Design of Communication Systems with Energy Harvesting Transmitters and Receivers

Mohit K. Sharma

Advisor: Prof. Chandra R. Murthy

Department of ECE, Indian Institute of Science Bangalore, India

May 11, 2018

Outline

- Introduction
- Retransmission-based multi-hop links
 - 1. PDP analysis
 - 2. Energy management policies
- Uncoordinated EH links
 - 1. Upper bounds
 - 2. Energy management policies
- Conclusions

Introduction

- 5G vision: connectivity to massive number of sensors
- Limited lifetime due to pre-charged batteries
- Potential solution: energy harvesting nodes (EHN)

- Harvesting sources
 - Solar, thermal, RF etc.

Figure: Forest fire monitoring

Challenges

Energy neutrality constraint (ENC)

$$\sum_{n=1}^{N} e_n \leq \sum_{n=1}^{N} \mathcal{E}_n, \text{ for all } N$$

 e_n : energy consumed at n^{th} slot

 \mathcal{E}_n : energy harvested at n^{th} slot

 Goal shifts from energy conservation to judicious energy consumption

Challenges

Energy neutrality constraint (ENC)

$$\sum_{n=1}^{N} e_n \le \sum_{n=1}^{N} \mathcal{E}_n, \text{ for all } N$$

 e_n : energy consumed at n^{th} slot

 \mathcal{E}_n : energy harvested at n^{th} slot

- Goal shifts from energy conservation to judicious energy consumption
- Random and sporadic nature of the harvested energy
 - Necessitates the design of energy management policies

Challenges

Energy neutrality constraint (ENC)

$$\sum_{n=1}^{N} e_n \le \sum_{n=1}^{N} \mathcal{E}_n, \text{ for all } N$$

 e_n : energy consumed at n^{th} slot

 \mathcal{E}_n : energy harvested at n^{th} slot

- Goal shifts from energy conservation to judicious energy consumption
- Random and sporadic nature of the harvested energy
 - Necessitates the design of energy management policies
- Measurement of accurate state-of-charge (SoC) is difficult
 - SoC-independent policies

Challenges: EH Receivers

Thesis Layout

Thesis Layout

Thesis Layout

Publications

Journal Publications:

- M. Sharma and C. R. Murthy, "Packet Drop Probability Analysis of Dual Energy Harvesting Links with Retransmission," *IEEE J. Sel. Areas in Commun.*, vol. 34, no. 12, pp. 3646 - 3660, Dec. 2016.
- M. Sharma and C. R. Murthy, "On Design of Dual Energy Harvesting Communication Links With Retransmission," *IEEE Trans. Wireless Commun.*, vol. 16, no. 6, pp. 4079 - 4093, Jun. 2017.
- M. Sharma and C. R. Murthy, "Distributed Power Control for Multi-hop Energy Harvesting Links with Retransmission," to appear in *IEEE Trans. Wireless Commun.*, Mar. 2018.
- M. Sharma, C. R. Murthy and R. Vaze, "Asymptotically Optimal Uncoordinated Power Control Policies for Energy Harvesting Multiple Access Channels with Decoding Costs," submitted to IEEE Trans. Commun., Apr. 2018.

Publications

Conference Publications:

- M. Sharma and C. R. Murthy, "Packet Drop Probability Analysis of ARQ and HARQ-CC with Energy Harvesting Transmitters and Receivers," in Proc. IEEE GlobalSIP, Dec. 2014, pp. 148-152.
- A. Devraj, M. Sharma and C. R. Murthy, "Power Allocation in Energy Harvesting Sensors with ARQ: A Convex Optimization Approach," in Proc. IEEE GlobalSIP, Dec. 2014, pp. 208-212.
- M. Sharma, C. R. Murthy and R. Vaze, "On Distributed Power Control for Uncoordinated Dual Energy Harvesting Links: Performance Bounds and Near-Optimal Policies," in Proc. WiOpt, May 2017.
- M. Sharma and C. R. Murthy, "Near-Optimal Distributed Power Control for ARQ Based Multihop Links with Decoding Costs," in Proc. IEEE ICC, May 2017.

ARQ-based Multi-hop EH links

• Packet is generated at the start of the frame

- Packet is generated at the start of the frame
- Dropped if not delivered by the end of the frame

• Forwarded using half-duplex relays

- Forwarded using half-duplex relays
- Only n^{th} hop is active in the n^{th} sub-frame
 - Nodes harvest energy in all sub-frames

- Forwarded using half-duplex relays
- Only n^{th} hop is active in the n^{th} sub-frame

• Division of slots in sub-frames is fixed over time

- Division of slots in sub-frames is fixed over time
- Packet drop: transmission failed at intermediate hop

• Bernoulli energy harvesting model

- Bernoulli energy harvesting model
- Transmission at each hop follows the ARQ protocol

- After successful delivery Tx and Rx go to sleep:
 - Transmitter wakes up in the next frame
 - Receiver turns on at the start of the next sub-frame

- After successful delivery Tx and Rx go to sleep:
 - Transmitter wakes up in the next frame
 - Receiver turns on at the start of the next sub-frame
- Packet is retransmitted iff all previous attempts have failed

- After successful delivery Tx and Rx go to sleep:
 - Transmitter wakes up in the next frame
 - Receiver turns on at the start of the next sub-frame
- Packet is retransmitted iff all previous attempts have failed
- ► The energy management policy of *n*th node:

$$\mathcal{P}^n \triangleq \{E_1^n, E_2^n, \cdots, E_{K_n}^n\}, \text{ where each } E_\ell^n \leq E_{\text{max}}$$

- After successful delivery Tx and Rx go to sleep:
 - Transmitter wakes up in the next frame
 - Receiver turns on at the start of the next sub-frame
- Packet is retransmitted iff all previous attempts have failed
- ▶ The energy management policy of *n*th node:

$$\mathcal{P}^n \triangleq \{E_1^n, E_2^n, \cdots, E_{K_n}^n\}, \text{ where each } E_\ell^n \leq E_{\text{max}}$$

Energy required for decoding: R

- After successful delivery Tx and Rx go to sleep:
 - Transmitter wakes up in the next frame
 - ▶ Receiver turns on at the start of the next sub-frame
- Packet is retransmitted iff all previous attempts have failed
- ► The energy management policy of *n*th node:

$$\mathcal{P}^n \triangleq \{E_1^n, E_2^n, \cdots, E_{K_n}^n\}, \text{ where each } E_\ell^n \leq E_{\text{max}}$$

- ► Energy required for decoding: R
- Block fading channel: constant for a sub-frame/slot

- After successful delivery Tx and Rx go to sleep:
 - Transmitter wakes up in the next frame
 - Receiver turns on at the start of the next sub-frame
- Packet is retransmitted iff all previous attempts have failed
- ▶ The energy management policy of *n*th node:

$$\mathcal{P}^n \triangleq \{E_1^n, E_2^n, \cdots, E_{K_n}^n\}, \text{ where each } E_\ell^n \leq E_{\text{max}}$$

- Energy required for decoding: R
- Block fading channel: constant for a sub-frame/slot
- Packet failure probability is

$$P_e(E_\ell^n, \gamma) = \exp\left(-\frac{E_\ell^n \gamma}{N_0}\right)$$

Goal & Contributions

Goal

- Obtain a distributed power control policy to minimize the packet drop probability
- Understand the impact of system parameters on the performance

Goal & Contributions

Goal

- Obtain a distributed power control policy to minimize the packet drop probability
- Understand the impact of system parameters on the performance

Contributions

- Closed-form expressions for packet drop probability
- Near-optimal distributed policies
 - ▶ For $R \approx 0$: closed-form expressions
 - ► For R > 0: iterative GP based solution
- ▶ Both slow and fast fading channels

Prior Work: Multi-hop EH links

- 1. Gatzianas et al. [TWC 2010], maximize the long-term rate
- 2. Lai et al. [TCOM 2016] use reliability as the metric
- 3. Mao et al. [TAC 2012], develop a near-optimal power and rate control policy to maximize long-term average sensing rate
- 4. Joseph et al. [ICUMTW 2009], propose joint power control, scheduling and routing scheme to maximize the throughput

- Modeled by the discrete-time Markov chain with state $(\boldsymbol{B}_s, \boldsymbol{U}_s, s)^1$
- Battery Evolution at nth Node:

$$B_{s+1}^n = \min\left(\left(B_s^n + \mathbb{1}_{\{\mathcal{H}_s^n\}} - E_\ell^n \mathbb{1}_{\{\mathcal{E}_{t,s}^n\}} - R\mathbb{1}_{\{\mathcal{E}_{r,s}^n\}}\right)^+, B_n^{\mathsf{max}}\right)$$

¹B. Medepally, N. B. Mehta, and C. Murthy, *Implications of energy profile and storage on energy harvesting sensor link performance*, in Proc. IEEE Globecom., Dec. 2009.

- Modeled by the discrete-time Markov chain with state $(\boldsymbol{B}_s, \boldsymbol{U}_s, s)^1$
- Battery Evolution at nth Node:

$$\textit{\textit{B}}^{\textit{n}}_{s+1} = \min\left(\left(\textit{\textit{B}}^{\textit{n}}_{s} + \mathbb{1}_{\left\{\mathcal{H}^{\textit{n}}_{s}\right\}} - \textit{\textit{E}}^{\textit{n}}_{\ell}\mathbb{1}_{\left\{\mathcal{E}^{\textit{n}}_{t,s}\right\}} - \textit{\textit{R}}\mathbb{1}_{\left\{\mathcal{E}^{\textit{n}}_{r,s}\right\}}\right)^{+}, \textit{\textit{\textit{B}}}^{\text{max}}_{n}\right)$$

nonzero if node harvests energy

B. Medepally, N. B. Mehta, and C. Murthy, *Implications of energy profile and storage on energy harvesting sensor link performance*, in Proc. IEEE Globecom., Dec. 2009.

- Modeled by the discrete-time Markov chain with state $(\boldsymbol{B}_s, \boldsymbol{U}_s, s)^1$
- Battery Evolution at nth Node:

$$B_{s+1}^n = \min\left(\left(B_s^n + \mathbb{1}_{\{\mathcal{H}_s^n\}} - E_\ell^n \mathbb{1}_{\{\mathcal{E}_{r,s}^n\}} - R\mathbb{1}_{\{\mathcal{E}_{r,s}^n\}}\right)^+, B_n^{\max}\right)$$

nonzero if node harvests energy

nonzero if node transmits

¹B. Medepally, N. B. Mehta, and C. Murthy, *Implications of energy profile and storage on energy harvesting sensor link performance*, in Proc. IEEE Globecom., Dec. 2009.

- Modeled by the discrete-time Markov chain with state $(\boldsymbol{B}_s, \boldsymbol{U}_s, s)^1$
- Battery Evolution at nth Node:

$$B_{s+1}^n = \min\left(\left(B_s^n + \mathbb{1}_{\{\mathcal{H}_{s\}}^n\}} - E_\ell^n \mathbb{1}_{\{\mathcal{E}_{t,s}^n\}} - R\mathbb{1}_{\{\mathcal{E}_{r,s}^n\}}\right)^+, B_n^{\max}\right)$$

nonzero if node harvests energy

nonzero if node transmits

ceives

B. Medepally, N. B. Mehta, and C. Murthy, *Implications of energy profile and storage on energy harvesting sensor link performance*, in Proc. IEEE Globecom., Dec. 2009.

- Modeled by the discrete-time Markov chain with state $(\boldsymbol{B}_s, \boldsymbol{U}_s, s)^1$ nonzero if node re-
- Battery Evolution at nth Node:

$$B_{s+1}^n = \min\left(\left(B_s^n + \mathbb{1}_{\{\mathcal{H}_{s}^n\}} - E_\ell^n \mathbb{1}_{\{\mathcal{E}_{t,s}^n\}} - R\mathbb{1}_{\{\mathcal{E}_{r,s}^n\}}\right)^+, B_n^{\max}\right)$$

nonzero if node harvests energy

nonzero if node transmits

ceives

Local transmission index, U_s

$$U_s^n \triangleq egin{cases} -1 & \text{ACK received,} \\ \ell & \ell-1 & \text{NACKs received,} \ \ell \in \{1,\ldots,K_n\}. \end{cases}$$

 U_s^n is reset to zero at the start of the frame

For a given set of policies $\mathcal{P} \triangleq \{\mathcal{P}^n\}_{n=1}^N$

$$P_{\mathsf{D}} = \sum_{m{B}} \pi(m{B}) \mathbb{E}_{m{\gamma}} \left\{ P_{D}\left(K | m{B}, m{U} = m{1}, m{\gamma}, m{s} = m{0}
ight)
ight\}$$

For a given set of policies $\mathcal{P} \triangleq \{\mathcal{P}^n\}_{n=1}^N$

$$P_{\mathsf{D}} = \sum_{oldsymbol{\mathcal{B}}} \pi(oldsymbol{\mathcal{B}}) \mathbb{E}_{oldsymbol{\gamma}} \left\{ P_{\mathcal{D}}\left(K|oldsymbol{\mathcal{B}}, oldsymbol{\mathcal{U}} = \mathbf{1}, oldsymbol{\gamma}, oldsymbol{s} = \mathbf{0}
ight)
ight\}$$

 \blacktriangleright π :stationary distribution of battery states at the start of the frame

$$oldsymbol{\pi} = ig(oldsymbol{E} \left[oldsymbol{G'(\gamma)}
ight] - oldsymbol{I} + oldsymbol{A} ig)^{-1}$$
 1

For a given set of policies $\mathcal{P} \triangleq \{\mathcal{P}^n\}_{n=1}^N$ All one vector $P_{\mathsf{D}} = \sum_{\boldsymbol{B}} \pi(\boldsymbol{B}) \mathbb{E}_{\gamma} \left\{ P_{D}\left(K|\boldsymbol{B}, \boldsymbol{U}=\boldsymbol{1}, \gamma, s=0\right) \right\}$

 \triangleright π :stationary distribution of battery states at the start of the frame

$$oldsymbol{\pi} = ig(\mathbb{E} \left[oldsymbol{G'(\gamma)}
ight] - oldsymbol{I} + oldsymbol{A} ig)^{-1} \, oldsymbol{1}$$

 $\pi=\left(\mathbb{E}\left[m{G'(\gamma)}
ight]-m{I}+m{A}
ight)^{-1}\mathbf{1}$ $m{G'(\gamma)}$ is the K-step TPM with entries $\Pr\left[m{B}_{(M+1)K}=m{B}_2|m{B}_{MK}=m{B}_1,\gamma
ight]$ All one matrix

$$\mathsf{Pr}\left[oldsymbol{\mathcal{B}}_{(M+1)K} = oldsymbol{\mathcal{B}}_2 | oldsymbol{\mathcal{B}}_{MK} = oldsymbol{\mathcal{B}}_1, \gamma
ight]$$

For a given set of policies $\mathcal{P} \triangleq \{\mathcal{P}^n\}_{n=1}^N$ All one vector $P_{\mathsf{D}} = \sum_{\boldsymbol{B}} \pi(\boldsymbol{B}) \mathbb{E}_{\gamma} \left\{ P_{D}\left(K|\boldsymbol{B}, \boldsymbol{U}=\boldsymbol{1}, \gamma, s=0\right) \right\}$

 \triangleright π :stationary distribution of battery states at the start of the frame

$$oldsymbol{\pi} = ig(\mathbb{E} \left[oldsymbol{G'(\gamma)}
ight] - oldsymbol{I} + oldsymbol{A} ig)^{-1} \, \mathbf{1}$$

 $\pi=\left(\mathbb{E}\left[m{G'(\gamma)}
ight]-m{I}+m{A}
ight)^{-1}\mathbf{1}$ $m{G'(\gamma)}$ is the K-step TPM with entries $\Pr\left[m{B}_{(M+1)K}=m{B}_2|m{B}_{MK}=m{B}_1,\gamma
ight]$ All one matrix

$$\Pr\left[oldsymbol{\mathcal{B}}_{(M+1)K}=oldsymbol{\mathcal{B}}_{2}|oldsymbol{\mathcal{B}}_{MK}=oldsymbol{\mathcal{B}}_{1},\gamma
ight]$$

Conditional PDP can be found in closed-form

$$\begin{split} & \min_{\{\mathcal{P}^n\}_{n=1}^N} P_{\mathsf{D}} & = \min_{\{\mathcal{P}^n\}_{n=1}^N} \sum_{\boldsymbol{B}} \pi(\boldsymbol{B}) \mathbb{E}_{\boldsymbol{\gamma}} \left\{ P_D\left(K|\boldsymbol{B}, \boldsymbol{U} = \boldsymbol{1}, \boldsymbol{\gamma}\right) \right\}, \\ & \text{subject to:} & 0 \leq E_\ell^n \leq E_{\mathsf{max}} \text{ for all } 1 \leq \ell \leq \mathcal{K}_n \text{ and } 1 \leq n \leq N. \end{split}$$

$$\begin{aligned} & \min_{\{\mathcal{P}^n\}_{n=1}^N} P_{\mathsf{D}} & = \min_{\{\mathcal{P}^n\}_{n=1}^N} \sum_{\boldsymbol{B}} \pi(\boldsymbol{B}) \mathbb{E}_{\boldsymbol{\gamma}} \left\{ P_D\left(K|\boldsymbol{B}, \boldsymbol{U} = \boldsymbol{1}, \boldsymbol{\gamma}\right) \right\}, \\ & \text{subject to:} & 0 \leq E_\ell^n \leq E_{\mathsf{max}} \text{ for all } 1 \leq \ell \leq K_n \text{ and } 1 \leq n \leq N. \end{aligned}$$

Difficult to Solve!

$$\min_{\{\mathcal{P}^n\}_{n=1}^N} P_{\mathsf{D}} \quad = \min_{\{\mathcal{P}^n\}_{n=1}^N} \textstyle \sum_{\boldsymbol{B}} \pi(\boldsymbol{B}) \mathbb{E}_{\gamma} \left\{ P_{D}\left(\boldsymbol{K} \middle| \boldsymbol{B}, \boldsymbol{U} = \boldsymbol{1}, \gamma \right) \right\},$$

subject to: $0 \le E_{\ell}^n \le E_{\text{max}}$ for all $1 \le \ell \le K_n$ and $1 \le n \le N$.

Bounds:

For a multi-hop EH link operating using policies P,

$$P_{\mathsf{D}_{\infty}}^* \leq \min_{\{\mathcal{P}^n\}_{n=1}^N} P_{\mathsf{D}} \leq P_{\mathsf{D}_{\infty}}^* + \sum_{m{B} \in \mathcal{I}_{\mathtt{A}}^c} \pi(m{B}) \Big|_{\mathcal{P}^*}$$

$$\min_{\{\mathcal{P}^n\}_{n=1}^N} P_{\mathrm{D}} \ = \min_{\{\mathcal{P}^n\}_{n=1}^N} \textstyle \sum_{\boldsymbol{B}} \pi(\boldsymbol{B}) \mathbb{E}_{\gamma} \left\{ P_{D}\left(K | \boldsymbol{B}, \boldsymbol{U} = \boldsymbol{1}, \gamma\right) \right\},$$

subject to: $0 \le E_{\ell}^n \le E_{\text{max}}$ for all $1 \le \ell \le K_n$ and $1 \le n \le N$.

Bounds:

For a multi-hop EH link operating using policies \mathcal{P} ,

$$P_{\mathsf{D}_{\infty}}^* \leq \min_{\{\mathcal{P}^n\}_{n=1}^N} P_{\mathsf{D}} \leq P_{\mathsf{D}_{\infty}}^* + \sum_{\boldsymbol{B} \in \mathcal{I}_{\mathtt{A}}^c} \pi(\boldsymbol{B}) \Big|_{\mathcal{P}^*}$$

$$P_{\mathsf{D}_{\infty}}^{*}\triangleq\min_{\{\mathcal{P}^{n}\}_{n=1}^{N}}\mathbb{E}_{\gamma}\left\{P_{\mathsf{D}}\left(K|\cdot\right)\right\}\text{ and }\mathcal{P}^{*}\triangleq\arg\min_{\{\mathcal{P}^{n}\}_{n=1}^{N}}\mathbb{E}_{\gamma}\left\{P_{\mathsf{D}}\left(K|\cdot\right)\right\}$$

for any $\mathbf{B} \in \mathcal{I}_A$, the set of "GOOD" battery states.

Tightness of the Bounds

- Lower bound: Optimum PDP under average power constraint, with infinite battery²
- Difference between lower and upper bound: upper bound on the penalty due to finite batteries under the EUR

²V. Sharma, U. Mukherji, V. Josheph, and S. Gupta, *Optimal energy management policies for energy harvesting sensor nodes*, IEEE Trans. Wireless Commun., Apr. 2010.

Tightness of the Bounds

- Lower bound: Optimum PDP under average power constraint, with infinite battery²
- ► Difference between lower and upper bound: upper bound on the penalty due to finite batteries under the EUR

Theorem (MSharma-TWC-June2017)

For a multi-hop EH link operating under EUR

$$\sum_{\boldsymbol{B}\in\mathcal{I}_{A}^{c}}\pi(\boldsymbol{B})=\sum_{n=1}^{N+1}\Theta(\boldsymbol{e}^{r_{n}^{*}B_{n}^{\max}})$$

 r_n^* : negative root of the asymp. log MGF of battery drift process

²V. Sharma, U. Mukherji, V. Josheph, and S. Gupta, *Optimal energy management policies for energy harvesting sensor nodes*, IEEE Trans. Wireless Commun., Apr. 2010.

Tightness of the Bounds

- Lower bound: Optimum PDP under average power constraint, with infinite battery²
- ▶ Difference between lower and upper bound: upper bound on the penalty due to finite batteries under the EUR

Theorem (MSharma-TWC-June2017)

For a multi-hop EH link operating under EUR

$$\sum_{\boldsymbol{B}\in\mathcal{I}_{A}^{c}}\pi(\boldsymbol{B})=\sum_{n=1}^{N+1}\Theta(\boldsymbol{e}^{r_{n}^{*}B_{n}^{\max}})$$

 r_n^* : negative root of the asymp. log MGF of battery drift process

► Large battery regime: use lower bound as objective and replace ENC by EUR constraints

²V. Sharma, U. Mukherji, V. Josheph, and S. Gupta, *Optimal energy management policies for energy harvesting sensor nodes*, IEEE Trans. Wireless Commun., Apr. 2010.

```
\begin{aligned} \max_{\{\mathcal{P}^n\}_{n=1}^N} & \Pr[N+1] \\ \text{subject to } & \bar{\mathcal{T}}_n + \bar{R}_n \leq K\rho_n, \\ & 0 \leq E_\ell^n \leq E_{\text{max}}, \end{aligned}
```


Reformulation $\max_{\{\mathcal{P}^n\}_{n=1}^N} \Pr[N+1]$ Average energy subject to $\bar{T}_n + \bar{R}_n \leq K \rho_n$, used for trans-

mission

$$\{\mathcal{P}^n\}_{n=1}^N$$
 subject to $ar{\mathcal{T}}_n+ar{R}_n\leq K
ho_n,$ $0\leq E_\ell^n\leq E_{\mathsf{max}},$

Average energy used for transmission

 $\max_{\{\mathcal{P}^n\}_{n=1}^N} \Pr[N+1]$ subject to $\bar{T}_n + \bar{R}_n \le K\rho_n$, Average energy $0 \le E_\ell^n \le E_{\text{max}}$, used for reception

Average energy used for transmission

$$\max_{\{\mathcal{P}^n\}_{n=1}^N} \Pr[N+1]$$

subject to
$$\bar{T}_n + \bar{R}_n \le K\rho_n$$
, Average energy $0 \le E_{\ell}^n = E_{\text{max}}$, used for reception

$$\Pr[n] = \prod_{m=1}^{n-1} \left(1 - \frac{1}{1 + \sum_{\ell=1}^{K_m} E_{\ell}^m} \right)$$

Average energy used for transmission

max Pr[N+1] $\{P^n\}_{n=1}^N$

subject to $\bar{T}_n + \bar{R}_n \le K\rho_n$, Average energy used for reception

$$\Pr[n] = \prod_{m=1}^{n-1} \left(1 - \frac{1}{1 + \sum_{\ell=1}^{K_m} E_{\ell}^m} \right)$$
$$\bar{T}_n = \Pr[n] \left(\sum_{\ell=1}^{K_n} \frac{E_{\ell}^n}{1 + \sum_{\ell=1}^{\ell-1} E_{\ell}^n} \right),$$

Average energy used for transmission

$$\max_{\{\mathcal{P}^n\}_{n=1}^N} \Pr[N+1]$$

subject to $\bar{T}_n + \bar{R}_n \le K\rho_n$, Average energy used for reception

$$\Pr[n] = \prod_{m=1}^{n-1} \left(1 - \frac{1}{1 + \sum_{\ell=1}^{K_m} E_\ell^m} \right)$$

$$\bar{T}_n = \Pr[n] \left(\sum_{\ell=1}^{K_n} \frac{E_\ell^n}{1 + \sum_{i=1}^{\ell-1} E_i^n} \right),$$

$$\bar{R}_n = \Pr[n-1] \left(\sum_{\ell=1}^{K_{n-1}} \frac{\mathbb{1}_{\{E_\ell^{n-1} > 0\}} R}{1 + \sum_{i=1}^{\ell-1} E_i^{n-1}} \right)$$

Average energy used for transmission

$$\max_{\{\mathcal{P}^n\}_{n=1}^N} \Pr[N+1]$$

subject to $\bar{T}_n + \bar{R}_n \le K\rho_n$, Average energy used for reception

$$\Pr[n] = \prod_{m=1}^{n-1} \left(1 - \frac{1}{1 + \sum_{\ell=1}^{K_m} E_\ell^m}\right) \text{Nonconvex mixed integer program with } 2^K \text{subproblems}$$

$$\bar{T}_n = \Pr[n] \left(\sum_{\ell=1}^{K_n} \frac{E_\ell^n}{1 + \sum_{i=1}^{\ell-1} E_i^n}\right),$$

$$\bar{R}_n = \Pr[n-1] \left(\sum_{\ell=1}^{K_{n-1}} \frac{\mathbb{I}_{\{E_\ell^{n-1} > 0\}} R}{1 + \sum_{i=1}^{\ell-1} E_i^{n-1}}\right)$$

Reformulation: Negligible Cost of Reception

$$Pr[n] = \prod_{m=1}^{n-1} \left(1 - \frac{1}{1 + \sum_{\ell=1}^{K_m} E_{\ell}^m} \right)$$

$$\bar{T}_n = Pr[n] \left(\sum_{\ell=1}^{K_n} \frac{E_{\ell}^n}{1 + \sum_{i=1}^{\ell-1} E_i^n} \right)$$

$$\bar{R}_n = Pr[n-1] \left(\sum_{\ell=1}^{K_{n-1}} \frac{\mathbb{1}_{\{E_{\ell}^{n-1} > 0\}} R}{1 + \sum_{i=1}^{\ell-1} E_i^{n-1}} \right)$$

Reformulation: Negligible Cost of Reception

$$\max_{\{\mathcal{P}^n\}_{n=1}^N} \Pr[N+1]$$
 of subject to $ar{\mathcal{T}}_n + ar{\mathcal{P}}_n \leq K
ho_n,$ $0 \leq E_\ell^n \leq E_{\mathsf{max}},$

$$\Pr[n] = \prod_{m=1}^{n-1} \left(1 - \frac{1}{1 + \sum_{\ell=1}^{K_m} E_{\ell}^m} \right)$$
$$\bar{T}_n = \Pr[n] \left(\sum_{\ell=1}^{K_n} \frac{E_{\ell}^n}{1 + \sum_{i=1}^{\ell-1} E_i^n} \right)$$

Reformulation: Negligible Cost of Reception

$$\max_{\{\mathcal{P}^n\}_{n=1}^N} \Pr[N+1]$$

$$0$$
subject to $\bar{T}_n + \bar{\not{P}}_n \leq K\rho_n$,
$$0 \leq E_\ell^n \leq E_{\text{max}}$$
,

$$\Pr[n] = \prod_{m=1}^{n-1} \left(1 - \frac{1}{1 + \sum_{\ell=1}^{K_m} E_{\ell}^m} \right)$$
$$\bar{T}_n = \Pr[n] \left(\sum_{\ell=1}^{K_n} \frac{E_{\ell}^n}{1 + \sum_{i=1}^{\ell-1} E_i^n} \right)$$

Optimal policy obtained using the solution for P2P links

Optimal Policy without Peak Power Constraint

Theorem: slow fading The unique optimal policy for n^{th} -hop is given by

$$E_k^{n^*} = \frac{\rho_n K}{K_n \text{Pr}[n]} \left(1 + \frac{\rho_n K}{K_n N_0 \text{Pr}[n]} \right)^{k-1}, \ k = 1, 2, \dots, K_n.$$

Optimal Policy without Peak Power Constraint

Theorem: slow fading

The unique optimal policy for n^{th} -hop is given by

$$E_k^{n^*} = \frac{\rho_n K}{K_n \text{Pr}[n]} \left(1 + \frac{\rho_n K}{K_n N_0 \text{Pr}[n]} \right)^{k-1}, \ k = 1, 2, \dots, K_n.$$

Theorem: fast fading

The successive power levels of the optimal policy at n^{th} -hop satisfies

$$E_{\ell+1}^{n^*} = \frac{E_{\ell}^{n^*}(E_{\ell}^{n^*}+2)}{2},$$

for all $1 \le \ell \le K_n$.

Optimal Policy with Peak Power Constraint

Performance of the Closed-form Policy

No. of hops = 2

$$E_{\text{max}} = 10E_{\text{s}}$$

 $K_1 = K_2 = 4$

The policy obtained using proposed approach achieves the lower bound and outperforms the EPP [E_{max} E_{max} E_{max} E_{max}].

General Case: Integer Constraints $(2^K \to \prod_{n=1}^N K_n)$ & Solving CGP

RIPs Vs MDP based policy


```
No. of hops = 1 R = 1 E_{max} = 4E_s and 2E_s K_1 = 4
```

For slow fading channels, the RIP uniformly outperforms the MDP, while in the fast fading case, for $\rho_t > 0.7$, the RIP outperforms the corresponding MDP based policies.

PDP at 2nd Hop

No. of hops = 2

$$R = 1$$

 $E_{\text{max}} = 10E_s$
 $K_1 = K_2 = 4$

PDP at the second hop improves with increase in the harvesting rate at the source node.

Summary

- Presented closed-form expressions for the PDP
- Characterized the dependence of the PDP on size of the batteries
 - Can design policies under EUR if battery capacity is sufficiently large
- ▶ Obtained closed-form expressions for near-optimal RIPs when $R \approx 0$
- Near optimal policies when R > 0
- The proposed policy outperforms the EPP and MDP based policies

Uncoordinated Dual EH Links
(Joint work with Prof. Rahul Vaze, TIFR)

Battery size : B_{max}^t · Transmit energy is transferred to super-capacitor Battery size : B_{max}^r AWGN channel Supercap Tx Rx

Prior Work: Dual EH Links

- Arafa and Ulukus [JSAC 2015], maximize the coordinated throughput
 - Non-causal knowledge of energy arrivals at both nodes
- Zhou et al. [JSAC 2015] consider retransmission-based dual EH links
 - Coordinated sleep-wake protocol
- 3. Sharma and Murthy [TWC 2017], optimize packet drop probability of retransmission-based dual EH links
 - Use ACK/NACK messages to achieve perfect coordination
 - One bit feedback facilitates coordination
- 4. Doshi and Vaze [ICSS 2014], analyze throughput of uncoordinated links with unit sized batteries

Goal & Contributions

Goal

- To benchmark the throughput of uncoordinated dual EH links
- 2. Design a policy that achieves optimal throughput

Goal & Contributions

Goal

- To benchmark the throughput of uncoordinated dual EH links
- 2. Design a policy that achieves optimal throughput

Contributions

- Upper-bound on the throughput
- 2. Asymptotically optimal policies
 - ▶ Energy unconstrained receiver $(\mu_r \ge R)$
 - Energy constrained receiver $(\mu_r < R)$

Goal & Contributions

Goal

- To benchmark the throughput of uncoordinated dual EH links
- 2. Design a policy that achieves optimal throughput

Contributions

- Upper-bound on the throughput
- 2. Asymptotically optimal policies
 - ▶ Energy unconstrained receiver $(\mu_r \ge R)$
 - Energy constrained receiver $(\mu_r < R)$
 - Policy with occasional one bit feedback from receiver
 - Policy with time-dilation at receiver: asymptotically no feedback
 - Fully uncoordinated policy

Objective:

$$\max_{\substack{p_t(n), \\ p_r(n), n \geq 1}} \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{\{p_r(n) \neq 0\}} \log(1 + p_t(n))$$

Objective:

$$\max_{\substack{p_t(n),\\p_r(n),n\geq 1\\P\text{olicy at Tx and}}} \lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^N \mathbb{1}_{\{p_r(n)\neq 0\}} \log(1+p_t(n))$$

Objective:

$$\max_{\substack{p_t(n),\\p_r(n),n\geq 1\\Policy \text{ at Tx and}\\Rx}}\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mathbb{1}_{\{p_r(n)\neq 0\}}\log(1+p_t(n))$$
 zero if receiver is off

Objective:

Constraints:

1. Energy used by a node can not exceed the energy in its battery, i.e.,

$$B_{n+1}^t = \min\left\{\max\{0, B_n^t + \mathcal{E}_t(n) - p_t(n)\}, B_{\max}^t\right\}$$

2. Receiver can consume either 0 or R units of energy

Upper Bound

Lemma

The long-term time-averaged throughput of a dual EH link satisfies:

$$\mathcal{T} \leq \begin{cases} \log \left(1 + \mu_t\right) & \text{if } \mu_r > R, \\ \left(\frac{\mu_r}{R}\right) \log \left(1 + \frac{R\mu_t}{\mu_r}\right) & \text{if } \mu_r \leq R \end{cases}$$

where
$$\mathcal{T} \triangleq \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{\{p_r(n) \neq 0\}} \log(1 + p_t(n))$$

 μ_t and μ_r : rate of harvesting at the transmitter and receiver

Upper Bound

Lemma

The long-term time-averaged throughput satisfies:

Equivalent to when only Tx is EHN

$$\mathcal{T} \leq egin{cases} \log \left(1 + \mu_t
ight) & ext{if } \mu_r > R, \ \left(rac{\mu_r}{R}
ight) \log \left(1 + rac{R\mu_t}{\mu_r}
ight) & ext{if } \mu_r \leq R \end{cases}$$

where
$$\mathcal{T} \triangleq \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{\{p_r(n) \neq 0\}} \log(1 + p_t(n))$$

 μ_t and μ_r : rate of harvesting at the transmitter and receiver

Proof Sketch

Unconstrained Receiver: $\mu_r > R$

$$\mathcal{T} \leq \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \log(1 + p_t(n))$$

$$= \mathbb{E} \left\{ \log(1 + p_t(n)) \right\} \leq \log(1 + \mathbb{E} \left[p_t(n) \right]$$

$$\leq \log(1 + \mu_t)$$

Proof Sketch

Unconstrained Receiver: $\mu_r > R$

$$\mathcal{T} \leq \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \log(1 + p_t(n))$$

$$= \mathbb{E} \left\{ \log(1 + p_t(n)) \right\} \leq \log(1 + \mathbb{E} \left[p_t(n) \right]$$

$$\leq \log(1 + \mu_t)$$

Constrained Receiver: $\mu_r < R$

- A genie-aided system which has non-causal information about energy arrivals at both the nodes
- 2. Number of slots receiver can be on $=\frac{N\mu_r}{R}$
- 3. Transmitter uses equal power $p_t(n) = \frac{R\mu_t}{\mu_r}$ across these slots
- **4.** $\mathcal{T} \leq \left(\frac{\mu_r}{R}\right) \log \left(1 + \frac{R\mu_t}{\mu_r}\right)$

Proof Sketch

Unconstrained Receiver: $\mu_r > R$

$$\mathcal{T} \leq \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \log(1 + p_t(n))$$

$$= \mathbb{E} \left\{ \log(1 + p_t(n)) \right\} \leq \log(1 + \mathbb{E} \left[p_t(n) \right] \right\}$$

$$\leq \log(1 + \mu_t)$$

$$\leq \log(1 + \mu_t)$$

$$= \frac{R}{\mu_r} \text{ is time taken to harvest } R \text{ units of energy}$$

Constrained Receiver: $\mu_r < R$

- A genie-aided system which has non-causal information about energy arrivals at both the nodes
- 2. Number of slots receiver can be on $=\frac{N\mu_r}{R}$
- 3. Transmitter uses equal power $p_t(n) = \frac{R\mu_t}{\mu_r}$ across these slots
- 4. $\mathcal{T} \leq \left(\frac{\dot{p_r}}{R}\right) \log \left(1 + \frac{R\mu_t}{\mu_r}\right)$

Optimal Policy: Energy Unconstrained Receiver

· Receiver remains ON in every slot

Optimal Policy: Energy Unconstrained Receiver

Optimal Policy: Energy Unconstrained Receiver

- · Receiver remains ON in every slot
- Since $\mu_r > R$, harvesting rate is more than the energy required for receiving the data
- Probability that receiver runs out of energy decays exponentially with receiver battery size
- Equivalent to the Tx-only EHN case

¹ R. Srivastava and C. E. Koksal, *Basic performance limits and tradeoffs in energy-harvesting sensor nodes with finite data and energy storage*, IEEE/ACM Trans. Netw., vol. 21, pp. 1049-1062, Aug. 2013.

¹ R. Srivastava and C. E. Koksal, *Basic performance limits and tradeoffs in energy-harvesting sensor nodes with finite data and energy storage*, IEEE/ACM Trans. Netw., vol. 21, pp. 1049-1062, Aug. 2013.

¹ R. Srivastava and C. E. Koksal, *Basic performance limits and tradeoffs in energy-harvesting sensor nodes with finite data and energy storage*, IEEE/ACM Trans. Netw., vol. 21, pp. 1049-1062, Aug. 2013.

¹ R. Srivastava and C. E. Koksal, *Basic performance limits and tradeoffs in energy-harvesting sensor nodes with finite data and energy storage*, IEEE/ACM Trans. Netw., vol. 21, pp. 1049-1062, Aug. 2013.

¹ R. Srivastava and C. E. Koksal, *Basic performance limits and tradeoffs in energy-harvesting sensor nodes with finite data and energy storage*, IEEE/ACM Trans. Netw., vol. 21, pp. 1049-1062, Aug. 2013.

¹ R. Srivastava and C. E. Koksal, *Basic performance limits and tradeoffs in energy-harvesting sensor nodes with finite data and energy storage*, IEEE/ACM Trans. Netw., vol. 21, pp. 1049-1062, Aug. 2013.

$$p_t(n) = \begin{cases} \mu_t + \delta & \text{if} \quad B_n^t \ge \frac{B_{\max}^t}{2} \\ \min\{B_n^t, \mu_t - \delta\} & \text{if} \quad B_n^t < \frac{B_{\max}^t}{2} \end{cases}$$

• $\delta = \beta_t \sigma_t^2 \frac{\log B_{\max}^t}{B_{\max}^t}$, where β is a constant¹

¹ R. Srivastava and C. E. Koksal, *Basic performance limits and tradeoffs in energy-harvesting sensor nodes with finite data and energy storage*, IEEE/ACM Trans. Netw., vol. 21, pp. 1049-1062, Aug. 2013.

$$p_t(n) = \begin{cases} \mu_t + \delta & \text{if} \quad B_n^t \ge \frac{B_{\max}^t}{2} \\ \min\{B_n^t, \mu_t - \delta\} & \text{if} \quad B_n^t < \frac{B_{\max}^t}{2} \end{cases}$$

• $\delta = \beta_t \sigma_t^2 \frac{\log B_{\max}^t}{B_{\max}^t}$, where β is a constant¹

¹ R. Srivastava and C. E. Koksal, *Basic performance limits and tradeoffs in energy-harvesting sensor nodes with finite data and energy storage*, IEEE/ACM Trans. Netw., vol. 21, pp. 1049-1062, Aug. 2013.

$$p_t(n) = \begin{cases} \mu_t + \delta & \text{if} \quad B_n^t \ge \frac{B_{\max}^t}{2} \\ \min \{B_n^t, \mu_t - \delta\} & \text{if} \quad B_n^t < \frac{B_{\max}^t}{2} \end{cases}$$

- $\delta = \beta_t \sigma_t^2 \frac{\log B_{\max}^t}{B_{\max}^t}$, where β is a constant¹
- Throughput achieved by policy converges to upper bound at rate $\Theta\left(\left(\frac{\log B_{\max}^t}{B_{\max}^t}\right)^2\right)$
- · Fully uncoordinated policy!

¹R. Srivastava and C. E. Koksal, *Basic performance limits and tradeoffs in energy-harvesting sensor nodes with finite data and energy storage*, IEEE/ACM Trans. Netw., vol. 21, pp. 1049-1062, Aug. 2013.

Performance: Policy for Unconstrained Receiver

Figure: Parameters: R = 0.5 and $B_{\text{max}}^t = B_{\text{max}}^r = 50$.

• $\mu_r < R \implies$ Receiver can only turn on intermittently

• $\mu_r < R \implies$ Receiver can only turn on intermittently

Policy at receiver

 Send 1-bit feedback whenever the battery level crosses the half-full mark

• $\mu_r < R \implies$ Receiver can only turn on intermittently

Policy at receiver

- Send 1-bit feedback whenever the battery level crosses the half-full mark
- ► Turns on after $N_{\text{on}} = \begin{cases} N_r & \text{if} \quad B_n^r \geq \frac{B_{\text{max}}^r}{2} \\ N_r + 1 & \text{if} \quad B_n^r < \frac{B_{\text{max}}^r}{2} \end{cases}$ slots where, $N_r = \lfloor \frac{R}{\mu_r} \rfloor$

• $\mu_r < R \implies$ Receiver can only turn on intermittently

Policy at receiver

- Send 1-bit feedback whenever the battery level crosses the half-full mark
- ► Turns on after $N_{\text{on}} = \begin{cases} N_r & \text{if} \quad B_n^r \geq \frac{B_{\text{max}}^r}{2} \\ N_r + 1 & \text{if} \quad B_n^r < \frac{B_{\text{max}}^r}{2} \end{cases}$ slots where, $N_r = \lfloor \frac{R}{\mu_r} \rfloor$

Policy at transmitter

• $\mu_r < R \implies$ Receiver can only turn on intermittently

Policy at receiver

- Send 1-bit feedback whenever the battery level crosses the half-full mark
- ► Turns on after $N_{\text{on}} = \begin{cases} N_r & \text{if} \quad B_n^r \geq \frac{B_{\text{max}}^r}{2} \\ N_r + 1 & \text{if} \quad B_n^r < \frac{B_{\text{max}}^r}{2} \end{cases}$ slots where, $N_r = \lfloor \frac{R}{\mu_r} \rfloor$

Policy at transmitter

Transmit only in the slots when receiver is on

• $\mu_r < R \implies$ Receiver can only turn on intermittently

Policy at receiver

- Send 1-bit feedback whenever the battery level crosses the half-full mark
- ► Turns on after $N_{\text{on}} = \begin{cases} N_r & \text{if} \quad B_n^r \geq \frac{B_{\text{max}}^r}{2} \\ N_r + 1 & \text{if} \quad B_n^r < \frac{B_{\text{max}}^r}{2} \end{cases}$ slots where, $N_r = \lfloor \frac{R}{\mu_r} \rfloor$

Policy at transmitter

- Transmit only in the slots when receiver is on
- Otherwise accumulate the energy in super-capacitor

Performance: 1-bit Feedback Policy

Requires occasional one bit feedback

Performance: 1-bit Feedback Policy

- Requires occasional one bit feedback
- ▶ In addition,

$$\underbrace{\left(\frac{\mu_r}{R}\right)\log\left(1+\frac{R\mu_t}{\mu_r}\right)}_{\text{upper bound}} - \mathcal{T}^c - 1 = O\left(\frac{\log B_{\max}^t}{B_{\max}^t}\right).$$

where \mathcal{T}^c : throughput achieved by 1-bit feedback policy

Performance: 1-bit Feedback Policy

- Requires occasional one bit feedback
- ▶ In addition,

$$\underbrace{\left(\frac{\mu_r}{R}\right)\log\left(1+\frac{R\mu_t}{\mu_r}\right)}_{\text{upper bound}} - \mathcal{T}^c - 1 = O\left(\frac{\log B_{\max}^t}{B_{\max}^t}\right).$$

where \mathcal{T}^c : throughput achieved by 1-bit feedback policy

Specifically,

$$\left(\frac{\mu_r}{R}\right)\log\left(1+\frac{R\mu_t}{\mu_r}\right)-\mathcal{T}^c=O\left(\frac{\log B_{\max}^t}{B_{\max}^t}\right)+O\left(\delta_r^+\right)+O\left(\delta_r^-\right).$$

where
$$\delta_r^+=rac{R}{\mu_r}-\lfloorrac{R}{\mu_r}
floor$$
 and $\delta_r^-=\lceilrac{R}{\mu_r}
ceil-rac{R}{\mu_r}
ceil$

Time-dilation to Achieve Upper Bound

Policy at transmitter:

Same as for 1-bit feedback policy

Policy at receiver:

- ▶ Receiver turn ON in last f(.) slots of
 - $ightharpoonup \left\lfloor \frac{Rf(.)}{\mu_r} \right\rfloor$ slots if battery is more than half full
 - ► $\lceil \frac{Rf(.)}{\mu_r} \rceil$ slots if battery is less than half full
- Effective drift goes to zero as f(.) scales

Performance: Policy for Constrained Receiver

Figure: The result corresponds to time-dilation $f(\cdot) = 100$. Other parameters are R = 0.5 and $B_{max}^t = B_{max}^r = 1000$.

Fully Uncoordinated Policy

- Aim: to prescribe a deterministic pattern for the receiver
- ▶ Match the ratio of $N_r \triangleq \lfloor \frac{R}{\mu_r} \rfloor$ and $N_r + 1$ transmissions of 1-bit feedback policy

Fully Uncoordinated Policy

- Aim: to prescribe a deterministic pattern for the receiver
- ▶ Match the ratio of $N_r \triangleq \lfloor \frac{R}{\mu_r} \rfloor$ and $N_r + 1$ transmissions of 1-bit feedback policy

Deterministic Policy \mathcal{P}^{uc}

► Compute $\frac{n^+}{n^-} = \frac{\sum_{n=1}^N \mathbbm{1}_{\{B_n^t \geq B_{\max}^r\}}}{\sum_{n=1}^N \mathbbm{1}_{\{B_n^t < B_{\max}^r\}}}$, for 1-bit feedback policy

- Aim: to prescribe a deterministic pattern for the receiver
- ▶ Match the ratio of $N_r \triangleq \lfloor \frac{R}{\mu_r} \rfloor$ and $N_r + 1$ transmissions of 1-bit feedback policy

- ► Compute $\frac{n^+}{n^-} = \frac{\sum_{n=1}^N \mathbbm{1}_{\{B_n^t \geq B_{\max}^t\}}}{\sum_{n=1}^N \mathbbm{1}_{\{B_n^t < B_{\max}^t\}}}$, for 1-bit feedback policy
- Receiver turns on at the last slot of

- Aim: to prescribe a deterministic pattern for the receiver
- ▶ Match the ratio of $N_r \triangleq \lfloor \frac{R}{\mu_r} \rfloor$ and $N_r + 1$ transmissions of 1-bit feedback policy

- ► Compute $\frac{n^+}{n^-} = \frac{\sum_{n=1}^N \mathbbm{1}_{\{B_n^t \geq B_{\max}^t\}}}{\sum_{n=1}^N \mathbbm{1}_{\{B_n^t < B_{\max}^t\}}}$, for 1-bit feedback policy
- Receiver turns on at the last slot of
 - ▶ Every batch of N_r slots for n^+ consecutive batches

- Aim: to prescribe a deterministic pattern for the receiver
- ▶ Match the ratio of $N_r \triangleq \lfloor \frac{R}{\mu_r} \rfloor$ and $N_r + 1$ transmissions of 1-bit feedback policy

- ► Compute $\frac{n^+}{n^-} = \frac{\sum_{n=1}^N \mathbbm{1}_{\{B_n^t \geq B_{\max}^t\}}}{\sum_{n=1}^N \mathbbm{1}_{\{B_n^t < B_{\max}^t\}}}$, for 1-bit feedback policy
- Receiver turns on at the last slot of
 - \triangleright Every batch of N_r slots for n^+ consecutive batches
 - ▶ Every $N_r + 1$ slots for n^- consecutive batches and so no

- Aim: to prescribe a deterministic pattern for the receiver
- ▶ Match the ratio of $N_r \triangleq \lfloor \frac{R}{\mu_r} \rfloor$ and $N_r + 1$ transmissions of 1-bit feedback policy

- ► Compute $\frac{n^+}{n^-} = \frac{\sum_{n=1}^N \mathbbm{1}_{\{B_n^t \geq B_{\max}^t\}}}{\sum_{n=1}^N \mathbbm{1}_{\{B_n^t < B_{\max}^t\}}}$, for 1-bit feedback policy
- Receiver turns on at the last slot of
 - Every batch of N_r slots for n^+ consecutive batches
 - ▶ Every $N_r + 1$ slots for n^- consecutive batches and so no
- Transmitter also follows this deterministic pattern

- Aim: to prescribe a deterministic pattern for the receiver
- ▶ Match the ratio of $N_r \triangleq \lfloor \frac{R}{\mu_r} \rfloor$ and $N_r + 1$ transmissions of 1-bit feedback policy

- $\qquad \qquad \textbf{Compute } \frac{n^+}{n^-} = \frac{\sum_{n=1}^N \mathbbm{1}_{\{B_n^t \geq B_{\max}^r\}}}{\sum_{n=1}^N \mathbbm{1}_{\{B_n^t < B_{\max}^r\}}}, \text{ for 1-bit feedback policy }$
- Receiver turns on at the last slot of
 - ightharpoonup Every batch of N_r slots for n^+ consecutive batches
 - ▶ Every $N_r + 1$ slots for n^- consecutive batches and so no
- Transmitter also follows this deterministic pattern
- $\mathcal{T}^c \mathcal{T}^{uc} = O(\pi_0^{uc})$, where π_0^{uc} denotes the stationary probability that battery at either node is empty, under policy \mathcal{P}^{uc}

Figure: For \mathcal{P}^{uc} , the values of (n^+, n^-) are (5, 1), (1, 1) and (2, 1) for $\rho_r = 0.1, 0.2$ and 0.4, respectively. Other parameters: $B^t_{\text{max}} = B^r_{\text{max}} = 50, R = 0.5.$

Numerical Results: Impact of battery size

Figure: Impact of battery size on the throughput of policy \mathcal{P}^c , for R = 0.5.

Summary

- Derived an upper-bound on the throughput of uncoordinated dual EH links
- Designed fully uncoordinated power control policies which achieve the upper-bound for unconstrained receiver
- Asymptotically optimal policies were proposed which require occasional 1-bit feedback
- Proposed a fully uncoordinated policy for a constrained receiver

Other Contributions of the Thesis

- Proposed a general framework to analyze the PDP of retransmission-based dual EH links
- Optimal policies for dual EH links with ARQ as well as HARQ-CC
- Optimal policies for spatio-temporally correlated EH processes

Thank You!

Performance of the Proposed Policy

No. of hops = 2

$$R = 1$$

 $E_{\text{max}} = 10E_s$
 $K_1 = K_2 = 4$

The policy obtained using proposed approach outperforms the equal power policy $[P_{\text{max}} P_{\text{max}} P_{\text{max}} P_{\text{max}}]$.

Performance of the Closed-form Policy for General Case

No. of hops = 2

$$R = 1$$

 $E_{\text{max}} = 10E_{\text{s}}$
 $K_1 = K_2 = 4$

Performance of optimal policy designed by ignoring the energy cost of packet reception, compared to the near-optimal policy for the general case.

Impact of Slot Allocation Pattern

No. of hops = 2

$$R = 1$$

 $E_{\text{max}} = 10E_s$
 $K_1 = K_2 = 4$

Impact of slot allocation on the PDP: equal slot allocation performs the best.

Accuracy of PDP Expressions

Accuracy of the closed-form PDP expressions. Parameters used: $K_1 = K_2 = 2$, R = 1, and $B^{max} = 3$ for all the nodes. The RIP is [1 1] at both source and relay nodes.