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Introduction

v

5@ vision: connectivity to massive number of sensors

v

Limited lifetime due to pre-charged batteries

v

Potential solution: energy harvesting nodes (EHN)
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Challenges

» Energy neutrality constraint (ENC)

N N
> en<> & foral N
n=1 n=1

e, : energy consumed at n'" slot
&n - energy harvested at n'" slot

» Goal shifts from energy conservation to judicious energy
consumption

» Random and sporadic nature of the harvested energy

» Necessitates the design of energy management policies

» Measurement of accurate state-of-charge (SoC) is difficult

» SoC-independent policies
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Challenges: Dual EH Links

Battery size : Bl ,, Battery size : Bl .,

* Nodes harvest energy from
distinct sources

* Exact harvesting instants at
other node are not known

» Uncertainty about the bat-
tery state of the other node

o la
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ARQ-based Multi-hop EH links
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System Model

Packet is generated at the start of the frame

Dropped if not delivered by the end of the frame
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System Model

Forwarded using half-duplex relays
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System Model

Forwarded using half-duplex relays

Only nth hop is active in the nth sub-frame
Nodes harvest energy in all sub-frames
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System Model

Forwarded using half-duplex relays
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System Model

Division of slots in sub-frames is fixed over time
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System Model

Division of slots in sub-frames is fixed over time

Packet drop: transmission failed at intermediate hop
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System Model

Bernoulli energy harvesting model
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System Model

Bernoulli energy harvesting model

Transmission at each hop follows the ARQ protocol
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System Model: Coordinated Transmission between
Two Successive Nodes

>

» Transmitter wakes up in the next frame
» Receiver turns on at the start of the next sub-frame

v

Packet is retransmitted iff all previous attempts have failed

v

The energy management policy of n" node:

P" & {Ef Ef, -+ ER }, where each E] < Enax

v

Energy required for decoding: R

v

Block fading channel: constant for a sub-frame/slot

v

Packet failure probability is

En
Po(Er ) =oxp (- )
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Goal & Contributions

Goal

» Obtain a distributed power control policy to minimize the
packet drop probability

» Understand the impact of system parameters on the
performance

Contributions

» Closed-form expressions for packet drop probability
» Near-optimal distributed policies

» For R = 0: closed-form expressions
» For R > 0: iterative GP based solution

» Both slow and fast fading channels



Prior Work: Multi-hop EH links

1. Gatzianas et al. , maximize the long-term rate
2. Laietal. use reliability as the metric
3. Mao et al. , develop a near-optimal power and rate

control policy to maximize long-term average sensing rate

4. Joseph et al. , propose joint power control,
scheduling and routing scheme to maximize the throughput



System Evolution

» Modeled by the discrete-time Markov chain with state
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harvesting sensor link performance, in Proc. IEEE Globecom., Dec. 2009.
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System Evolution
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System Evolution

» Modeled by the discrete-time Markov chain with state

)
(Bs, Us, s) nonzero if node re-

» Battery Evolution at n'" Node: ceives

B, = min ((Bg + Loy EM

» Local transmission index, Us

nonzero if node
HER IS

un —1 ACK received,
S 1¢  £—1 NACKs received, ¢ € {1,..., Ky}

U? is reset to zero at the start of the frame

1 B. Medepally, N. B. Mehta, and C. Murthy, Implications of energy profile and storage on energy
harvesting sensor link performance, in Proc. IEEE Globecom., Dec. 2009.
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Packet Drop Probability

_ . N All one vector
For a given set of policies P £ {P"}N__

Pp=> m(B)E,{Pp(K|B,U=1,v,s=0)}
B

» 7 :stationary distribution of battery states at the start of the
frame ]
m=(E[G'(Y)] -1+ A) 1

G'(v) is the K-step TPM with entries‘\{

Pr [Biu 1)k = B2|Buik = By, 7]

» Conditional PDP can be found in closed-form
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Difficult to Solve!
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PDP Minimization & Bounds

(min Po. =mingpnyy Yg(B)E, {Po(KIB.U=1.7)}.,
n=1

subjectto: 0 < E] < Epaforalll1 </<Kpand1<n<N.

Bounds:
For a multi-hop EH link operating using policies P,

Po.< min Po<Ps + > =(B)
=1 BeZj

P; £ min E,{Pp(K|)}and P* £arg min E,{Pp(K|)}
=P {Pmy
for any B € Z,, the set of “GOOD” battery states.



Tightness of the Bounds

> Optimum PDP under average power
constraint, with infinite battery?

> upper bound
on the penalty due to finite batteries under the EUR

2V. Sharma, U. Mukheriji, V. Josheph, and S. Gupta, Optimal energy manag t policies for energy
harvesting sensor nodes, IEEE Trans. Wireless Commun., Apr. 2010.
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Tightness of the Bounds

> Optimum PDP under average power
constraint, with infinite battery?

> upper bound
on the penalty due to finite batteries under the EUR

Theorem (MSharma-TWC-June2017)
For a multi-hop EH link operating under EUR

N+1

> w(B)=) ©(e"F")
n=1

Be1§

r’: negative root of the asymp. log MGF of battery drift process

> use lower bound as objective and
replace ENC by EUR constraints

2V. Sharma, U. Mukheriji, V. Josheph, and S. Gupta, Optimal energy manag t policies for energy
harvesting sensor nodes, IEEE Trans. Wireless Commun., Apr. 2010.
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Reformulation

max Pr[N + 1]
Average energy P} s

used for trans- subject to T, + Ry < Kpn, EGECERIE)Y
mission P25l Used for reception

n—1 1
Prinl =] (1 ——— >
m=1 1+ 220 B

- Etﬁ
i=1

n
=1 E;

]

_ K-t 1,01 R
RnPr[nﬂ(Z &5 =Y )

=1 En—1
il D D =

]



Reformulation

max Pr|N -+ 1]
Avera P
ge energy o
used for trans- subject to T, + R, < Kpn, RaVEIEE[EREEI ()Y
mission 0 < EPAErmax, used for reception
n—1 Nonconvex mixed in-
Prinl =] (1 - teger program with 2K
m=1 subproblems
Kn
T, = Pr[n] (Z ,
=1

Kn_1 {En71 >0}H
ﬁn == Pr [n - 1] £ — —



Reformulation: Negligible Cost of Reception
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Reformulation: Negligible Cost of Reception

max
{PTHL,

subject to Tn + By < Kpn,
0 < E]' < Emax,

n—1
Prinl = ] <1 1+21KmEm>
m=1

_ Al EP
i=1 Ei

=1 i

» Optimal policy obtained using the solution for P2P links



Optimal Policy without Peak Power Constraint

Theorem: slow fading
The unique optimal policy for n-hop is given by

pnK pnK e
n* = —_— =
Ei = KPr[n] (1 * KnNoPr[n]) k=120, Kn




Optimal Policy without Peak Power Constraint

Theorem: slow fading
The unique optimal policy for n-hop is given by

K—1
n* _ pnK pnK _
E/ = KoPr (1 + KnNoPr[n]) ,k=1,2,... K.

Theorem: fast fading

The successive power levels of the optimal policy at n"-hop

satisfies o
»~  E](E] +2)
E=""g%

forall1 </ < K,.



Optimal Policy with Peak Power Constraint
Solve for optimal policy without PPC
No

Is E] < Emax forall 22 >——> EJ' > Epnay: Set it to Emay, for all ¢




Performance of the Closed-form Policy

Packet drop probability (P )
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General Case: Integer Constraints (25 — Hﬁﬂ Kn) &

Solving CGP

Input: L) = {Ly,L,,...,Ly}and p« 0

Setp+~p+1 No

Construct a GP approximation

e+ — L), < ¢

Solve GP to get L(® ————



RIPs Vs MDP based policy
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For slow fading channels, the RIP uniformly outperforms the MDP,
while in the fast fading case, for p; > 0.7, the RIP outperforms the
corresponding MDP based policies.



PDP at 2" Hop
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PDP at the second hop improves with increase in the harvesting

rate at the source node.



Summary

» Presented closed-form expressions for the PDP

» Characterized the dependence of the PDP on size of the
batteries

» Can design policies under EUR if battery capacity is
sufficiently large

» Obtained closed-form expressions for near-optimal RIPs
when R~ 0

» Near optimal policies when R > 0

» The proposed policy outperforms the EPP and MDP based
policies



Uncoordinated Dual EH Links

(Joint work with Prof. Rahul Vaze, TIFR)
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System Model

Battery size : B!

max

* Transmit energy is trans-

ferred to super-capacitor

Battery size : B/, .,

« AWGN channel

R units used for reception

* Only mean and variance of
EH process are known

Slot level synchronization

Supercap

‘e



Prior Work: Dual EH Links

1. Arafa and Ulukus , maximize the coordinated
throughput

» Non-causal knowledge of energy arrivals at both nodes

2. Zhou et al. consider retransmission-based dual
EH links

» Coordinated sleep-wake protocol

3. Sharma and Murthy , optimize packet drop
probability of retransmission-based dual EH links

» Use ACK/NACK messages to achieve perfect coordination
» One bit feedback facilitates coordination

4. Doshi and Vaze , analyze throughput of
uncoordinated links with unit sized batteries
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Battery size : Bt .,

Second slot: Tay, = 50

Battery size : B/, .,

Energy wasted due to lack
of coordination

’l‘ Empty battery at transmitter
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Impact of Uncoordination

Battery size : Bt .,

Third slot: T, = A2+0

Battery size : B/, .,

Energy wasted due to lack
of coordination
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Goal & Contributions

Goal

1. To benchmark the throughput of uncoordinated dual EH
links

2. Design a policy that achieves optimal throughput

Contributions

1. Upper-bound on the throughput
2. Asymptotically optimal policies
» Energy unconstrained receiver (ur > R)
» Energy constrained receiver (u, < R)
» Policy with occasional one bit feedback from receiver
» Policy with time-dilation at receiver: asymptotically no

feedback
» Fully uncoordinated policy
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Mathematical Formulation
Obijective:

N

max  im N Z 1{p,(n)03 109(1 + pe(n))

pr(n),nz1
Policy at Tx and
Rx

Constraints:

1. Energy used by a node can not exceed the energy in its
battery, i.e.,

B!, = min {max{0, Bf, + &(n) — pi(n)}, Blay }

2. Receiver can consume either 0 or R units of energy



Upper Bound

Lemma
The long-term time-averaged throughput of a dual EH link
satisfies:

log (1 + 4ut) if ur > R,
< e | Rut ;
(%) og(1+?> if ur <R

where 7 2 My 5 Som_ Lip(n)20y l0g(1 + pr(n))

and .,: rate of harvesting at the transmitter and receiver



Upper Bound

Lemma

The long-term time-averaged throughpu
satisfies:

Equivalent to when
only Tx is EHN
log (1+ y11) if 1ir > R,
< R
(%) log (14 824) ifu, <R

where T = IlmN_m N Zn:1 ]l{pr(n)7éo} |Og(1 + Pt(n))
11; and s.,: rate of harvesting at the transmitter and receiver
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Proof Sketch

Unconstrained Receiver: u, > R

T < l@mﬁzlog +pr(n))

= {log(1 + p:(n))} < log(1 +TE[n:(n])
< log(1 + sut)
Constrained Receiver=7, < R

1. A genie-aide@’system which has non-causal information
about energy arrivals at both the nodes

2. Number 4 slots receiver can be on = M

3. Transmitter uses equal power p;(n) = % across these
slots

4. T < (%) log (1 +%)
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Optimal Policy: Energy Unconstrained Receiver

- Receiver remains ON in every slot

* Since iy > R, harvesting rate is more than
the energy required for receiving the data

- Probability that receiver runs out of energy
decays exponentially with receiver battery
size I

+ Equivalent to the Tx-only EHN case @
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Optimal Policy: Energy Unconstrained Receiver

e+ if B> B
Bt pr(n) = . ¢ . t _ B
Zmax min{Bp, ut — 0} if Bp < =5
l - 6= prof =% log B'"ax , where 3 is a constant’

- Throughput achieved by policy converges
2
Supercap to upper bound at rate © (('Og,%) )

Q « Fully uncoordinated policy!

1 R. Srivastava and C. E. Koksal, Basic performance limits and tradeoffs in energy-harvesting sensor
nodes with finite data and energy storage, IEEE/ACM Trans. Netw., vol. 21, pp. 1049-1062, Aug. 2013.




Performance: Policy for Unconstrained Receiver

1
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Mean of harvesting process at transmitter (“1)

Figure: Parameters: R = 0.5 and B, = Bh. = 50.
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Optimal Policy Example: R = 1.25u,
Battery size : B!

max R
] =1and [F] =2
Battery size : Bl
Binax
Bhax
T2
‘l' One bit feedback informs Tx
when battery level crosses
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Optimal Policy: Energy Constrained Receiver

» ur < R = Receiver can only turn on intermittently

Policy at receiver

» Send 1-bit feedback whenever the battery level crosses the
half-full mark

N, it B> S

. gt slots where,
N +1 it B < =5

» Turns on after Ngn = {

Ny =]

Policy at transmitter

» Transmit only in the slots when receiver is on
» Otherwise accumulate the energy in super-capacitor
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Performance: 1-bit Feedback Policy

» Requires one bit feedback
» In addition,
Kr Rt c log Brtnax
) log ( 1 —T¢—1= .
<R> Og< " Mr> 4 O( Brtnax

where T°¢: throughput achieved by 1-bit feedback policy
» Specifically,

Pr Rut\ ¢ _ IogB{naX> N B
(R)Iog<1+ p ) T _o< B )+O () +0(5) .

r

where §; = E - ng and ¢, = [EW ~



Time-dilation to Achieve Upper Bound

Policy at transmitter:

» Same as for 1-bit feedback policy

Policy at receiver:

» Receiver turn ON in last f(.) slots of
> L%‘/')J slots if battery is more than half full

» [BL)] slots if battery is less than half full
Hr

» Effective drift goes to zero as f(.) scales



Performance: Policy for Constrained Receiver

091 ! [—~Bound
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Harvesting probability at transmitter ( A )

Figure: The result corresponds to time-dilation f(-) = 100. Other
parameters are R = 0.5 and B, = B/, = 1000.
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Fully Uncoordinated Policy

> to prescribe a deterministic pattern for the receiver

> Match the ratio of N, £ | 7| and N; + 1 transmissions of
1-bit feedback policy

Deterministic Policy P4

25:1 1{5t>3r h . .
= —y——2=ma for 1-bit feedback policy

nt
> _— =
Compute 7= SV 1ot car

ax}
» Receiver turns on at the last slot of

» Every batch of N, slots for n™ consecutive batches

» Every N; + 1 slots for n— consecutive batches and so no
» Transmitter also follows this deterministic pattern

» T¢— T4 = O(ng°), where mg° denotes the stationary
probability that battery at either node is empty, under policy
PUC



Fully Uncoordinated Policy
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Figure: For P, the values of (n*,n~) are (5,1), (1,1) and (2, 1) for
pr = 0.1,0.2 and 0.4, respectively. Other parameters:
Bl ax = Brax = 50, R =0.5.

max



Numerical Results: Impact of battery size
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Figure: Impact of battery size on the throughput of policy P¢, for
R=0.5.



Summary

» Derived an upper-bound on the throughput of
uncoordinated dual EH links

» Designed fully uncoordinated power control policies which
achieve the upper-bound for unconstrained receiver

» Asymptotically optimal policies were proposed which
require occasional 1-bit feedback

» Proposed a fully uncoordinated policy for a constrained
receiver



Other Contributions of the Thesis

» Proposed a general framework to analyze the PDP of
retransmission-based dual EH links

» Optimal policies for dual EH links with ARQ as well as
HARQ-CC

» Optimal policies for spatio-temporally correlated EH
processes



Thank You!



Performance of the Proposed Policy
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Performance of the Closed-form Policy for General
Case
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Performance of optimal policy designed by ignoring the energy
cost of packet reception, compared to the near-optimal policy for
the general case.



Impact of Slot Allocation Pattern
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Accuracy of PDP Expressions
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Packet drop probability ( PD )
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Accuracy of the closed-form PDP expressions. Parameters used:
Ki = Ko =2, R=1, and B™* = 3 for all the nodes. The RIP is
[1 1] at both source and relay nodes.
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