
Design of Communication Systems with
Energy Harvesting Transmitters and

Receivers

Mohit K. Sharma

Advisor: Prof. Chandra R. Murthy

Department of ECE,
Indian Institute of Science Bangalore, India

May 11, 2018



Outline

I Introduction

I Retransmission-based multi-hop links

1. PDP analysis
2. Energy management policies

I Uncoordinated EH links

1. Upper bounds
2. Energy management policies

I Conclusions



Introduction

I 5G vision: connectivity to massive number of sensors

I Limited lifetime due to pre-charged batteries

I Potential solution: energy harvesting nodes (EHN)

I Harvesting sources

I Solar, thermal, RF etc.

Figure: Forest fire monitoring
(http://news.mit.edu/2008/trees-0923)



Challenges

I Energy neutrality constraint (ENC)

N∑
n=1

en ≤
N∑

n=1

En, for all N

en : energy consumed at nth slot

En : energy harvested at nth slot

I Goal shifts from energy conservation to judicious energy
consumption

I Random and sporadic nature of the harvested energy
I Necessitates the design of energy management policies

I Measurement of accurate state-of-charge (SoC) is difficult
I SoC-independent policies
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ARQ-based Multi-hop EH links
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System Model: Coordinated Transmission between
Two Successive Nodes

I After successful delivery Tx and Rx go to sleep:
I Transmitter wakes up in the next frame
I Receiver turns on at the start of the next sub-frame

I Packet is retransmitted iff all previous attempts have failed

I The energy management policy of nth node:

Pn , {En
1 ,E

n
2 , · · · ,En

Kn
}, where each En

` ≤ Emax

I Energy required for decoding: R

I Block fading channel: constant for a sub-frame/slot

I Packet failure probability is

Pe(En
` , γ) = exp

(
−

En
` γ

N0

)
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Goal & Contributions

Goal
I Obtain a distributed power control policy to minimize the

packet drop probability

I Understand the impact of system parameters on the
performance

Contributions
I Closed-form expressions for packet drop probability
I Near-optimal distributed policies

I For R ≈ 0: closed-form expressions
I For R > 0: iterative GP based solution

I Both slow and fast fading channels
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Prior Work: Multi-hop EH links

1. Gatzianas et al. [TWC 2010], maximize the long-term rate

2. Lai et al. [TCOM 2016] use reliability as the metric

3. Mao et al. [TAC 2012], develop a near-optimal power and rate
control policy to maximize long-term average sensing rate

4. Joseph et al. [ICUMTW 2009], propose joint power control,
scheduling and routing scheme to maximize the throughput



System Evolution

I Modeled by the discrete-time Markov chain with state
(Bs,Us, s)1

I Battery Evolution at nth Node:

Bn
s+1 = min

((
Bn

s + 1{Hn
s} − En

` 1{En
t,s} − R1{En

r,s}

)+
,Bmax

n

)

I Local transmission index, Us

Un
s ,

{
−1 ACK received,
` `− 1 NACKs received, ` ∈ {1, . . . ,Kn}.

Un
s is reset to zero at the start of the frame

1
B. Medepally, N. B. Mehta, and C. Murthy, Implications of energy profile and storage on energy

harvesting sensor link performance, in Proc. IEEE Globecom., Dec. 2009.
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Packet Drop Probability

For a given set of policies P , {Pn}Nn=1

PD =
∑

B

π(B)Eγ {PD (K |B,U = 1,γ, s = 0)}

I π :stationary distribution of battery states at the start of the
frame

π =
(
E
[
G′(γ)

]
− I + A

)−1 1

G′(γ) is the K -step TPM with entries

Pr
[
B(M+1)K = B2|BMK = B1,γ

]
I Conditional PDP can be found in closed-form
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PDP Minimization & Bounds

min
{Pn}N

n=1

PD = min{Pn}N
n=1

∑
B π(B)Eγ {PD (K |B,U = 1,γ)} ,

subject to: 0 ≤ En
` ≤ Emax for all 1 ≤ ` ≤ Kn and 1 ≤ n ≤ N.

Difficult to Solve!

Bounds:
For a multi-hop EH link operating using policies P,

P∗D∞ ≤ min
{Pn}N

n=1

PD ≤ P∗D∞ +
∑

B∈Ic
A

π(B)
∣∣∣
P∗

P∗D∞ , min
{Pn}N

n=1

Eγ {PD (K |·)} and P∗ , arg min
{Pn}N

n=1

Eγ {PD (K |·)}

for any B ∈ IA, the set of “GOOD” battery states.
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Tightness of the Bounds

I Lower bound: Optimum PDP under average power
constraint, with infinite battery2

I Difference between lower and upper bound: upper bound
on the penalty due to finite batteries under the EUR

Theorem (MSharma-TWC-June2017)
For a multi-hop EH link operating under EUR

∑
B∈Ic

A

π(B) =
N+1∑
n=1

Θ(er∗n Bmax
n )

r∗n : negative root of the asymp. log MGF of battery drift process

I Large battery regime: use lower bound as objective and
replace ENC by EUR constraints

2
V. Sharma, U. Mukherji, V. Josheph, and S. Gupta, Optimal energy management policies for energy

harvesting sensor nodes, IEEE Trans. Wireless Commun., Apr. 2010.
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Reformulation

max
{Pn}N

n=1

Pr[N + 1]

subject to T̄n + R̄n ≤ Kρn,

0 ≤ En
` ≤ Emax,

T̄n = Pr[n]

(
Kn∑
`=1

En
`

1 +
∑`−1

i=1 En
i

)
,

R̄n = Pr [n − 1]

Kn−1∑
`=1

1{En−1
` >0}R

1 +
∑`−1

i=1 En−1
i





Reformulation
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Optimal Policy without Peak Power Constraint

Theorem: slow fading
The unique optimal policy for nth-hop is given by

En∗
k =

ρnK
KnPr[n]

(
1 +

ρnK
KnN0Pr[n]

)k−1

, k = 1,2, . . . ,Kn.

Theorem: fast fading
The successive power levels of the optimal policy at nth-hop
satisfies

En∗
`+1 =

En∗
` (En∗

` + 2)

2
,

for all 1 ≤ ` ≤ Kn.
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Optimal Policy with Peak Power Constraint

Solve for optimal policy without PPC

Is En
` ≤ Emax for all `? En

` > Emax: set it to Emax, for all `

STOP

No

Yes



Performance of the Closed-form Policy
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     Proposed policy

Equal power policy

Lower bound on the PDP is

plotted by dotted lines

The policy obtained using proposed approach achieves the lower
bound and outperforms the EPP [Emax Emax Emax Emax].

No. of hops = 2
Emax = 10Es
K1 = K2 = 4



General Case: Integer Constraints (2K →
∏N

n=1 Kn) &
Solving CGP

Input: L(1) = {L1,L2, . . . ,LN} and p ← 0

Set p ← p + 1

Construct a GP approximation

Solve GP to get L(p) ‖L(p+1) − L(p)‖2 ≤ ε STOP

No

Yes



RIPs Vs MDP based policy
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RIPs

For slow fading channels, the RIP uniformly outperforms the MDP,
while in the fast fading case, for ρt > 0.7, the RIP outperforms the
corresponding MDP based policies.

No. of hops = 1
R = 1
Emax = 4Es and 2Es
K1 = 4



PDP at 2nd Hop
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PDP at the second hop improves with increase in the harvesting
rate at the source node.
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Emax = 10Es
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Summary

I Presented closed-form expressions for the PDP

I Characterized the dependence of the PDP on size of the
batteries

I Can design policies under EUR if battery capacity is
sufficiently large

I Obtained closed-form expressions for near-optimal RIPs
when R ≈ 0

I Near optimal policies when R > 0

I The proposed policy outperforms the EPP and MDP based
policies



Uncoordinated Dual EH Links
(Joint work with Prof. Rahul Vaze, TIFR)
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Prior Work: Dual EH Links

1. Arafa and Ulukus [JSAC 2015], maximize the coordinated
throughput

I Non-causal knowledge of energy arrivals at both nodes

2. Zhou et al. [JSAC 2015] consider retransmission-based dual
EH links

I Coordinated sleep-wake protocol

3. Sharma and Murthy [TWC 2017], optimize packet drop
probability of retransmission-based dual EH links

I Use ACK/NACK messages to achieve perfect coordination
I One bit feedback facilitates coordination

4. Doshi and Vaze [ICSS 2014], analyze throughput of
uncoordinated links with unit sized batteries
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Goal & Contributions

Goal

1. To benchmark the throughput of uncoordinated dual EH
links

2. Design a policy that achieves optimal throughput

Contributions

1. Upper-bound on the throughput
2. Asymptotically optimal policies

I Energy unconstrained receiver (µr ≥ R)
I Energy constrained receiver (µr < R)

I Policy with occasional one bit feedback from receiver
I Policy with time-dilation at receiver: asymptotically no

feedback
I Fully uncoordinated policy
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Mathematical Formulation

Objective:

max
pt (n),

pr (n),n≥1

lim
N→∞

1
N

N∑
n=1

1{pr (n)6=0} log(1 + pt (n))

Constraints:

1. Energy used by a node can not exceed the energy in its
battery, i.e.,

Bt
n+1 = min

{
max{0,Bt

n + Et (n)− pt (n)},Bt
max
}

2. Receiver can consume either 0 or R units of energy
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Upper Bound

Lemma
The long-term time-averaged throughput of a dual EH link
satisfies:

T ≤

{
log (1 + µt ) if µr > R,(µr

R

)
log
(

1 + Rµt
µr

)
if µr ≤ R

where T , limN→∞
1
N
∑N

n=1 1{pr (n)6=0} log(1 + pt (n))

µt and µr : rate of harvesting at the transmitter and receiver
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satisfies:

T ≤

{
log (1 + µt ) if µr > R,(µr

R

)
log
(

1 + Rµt
µr

)
if µr ≤ R

Equivalent to when
only Tx is EHN

where T , limN→∞
1
N
∑N

n=1 1{pr (n)6=0} log(1 + pt (n))

µt and µr : rate of harvesting at the transmitter and receiver



Proof Sketch

Unconstrained Receiver: µr > R

T ≤ lim
N→∞

1
N

N∑
n=1

log(1 + pt (n))

= E {log(1 + pt (n))} ≤ log(1 +E [pt (n)])

≤ log(1 + µt )

Constrained Receiver: µr < R

1. A genie-aided system which has non-causal information
about energy arrivals at both the nodes

2. Number of slots receiver can be on = Nµr
R

3. Transmitter uses equal power pt (n) = Rµt
µr

across these
slots

4. T ≤
(µr

R

)
log
(

1 + Rµt
µr

)



Proof Sketch

Unconstrained Receiver: µr > R

T ≤ lim
N→∞

1
N

N∑
n=1

log(1 + pt (n))

= E {log(1 + pt (n))} ≤ log(1 +E [pt (n)])

≤ log(1 + µt )

Constrained Receiver: µr < R

1. A genie-aided system which has non-causal information
about energy arrivals at both the nodes

2. Number of slots receiver can be on = Nµr
R

3. Transmitter uses equal power pt (n) = Rµt
µr

across these
slots

4. T ≤
(µr

R

)
log
(

1 + Rµt
µr

)



Proof Sketch

Unconstrained Receiver: µr > R

T ≤ lim
N→∞

1
N

N∑
n=1

log(1 + pt (n))
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Constrained Receiver: µr < R

1. A genie-aided system which has non-causal information
about energy arrivals at both the nodes

2. Number of slots receiver can be on = Nµr
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3. Transmitter uses equal power pt (n) = Rµt
µr

across these
slots

4. T ≤
(µr

R

)
log
(

1 + Rµt
µr

)

R
µr

is time taken to har-
vest R units of energy
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Rx

Bt
max

Receiver remains ON in every slot

Since µr > R, harvesting rate is more than
the energy required for receiving the data

Probability that receiver runs out of energy
decays exponentially with receiver battery
size

Equivalent to the Tx-only EHN case
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Performance: Policy for Unconstrained Receiver
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Optimal Policy Example: R = 1.25µr

Tx Rx

Battery size : Bt
max

Battery size : Br
max

Supercap
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max
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2

µt + δ
µt − δ One bit feedback informs Tx

when battery level crosses
Br

max
2

No feedback, as battery is
in the same half

b R
µr
c = 1 and d R

µr
e = 2
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Optimal Policy: Energy Constrained Receiver

I µr < R =⇒ Receiver can only turn on intermittently

Policy at receiver

I Send 1-bit feedback whenever the battery level crosses the
half-full mark

I Turns on after Non =

{
Nr if Br

n ≥
Br

max
2

Nr + 1 if Br
n <

Br
max
2

slots where,

Nr = b R
µr
c

Policy at transmitter

I Transmit only in the slots when receiver is on
I Otherwise accumulate the energy in super-capacitor
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Performance: 1-bit Feedback Policy

I Requires occasional one bit feedback

I In addition,(µr

R

)
log
(

1 +
Rµt

µr

)
︸ ︷︷ ︸

upper bound

− T c − 1 = O
(

log Bt
max

Bt
max

)
.

where T c : throughput achieved by 1-bit feedback policy

I Specifically,(µr

R

)
log
(

1 +
Rµt

µr

)
−T c = O

(
log Bt

max

Bt
max

)
+O

(
δ+r
)
+O

(
δ−r
)
.

where δ+r = R
µr
− b R

µr
c and δ−r = d R

µr
e − R

µr
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Time-dilation to Achieve Upper Bound

Policy at transmitter:

I Same as for 1-bit feedback policy

Policy at receiver:

I Receiver turn ON in last f (.) slots of
I bRf (.)

µr
c slots if battery is more than half full

I dRf (.)
µr
e slots if battery is less than half full

I Effective drift goes to zero as f (.) scales
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Harvesting probability at transmitter ( ρ
t
 )

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
T

im
e
- 

a
v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t

Bound
Time- dilated policy
Policy with 1-bit feedback
Bound
Time- dilated policy
Policy with 1-bit feedback
Bound
 Time- dilated policy
 Policy with 1-bit feedback0.5 0.52 0.54 0.56 0.58 0.6

0.45

0.5

0.55

0.6

ρ
r
 = 0.2

ρ
r
 = 0.1

ρ
r
 = 0.4

Figure: The result corresponds to time-dilation f (·) = 100. Other
parameters are R = 0.5 and Bt

max = Br
max = 1000.



Fully Uncoordinated Policy

I Aim: to prescribe a deterministic pattern for the receiver
I Match the ratio of Nr , b R

µr
c and Nr + 1 transmissions of

1-bit feedback policy

Deterministic Policy Puc

I Compute n+

n− =

∑N
n=1 1{Bt

n≥Br
max}∑N

n=1 1{Bt
n<Br

max}
, for 1-bit feedback policy

I Receiver turns on at the last slot of

I Every batch of Nr slots for n+ consecutive batches
I Every Nr + 1 slots for n− consecutive batches and so no

I Transmitter also follows this deterministic pattern
I T c − T uc = O(πuc

0 ), where πuc
0 denotes the stationary

probability that battery at either node is empty, under policy
Puc
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ρr = 0.1,0.2 and 0.4, respectively. Other parameters:
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max = Br
max = 50, R = 0.5.



Numerical Results: Impact of battery size
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Figure: Impact of battery size on the throughput of policy Pc , for
R = 0.5.



Summary

I Derived an upper-bound on the throughput of
uncoordinated dual EH links

I Designed fully uncoordinated power control policies which
achieve the upper-bound for unconstrained receiver

I Asymptotically optimal policies were proposed which
require occasional 1-bit feedback

I Proposed a fully uncoordinated policy for a constrained
receiver



Other Contributions of the Thesis

I Proposed a general framework to analyze the PDP of
retransmission-based dual EH links

I Optimal policies for dual EH links with ARQ as well as
HARQ-CC

I Optimal policies for spatio-temporally correlated EH
processes



Thank You!



Performance of the Proposed Policy
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The policy obtained using proposed approach outperforms the
equal power policy [Pmax Pmax Pmax Pmax].
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Performance of the Closed-form Policy for General
Case
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the general case.
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Impact of Slot Allocation Pattern
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Accuracy of PDP Expressions
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[1 1] at both source and relay nodes.


	anm0: 


