)2

γ(i)

)
. (D.2)
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Appendix for Chapter 3

E.1 Proof of the Probabilistic k-RIC Bound

(Theorem 3.2)

Proof. The proof of Theorem 3.2 starts with a variational definition of the k-RIC,

δk

(
A√
m
� B√

m

)
given below.

δk

(
A√
m
� B√

m

)
= sup

z∈Rn,
||z||2=1,||z||0≤k

∣∣∣∣∣

∣∣∣∣
∣∣∣∣
(

A√
m
� B√

m

)
z

∣∣∣∣
∣∣∣∣
2

2

− 1

∣∣∣∣∣ . (E.1)

In order to find a probabilistic upper bound for δk, we intend to find a constant δ ∈ (0, 1)

such that P(δk

(
A√
m
� B√

m

)
≥ δ) is arbitrarily close to zero. We therefore consider the tail

event

E ,





sup
z∈Rn,

||z||2=1,||z||0≤k

∣∣∣∣∣

∣∣∣∣
∣∣∣∣
(

A√
m
� B√

m

)
z

∣∣∣∣
∣∣∣∣
2

2

− 1

∣∣∣∣∣ ≥ δ




, (E.2)

and show that for m sufficiently large, P(E) can be driven arbitrarily close to zero. In other

words, the constant δ serves as a probabilistic upper bound for δk

(
A√
m
� B√

m

)
. Let Uk

denote the set of all k or less sparse unit norm vectors in Rn. Then, using Proposition 3.1,
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the tail event in (E.2) can be rewritten as

P(E) = P
(

sup
z∈Uk

∣∣∣zT (A�B)T (A�B) z−m2
∣∣∣ ≥ δm2

)

= P
(

sup
z∈Uk

∣∣zT
(
ATA ◦BTB

)
z−m2

∣∣ ≥ δm2

)

= P

(
sup
z∈Uk

∣∣∣∣∣
n∑

i=1

n∑

j=1

zizj
(
aTi aj

) (
bTi bj

)
−m2

∣∣∣∣∣ ≥ δm2

)
(E.3)

where ai and bi denote the ith column of A and B, respectively. Further, by applying the

triangle inequality and the union bound, the above tail probability splits as

P(E) ≤ P

(
sup
z∈Uk

∣∣∣∣∣
n∑

i=1

z2
i ||ai||22 ||bi||

2
2 −m2

∣∣∣∣∣ ≥ αδm2

)

+P

(
sup
z∈Uk

∣∣∣∣∣
n∑

i=1

n∑

j=1,j 6=i

zizja
T
i ajb

T
i bj

∣∣∣∣∣ ≥ (1− α)δm2

)
. (E.4)

In the above, α ∈ (0, 1) is a variational union bound parameter which can be optimized

at a later stage. We now proceed to find separate upper bounds for each of the two

probability terms in (E.4).

The first probability term in (E.4) admits the following sequence of relaxations.

P

(
sup
z∈Uk

∣∣∣∣∣
n∑

i=1

z2
i ||ai||22 ||bi||

2
2 −m2

∣∣∣∣∣ ≥ αδm2

)

(a)

≤ P

(
sup
z∈Uk

n∑

i=1

z2
i

∣∣||ai||22 ||bi||
2
2 −m2

∣∣ ≥ αδm2

)

(b)

≤ P
(

max
1≤i≤n

∣∣||ai||22 ||bi||
2
2 −m2

∣∣ ≥ αδm2

)

(c)
= P

( ⋃

1≤i≤n

{∣∣||ai||22 ||bi||
2
2 −m2

∣∣ ≥ αδm2
}
)

(d)
= nP

(∣∣||a1||22 ||b1||22 −m2
∣∣ ≥ αδm2

)

(e)

≤ nP
(∣∣||a1||22 −m

∣∣ ∣∣||b1||22 −m
∣∣ ≥ αβδm2

)
+ 2nP

(∣∣||a1||22 −m
∣∣ ≥ α(1− β)δm

2

)
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(f)

≤ 2nP
(∣∣||a1||22 −m

∣∣ ≥
√
αβδm

)
+ 2nP

(∣∣||a1||22 −m
∣∣ ≥ α(1− β)δm

2

)
.

(g)

≤ 4nP
(∣∣||a1||22 −m

∣∣ ≥ αδm

2

(
1− αδ

4

))

(h)

≤ 8ne−cm
α2δ2

4κ4
(1−αδ/4)2 = 8n

−
(
cmα2δ2(1−αδ/4)2

4κ4 logn
−1

)
. (E.5)

In the above, step (a) follows from the triangle inequality combined with the fact that z2
i ’s

sum to one. The inequality in step (b) is a consequence of the fact that any nonnegative

convex combination of n arbitrary numbers is at most the maximum among the n numbers.

Step (c) is obtained by simply rewriting the tail event for the maximum of n random

variables as the union of tail events for the individual random variables. Step (d) is the

application of the union bound over values of index i ∈ [n] and exploiting the i.i.d. nature

of the columns of A and B. Step (e) is the union bound combined with the fact that for

any two vectors a,b ∈ Rm, the following triangle inequality holds:

∣∣||a||22 ||b||
2
2 −m2

∣∣ ≤
∣∣(||a||22 −m

) (
||b||22 −m

)∣∣+m
∣∣||a||22 −m

∣∣+m
∣∣||b||22 −m

∣∣ .

In step (e), β ∈ (0, 1) is a variational union bound parameter. Step (f) is once again the

union bound which exploits the fact that the columns a1 and b1 are identically distributed.

Step (g) is obtained by setting β = αδ/4. Lastly, step (h) is the Hanson-Wright inequality

(Theorem B.1) applied to the subgaussian vector a1.

Next, we turn our attention to the second tail probability term in (E.4). We note that

sup
z∈Uk

∣∣∣∣∣
n∑

i=1

n∑

j=1,j 6=i

zizja
T
i ajb

T
i bj

∣∣∣∣∣ ≤ sup
z∈Uk

n∑

i=1

n∑

j=1,j 6=i

|zizj|
∣∣aTi aj

∣∣ ∣∣bTi bj
∣∣

≤ sup
z∈Uk

(
n∑

i=1

n∑

j=1,j 6=i

|zizj|
)
 max
i,j∈supp(u),

i 6=j

∣∣aTi aj
∣∣ ∣∣bTi bj

∣∣


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≤ k


max
i,j∈[n],
i 6=j

∣∣aTi aj
∣∣ ∣∣bTi bj

∣∣

 , (E.6)

where the second step is the application of the Hölders inequality. The last step uses the

fact that ||z||1 ≤
√
k for z ∈ Uk. Using (E.6), and by applying the union bound over

(
n
2

)

possible distinct (i, j) pairs, the second probability term in (E.4) can be bounded as

P

(
sup
z∈Uk

∣∣∣∣∣
n∑

i=1

n∑

j=1,j 6=i

zizja
T
i ajb

T
i bj

∣∣∣∣∣ ≥ (1− α)δm2

)

≤ n2

2
P
(∣∣aT1 a2

∣∣ ∣∣bT1 b2

∣∣ ≥ (1− α)δm2

k

)

≤ n2P

(
∣∣aT1 a2

∣∣ ≥
√

(1− α)δm√
k

)

≤ 2n2e−
c(1−α)δm

κ2k = 2n
−
(
c(1−α)δm
κ2k logn

−2
)
. (E.7)

The last inequality in the above is obtained by using the tail bound for |aT1 a2| from

Corollary B.1. Finally, by combining (E.4), (E.5) and (E.7), and setting α = 1/2, we

obtain the following simplified tail bound,

P(E) ≤ 8n
−
(
cmδ2(1−δ/8)2

16κ4 logn
−1

)
+ 2n

−
(

cδm
2κ2k logn

−2
)
. (E.8)

From (E.8), form > max
(

4γκ2k logn
cδ

, 32γκ4 logn
cδ2(1−δ/8)2

)
and any γ > 1, we have P(E) < 10n−2(γ−1).

Note that, in terms of k and n, the first term in the inequality for m scales as k log n; it

dominates the second term, which scale as log n. This ends our proof.
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E.2 Proof of Theorem 3.3

Proof. The proof of Theorem 3.3 is along similar lines as that of Theorem 3.2. We consider

the tail event

E1 ,

{
sup
z∈Uk

∣∣∣∣∣

∣∣∣∣
∣∣∣∣
(

A√
m
� A√

m

)
z

∣∣∣∣
∣∣∣∣
2

2

− 1

∣∣∣∣∣ ≥ δ

}
, (E.9)

and show that for sufficiently large m, P(E1) can be driven arbitrarily close to zero, thereby

implying that δ is a probabilistic upper bound for δk ((A/
√
m�A/

√
m)). Once again, Uk

denotes the set of all k or less sparse unit norm vectors in Rm. We note that P(E1) admits

the following union bound:

P(E1) = P
(

sup
z∈Uk

∣∣∣zT (A�A)T (A�A) z−m2
∣∣∣ ≥ δm2

)

= P
(

sup
z∈Uk

∣∣zT
(
ATA ◦ATA

)
z−m2

∣∣ ≥ δm2

)

= P

(
sup
z∈Uk

∣∣∣∣∣
n∑

i=1

n∑

j=1

zizj
(
aTi aj

)2 −m2

∣∣∣∣∣ ≥ δm2

)

≤ P

(
sup
z∈Uk

∣∣∣∣∣
n∑

i=1

z2
i ||ai||42 −m2

∣∣∣∣∣ ≥ αδm2

)

+P

(
sup
z∈Uk

∣∣∣∣∣
n∑

i=1

n∑

j=1,j 6=i

zizj
(
aTi aj

)2

∣∣∣∣∣ ≥ (1− α)δm2

)
. (E.10)

In the above, the second identity follows from Proposition 3.1. The last inequality uses

the triangle inequality followed by the union bound, with α ∈ (0, 1) being a variational

parameter to be optimized later. Similar to the proof of Theorem 3.2, we now derive

separate upper bounds for each of the two probability terms in (E.10).

The first term in (E.10) admits the following series of relaxations.

P

(
sup
z∈Uk

∣∣∣∣∣
n∑

i=1

z2
i ||ai||42 −m2

∣∣∣∣∣ ≥ αδm2

)
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(a)

≤ P

(
sup
z∈Uk

n∑

i=1

z2
i

∣∣||ai||42 −m2
∣∣ ≥ αδm2

)

(b)

≤ P
(

max
1≤i≤n

∣∣||ai||42 −m2
∣∣ ≥ αδm2

)

(c)

≤ nP
(∣∣||a1||42 −m2

∣∣ ≥ αδm2
)
.

(d)

≤ nP
(∣∣||a1||22 −m

∣∣2 ≥ αβδm2
)

+ nP
(∣∣||a1||22 −m

∣∣ ≥ α(1− β)δm

2

)

(e)

≤ nP
(∣∣||a1||22 −m

∣∣ ≥
√
αβδm

)
+ nP

(∣∣||a1||22 −m
∣∣ ≥ α(1− β)δm

2

)
.

(f)

≤ 2nP
(∣∣||a1||22 −m

∣∣ ≥ αδm

2

(
1− αδ

4

))

(g)

≤ 4ne−cm
α2δ2

4κ4
(1−αδ/4)2 = 4n

−
(
cmα2δ2(1−αδ/4)2

4κ4 logn
−1

)
. (E.11)

In the above, step (a) is the triangle inequality. The inequality in step (b) follows from the

fact that nonnegative convex combination of n arbitrary numbers is at most the maximum

among the n numbers. Step (c) is a union bound. Step (d) is also a union bounding

argument with β ∈ (0, 1) as a variational parameter, combined with the fact that for any

vector a, the triangle inequality
∣∣||a||42 −m2

∣∣ ≤
∣∣||a||22 −m

∣∣2 + 2m
∣∣||a||22 −m

∣∣ is always

true. Step (f) is obtained by choosing the union bound parameter β = αδ/4. Finally, step

(g) is the Hanson-Wright inequality (Theorem B.1) applied to the subgaussian vector a1.

Next, we derive an upper bound for the second tail probability term in (E.4). We observe

that

sup
z∈Uk

∣∣∣∣∣
n∑

i=1

n∑

j=1,j 6=i

zizj
(
aTi aj

)2

∣∣∣∣∣ ≤ sup
z∈Uk

n∑

i=1

n∑

j=1,j 6=i

|zizj|
(
aTi aj

)2

≤ sup
z∈Uk

(
n∑

i=1

n∑

j=1,j 6=i

|zizj|
)
 max
i,j∈supp(u),

i 6=j

∣∣aTi aj
∣∣2



≤ k


max
i,j∈[n],
i 6=j

∣∣aTi aj
∣∣2

 , (E.12)
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where the second step is the application of the Hölders inequality. The last step uses the

fact that ||z||1 ≤
√
k for z ∈ Uk. Using (E.12), and by applying the union bound over

(
n
2

)

possible distinct (i, j) pairs, the second probability term in (E.4) can be bounded as

P

(
sup
z∈Uk

∣∣∣∣∣
n∑

i=1

n∑

j=1,j 6=i

zizj
(
aTi aj

)2

∣∣∣∣∣ ≥ (1− α)δm2

)

≤ n2

2
P
(∣∣aT1 a2

∣∣2 ≥ (1− α)δm2

k

)

≤ n2P

(
∣∣aT1 a2

∣∣ ≥
√

(1− α)δm√
k

)

≤ n2e−
c(1−α)δm

κ2k = n
−
(
c(1−α)δm
κ2k logn

−2
)
. (E.13)

The last inequality in the above is obtained by using the tail bound for |aT1 a2| from

Corollary B.1. Finally, by combining (E.10), (E.11) and (E.13), and setting α = 1/2, we

obtain the following tail bound.

P(E) ≤ 4n
−
(
cmδ2(1−δ/8)2

16κ4 logn
−1

)
+ n

−
(

cδm
2κ2k logn

−2
)

(E.14)

From (E.14), we observe that for m > max
(

4γκ2k logn
cδ

, 32γκ4 logn
cδ2(1−δ/8)2

)
and any γ > 1, we have

P(E) < 5n−2(γ−1). Note that, in terms of k and n, the first term in the inequality for m

scales as k logn
δ

; it dominates the second term, which scale as log n.
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Appendix for Chapter 4

F.1 Proof of Proposition 4.1

Proof. The following stepwise procedure shows how to construct a δ-net of Θ(S) (with

respect to the Euclidean distance metric) which is entirely contained in Θ(S).

1. Consider the δ-blow up of Θ(S), denoted by Θ↑δ(S), and defined as

Θ↑δ(S) , {x : ∃x′ ∈ Θ(S) such that ‖x− x′‖2 ≤ δ} .

2. Let Θδ
↑δ(S) be a δ-net of Θ↑δ(S). Some points in Θδ

↑δ(S) may lie outside Θ(S).

3. Let P denote the set containing the projections of all points in Θδ
↑δ(S)∩Θ(S)c onto

the set Θ(S). By construction, P ⊂ Θ(S), and |P| ≤ |Θδ
↑δ(S) ∩Θ(S)c|.

4. Then, Θδ(S) ,
(
Θδ
↑δ(S) ∩Θ(S)

)
∪ P is a valid δ-net of Θ(S) which is entirely

contained in Θ(S).

To prove the validity of the above δ-net construction, we need to show that for any

γ ∈ Θ(S), there exists an element a in Θδ(S) such that ‖γ−a‖2 ≤ δ. Let γ be an arbitrary
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element in Θ(S). Then, γ also belongs to the larger set Θ↑δ(S), and consequently, there

exists γ ′ ∈ Θδ
↑δ(S) such that ‖γ − γ ′‖2 ≤ δ. Now, there are two cases. (i) γ ′ ∈ Θ(S), and

(ii) γ ′ /∈ Θ(S).

In case (i), γ ′ ∈
(
Θδ
↑δ(S) ∩Θ(S)

)
, and hence also belongs to Θδ(S). Further, ‖γ−γ ′‖2 ≤

δ. Hence a = γ ′ will work.

In case (ii), γ ′ ∈ Θδ
↑δ(S)∩Θ(S)c. Let γ ′′ be the projection of γ ′ onto Θ(S), then γ ′′ must

belong to P , and hence must also belong to Θδ(S). Note that since γ ′′ is the projection of

γ ′ onto the convex set Θ(S), for any γ ∈ Θ(S), we have 〈γ − γ ′′,γ ′ − γ ′′〉 ≤ 0. Further,

we have

δ ≥ ||γ − γ ′||22 = ||(γ − γ ′′) + (γ ′′ − γ ′)||22

= ||γ − γ ′′||22 + ||γ ′′ − γ ′||22 + 2〈γ − γ ′′,γ ′′ − γ ′〉

≥ ||γ − γ ′′||22 . (F.1)

The last inequality is obtained by dropping the last two nonnegative terms in the RHS.

From (F.1), a = γ ′′ will work.

Since case (i) and (ii) together are exhaustive, Θδ(S) in step-4 is a valid δ-net of Θ(S)

which is entirely inside Θ(S).

Cardinality of Θδ(S): The diameter of Θ(S) is
√
|S|(γmax − γmin). Based on the con-

struction in step-4, the cardinality of Θδ(S) can be upper bounded as:

|Θδ(S)| = |Θδ
↑δ(S) ∩Θ(S)|+ |Θδ

↑δ(S) ∩Θ(S)c|

= |Θδ
↑δ(S)| ≤

∣∣∣δ-net of `2 ball of radius
√
|S|(γmax − γmin) in R|S|

∣∣∣
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≤ max


1,

(
3
√
|S|(γmax − γmin)

δ

)|S|
 . (F.2)

The last step is an extension of the volumetric arguments in [147] to show that the δ-

covering number of a unit ball B1(0) in Rk with respect to the standard Euclidean norm

||·||2 satisfies N δ
cov (B1(0), ||·||2) ≤ (3/δ)k. The max operation with unity covers the case

when δ is larger than the diameter of Θ(S).

Now consider the modified net Θε/CL,S (S) obtained by setting δ = ε
CL,S

in steps 1-4,

where CL,S is the Lipschitz constant of L(Y,γ) with respect to γ ∈ Θ(S). We claim that

Θ
ε/CL,S
S is the desired set which simultaneously satisfies conditions (i) and (ii) stated in

Proposition 4.1.

To show condition (i), we observe that since Θ
ε/CL,S
S is an (ε/CL,S)-net of Θ(S) with

respect to ||·||2, for any γ ∈ Θ(S), there exists a γ ′ ∈ Θε/CL,S (S) such that ||γ − γ ′||2 ≤

ε/CL,S . Since L(Y,γ) is CL,S-Lipschitz in Θ(S), it follows that |L(Y,γ)− L(Y,γ ′)| ≤

CL,S ||γ − γ ′||2 ≤ ε.

Condition (ii) follows from (F.2) by setting δ = ε/CL,S .

F.2 Proof of Theorem 4.1

Proof. For continuous probability densities pγ and pγ∗ defined on the observation space

Rm, the tail probability of the random variable log (pγ(Y)/pγ∗(Y)) has a Chernoff upper

bound with parameter t > 0 as shown below.

P
(

log
pγ(Y)

pγ∗(Y)
≥ −ε

)
= P

(
L∑

j=1

log
pγ(yj)

pγ∗(yj)
≥ −ε

)

≤ Epγ∗

[
exp

(
t

L∑

j=1

log
pγ(yj)

pγ∗(yj)

)]
exp (tε)
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=

(
Epγ∗

[
exp

(
t log

pγ(y)

pγ∗(y)

)])L
exp (tε)

=

(
Epγ∗

[(
pγ(y)

pγ∗(y)

)t])L

exp (tε)

=

(∫

y∈Y
pγ(y)tpγ∗(y)1−tdy

)L
exp (tε)

= exp
(
−L

[
t
(
− ε
L

)
− (t− 1)Dt(pγ , pγ∗)

])
. (F.3)

In the above, the first and third steps follow from the independence of yj. The second

step is the application of Chernoff bound. The last step is obtained by using the definition

of the Rényi divergence from (C.4) and rearranging the terms in the exponent.

By introducing the function ψ(t) = (t− 1)Dt(pγ , pγ∗), the Chernoff bound (F.3) can be

restated as

P
(

log
pγ(Y)

pγ∗(Y)
≥ −ε

)
≤ exp

(
−L

[
t
(
− ε
L

)
− ψ(t)

])
. (F.4)

For t = arg supt>0

(
t
(
− ε
L

)
− ψ(t)

)
, the upper bound in (F.4) attains its tightest value

exp (−Lψ∗(−ε/L)), where ψ∗ is the Legendre transform of ψ.

F.3 Proof of Theorem 4.3

Proof. Consider the unit norm m2 length vector w ,
1{1,m+2,2m+3,...,m2}√

m
. We call w the

“Hadamard sampler”, as it samples the m rows of the Hadamard submatrix contained

within A�A. Let b = (A�A)Tw, then

b(i) =
(ai ◦ ai)

T1m√
m

=
||ai||22√
m
∀i ∈ [n], (F.5)
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where ai denotes the ith column of A. Since we have assumed that ||ai||22 ∈ [1− α, 1 + α],

1− α√
m

1n � (A�A)Tw � 1 + α√
m

1n. (F.6)

For ease up the notation, let X = A � A. Given projection matrices wwT and Π =

Im −wwT , one can write

vTXTXv = vTXTwwTXv + vTXTΠXv

≥ vTXTwwTXv

= vT+XTwwTXv+ + vT−XTwwTXv− − 2vT+XTwwTXv−

(a)

≥ (1− α)2

m

(
vT+1n1

T
nv+

)
+

(1− α)2

m

(
vT−1n1

T
nv−

)
− 2

(1 + α)2

m

(
vT+1n1

T
nv−

)

=
(1− α)2

m

(
||v+||21 + ||v−||21

)
− 2 ||v+||1 ||v−||1

(1 + α)2

m

=
(1− α)2

m

(
||v+||21 + ||v−||21

)
[

1− 2 ||v+||1 ||v−||1
||v+||21 + ||v−||21

(
1 + α

1− α

)2
]
. (F.7)

In above, step (a) follows from (F.6). We observe that for ||v+||1 > 4
(

1+α
1−α

)2 ||v−||1, the

ratio
2||v+||1||v−||1
||v+||21+||v−||21

≤ 1
2

(
1−α
1+α

)2
, and therefore

vTXTXv ≥ (1− α)2

2m

(
||v+||21 + ||v−||21

)
.

F.4 Proof of Proposition 4.2

Proof. From Theorem C.1, we have the following pointwise lower bound.

D1/2 (pγ , pγ∗) ≥ tr
(
(Σγ −Σγ∗) (Σγ + Σγ∗)

−1 (Σγ −Σγ∗) (Σγ + Σγ∗)
−1) . (F.8)
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Let ∆Γ = diag(∆γ), where ∆γ , γ−γ∗. Also, let Σγ+γ∗ , Σγ+Σγ∗ . Then, D1/2(pγ , pγ∗)

can be further bounded as follows.

D1/2(pγ , pγ∗) ≥ tr
(
Σ−1

γ+γ∗(A∆ΓAT )Σ−1
γ+γ∗(A∆ΓAT )

)

≥ tr
(
(A∆ΓAT )Σ−1

γ+γ∗(A∆ΓAT )
)

|||Σγ+γ∗|||2
≥ tr

(
(A∆ΓAT )(A∆ΓAT )

)

|||Σγ+γ∗|||22

=

∣∣∣∣A∆ΓAT
∣∣∣∣2
F

|||Σγ+γ∗|||22
=
||(A�A)∆γ||22
|||Σγ+γ∗|||22

. (F.9)

In above, the second and third inequalities are obtained by repeatedly applying the trace

inequality: tr (A−1B) ≥ tr(B)/ |||A|||2 for any positive definite A and positive semidefi-

nite B. The last step follows from the identity: vec(A∆ΓAT ) = (A�A)∆γ.

Next, we derive an upper bound for the spectral norm of Σγ+γ∗ as shown below.

|||Σγ+γ∗|||2 =
∣∣∣∣∣∣σ2Im + A(Γ + Γ∗)AT

∣∣∣∣∣∣
2

≤ σ2 + 2γmax

∣∣∣∣∣∣AT
S∪S∗AS∪S∗

∣∣∣∣∣∣
2
. (F.10)

Finally, using (F.10) in (F.9), we obtain the desired lower bound for D1/2(pγ , pγ∗).

F.5 Proof of Proposition 4.3

Proof. Let us define ∆γ = γ − γ∗ which also splits as

∆γ = ∆γ+ −∆γ−, (F.11)

where ∆γ+ and ∆γ− are nonnegative vectors in Rn
+ with non-overlapping supports and

containing absolute values of positive and negative coefficients of ∆γ, respectively. Let S
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and S∗ denote the nonzero supports of γ and γ∗, respectively, that differ in exactly kS,S
∗

d

locations. By construction of ∆γ+ and ∆γ−, we have

||∆γ||22 ≥ kS,S
∗

d γ2
min (F.12)

(
|S∗| − kS,S∗d

)
+
γmin ≤

∣∣∣∣∆γ−
∣∣∣∣

1
≤ |S∗|γmax (F.13)

(
kS,S

∗

d − |S∗|
)

+
γmin ≤

∣∣∣∣∆γ+

∣∣∣∣
1
≤ kS,S

∗

d γmax + |S∗|(γmax − γmin) (F.14)

We introduce Kthreshold ,
(

1 + 4γmax

γmin

(
1+α
1−α

)2
)
K, and B ,

{
S ∈ [n] : kS,S

∗

d ≤ Kthreshold

}
.

Then, from (4.14), we have

η = min
S⊆[n]

D∗S
kS,S

∗

d

= min

(
min
S∈B

D∗S
kS,S

∗

d

, min
S∈Bc

D∗S
kS,S

∗

d

)
. (F.15)

Note that for supp(γ) = S and S ∈ B, we have ||(A�A)∆γ||22 ≥ β ||∆γ||22. Using the

lower bound on D∗S derived in Proposition 4.2, we can bound minS∈B
D∗S
kS,S

∗
d

as follows.

min
S∈B

D∗S
kS,S

∗

d

= min
S∈B

β ||∆γ||22
kS,S

∗

d (σ2 + 2γmaxσ
2
max(AS∪S∗))

2

≥ min
S∈B

βkS,S
∗

d γ2
min

kS,S
∗

d (σ2 + 2γmaxσ
2
max(AS∪S∗))

2

≥ γ2
min

(σ2 + 2γmax)2

(
β

δ2
(K+Kthreshold)

)
. (F.16)

For the case where S ∈ Bc, i.e., kS,S
∗

d > Kthreshold, it follows from (F.13) and (F.14) that

∣∣∣∣∆γ+

∣∣∣∣
1
≥ 4

(
1+α
1−α

) ∣∣∣∣∆γ−
∣∣∣∣

1
. Therefore, we can invoke the restricted null space property

of A�A from Theorem 4.3 to bound minS∈Bc
D∗S
kS,S

∗
d

as follows.

min
S∈Bc

D∗S
kS,S

∗

d

≥ min
S∈Bc

(∣∣∣∣∆γ+

∣∣∣∣2
1

+
∣∣∣∣∆γ−

∣∣∣∣2
1

)

2mkS,S
∗

d (σ2 + 2γmaxσ
2
max(AS∪S∗))

2
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≥ min
S∈Bc

γ2
min

(∣∣∣∣∆γ+

∣∣∣∣2
0

+
∣∣∣∣∆γ−

∣∣∣∣2
0

)

2mkS,S
∗

d (σ2 + 2γmax)2 (max (1, σ2
max(AS∪S∗)))

2

≥ min
S∈Bc

γ2
min

(
kS,S

∗

d − |S∗|
)2

2mkS,S
∗

d (σ2 + 2γmax)2 (max (1, σ2
max(AS∪S∗)))

2

≥ γ2
min

2m (σ2 + 2γmax)2 min
S∈Bc

(
1− |S

∗|
kS,S

∗

d

)(
min
S∈Bc

kS,S
∗

d − |S∗|
(max (1, σ2

max(AS∪S∗)))
2

)

≥ γ2
min

2m (σ2 + 2γmax)2

(
1− K

Kthreshold

)(
min
S∈Bc

kS,S
∗

d − |S∗|
(max (1, σ2

max(AS∪S∗)))
2

)

≥ 2γ2
min

5m (σ2 + 2γmax)2

(
min
S∈Bc

kS,S
∗

d − |S∗|
|S ∪ S∗|

)(
min
S∈Bc

|S ∪ S∗|
(max (1, σ2

max(AS∪S∗)))
2

)

≥ 2γ2
min

5m (σ2 + 2γmax)2

(
min
S∈Bc

kS,S
∗

d − |S∗|
kS,S

∗

d + |S∗|

)(
min
S∈Bc

|S ∪ S∗|
(max (1, σ2

max(AS∪S∗)))
2

)

≥ γ2
min

4mδn (σ2 + 2γmax)2

(
min
S∈Bc

|S ∪ S∗|
δ|S∪S∗|

)
. (F.17)

Using (F.16) and (F.17) in (F.15), we obtain the following lower bound for η.

η ≥ γ2
min

(σ2 + 2γmax)2 min

(
β

δ2
(K+Kthreshold)

,
1

4mδn
min
S∈Bc

|S ∪ S∗|
δ|S∪S∗|

)
.

(F.18)

This concludes our proof.

F.6 Proof of Proposition 4.4

Proof. By setting ε = LD∗S/2 in Proposition 4.1, and noting that D∗S ≥ ηkS,S
∗

d , we have

|Θε(S)| ≤ max



1,

(
6
√
|S|(γmax − γmin)CL,S

LηkS,S∗d

)|S|
 . (F.19)

where CL,S denotes the Lipschitz constant of L(Y;γ) with respect to γ over the bounded

domain Θ(S). Proposition F.1 characterizes the Lipschitz property of L(Y,γ).
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Proposition F.1. For S ∈ Sn, the log-likelihood L(Y;γ) : Θ(S) → R is Lipschitz

continuous in γ as shown below.

|L(Y,γ2)− L(Y,γ1)| ≤ mL

γmin

(
1 +
|||Ryy|||2

σ2

)
||γ2 − γ1||2 ,

for any γ1,γ2 ∈ Θ(S). Here, Ryy , 1
L
YYT .

Proof. See Appendix F.7.

For Y ∈ G (as defined in (4.6)), we have |||Ryy|||2 ≤ 2 (σ2 + γmaxδK). Using Propo-

sition F.1 in (F.19), combined with the lower bound for η in (4.20) yields the following

bound for κcov when γmin 6= γmax.

κcov = max
S⊆[n]

log
∣∣ΘLD∗S (S)|G

∣∣
kS,S

∗

d

≤ max
S⊆[n]

|S|
kS,S

∗

d

log

(
6m|S|1/2(γmax − γmin)

(
3 + 2δK

γmax

σ2

)

γminηk
S,S∗
d

)

≤ max
S⊆[n]

kS,S
∗

d + |S∗|
kS,S

∗

d

log




6m

√
kS,S

∗
d +|S∗|
kS,S

∗
d

(γmax − γmin)
(
3 + 2δK

γmax

σ2

)

γminη
√
kS,S

∗

d




≤ (1 + |S∗|) log

(
6m
√

1 + |S∗|(γmax − γmin)
(
3 + 2δK

γmax

σ2

)

γminη

)

≤ (1 +K) log

(
6
√

2m
√
K(γmax − γmin) (3σ2 + 2γmax) δK

γminσ
2η

)
(F.20)

where η and δK are bounded as per Proposition 4.3.

F.7 Proof of Proposition F.1

Proof. The log-likelihood L(Y;γ) can be expressed as the sum f(γ) + g(γ) with f(γ) =

−L log |Σγ | and g(γ) = −Ltr
(
Σ−1

γ RY

)
. Here, Σγ = σ2Im + γASA

T
S .
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First, we derive an upper bound for the Lipschitz constant of f(γ) = −L log |Σγ | for

γ ∈ Θ(S). By the mean value theorem, any upper bound for ‖∇γf(γ)‖2 also serves as an

upper bound for the Lipschitz constant of f . So, we derive an upper bound for ‖∇γf(γ)‖2.

Note that
∣∣∣∂f(γ)

γ(i)

∣∣∣ = L(aiΣ
−1
γ ai) for i ∈ S, and 0 otherwise. Here, ai denotes the ith column

of A. Then, ‖∇γf(γ)‖2 can be upper bounded as shown below.

‖∇γf(γ)‖2 ≤ ‖∇γf(γ)‖1 = L
∑

u∈S

aTi Σ−1
γ ai

= L
(
tr
(
AT
S (σ2Im + ASΓSA

T
S )−1AS

))

= L
(

tr
(
Γ
−1/2
S ÃT

S (σ2Im + ÃSÃ
T
S )−1ÃSΓ

−1/2
S

))

(a)
= L

∣∣∣∣∣∣Γ−1
S
∣∣∣∣∣∣

2
tr
(
ÃT
S (σ2Im + ÃSÃ

T
S )−1ÃS

)

(b)

≤ Lmin (m, |S|)
γmin

. (F.21)

where ÃS = ASΓ
1/2
S . In the above, step (a) follows from the trace inequality tr(AB) ≤

‖|A‖|2tr(B) for any positive definite matrices A and B. Step (b) follows from the obser-

vation that input argument of trace operator has min (m, |S|) nonzero eigenvalues, all of

them less than unity.

We now shift focus to the second term g(γ) of the loglikelihood. Note that
∣∣∣∂g(γ)
∂γ(i)

∣∣∣ =

L(aTi Σ−1
γ RY Σ−1

γ ai) for i ∈ S, and 0 otherwise. Then, ‖∇γg(γ)‖2 can be bounded as

‖∇g(γ)‖2 ≤ ‖∇γg(γ)‖1 = L
∑

i∈S

aTi Σ−1
γ RY Σ−1

γ ai

= L
(
tr
(
AT
SΣ
−1
γ RY Σ−1

γ AS
))

≤ L |||RY|||2 tr
(
AT
SΣ
−1
γ Σ−1

γ AS
)

= L |||RY|||2 tr
(
Γ
−1/2
S ÃT

SΣ
−1
γ Σ−1

γ ÃSΓ
−1/2
S

)
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≤ (L |||RY|||2 /γmin) tr
(
ÃT
SΣ
−1
γ Σ−1

γ ÃS

)

≤
(
L |||RY|||2

∣∣∣∣∣∣Σ−1
γ

∣∣∣∣∣∣
2
/γmin

)
tr
(
ÃT
SΣ
−1
γ ÃS

)

(a)

≤
(
L |||RY|||2

∣∣∣∣∣∣Σ−1
γ

∣∣∣∣∣∣
2

min (m, |S|)
)
/γmin

(b)

≤ L |||RY|||2 min (m, |S|)
γminσ

2
. (F.22)

where ÃS , ASΓ
1/2
S . The inequality in (F.22-a) follows from

(
ÃT
SΣ
−1
γ ÃS

)
having

min (m, |S|) nonzero eigenvalues, all of them less than unity. The last inequality in (F.22-

b) is due to
∣∣∣∣∣∣Σ−1

γ

∣∣∣∣∣∣
2
≤ 1/σ2. Finally, the Lipschitz constant CL,S can be bounded as

CL,S ≤ ‖∇γf(γ)‖2 + ‖∇γg(γ)‖2. Thus, by combining (F.21) and (F.22), and noting that

min(m, |S|) ≤ K, we obtain the desired result.

F.8 Proof of Corollary 4.2

Proof. Using (4.20) as a starting point, we first derive probabilistic bounds for the param-

eters α, β and δk, k ∈ [n] when m ≥ O(K log n).

Lower bound for α:

By the Hanson-Wright concentration (Theorem B.1), and taking the union bound over all

columns of A,

P


⋃

i∈[n]

{∣∣||ai||22 − 1
∣∣ ≥ α

}

 ≤ nP

(∣∣aT1 a1 − 1
∣∣ ≥ α

)
≤ 2ne−c2mα

2

. (F.23)

From (F.23), the `2 norm of columns of A lie inside the interval
[
1− 1√

K
, 1 + 1√

K

]
with

probability exceeding 1− c2n
−2, where c2 is a universal constant.
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Lower bound for β:

From Proposition 4.3, by definition, β refers to the minimum singular value among all

submatrices obtained by sampling k or fewer columns of A�A. By Theorem (3.3), A�A

satisfies the restricted isometry property of order K + Kthreshold for m ≥ O(K log n), it

follows that

P
(
β < 1− 8c1(K +Kthreshold) log n

m

)
≤ 5

n2
, (F.24)

where c1 is a universal absolute constant. Thus, for m ≥ O(K log n),

β ≥ 1

2
(F.25)

with probability exceeding 1− 5n−2.

Upper bound for δk for k ∈ [n]:

From Proposition 4.3, δk is defined as the maximum singular value among any k or fewer

column submatrix of A. By direct application of Corollary C.1, for any k ≤ n,

δk ≤

(√
m+

√
k +
√

6k log n
)2

m
(F.26)

with probability exceeding 1− 2n−k. From (F.26), for m ≥ O(K log n),

δK+Kthreshold
≤ O(1), (F.27)

δn ≤ O
(

n

K log n

)
, (F.28)

and δ|S∪S∗| ≤ O
( |S ∪ S∗|

K

)
, (F.29)

with overwhelming probability.
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Finally, by using the above probabilistic bounds for α, β, δn, δ|S∪S∗| and δK+Kthreshold

together in Proposition 4.3, η can be bounded as

η ≥ γ2
min

(σ2 + 2γmax)2 min


 β

δ2
(K+Kthreshold)

,
1

4mδn
min
S⊆[n],

|S\S∗|+|S∗\S|≤Kthreshold

|S ∪ S∗|
δ|S∪S∗|




≥ c3γ
2
min

(σ2 + 2γmax)2 min

(
1

2
,
K

4n

)

≥ c4Kγ2
min

n (σ2 + 2γmax)2 , (F.30)

with probability exceeding 1− c5n
−2 for sufficienly large n. Here, the constants c4 and c5

do not depend on the problem dimensions.

By using the above probabilistic lower bound for η from (F.30) in Proposition 4.4, we

obtain the following simplified upper bound for κcov.

κcov ≤ (K + 1) log

(
6
√

2m
√
K(γmax − γmin) (3σ2 + 2γmax) δK

γminσ
2η

)

≤ (K + 1) log

(
c5n
√
K log n(γmax − γmin) (3σ2 + 2γmax)

3

γ3
minσ

2

)
.

F.9 Proof of Proposition 4.5

Proof. Let µ∗ be the largest eigenvalue of Σ
1
2
γ1

Σ−1
γ2

Σ
1
2
γ1

. Then,

µ∗ ≥
tr
(
Σ−1

γ2
Σγ1

)

m
=

1

m

[
σ2Tr

(
Σ−1

γ2

)
+ Tr

(
Σ−1

γ2
AΓ1A

T
)]

≥ 1

m
tr
(
Σ−1

γ2
AΓ1A

T
)
. (F.31)
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Here, the second step is because Σγ1
= σ2Im + AΓ1A

T . The last inequality is obtained

by dropping the strictly positive σ2

m
tr
(
Σ−1

γ2

)
term.

Let S1 and S2 be the nonzero supports of γ1 and γ2, respectively. Further, let the

eigendecomposition of Σγ2
be UΛUT , where Λ = diag(λ1, . . . , λm), λi’s are the eigenvalues

of Σγ2
and U is a unitary matrix with columns as the eigenvectors of Σγ2

. Then, U

can be partitioned as [U2 U2⊥ ], where the columns of U2 and U2⊥ span the orthogonal

complementary subspaces Col(AS2) and Col(AS2)
⊥, respectively. Further, let Λ2 and

Λ2⊥ be |S2| × |S2| and ((m − |S2|) × (m − |S2|)) sized diagonal matrices containing the

eigenvalues in Λ corresponding to the eigenvectors in U2 and U2⊥ , respectively. We observe

that Λ2⊥ = σ2Im−|S2|.

By setting Σ−1
γ2

= U2Λ−1
2 UT

2 + U2⊥Λ−1
2⊥

UT
2⊥ in (F.31), we get

µ∗ ≥ 1

m

(
tr
(
U2Λ−1

2 UT
2 AΓ1A

T
)

+ tr
(
U2⊥Λ−1

2⊥
UT

2⊥AΓ1A
T
))

≥ 1

m
tr
(
Λ−1

2⊥
UT

2⊥AΓ1A
TU2⊥

)
,

where the last inequality is due to nonnegativity of the dropped first term. Since UT
2⊥AS2 =

0 by construction of U2⊥ ,

µ∗ ≥ 1

m
tr
(

Λ−1
2⊥

UT
2⊥ASc2Γ1,Sc2A

T
Sc2

U2⊥

)

=
1

mσ2

m−|S2|∑

i=1

(u2⊥,i)
TASc2Γ1,Sc2A

T
Sc2

u2⊥,i

=
1

mσ2

m−|S2|∑

i=1

(u2⊥,i)
TAS1\S2Γ1,S1\S2A

T
S1\S2u2⊥,i. (F.32)

In the above, u2⊥,i denotes the ith column of U2⊥ . The last equality is obtained by

observing that the nonzero elements of γ1,Sc2 are located in the index set S1\S2.
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We now prove that if K < spark(A) − 1, then there exists at least one strictly positive

term in the above summation. Let us assume the contrary, i.e., let each term in the

summation in (F.32) be equal to zero. This implies that the columns of U2⊥ belong to

Null(Γ
1/2
1,S1\S2A

T
S1\S2), which means that they also belong to Null(AS1\S2Γ1,S1\S2A

T
S1\S2).

Since, for a symmetric matrix, the row and column spaces are equal and orthogonal to the

null space of the matrix, it follows that Col(AS1\S2Γ1,S1\S2A
T
S1\S2) (same as

Col(AS1\S2Γ
1/2
1,S1\S2)) is spanned by the columns of U2, or equivalently by columns of AS2 .

Thus, every column in AS1\S2 can be expressed as a linear combination of columns in AS2 .

This contradicts our initial assumption that K + 1 < spark(A), implying that any K + 1

or fewer columns of A are linearly independent. Therefore, we conclude that there is at

least one strictly positive term in the summation in (F.32), and consequently there exists

a constant c1 > 0 such that µ∗ ≥ c1/σ
2.



Appendix G

Appendix for Chapter 5

G.1 Proof of Proposition 5.1

Proof. Let S and T be arbitrary subsets of [n] such that S ⊆ T . Then, we have

f(S) = log |A + βBSBT
S |

= log |A|+ log |I + βA−1BSB
T
S |

= log |A|+ log |I + βBT
SA
−1BS |,

where the first equality follows from A being non-singular and the determinant property:

det(XY) = det(X) det(Y) for any two square matrices X,Y of the same size. The second

equality follows from the determinant property that det (In + XYT ) = det (Ip + YTX)

for any two n × p sized matrices X,Y. Using the above result, we can establish the

monotonicity of f(.) as shown below.

f(T )− f(S) = log |A + βBTBT
T | − log |A + βBSB

T
S |

= log |A + βBSB
T
S + βBT \SB

T
T \S | − log |A + βBSB

T
S |
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= log
∣∣∣In + β

(
A + βBSB

T
S
)−1

BT \SB
T
T \S

∣∣∣

= log

∣∣∣∣∣∣∣
I + βBT

T \S
(
A + βBSB

T
S
)−1

BT \S︸ ︷︷ ︸
positive definite

∣∣∣∣∣∣∣
≥ 0.

To show submodularity of f , let us consider i ∈ [n]\T . The marginal increment f(S ∪

{x})− f(S) is evaluated as

f(S ∪ {i})− f(S) = log |A + βBSB
T
S + βbib

T
i | − log |A + βBSB

T
S |

= log |In + β
(
A + βBSB

T
S
)−1

bib
T
i |

= log |1 + βbTi
(
A + βBSB

T
S
)−1

bi|. (G.1)

Likewise, it can be shown that

f(T ∪ {i})− f(T ) = log |1 + βbTi
(
A + βBTBT

T
)−1

bi|. (G.2)

Using Woodbury matrix identity, we observe that

bTi
(
A + βBTBT

T

)−1
bi = bTi

(
A + βBSBT

S

)−1
bi

−bTi P−1
S BT\S

(
1

β
I + BT

T\SP−1
S BT\S

)−1

BT
T\SP−1

S bi,

(G.3)

where PS = A + βBTBT
T is a positive definite matrix. By dropping the positive second

term in the RHS, we obtain the following inequality

bTi
(
A + βBTBT

T

)−1
bi ≤ bTi

(
A + βBSBT

S

)−1
bi (G.4)

The inequality in (G.4) and the monotonic increase of log (1 + βx) with x(> 0) together
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imply that f satisfies the diminishing returns property that f(S ∪ {i}) − f(S) ≥ f(T ∪

{i})− f(T ), and hence f is a submodular function.

G.2 Derivation of modular upper bound hfSk−1

As per (5.15), the modular upper bound of submodular f(S) at point Sk−1 is evaluated as

hfSk−1
(S) , f(Sk−1)−

∑

j∈Sk−1\S

[f(Sk−1)− f(Sk−1\ {j})] +
∑

j∈S\Sk−1

[f(j)− f(φ)] . (G.5)

We note that for S ⊂ [n], f(S) can be decomposed as

f(S) = log
∣∣∣(1− α)R̂yy + α

(
σ2Im + γASA

T
S
)∣∣∣

= log
∣∣H + αρASA

T
S
∣∣+m log σ2

= log
∣∣I|S| + αρAT

SH
−1AS

∣∣+m log σ2 + log |H|︸ ︷︷ ︸
terms independent of S

, (G.6)

where H =
(
αIm + (1− α)σ−2R̂yy

)
. The last step is obtained by using the matrix identity

log |I + AB| = log |I + BA| for any two matrices A and B of matching dimensions.

Using (G.6), the difference term f(Sk−1)−f(Sk−1\ {j}) is evaluated as

f(Sk−1)− f(Sk−1\ {j}) = log
∣∣∣H + αρASk−1

AT
Sk−1

∣∣∣− log
∣∣∣H + αρASk−1\{j}A

T
Sk−1\{j}

∣∣∣

= log |Tk−1| − log
∣∣Tk−1 − αρajaTj

∣∣

= − log
∣∣1− αρaTj T−1

k−1aj
∣∣, (G.7)

where Tk−1 = H + αρASk−1
AT
Sk−1

. Also, for j ∈ [n], f(j) is evaluated as

f(j) = log
∣∣1 + αρaTj H−1aj

∣∣ . (G.8)
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Using the fact that f(φ) = 0, and by using (G.7) and (G.8) in (G.5), we obtain the

following modular upper bound of f which is tight at Sk−1. For any S ⊆ [n], the upper

bound hfSk−1
(S) is evaluated as

hfSk−1
(S) = f(Sk−1)+

∑

j∈Sk−1\S

log
∣∣1− αρaTj T−1

k−1aj
∣∣+

∑

j∈S\Sk−1

log
∣∣1 + αρaTj H−1aj

∣∣ , (G.9)

In above, by dropping the first term which is independent of S, we obtain the final form

of the modular upper bound hfSk−1
claimed in (5.16).
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Appendix for Chapter 6

H.1 Derivation of the M-step Cost Function

The conditional expectation in (6.5) can be simplified as:

EX

[
log p(Y,X;γ)|Y;γk

]
= E[X|Y;γk][log p(Y|X) + log p(X;γ)]

= E[X|Y;γk] log p(Y|X) +
∑

j∈J

E[xj |yj ;γk] log p(xj;γ).

(H.1)

Using (6.2), and discarding the terms independent of γ in (H.1), the M-step objective

function Q(γ|γk) is given by

Q(γ|γk) =
∑

j∈J

E[xj |yj ,γk]

(
−1

2
log |Γ| − 1

2
xTj Γ−1xj

)

= −1

2

∑

j∈J

(
log |Γ|+

n∑

i=1

E[xj∼N (µk+1
j ,Σk+1

j )]xj(i)
2

γ(i)

)

= −1

2

∑

j∈J

n∑

i=1

(
log γ(i) +

Σk+1
j (i, i) + µk+1

j (i)2

γ(i)

)
. (H.2)
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H.2 Derivation of the Simplified Update for γb

By summing the dual variable update rule (6.15) across all nodes, the following holds for

all b ∈ B

∑

j∈Nb

(λbj)
r+1 =

∑

j∈Nb

(λbj)
r + ρ

∑

j∈Nb

γr+1
j − ρ|Nb|γr+1

b . (H.3)

Plugging (6.16) in (H.3), we obtain

∑

j∈Nb

(λbj)
r+1 = 0 ∀ b ∈ B. (H.4)

Using (H.4) in (6.16), we obtain the simplified update for γb.

H.3 Proof of Theorem 6.1

Proof. The proof of the convergence of ADMM discussed in the sequel is a based on the

proof given in [114]. However, our proof differs from the one in [114] due to the different

internode communication scheme adopted here, which uses the auxiliary/bridge nodes

to enforce consensus between the nodes. We make the following assumptions about the

objective function f in (6.19).

1. f is twice differentiable and strongly convex in γJ . This implies that there exists

mf ∈ R+\{0} such that, for all γJ ,γ
′
J , the following holds

〈∇f(γJ )T −∇f(γ
′

J )T ,γJ − γ
′

J 〉 ≥ mf ||γJ − γ
′

J ||22. (H.5)

2. ∇f is Lipschitz continuous, i.e., there exists a positive scalar Mf such that, for all
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γJ ,γ
′
J , we have

||∇f(γJ )−∇f(γ
′

J )||2 ≤Mf ||γJ − γ
′

J ||2. (H.6)

Let r denote the ADMM iteration count. From the zero subgradient optimality conditions

corresponding to (6.13) and (6.14), we have

∇f(γr+1
J )T + ET

1 λ
r + ρET

1 E1γ
r+1
J + ρET

1 E2γ
r
B = 0 (H.7)

ET
2 λ

r + ρET
2 E2γ

r+1
B + ρET

2 E1γ
r+1
J = 0. (H.8)

From the dual variable update equation, we have,

λr+1 = λr + ρ(E1γ
r+1
J + E2γ

r+1
B ). (H.9)

Premultiplying (H.9) with ET
1 and ET

2 followed by its summation to (H.7) and (H.8)

respectively gives

∇f(γr+1
J )T + ET

1 λ
r+1 + ρET

1 E2(γrB − γr+1
B ) = 0. (H.10)

ET
2 λ

r+1 = 0. (H.11)

By initializing λ equal to zero, λr always lies in the nullspace N (ET
2 ), physically implying

that the sum of the Lagrange multipliers of nodes connected to a given bridge node is

always equal to zero. Let γrJ → γ∗J , γrB → γ∗B and λr → λ∗ as r → ∞, then putting

r →∞ in (H.9), (H.10) and (H.11) gives

∇f(γ∗J )T + ET
1 λ
∗ = 0 (H.12)
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ET
2 λ
∗ = 0 (H.13)

E1γ
∗
J + E2γ

∗
B = 0. (H.14)

Note that the condition (H.14) implies consensus among γj, j ∈ J , upon convergence. By

subtracting (H.12), (H.13) and (H.14) from (H.10), (H.11) and (H.9), respectively, we get

the desired difference terms needed for showing convergence results.

∇f(γr+1
J )T −∇f(γ∗J )T + ET

1 (λr+1 − λ∗) + ρET
1 E2(γrB − γr+1

B ) = 0 (H.15)

ET
2 (λr+1 − λ∗) = 0 (H.16)

λr+1 − λr = ρE1(γr+1
J − γ∗J ) + ρE2(γr+1

B − γ∗B). (H.17)

Premultiplying (H.17) with ET
2 and using (H.11), we obtain,

ET
2 E1(γr+1

J − γ∗J ) = −ET
2 E2(γr+1

B − γ∗B). (H.18)

From the strong convexity of f and using (H.15), we can write,

mf ||γr+1
J − γ∗J ||22

≤ 〈ET
1 (λ∗ − λr+1),γr+1

J − γ∗J 〉 + ρ〈ET
1 E2(γr+1

B − γrB), (γr+1
J − γ∗J )〉

= 〈(λ∗ − λr+1),E1(γr+1
J − γ∗J )〉 + ρ〈(γr+1

B − γrB),ET
2 E1(γr+1

J − γ∗J )〉

= 〈(λ∗ − λr+1),E1(γr+1
J − γ∗J )〉 − ρ〈(γr+1

B − γrB),ET
2 E2(γr+1

B − γ∗B)〉

= 〈(λ∗ − λr+1),
1

ρ
(λr+1 − λr) − E2(γr+1

B − γ∗B)〉 − ρ〈(γr+1
B − γrB),ET

2 E2(γr+1
B − γ∗B)〉

=
1

ρ
〈(λ∗ − λr+1), (λr+1 − λr)〉 + ρ〈E2(γr+1

B − γrB),E2(γ∗B − γr+1
B )〉. (H.19)
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Here, the first identity is obtained by using a property of the inner product. The second,

third and fourth identities are obtained by using (H.18), (H.17) and (H.16) respectively. By

defining u = [(E2γB)T | λT ]T , the RHS in (H.19) can be expressed as (ur−ur+1)TG(ur+1−

u∗), where G is given by

G =


ρIn|B| 0

0 1
ρ
INC


 .

Using the identity:

2(ur − ur+1)TG(ur+1 − u∗) = ||ur − u∗||2G − ||ur+1 − u∗||2G − ||ur − ur+1||2G, (H.20)

the inequality in (H.19) can be rewritten as

mf ||γr+1
J − γ∗J ||22 ≤

1

2

(
||ur − u∗||2G − ||ur+1 − u∗||2G − ||ur − ur+1||2G

)
. (H.21)

By discarding the non-positive terms in the LHS of (H.21), we obtain the following upper

bound on the primal optimality gap.

||γr+1
J − γ∗J ||22 ≤

1

2mf

||ur − u∗||2G. (H.22)

In Appendix H.4, we prove the monotonic convergence of ur to u∗. Thus, from the

monotonic decay of the RHS in (H.22), we have R-linear convergence of γrJ to γ∗J .
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H.4 Proof of monotonic convergence of ur to u∗

Proof. In order to prove monotonic convergence of ur to u∗, it is sufficient to show that

there exists a δ > 0 such that

||ur+1 − u∗||2G ≤
1

1 + δ
||ur − u∗||2G. (H.23)

By rearranging the terms in (H.21), we have

||ur+1 − u∗||2G ≤ ||ur − u∗||2G − ||ur+1 − ur||2G − 2mf ||γr+1
J − γ∗J ||22. (H.24)

By comparing terms in (H.23) and (H.24), we observe that if

2mf ||γr+1
J − γ∗J ||22 + ||ur+1 − ur||2G ≥ δ||ur+1 − u∗||2G, (H.25)

or equivalently,

2mf ||γr+1
J − γ∗J ||22 + ρ||E2(γr+1

B − γrB)||22 +
1

ρ
||λr+1−λr||22

≥ δ

(
ρ||E2(γr+1

B − γ∗B)||22 +
1

ρ
||λr+1 − λ∗||22

)
, (H.26)

holds, then ur converges monotonically to u∗. We now proceed to derive upper bounds

for ||E2(γr+1
B − γ∗B)||2 and ||λr+1−λ∗||2 in terms of the LHS. These upper bounds will be

used in the sequel to establish the inequality in (H.26).

� An upper bound for ρ||E2(γk+1
B − γ∗B)||2

Note that for any two vectors a, b and a scalar µ > 1

||a + b||22 ≥ (1− µ)||a||22 +

(
1− 1

µ

)
||b||22. (H.27)
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Applying inequality (H.27) to (H.17), we get the following upper bound.

ρ||E2(γr+1
B −γ∗B)||22 ≤

(
µ

µ− 1

)
1

ρ
||λr+1−λr||22+

(
µρσ2

max(E1)
)
||γr+1
J −γ∗J ||22. (H.28)

Here, σmax(E1) is the largest singular value of E1.

� An upper bound for 1
ρ
||λr+1 − λ∗||2

Similar application of inequality (H.27) to (H.15) results in an upper bound for

1
ρ
||λr+1 − λ∗||2 as shown below.

||ET
1 (λr+1 − λ∗)||22 ≤

ν

(ν − 1)
||∇f(γr+1

J )T −∇f(γ∗J )T ||22

+ ν||ρET
1 E2(γrB − γr+1

B )||22

=⇒ 1

ρ
||λr+1 − λ∗||22 ≤

ν

ρ(ν − 1)σ2
min(E1)

||∇f(γr+1
J )T −∇f(γ∗J )T ||22

+
νρσ2

max(E1)

σ2
min(E1)

||E2(γrB − γr+1
B )||22. (H.29)

From the Lipschitz continuity of ∇f (H.6), we obtain the following modified upper

bound.

1

ρ
||λr+1 − λ∗||22 ≤

νM2
f

ρ(ν − 1)σ2
min(E1)

||γr+1
J − γ∗J ||22

+
νρσ2

max(E1)

σ2
min(E1)

||E2(γrB − γr+1
B )||22. (H.30)

Here, σmin(E1) denotes the smallest singular value of E1 and ν is a positive scalar

greater than unity.
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By summing the upper bounds in (H.28) and (H.30), we get

ρ||E2(γr+1
B − γ∗B)||22 +

1

ρ
||λr+1 − λ∗||22

≤ 1

δ

(
2mf ||γr+1

J − γ∗J ||22 + ρ||E2(γrB − γr+1
B )||22 +

1

ρ
||λr+1 − λr||22

)
(H.31)

where

δ ,


max
µ,ν≥1

max




νM2
f

ρ(ν−1)σ2
min(E1)

+µρσ2
max(E1)

2mf

, νκ,
µ

µ− 1





−1

. (H.32)

Thus, for δ as defined above, the inequality (H.26) holds and consequently the inequality

(H.23) also holds, thereby establishing the Q-linear convergence of uk to u∗.

H.5 Proof of Theorem 6.2

Proof. Let δopt denote the maximum value of δ for any ρ > 0. Then, we can write

δopt = max
ρ>0

(
max
µ,ν≥1

(min (f1(µ, ν, ρ), f2(ν), f3(µ)))

)

= max
µ,ν≥1

(
max
ρ>0

(min (f1(µ, ν, ρ), f2(ν), f3(µ)))

)
(H.33)

where the scalar functions f1, f2 and f3 represent the three terms inside the minimum

operator in (6.22). The following two Lemmas summarize the optimization of δ in (H.33).

Lemma H.1. δopt = max
µ,ν≥1

{
min

(
f̄1(µ, ν), f2(ν), f3(µ)

)}
where, f̄1(µ, ν) , max

ρ>0
f1(µ, ν, ρ).

Proof. See Appendix H.6.

Lemma H.2. There exists a unique (µ, ν) = (µ∗, ν∗) which simultaneously satisfies: (i)

f̄1 = f2 = f3, and (ii) µ ≥ 1, ν ≥ 1. Further, such a (µ∗, ν∗) maximizes g(µ, ν) =

min
(
f̄1(µ, ν), f2(ν), f3(µ)

)
over µ, ν ≥ 1.
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Proof. See Appendix H.7.

The scalar function f1 in Lemma H.1 is maximized at ρ =
Mf

σmaxσmin

√
ν

µ(ν − 1)
to give

f̄1 =
Mf

σminσmax

√
ν

µ(ν − 1)
. Further, by solving for the unique tuple (µ∗, ν∗) which satisfies

the two optimality conditions specified in Lemma H.2, the optimal augmented Lagrangian

parameter ρ and corresponding optimal δ can be shown to be equal to the ρopt and δopt as

defined in Theorem 6.2.

H.6 Proof of Lemma H.1

Proof. Let ρµ,ν , arg max
ρ>0

f1. Then, by restricting the feasible set in (H.33), we have,

δopt ≥ max
µ,ν≥1

[
max
ρ=ρµ,ν

{min (f1(µ, ν, ρ), f2(ν), f3(µ))}
]

= max
µ,ν≥1

{
min

(
f̃1(µ, ν), f2(ν), f3(µ)

)}
. (H.34)

On the other hand, from (H.33) and using f̃1 ≥ f1, we have,

δopt = max
µ,ν≥1

[
max
ρ>0
{min (f1(µ, ν, ρ), f2(ν), f3(µ))}

]

≤ max
µ,ν≥1

{
min

(
f̃1(µ, ν), f2(ν), f3(µ)

)}
. (H.35)

Combining (H.34) and (H.35) establishes Lemma H.1.

H.7 Proof of Lemma H.2

Proof. In order to prove the Lemma, we claim the following.

1. For any ε > 0, there exist positive constants Bµ and Bν such that g(µ, ν) ≤ ε when

either µ ≥ Bµ or ν ≥ Bν holds.
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2. Any point (µ, ν) which satisfies condition 2 but does not satisfy condition 1 cannot

be a local maximum of g.

Note that claim (a) holds trivially for Bµ =
m2
f

κM2
f ε

2 and Bν = 1
κε

. In order to verify claim

(b), let us consider a point (µ0, ν0) which satisfies condition 2, but not condition 1. Then,

we need to consider three cases.

� Case-I: f̃1, f2 and f3 are distinct at (µ0, ν0). Without loss of generality (WLOG), let

g = f̃1 at (µ0, ν0). Then, from the continuity of f̃1, f2, f3, there exists an ε (> 0) ball

Bε, centered at (µ0, ν0) and with radius ε inside which g = f̃1 holds. Since, inside

Bε, g is strictly monotonic with respect to µ and ν, there exists (µ, ν) ∈ Bε such that

g(µ, ν) > g(µ0, ν0). Hence, (µ0, ν0) is not a local maximum.

� Case-II: At (µ0, ν0), two of f̃1, f2 and f3 are equal and strictly greater than the

remaining one. The same arguments as Case-I apply here as well.

� Case-III: At (µ0, ν0), two of f̃1, f2 and f3 are equal and strictly less than the remain-

ing one. WLOG, let f̃1 = f2 < f3. Let C(µ, ν) denote the continuous curve in (µ, ν)

plane whose each point satisfies f̃1 = f2. Clearly, (µ0, ν0) also lies on the curve C.

Moreover, there are an uncountably infinite number of points of C inside Bε, with Bε

defined as in Case-I. Due to the monotonicity of g along C, there exists (µ, ν) ∈ Bε

such that g(µ, ν) > g(µ0, ν0). Hence, (µ0, ν0) is not a local maximum.

From claim (a) and the fact that at the boundary points (µ = 1 or ν = 1), the objective

g evaluates to zero, we may restrict our search for the global maximizer of g to the set

D = {(µ, ν) | 1 ≤ µ ≤ Bµ, 1 ≤ ν ≤ Bν}. Then, from claim (b), uniqueness of (µ∗, ν∗) ∈ D
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and Weierstrass theorem, it follows that (µ∗, ν∗) is indeed the unique global maximizer of

the continuous function g. Thus, the proof is complete.



Appendix I

Appendix for Chapter 7

I.1 Index-wise LLRT for Hard Support Estimation

Due to the zero mean Gaussian measurement noise and the Gaussian prior N (0,Γj) for

the unknown sparse vector xj at node j, the likelihood p(yj;γ
k
j ) is given by

p(yj;γj) = N (0, σ2
j Im + ΦjΓjΦ

T
j ). (I.1)

Using (I.1), we setup the LLRT for ith index at node j as:

Decide in favor of H1 for index i if log
p(yj;γ

k
j ,γ

k
j (i) 6= 0)

p(yj;γkj ,γ
k
j (i) = 0)

≥ θ (I.2)

or equivalently,

log
N (yj; 0, σ2

j Im + ΦjΓ
k
jΦ

T
j )

N (yj; 0, σ2
j Im + ΦjΓ̃k

j,iΦ
T
j )
≥ θ (I.3)

where Γ̃k
j,i=diag(γkj (1), . . . ,γkj (i− 1), 0,γkj (i+ 1), . . . ,γkj (n)). Using the determinant

property: det(I + AB) = det(I + BA) and Woodbury matrix identity, (I.3) simplifies
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to

−1

2
log

(
1 + γj(i)Φ

T
j,i

(
σ2
j Im + ΦjΓ̃

k
j,iΦ

T
j

)−1

Φj,i

)

+

(
ΦT
j,i

(
σ2
j Im + ΦjΓ̃

k
j,iΦ

T
j

)−1

yj

)2

2

(
γj(i)

−1 + ΦT
j,i

(
σ2
j Im + ΦjΓ̃k

j,iΦ
T
j

)−1

Φj,i

) ≥ θ

Moving terms independent of yj to the RHS and dividing both sides by the term

ΦT
j,i

(
σ2
j Im + ΦjΓ̃

k
j,iΦ

T
j

)−1

Φj,i yields the Neyman-Pearson test given below

(
ΦT
j,i

(
σ2
j Im + ΦjΓ̃

k
j,iΦ

T
j

)−1

yj

)2

ΦT
j,i

(
σ2
j Im + ΦjΓ̃k

j,iΦ
T
j

)−1

Φj,i

≥ h(θ,γkj (i))

{
1

γj(i)
+ ΦT

j,i

(
σ2
j Im + ΦjΓ̃

k
j,iΦ

T
j

)−1

Φj,i

}

(I.4)

where

h(θ,γkj (i)) ,




2θ + log

(
1 + γj(i)Φ

T
j,i

(
σ2
j Im + ΦjΓ̃

k
j,iΦ

T
j

)−1

Φj,i

)

ΦT
j,i

(
σ2
j Im + ΦjΓ̃k

j,iΦ
T
j

)−1

Φj,i


 .
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