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Abstract—This paper considers the problem of receive antenna
selection (AS) in a multiple-antenna communication system having
a single radio-frequency (RF) chain. The AS decisions are based
on noisy channel estimates obtained using known pilot symbols
embedded in the data packets. The goal here is to minimize the
average packet error rate (PER) by exploiting the known temporal
correlation of the channel. As the underlying channels are only
partially observed using the pilot symbols, the problem of AS
for PER minimization is cast into a partially observable Markov
decision process (POMDP) framework. Under mild assumptions,
the optimality of a myopic policy is established for the two-state
channel case. Moreover, two heuristic AS schemes are proposed
based on a weighted combination of the estimated channel states
on the different antennas. These schemes utilize the continuous-
valued received pilot symbols to make the AS decisions, and are
shown to offer performance comparable to the POMDP approach,
which requires one to quantize the channel and observations to a
finite set of states. The performance improvement offered by the
POMDP solution and the proposed heuristic solutions relative to
existing AS training-based approaches is illustrated using Monte
Carlo simulations.

Index Terms—Antenna selection, POMDP, myopic policy, finite
state Markov chain.

I. INTRODUCTION

ANTENNA selection (AS) is a popular technique for reduc-
ing the hardware complexity and cost of a multiple input

multiple output system [2]–[6]. In AS, since only a subset of
the available antennas is used for transmission/reception, only a
small number of the relatively more expensive radio frequency
(RF) chains need to be deployed. AS is supported by wireless
standards such as IEEE 802.11n [7] and 3GPP Long Term
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Evolution (LTE) [8]. AS can be employed at the transmitter as
well as at the receiver. The focus of this work is on AS for
a multiple-antenna receiver with a single RF chain, with the
goal of exploiting the knowledge of the temporal correlation in
the wireless channel to perform the optimal tradeoff between
exploring for new antennas and exploiting the best antenna
based on current knowledge.

There has been an enormous amount of research in the area
of antenna selection for MIMO systems in the recent years; we
refer the interested reader to [2] and [3] for excellent tutorial
surveys of the area. Some of the early work assumed perfect
channel state information (CSI) at the receiver [9]–[14]. In
practice, the channel state is typically estimated using a small
number of pilot symbols embedded in the packet, which leads
to imperfect knowledge of CSI at the receiver. The impact of
imperfect CSI on the performance of AS is studied in [15]
and [16], and it is shown that, surprisingly, the diversity order
achievable with perfect CSI is still preserved. Other studies
related to AS include AS with transmit beamforming [17],
AS with analog power estimators [18], and AS with spatial
correlation between antennas [19], [20]. Another approach that
has been explored in the literature is the use of reinforce-
ment learning techniques (see, e.g., [21]–[23]). Here, the goal
is to minimize the regret compared to a policy that always
chooses the statistically best antenna. These are applicable
when the channel statistics are not known and the policy must
be determined solely from the past AS decisions and resulting
outcomes. In this work, we focus on receive antenna selection in
the spatially uncorrelated channel case, but we will also briefly
indicate how the approach easily allows one to incorporate the
effect of spatial correlation between antennas.

Typically, in order to perform AS, the receiver first requests
for an AS training phase, following which the transmitter sends
out L ≥ 1 sets of N ≥ 1 known training symbols to the receiver
[24], where N is the number of receive antennas. The time
duration between consecutive pilots is Tp � ηTs, where Ts is
the pilot symbol duration and η ≥ 2 [25].1 Thus, the total AS
training duration is ηNLTs. The AS training phase is repeated
whenever the channel estimates get outdated, imposing a non-
trivial overhead on the AS based system. In [26], the authors
consider the receive AS based on noisy and outdated channel
estimates obtained from the AS training phase. They propose
scheme for weighting the channel gain estimates that minimizes
the symbol error probability (SEP). The channel state estimates

1The pilot symbols are usually embedded in a training packet with physical
layer header [26], and are hence spaced several symbols apart.
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obtained during the AS training phase are used for both AS and
data decoding purposes.

In many practical systems, there are additional pilots in data
phase also, viz. the demodulation reference signals (DM RS),
which may be utilized for data decoding [8]. In [25], Saleh et al.
take this into account in data decoding, and propose an al-
gorithm for AS, that maximizes the post-processing SNR. A
channel prediction method based on Slepian basis expansion,
utilizing the CSI from the training phase, is proposed for
AS. After selection, estimation of the channel on the selected
antenna is done using the DM RS available in the data phase,
again based on Slepian basis expansion. These estimates are
used for data decoding. However, the CSI obtained from the
data phase is not used for making future AS decisions. In [27],
AS is formulated in a decision theoretic framework with the
aim of maximizing the throughput. A training based selection
is assumed, with each frame consisting of an AS training phase,
a data packet and an error check information. Information ob-
tained from the error check observation is used in the future AS
decisions. However, the channel is assumed to remain constant
for the entire frame duration, which may not hold when the
channel is fast-varying. Also, the structure of the optimal policy
is not analyzed.

In the context of the above, it is pertinent to consider the use
of DM RS for AS also, thereby alleviating the dependence of
the AS process on the lengthy training phase. As the channel is
correlated in time, and since each packet reveals new informa-
tion about the channel state only on the selected antenna, the AS
decisions affect both the immediate packet reception and future
packet receptions. The AS can thus be viewed as a form of
control, as it determines the accuracy of the CSI available at the
receiver on the different antennas. Hence, we formulate the AS
problem in a decision theoretic framework, where the problem
is to sequentially choose an antenna to receive the current
packet, based on the history of past actions and observations,
with the goal of maximizing a notion of expected long term
reward.

The fundamental trade off involved here is as follows. Stick-
ing to a given antenna for as long as its channel is seemingly
good is not optimal in general, since we lose track of the
channel on the other antennas, some of which might be in a
better state. On the other hand, frequent switching between
antennas would result in not fully utilizing the ones that are
in good channel states. An optimal policy is the one which
balances between the two and achieves the maximum expected
long term reward. Now, at any given time, the true states of
antennas are not fully revealed to the receiver, i.e., the states are
partially observable through the DM RS. Since the action taken
by the receiver controls the observability, the problem is cast
as a partially observable Markov decision process (POMDP)
[28]–[30]. The goal is to obtain an optimal policy for minimiz-
ing the average packet error rate (PER).

There are two kinds of POMDP formulations: the finite
horizon POMDP and the infinite horizon POMDP. In the former
approach, the goal is to minimize the average PER over a fixed
(and typically, small) number of packets that are to be received.
The infinite horizon POMDP assumes that the data stream is
very long, and is therefore convenient for optimizing a long-

term reward. In both cases, the CSI is estimated on the selected
antenna upon reception of each packet, and AS based on the
optimal POMDP solution strikes the right balance between
exploration (to find better antennas) and exploitation (of the
best antenna in hand). Our POMDP formulation in this paper is
valid for both the finite and infinite horizon cases. The SARSOP
algorithm from the Approximate POMDP Planning Toolkit [31]
used to solve the infinite horizon POMDP in this paper can also
be used to solve a finite horizon POMDP scenario, by adjusting
the stopping criterion. We have, however, opted for the infinite
horizon model in the sequel for the following reasons: 1) the
long data stream is realistic if we compare a typical file size
to the number of bits carried by an individual packet; 2) it
is needed to know the time horizon to solve a finite horizon
POMDP, an information that is not available at the physical
layer in practice; 3) the finite horizon assumption results in
non stationary optimal policies (i.e. policies that depend on the
time index), which are more difficult to implement in practice.
On the other hand, the optimal policy for an infinite horizon
problem is known to be stationary [30].

The contributions of our work are as follows. We cast the
problem as a POMDP, which allows us to leverage a host of
existing approaches to find an optimal AS scheme. Moreover,
our proposed approach obviates the need for an expensive AS
training phase at the start of each data packet, unlike most
of the past work on AS. On the other hand, our method can
also exploit an AS training phase, when present. Hence, it
can be employed in systems designed based on previous AS
approaches as well. For the case when the number of states per
antenna is two, with perfect CSI on the selected antenna and
positively correlated2 channels, we show that optimal policy for
the AS problem is myopic in nature. An optimal policy, in gen-
eral, maximizes the long term reward, while a myopic policy is
designed to maximize only the immediate reward, ignoring the
future rewards. In our set-up, a myopic policy selects the an-
tenna by only considering the probability of correctly receiving
the current packet. The myopic policy is simpler to compute as
well as to implement, compared to a general POMDP solution.
We evaluate the average PER performance of different AS poli-
cies via Monte Carlo simulations. The results show that, even
with imperfect CSI on all antennas and for N > 2, the myopic
policy offers performance comparable to the POMDP solution.
Inspired by this result on the nature of the optimal policy, we
propose two heuristic schemes for AS and evaluate their perfor-
mance. The performance comparison of these schemes, which
are based on continuous-valued channel gain, with that of
the finite state Markov chain (FSMC)-based POMDP solution
gives further insights into the nature of the POMDP solution.

We also compare our results with the weighting scheme
proposed in [26], which is based on AS training. Another
scheme which picks the antenna with the highest channel gain
in the AS training phase for receiving the subsequent packets
is also evaluated. We show the proposed scheme outperforms
both these schemes. The results highlight the advantage of

2A 2-state channel is said to be positively correlated if the state transition
probabilities of the channel are such that the transition to the same state has a
higher probability than that to the other state.
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Fig. 1. AS with CSI feedback from packet reception.

utilizing the DM RS information for data decoding as well as
for AS purposes, in terms optimizing the PER performance.
For example, in the case of PER vs. SNR, the PER of the
existing schemes exhibits an error floor, whereas, the PER of
the proposed scheme decreases monotonically with SNR.

The rest of the paper is organized as follows. In Section II,
we describe the system model. We develop the POMDP for-
mulation of the AS problem in Section III. We establish the
optimality of the myopic policy under certain conditions in
Section IV. We present a discussion about the relative merits of
different policies, in terms of performance and computational
complexity, in Section V. Monte Carlo simulation results are
presented in Section VI, and concluding remarks are offered in
Section VII. Proofs of some of the lemmas and other claims are
provided in the appendices.

II. SYSTEM MODEL

We consider system where a single antenna transmitter is
communicating with a receiver equipped with N antenna ele-
ments (AE) and one RF chain. The communication occurs in
the form of data packets of duration Tpkt. Each packet has D
data symbols, denoted by dj, j = 1, 2, . . . , D and a DM RS,
denoted by p. The goal at the receiver is to select the best out
of the N AEs to receive each packet, for minimizing the PER.
The channels from the transmit antenna to the receive antennas
are modeled as frequency flat, Rayleigh faded and independent
across the AEs. The time evolution of the channel follows
the Jakes’ spectrum [32], [33], with the receiver having the
knowledge of the Doppler frequency. For simplicity, we assume
that the channel remains constant for the duration of a packet.
Thus, in this model, the system operates in discrete time steps
of duration Tpkt. A solid state switch achieves the connection
between the selected AE and the RF chain, which has switching
speeds on the order of a few hundreds of nanoseconds [25].
Hence, the switching delays are negligible.

The sequence of operations involved in the AS process is
depicted in Fig. 1. ASi denotes the AS decision for selecting
the AE for the ith packet, pkti. At the beginning of each packet,
the channels make a state transition. The AE selection is based
on the CSI available up to and including the previous packet.
The DM RS embedded in the packet yields new information
on the channel state of the AE that receives the packet. This

information is used to decode the packet as well as to update
the CSI of the selected AE. With the additional CSI gained in
the current packet and the history of decisions and observations,
a new selection decision is made for the next packet, and the
process continues.

The modeling of the state process is crucial to the solvability
of the resulting POMDP. In particular, since the channel state
is continuous-valued, a direct formulation of the AS problem
in a POMDP framework leads to a continuous state POMDP.
On the other hand, quantizing the channel to a finite num-
ber of states and using a state transition probability matrix
derived from the continuous-valued channel dynamics leads
to a discrete state POMDP. There are three main approaches
to solving continuous POMDPs: Perseus [34], Monte Carlo
POMDP [35] and Monte Carlo value iteration [36]. References
[34] and [35] assume that belief value functions are Gaussian
or a mixture of Gaussian functions, an assumption which is
not supported in our case. Reference [36] uses a particle based
representation of the belief but assumes discrete observations,
which is also not valid in our case. In contrast, an algorithm like
SARSOP is known to solve discrete state POMDPs with up to
1,00,000 states in a reasonable time, which is sufficient for our
purposes. Thus, we propose to pose the problem as a discrete
state POMDP. Accordingly, we model the Rayleigh faded time
correlated channels as a finite state Markov chain (FSMC)
[37], [38], to partition the received SNR on the AEs. Finite
State Markov Channel (FSMC) is a popular model for a fading
channel, and is known to be accurate for packet-level studies. In
this work, we use the popular FSMC model proposed by Zhang
and Kassam [39] to partition the instantaneous signal-to-noise
ratios (SNRs) on the receive AEs. Let G = {1, 2, . . . , κ} denote
the state space of the FSMC channel for a given normalized
Doppler frequency fmTpkt, where fm is the maximum Doppler
frequency. Let {γ1, γ2, . . . , γκ+1} denote the SNR thresholds
corresponding to the states in G, determined following the
procedure in [39]. For a Rayleigh fading channel following
the Jakes’ spectrum for time variation, the state transition
probability matrix of the FSMC as a function of the normalized
Doppler frequency is known [39].

We emphasize that, in this work, the instantaneous SNR is
discretized into a finite number of states only for the purpose of
defining the state space, obtaining the corresponding state tran-
sition probabilities, and solving the POMDP. Our formulation
can be directly applied to other channel models like Rician or
Nakagami fading. The FSMC modeling of these channels are
discussed in [40] and [41]. We also note that the formulation
directly extends to frequency selective channels also, by using
the so-called exponential effective SNR mapping (EESM) met-
ric to convert the frequency-selective wideband channel first into
a continuous-valued scalar channel [42], applying one of the
above techniques to discretize the channel into a finite set of
states. Once the state transition probabilities and the packet error
rates for the different states are obtained, the framework devel-
oped in this paper can be used to find an optimal AS scheme.

For a POMDP, the statistical information of the system at the
time step t, given the entire history of actions and observations,
can be captured in a belief vector given by b(t) = {bS(t)}S∈S ,
where S is the state space and bS(t) is the conditional
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probability, given the history, that the system is in state S at time
t. The dynamic behavior of the belief vector is thus a discrete-
time continuous-state Markov process [43].

A policy for a POMDP is a prescription of an action cor-
responding to the current belief vector. Each policy has an
expected long term reward associated with it. The optimal
policy is one which has the maximum expected long term
reward. Once the components of the POMDP are defined, a
POMDP solver can be used to find the optimal policy for the
problem. At time t, let i denote the AE selected by the policy,
and let hi(t) be the complex valued channel gain of the selected
AE. Then, the instantaneous SNR at the receiver is given by
γ (i) = |hi(t)|2γ0, where γ0 is the average per-symbol SNR.
If γj ≤ γ (i) < γj+1, then the AE is said to be in state j. The
received DM RS on the selected AE, dropping the time index,
is given by y = hip + n, where p is the known pilot symbol
and n is the additive white Gaussian noise with variance σ 2

n .
The maximum likelihood (ML) estimate of the channel gain is
ĥi = p∗

|p|2 y = hi + e, where e is the noise term, given by p∗
|p|2 n.

The estimated channel gain ĥi is used to decode the packet, and
also as additional information for selecting the AE for receiving
the next packet. The latter is accomplished by updating the
belief vector. The optimal policy then maps the updated belief
vector to the index of AE to be selected for receiving the next
packet. In the next section, we develop the POMDP formulation
of the AS problem for minimizing the average PER.

III. POMDP FORMULATION

The POMDP formulation of the AS problem consists of the
following components.

1) State Space: The state space of the system is represented
as S � {1, 2, . . . , κ}N . The ith state is given by the tuple Si ∈
S, whose entries specify the channel states on each of the N
antennas. When the system makes a transition from state Si to
state Sj, each channel has a corresponding transition associated
with it. Since the channels are assumed to be independent, the
transition probability Pr(Sj|Si) is given by the product of the
state transition probabilities associated with each channel.

2) Action Space: The action space is given by A � {1, 2,

. . . , N} where the ith action corresponds to selecting the ith
antenna for packet reception.

3) Observation Space: The observation on selecting an an-
tenna is the received signal corresponding to the DM RS in
the packet, which provides information on the channel state
of that antenna. Since the CSI from the pilot is continuous-
valued, we need to discretize it into states using the thresholds
given by the FSMC model. Then, the observation space is
O = {1, 2, . . . , κ}. Let the observation be o ∈ O, when the
state of the system is S and the action taken is a. Let S(a)

denote the state of the selected AE when the system state is S.
Then the observation probability O(S, a, o) is the probability of
observing state o on the selected AE, given its true state, S(a).
The derivation of this probability is given in [1]. It varies with
the pilot SNR, and in the case of perfect CSI on the selected AE,
O(S, a, o) = 1 if o = S(a), the true state of the selected AE, and
O(S, a, o) = 0 otherwise.

4) Belief Vector: At each time step t, the belief vector b(t)
captures the statistical information of the system. We start with
an initial belief vector, b(1) and update it at each state transition
and with each observation. In a training based AS, we can
utilize the information from the training phase to obtain an
initial belief state. When there is no AS training phase, we
can initialize the belief states as the stationary probability of
the Markov channel, which is a usual practice when no prior
probabilities are available. The AS training phase helps in
getting a good estimate of the initial belief state, which speeds
up the convergence of the policy. This is beneficial when the
channel is slowly varying. On the other hand, for fast varying
channels, the initial estimate from the AS training phase is
less important. In this case, more frequent DM RS pilots are
required for tracking the time-varying channel.

5) Reward: Since we are interested in PER minimization,
we define our reward as unity when the packet is correctly
received, and zero otherwise. Thus, maximizing the long term
reward is equivalent to minimizing the expected average PER.

The expected immediate reward associated with the action
a ∈ A when the system state is S is given by

�(a, S) =
κ∑

j=1

Pr (o = j|S(a)) Pcor (o = j, S(a)) , (1)

where S(a) denotes the true state of the selected antenna and o
denotes the observation on the selected antenna. Pcor(o, S(a))

gives the probability of correctly receiving the packet when the
true state is S(a) and the observed state is o. It should be noted
that in our case the reward depends on both the true state and the
observed state unlike a standard POMDP formulation. The DM
RS observation affects the reward as it is used for decoding the
data packet. A closed form expression for Pcor(o, S(a)), when
both observation o and S(a) are discretized values, is analyti-
cally intractable. This is because the performance depends on
the decoding algorithm used for packet reception, which makes
it difficult to come up with a general, closed form expression for
the PER under channel mismatch. Moreover, our focus in this
paper is on showing how a decision theoretic formulation can
be applied to solving the problem of receive antenna selection,
rather than on analyzing the PER under channel estimation
errors. Hence, Pcor(o, S(a)) is calculated experimentally via
simulations. The parameters for this simulation will be ex-
plained in Section VI. The probability of correctly receiving the
packet is calculated for all pairs of true and observation states.

The expected immediate reward can now be expressed as a
function of the belief state, b, as follows:

R(a, b) =
∑
S∈S

bS�(a, S), (2)

where bS is the component of the belief vector b corresponding
to the state S.

6) Objective and the Optimal Policy: The objective is to
minimize the expected average PER, over an infinite horizon.
The averaging is done in a discounted sense, i.e., the future
rewards are discounted by a factor β. A policy is a mapping
from the set of all belief vectors to the action space, i.e., a policy
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Fig. 2. 2-state model of the channel.

has an action corresponding to a given belief vector. There is
a reward associated with executing a policy. Let Jπ

β (b) denote
the expected total discounted reward associated with a policy
π starting from time step t = 1 and belief vector b, with the
discount factor being β. The optimal policy solves the following
optimization problem

max
π

Jπ
β (b) = max

π
E

[ ∞∑
t=1

β t−1R (π (b(t)) , b(t)) |b(1) = b

]
,

(3)

where 0 ≤ β < 1, and R(π(b(t)), b(t)) is the reward collected
under belief state b(t) when the AE π(b(t)) is selected for
packet reception.

We have thus formulated the AS problem as a POMDP. There
are several tools available for solving POMDPs [31], [44], [45].
However, solving the POMDP can quickly become computa-
tionally burdensome, as the number of states of the system
under consideration becomes large. On the other hand, using
a smaller number of states compromises on the accuracy of the
FSMC model of the underlying continuous-valued channel. A
usual practice, in this scenario, is to explore the effectiveness
of a simpler but possibly suboptimal policy for AS. A myopic
policy is one such policy. In the next section, we show that
under the mild assumption of positively correlated channels
and perfect CSI on the selected AE, for the 2-states-per-antenna
model, the myopic policy is indeed optimal for the AS POMDP
problem. Note that, although the 2-state channel model might
appear overly simplistic, it retains the essence of the time-
variations of the wireless channel, and therefore provides useful
intuitions on how to design near-optimal policies for channel
models with number of states greater than two. As will be
demonstrated through simulations, the myopic policy continues
to remain nearly optimal even when the channel is modeled
with more than 2 states.

IV. OPTIMALITY OF THE MYOPIC POLICY

A myopic policy is one which maximizes the immediate
reward alone, rather than the long term reward. It is oblivious to
the impact of current action on future rewards. In this section,
for a 2-states channel with perfect CSI on the selected AE and
positively correlated channels, we show that the optimal policy
is myopic. A pictorial representation of the 2-states channel
model with state transition probabilities, is given in Fig. 2.
A positively correlated channel is one where the transition
probabilities satisfy p11 ≥ p01. This means that in the next
time step, the channel state has a higher probability to remain
in the present state rather than to switch to the other state.
The FSMC model yields a positively correlated channel for

normalized Doppler frequencies as high as 0.2. Hence, the
channels are positively correlated for all practical purposes. We
present the proof of the optimality of the myopic policy for the
finite horizon case. However, it can be extended to the infinite
horizon case using standard techniques [47]. Unfortunately, the
extension of this result to channels with more than 2 states or to
the case with imperfect channel estimation does not seem to be
straightforward.

The two states per antenna model allows us to simplify the
formulation as follows. We redefine the belief vector at time
t as �(t) � [ω1(t), ω2(t), . . . , ωN(t)], where ωi(t) � Pr(si(t) =
1|Past actions and observations), i.e., the conditional probabil-
ity that the channel i is in the good state (denoted by si(t) = 1)
at time step t, given all past actions and observations. Note that
�(t) differs from b(t), since, in the former, the belief is on
each antenna, whereas in the latter, the belief is on the joint
state of the N antennas. Let a(t) denote the antenna selected at
time t. Once an AE a(t) is selected, its true channel state sa(t)
is revealed by the DM RS. With the new observation on the
selected antenna, using Bayes’ rule, we update the belief vector
as follows:

ωi(t + 1) =

⎧⎪⎨
⎪⎩

p11 if a(t) = i, sa(t) = 1,

p01 if a(t) = i, sa(t) = 0,

τ (ωi(t)) if a(t) �= i,

(4)

where τ (ωi(t)) = ωi(t)p11 + (1 − ωi(t))p01 is the one-step be-
lief update when antenna i is not selected.

We seek to maximize the total expected discounted reward
over a horizon of T. That is, we wish to solve

π∗ = arg max
π

Eπ

[
T∑

t=1

β t−1R (πt (�(t)) ,�(t)) |�(1)

]
. (5)

Any admissible policy can be written as π = [π1, π2, . . . , πT ],
where πt maps �(t) to an action a(t); t = 1, 2, . . . , T. Here,
policies are indexed by t since the optimal policy for a finite
horizon problem is, in general, non-stationary.

We define the value function Vt(�(t)) of the optimal policy
at time t as

VT(�) = max
a=1,...,N

E [R(a,�)] (6)

Vt(�) = max
a=1,...,N

E
[
R(a,�) + βVt+1 (T (�))

]
(7)

= max
a=1,...,N

E [R(a,�)]

+ βωa(t + 1)Vt+1(T (�|S(a) = 1))

+ β (1 − ωa(t + 1)) Vt+1 (T (�|S(a) = 0)) (8)

which is the expected sum reward gained, starting in belief
vector �(t), from time t to T. Here, T (·) is the one-step
update operator of the belief vector, defined as in (4). Also, for
notational simplicity, we have dropped the time index in �.

Let Pc(s) denote the probability of correctly receiving a
packet when the channel state is s ∈ {0, 1}. Then, the expected
immediate reward collected is given by

R(a,�) = ωaPc(1) + (1 − ωa)Pc(0) � f (ωa). (9)
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Since state 1 corresponds to a higher channel gain than state 0,
the associated probability of correctly receiving a packet is
higher for state 1, and it is reasonable to assume Pc(1) ≥
Pc(0). Hence, f (ωa) increases linearly with ωa. A myopic
policy chooses that action which maximizes f (ωa). Due to
the linearity of f (ωa), this is equivalent to choosing the an-
tenna with the highest belief state. Now, we define a pseudo
value function Wt(�), t = 1, 2, . . . , T, as follows [48]. We let
WT(�) = f (ωN). For t < T, we let

Wt(�) = f (ωN) + β
[
ωNWt+1 (τ (ω1), . . . , τ (ωN−1), p11)

+ (1 − ωN)Wt+1 (p01, τ (ω1), . . . , τ (ωN−1))
]
. (10)

A few observations on the properties of this pseudo value
function are listed below.

1) Wt(�(t)) corresponds to the expected total discounted
reward of a policy which chooses, at time t, the AE
corresponding to the last entry in �(t). If a 1 is observed
on the selected AE (that is, the channel is observed to
be in the good state), then it is selected for receiving
the subsequent packets until a 0 is observed on it. As
long as a 1 is observed, the next belief vector �(t + 1)

remains ordered such that the belief state of the selected
AE is the last entry of the vector, i.e., it is the channel
to be selected for receiving the next packet also. If the
observation is 0 (that is, the channel is observed to be in
a bad state), then the AE is moved to be the first entry
of the vector, �(t + 1). Correspondingly, it becomes the
last one to get selected. The ordering of the unobserved
AEs are retained. This can be easily verified by noting
the linearity of τ (·) and the assumption p11 ≥ p01.

2) When the elements in �(t) are ordered such that ω1 ≤
ω2 ≤ . . . ≤ ωN , Wt(�(t)) is the expected total discounted
reward obtained by following the myopic policy from
time t to T. This is because, at any time from t to T,
the entries in the vector �(t) remain sorted in increasing
order due to the monotonicity of τ (·). Since the AE
corresponding to the last entry is always selected, which
has the highest belief state, the policy implemented by
selecting the antenna corresponding to the last entry in �

turns out to be the myopic policy.
3) It can be shown that the following decomposability prop-

erty holds for all l ∈ {1, 2, . . . , N}. The proof is by induc-
tion, and is relegated to Appendix A.

Wt(ω1, . . . , ωl, . . . , ωN) = ωlWt(ω1, . . . , 1, . . . , ωN)

+ (1 − ωl)Wt(ω1, . . . , 0, . . . , ωN). (11)

We can further extend the above result to show that

Wt(ω1, . . . , y, x, . . . , ωn) − Wt(ω1, . . . , x, y, . . . , ωn)

= (x − y) [Wt(ω1, . . . , 0, 1, . . . , ωn)

− Wt(ω1, . . . , 1, 0, . . . , ωn)] . (12)

We will use the above result in the proof of Lemma 1 in the
sequel. A necessary and sufficient condition for the optimality

of the myopic policy is given in Lemma 2 of [47]. It says, to
show the optimality of the myopic policy at time t, given its
optimality at t + 1, . . . , T, it suffices to show that

Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωN, ωi) ≤ Wt(ω1, . . . , ωN). (13)

for all ω1 ≤ . . . ≤ ωi ≤ . . . ≤ ωN .
The condition given above essentially requires that selecting

the AE corresponding to the last entry in the vector, �(t),
followed by myopic selection be better than selecting any
other AE followed by myopic selection. With the assumption
of optimality of myopic policy from time t + 1 onwards, this
condition ensures that the myopic policy is optimal for time t
also. In order to prove that the above condition holds for the
AS POMDP problem, we first prove the following. The pseudo
value function, Wt(�(t)), does decrease in value, if we switch
the order of two neighbouring AEs i and i + 1 so as to make
ωi+1 ≥ ωi. This is established in Lemma 1. Let � � f (1) −
f (0) = Pc(1) − Pc(0). Since Pc(1) ≥ Pc(0), we have � ≥ 0.

Lemma 1: For ω1 ≤ ω2 ≤ . . . ≤ ωN , the following inequali-
ties hold for all t = 1, 2, . . . , T, when p11 ≥ p01:

1) � + Wt(ω2, . . . , ωN , ω1) ≥ Wt(ω1, . . . , ωN) (14)

2) Wt(ω1, . . . , ωl, y, x, . . . , ωN)

≥ Wt(ω1, . . . , ωl, x, y, . . . , ωN) (15)

where x ≥ y, 0 ≤ l ≤ N − 2, and l = 0 implies Wt(y, x, ω3,

. . . , ωN) ≥ Wt(x, y, ω3, . . . , ωN).
We prove this lemma using a sample path argument in

Appendix B. Next, we state and prove the theorem on the
optimality of myopic policy.

Theorem 1: The myopic policy is optimal for the problem
stated in (6), for t = 1, 2, . . . , T, and ∀ � = [ω1, . . . , ωN ] ∈
[0, 1]N under the assumption that p11 ≥ p01.

Proof: The proof is by induction. At time t = T, the
greedy policy is obviously optimal. Assuming it is optimal for
times t + 1, t + 2, . . . , T, to show the optimality at time t, by
Lemma 2 of [47], it suffices to show

Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωN, ωi) ≤ Wt(ω1, . . . , ωN). (16)

By applying (15) repeatedly to the above equation

Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωN , ωi)

≤ Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωi, ωN)

≤ Wt(ω1, . . . , ωi−1, ωi+1, . . . , ωi, ωN−1, ωN)

. . .

≤ Wt(ω1, . . . , ωN). (17)

This completes the proof of Theorem 1. �
The myopic policy explained above has an interesting struc-

ture to it. It sticks with an antenna if a 1 is observed on it,
otherwise discards that antenna and picks the one with the
highest probability to be in state 1. The optimality of such a
policy is intuitive. There are only two states and if an antenna
in state 1, it is most probable to stay in state 1 in the next time
step due to the assumption p11 ≥ p01. On the other hand, if
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Fig. 3. As training phase followed by the data phase.

the antenna is in state 0, it has the lowest probability to be in
state 1 in the next time step. Hence, by following the myopic
policy, the antenna with the highest probability to be in state 1 is
selected for receiving the next packet. However, in a general set
up with more number of states per antenna, the optimal policy
is not straight-forward.

V. DISCUSSION

We now briefly discuss the relative merits and demerits
of the proposed POMDP approach compared to the existing
approaches from the literature. We also present two new heuris-
tic schemes for AS inspired by the existing approaches and
the proposed POMDP based approach. Finally, we present a
computational complexity analysis of the various schemes.

A. Existing Schemes

The existing schemes for AS are generally based on the use
of an AS training phase, shown pictorially in Fig. 3. The AS
training phase comprises of N pilot symbols p1, p2, . . . , pN .
The pilot symbols are followed by several data packets; we let
di denote the ith data packet. The receiver obtains estimates
of the channel gains of each AE from the pilot symbols in
the training phase. These estimates are used in selecting AEs
in the data phase. It is assumed that the receiver requests the
transmitter for a training phase, when the resulting PER is
below some acceptable level [24]. In Section VI-B, we compare
the performance of the POMDP solution with two approaches
from the literature: the weighting scheme proposed in [26]
and the Max picking scheme. In both these schemes, the
channel gain estimates obtained from the training phase are
used for AS as well as for data decoding, i.e., the additional
CSI obtained from the DM RS is not exploited. In the Max
picking scheme, the channel gain estimates of the AEs
from the AS training phase are compared, and the AE with
the highest estimate is selected for receiving the packets in
the data phase. The scheme proposed in [26] is to weigh the
estimates from the AS training phase, and select the AE with
the highest weighted estimate to receive a symbol. The weights
are chosen to minimize the symbol error probability at the
receiver, accounting for the fact that the channel estimates on
different antennas are outdated by different amounts of time.
In order to compare the PER performance of this scheme with
that of the POMDP solution, a per-packet selection is done in
this paper. Both the above mentioned schemes depend solely
on the estimates from the training phase for selecting AEs.
We compare their performance with that of our scheme which
utilizes the DM RS information in AS decision making. We

will show that, by taking the information obtained through the
DM RS into account, we are able to significantly improve the
AS performance. To facilitate comparison, we consider a given
packet index, e.g., the 10th packet after the AS training phase,
and illustrate the effect of utilizing the DM RS, as opposed to
using only the AS training phase, on the PER performance.

B. Heuristic Schemes

In this subsection, we present two heuristic schemes for AS,
based on the Max picking and the weighting schemes, as
follows. In the Max picking scheme, once an AE is used
to receive a packet, we update the CSI of this AE with the
channel gain estimate obtained from the DM RS in the packet.
We compare this new estimate with the outdated estimates of
other AEs, while selecting AE for receiving the next packet.
Similarly, in the modified weighting scheme, the CSI of the
selected AE is updated using the DM RS information. For
selecting AE for the next packet, the weighting is done on the
updated estimate for the selected AE and the outdated estimates
of the rest of the AEs. The weight calculation takes into account
the delay in the estimates, in the same manner as was done
in the original scheme. In addition to this, the channel gain
estimate from the DM RS is used to decode the data in the
packet, for both the modified schemes.

Recall that the POMDP formulation requires the continuous-
valued channel gains to be discretized into a finite number of
states for the purpose of solving the POMDP and determining
the optimal policy. Due to this, the information available from
the received pilot symbols is not fully utilized by the receiver,
especially when the number of states per antenna is small.3 This
will be illustrated in the simulation results in Section VI, where
we plot the PER versus the normalized Doppler frequency.
However, the heuristic schemes proposed above based on the
intuition gleaned from the POMDP utilize the DM RS infor-
mation not only for data decoding but also for AS, and recover
the performance loss of the POMDP solution. In Section VI-C,
we will show that the two heuristic schemes presented above
outperform the existing weighting and max picking schemes
described in the previous subsection.

C. Computational Complexity

In this subsection, we discuss the computational complexity
of the different AS schemes discussed above. We focus on
the complexity in using the policy suggested by the POMDP
planning, and not on the computational cost of solving the
POMDP. This is because the POMDP can be solved offline, and
only needs to be repeated when the channel statistics change,
i.e., only very rarely, compared to the AS process.

Let κ denote the number of states per antenna and let N
denote the number of antenna elements, as before. The total

3A way to overcome the loss of optimality in quantizing the channel into
discrete states is to increase the number of states on each antenna; however, this
drives up the complexity of finding the optimal solution. Also, a limitation of
the FSMC model in [39] is that it restricts the state transitions to happen only
between adjacent channel states, and this affects the optimality of the policy
vis-a-vis the behavior of the channel when the number of states becomes large.
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number of channel states is then given by K = κN . We make
the following remarks about the complexity:

• SARSOP policy: The output of the SARSOP tool is a set
of vectors, denoted by , which represents a piecewise-
linear approximation of the optimal value function. Each
vector is associated with an action. At each time step,
the inner product between these vectors and the cur-
rent belief vector is computed. The complexity of this
computation is ||O(K). The optimal action is the one
corresponding to the vector in  is most correlated with
the current belief vector. The complexity of finding the
maximum among || values is O(||). The last step of
the algorithm is to update the belief vector by multiplying
it with the state transition probability matrix. This incurs
a complexity of O(K2).

• Myopic policy: In this case, at each time step, the im-
mediate reward corresponding to each action is calcu-
lated. This involves computing the inner product between
current belief vector and the expected immediate reward
�(a, S), which has a complexity of NO(K). Then, we
find the maximum among the N inner product values, the
complexity beingO(N). The final step in the procedure is
to update the belief vector, similar to the SARSOP policy,
which has a complexity of O(K2).

• Weighting scheme: This scheme involves multiplying the
channel gain estimates from the AS training phase with
the weight vector, incurring a complexity of O(N). Note
that, as the weight vector computation can be performed
offline, its complexity is not included in this analysis.
Finally, we choose maximum from these N weighted
gains. The complexity for this is O(N).

• Max picking: This schemes simply picks the maxi-
mum among the N channel gains obtained from the AS
training phase. This has a complexity of O(N). All the
packets are received using the same antenna.

• Modified schemes: In the modified schemes, the channel
gain estimate of the selected antenna is updated using
the DM RS information. Its complexity is similar to the
corresponding schemes discussed above.

From the above discussion, we see that the POMDP based solu-
tion has a higher complexity than the other schemes. The com-
plexity increases with the number of quantized states. Between
SARSOP policy and myopic policy, the former has higher com-
plexity as || is typically much greater than K for a “good”
policy obtained from the SARSOP tool. Due to this, the computa-
tional complexity of the SARSOP policy may not scale well for
large dimensional AS problems. On the other hand, the myopic
policy offers a good compromise between complexity and per-
formance, and would be the candidate of choice as the number
of antennas gets large, for example, in massive MIMO systems.

VI. SIMULATION RESULTS

In this section, we present Monte Carlo simulation results to
support the analysis and discussion in the previous sections.

A. Simulation Setup

In order to evaluate the performance of the proposed schemes
and compare with existing training-based AS schemes, we
simulate an initial training phase, followed by transmission of
several data packets, as shown in Fig. 3. We have Tp = Tpkt, and
we assume that the channel stays constant for the duration Tpkt,
for all the simulations. In case of the POMDP, the information
from the training phase is used to compute the initial belief
vector. Each packet consists of ten data symbols and one DM
RS. The data symbols are drawn uniformly at random from an
8-PSK constellation, scaled by the signal power. We assume
that there are N = 4 AEs, and that the noise at the receiver is
AWGN. We fix the normalized Doppler frequency at fmTpkt =
0.02. The pilot symbols are transmitted at the same power as
the data symbols.

The channel is Rayleigh faded with time correlation dictated
by the Jakes’ spectrum, and is independent across AEs (see
a later subsection for a simulation result that incorporates
spatial correlation in the channel). We generate a large number
(10,000) of time-correlated Rayleigh fading channel traces gen-
erated using the algorithm given in [49]. For each trace, we start
with an AS training phase followed by data transmission via
packets. We perform receive AS using the different algorithms,
and collect the statistics of packet success/failure of each packet
index separately, and average it across the different channel
traces. This way, we arrive at the PER corresponding to each
packet index. We plot the performance for the 10th packet. We
repeat this process for different SNR values, different number
of receive antennas, different number of states in the FSMC,
and different AS algorithms.

The POMDP problem is formulated as explained in
Section III. We consider POMDP models where the number
of states per channel is 2, 4 and 8. For each POMDP problem
we find two solutions: as given by the Approximate POMDP
Planning Toolkit [31] and the myopic policy. We plot the
performance of POMDP in two cases: when there is perfect CSI
on the selected antenna, and when the CSI is estimated on all
antennas.

B. Comparison With Existing Schemes

In this subsection, we compare the performance of the
POMDP solution with the AS training based on the weighting
scheme proposed in [26]. Another scheme that is evaluated
is Max picking, which picks the antenna with the highest
estimated channel gain in the AS training phase. We also
evaluate the PER in case of a single AE (No AS). Perfect
CSI denotes the PER curve with a genie-aided receiver that
has perfect CSI on all antennas. Except for the POMDP, all the
schemes deal with continuous-valued channel gains. We present
comparisons of the PER performance of the different schemes
as a function of the data SNR, normalized Doppler frequency
and packet index.

1) Variation of PER With SNR: The performance of the
optimal policy as obtained from SARSOP tool and myopic
policy for the 2-states channel model is plotted in Fig. 4 and
those for the 4-states model is plotted in Fig. 5. For the
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Fig. 4. PER vs. SNR for the 10th packet for 2-states channel model with
fmTpkt = 0.02.

Fig. 5. PER vs. SNR for the 10th packet for the 4-states channel model with
fmTpkt = 0.02.

2-states model with perfect CSI on the selected antenna, we
have shown the optimality of myopic policy. Hence, in the
2-state case, the myopic policy marginally outperforms the
SARSOP policy, as expected. In the 4-state cases, the re-
sults show that the myopic policy performs very close to the
SARSOP policy, which is again expected, since the SARSOP
tool yields a near-optimal policy, and the optimality of the
myopic policy is not valid in this case. However, in all cases,
the performance difference between the myopic policy and
the SARSOP policy is marginal, indicating that the compu-
tationally simpler myopic performance achieves near-optimal
performance. The dramatic improvement in performance of our
proposed scheme is due to its effectiveness in utilizing the DM
RS for data decoding as well as for AS decisions. The other
schemes are wholly dependent on the channel estimates from
AS training phase for AS as well as for the data decoding. These
estimates start getting outdated as the data packets are received,
while the proposed scheme updates the channel estimates from
the DM RS pilots available in each packet. In Fig. 5, the
other schemes’ performance are not shown; they are unchanged
because they do not discretize the channel state. However, the
performance with Perfect CSI is plotted for comparison.

Fig. 6. PER vs. normalized Doppler frequency (fmTpkt) for the 10th packet
for 2-states channel model with data SNR = 20 dB.

Fig. 7. PER vs. normalized Doppler frequency (fmTpkt) for the 10th packet
for 4-states channel model with data SNR = 20 dB.

2) Variation of PER With Normalized Doppler Frequency:
Here, we plot the PER of different schemes as a function of
normalized Doppler frequency (fmTpkt). In Fig. 6, we plot the
performance of 2-states channel model along with the other
schemes. At lower normalized Doppler frequencies, the optimal
weighting scheme and the Max picking scheme outperform
the POMDP solution. This is because these schemes have the
advantage of comparing among the continuous-valued channel
gains whereas the POMDP solution has to deal with belief
vector of a finite state channel model. However, as the fmTpkt
increases, the channel varies considerably with time, and the
other schemes fail to track the variation. Hence, they perform
worse than the POMDP solution. In Fig. 7, where there are
4 states per channel, the POMDP solution performs better than
the 2-states model. The No AS scheme has only one AE, and
hence, performs the worst, even at lower normalized Doppler
frequencies.

3) Variation of PER With Packet Index: Here, we plot the
variation in the PER as a function of the packet index for the
different schemes. The SNR is fixed at 20 dB and fmTpkt at
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Fig. 8. PER vs. packet index for 2-states channel model with data SNR =
20 dB and fmTpkt = 0.02.

Fig. 9. PER vs. packet index for 4-states channel model with data SNR =
20 dB and fmTpkt = 0.02.

0.02. Figs. 8 and 9 give the performance of the 2-states and
4-states channel model, respectively. Starting from the first
packet itself, the POMDP solution performs better than the
other solutions. This is because the POMDP solution uses the
DM RS to track the channel state of the selected AE, which is
not incorporated by the other schemes. As one gets farther away
from the AS training phase, the performance gets progressively
worse. However, the degradation in performance is far lower
for the POMDP solution compared to the other schemes. The
other schemes necessitate the transmission of a fresh AS train-
ing phase after, say, the 10th packet, since the PER becomes
close to 1.

C. Comparison With Heuristic Methods

We now consider the performance of the heuristic schemes
for AS proposed in Section V. In Fig. 10, we plot the PER as
a function of normalized Doppler frequency for the heuristic
schemes, and compare it with the POMDP solution. For the
sake of simplicity, in case of the POMDP, the performance
of the myopic policy is plotted. The overall performance of

Fig. 10. PER vs. normalized Doppler frequency for the heuristic methods for
the 10th packet with data SNR = 20 dB.

both the modified schemes is superior to that of their coun-
terparts in the literature, as they utilize information from the
DM RS in addition to the initial AS phase for finding the
best AE. In fact, the modified Max picking (labeled Mod.
max picking) outperforms the POMDP solutions (with the
2-states and 4-states channel models) at the lower Doppler
frequencies. This is because the POMDP discretizes the chan-
nel gains. However, as we increase the number of states to
model the channel in the POMDP, the performance is improved.
The POMDP solution for 8-states channel model performs
as well as Mod. max picking. A difference between the
POMDP approach and the heuristic schemes is that the POMDP
approach accounts for the evolution of the belief states of
the non-selected antennas also, while in the heuristic scheme,
only the selected antenna’s channel gain is updated. Note
that, the relative performance of the different schemes depends
on a variety of factors including the pilot SNR, data SNR,
Doppler frequency, number of receive antennas, etc. In the
typical settings considered in this simulation result, we see
that the performance of the modified weighting scheme (Mod.
weighting scheme) degrades faster than that of the other
schemes. The reason is that, the original weighting scheme
[26] assumes that the channel estimates from the AS training
phase are used for both data decoding and AS. However, in
the modified scheme, we obtain a new estimate of the channel
on the selected AE from the DM RS, which can be used for
data decoding. Also, the weighting scheme in [26] is no longer
optimal since the additional CSI is not exploited. The improved
performance of the modified schemes compared to the existing
weighting schemes underlines the importance of the DM RS in
helping the receiver decide which antenna to use in selecting the
next packet, in terms of maximizing the long-term reward. In
Fig. 10, for lower values of the normalized Doppler frequency,
the 2-states channel model gives worse performance than the
others. This is expected, since, with more number of states, we
can track a slow-varying channel more accurately. However, as
the channel varies faster, the performance of 2-states model
starts to outperform others. This is partly an artifact of the
FSMC model, which allows state transitions between adjacent
states only. Due to that restriction, a channel model with fewer
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Fig. 11. PER vs. SNR for the 10th packet for 2-states channel model with
fmTpkt = 0.02 and spatially correlated channels with correlation coefficient =
0.6 between adjacent antennas.

number of states is better suited to represent a fast-varying
channel.

D. Channel Correlation

The system model considered so far assumed spatially uncor-
related channels. It is well-known that correlation among the
channels degrades the PER performance of AS based MIMO
systems. Hence, it is of interest to study how the proposed
scheme performs in the presence of spatial correlation. The
system model remains the same as explained in Section II,
except that the N channels are now correlated. We assume that
the correlation matrix has entries 1, ρ, ρ2, . . . , ρN−1 on the first
row, i.e., the correlation coefficient between adjacent antennas
is ρ. The POMDP formulation also remains the same as before,
except that the state transition probability Pr(Sj|Si) needs to
account for the spatial correlation between the antennas. Other
than using the modified state transition probability matrix,
the POMDP solution remains identical to the one presented
above. In this experiment, we evaluate the PER performance
of different schemes under spatially correlated channels with
ρ = 0.6. For the POMDP formulation, we have considered the
2-state model. The result is shown in Fig. 11. We see that,
compared to the uncorrelated case in Fig. 4, the performance
of all schemes has degraded, but the relative performance of the
different schemes remains more or less unchanged.

VII. CONCLUSION

In this work, we considered a wireless communication sys-
tem with a receiver having single RF chain and N AEs. By
formulating the problem as a POMDP, we were able to exploit
the temporal correlation of the channel as well as the additional
information available in the DM RS. We showed the optimality
of the computationally simple myopic policy for the 2 state
channel model under the assumption of perfect CSI on the
selected antenna and positively correlated channels. Through
simulations, we showed that the performance of the myopic
policy is very close to that of the optimal policy obtained from
the SARSOP POMDP solver, even for the 4-states channel

model. We also proposed two heuristic policies that offer ex-
cellent performance and are simple to implement. The primary
advantage of our proposed approach is that it obviates the
need for frequent AS training phases. This reduction in training
overhead can translate to improved spectral efficiency, or allow
transmission at lower power to improve the energy efficiency
and reduce interference to other systems. Future work can
include the analysis of optimality of the myopic policy for a
general κ-state channel model, and the design of joint transmit-
receive AS schemes based on Markov decision theory.

APPENDIX A
PROOF OF DECOMPOSABILITY OF THE

PSEUDO VALUE FUNCTION

We are interested in proving the following for all t =
1, 2, . . . , T and all l ∈ {1, 2, . . . , N}.

Wt(ω1, . . . , ωl, . . . , ωN) = ωlWt(ω1, . . . , 1, . . . , ωN)

+ (1 − ωl)Wt(ω1, . . . , 0, . . . , ωN). (18)

The proof proceeds by induction. The result obviously holds
for t = T. Assuming it holds for t + 1, . . . , T also, (18) can
be proved as follows. Consider the case when l �= N. We can
expand the LHS as given below:

Wt (�(t)) = f (ωN) + βωNWt+1 (τ (ω1), . . . , τ (ωl), . . . , p11)

+ β(1 − ωN)Wt+1 (p01, . . . , τ (ωl), . . . , τ (ωN−1)) . (19)

Now, expanding the first term in the RHS of (18) and applying
the induction hypothesis we have

ωlWt(ω1, . . . , 1, . . . , ωN)

= ωl
[
f (ωN) + βωNWt+1 (τ (ω1), . . . , p11, . . . , p11)

+ β(1 − ωN)Wt+1 (p01, . . . , p11, . . . , τ (ωN−1)
]

= ωlf (ωN) + βωlp11
[
ωNWt+1 (τ (ω1), . . . , 1, . . . , p11)

+ (1 − ωN)Wt+1(p01, . . . , 1, . . . , τ (ωN−1)
]

+ βωl(1 − p11)
[
ωNWt+1 (τ (ω1), . . . , 0, . . . , p11)

+ (1 − ωN)Wt+1(p01, . . . , 0, . . . , τ (ωN−1)
]
. (20)

Similarly, we expand the second term in the RHS of (18), to get

(1 − ωl)Wt(ω1, . . . , 0, . . . , ωN)

= (1 − ωl)
[
f (ωN) + βωNWt+1 (τ (ω1), . . . , p01, . . . , p11)

+ β(1 − ωN)Wt+1(p01, . . . , p01, . . . , τ (ωN−1)
]

= (1 − ωl)f (ωN)

+ β(1 − ωl)p01
[
ωNWt+1 (τ (ω1), . . . , 1, . . . , p11)

+ (1 − ωN)Wt+1(p01, . . . , 1, . . . , τ (ωN−1)
]

+ β(1 − ωl)(1 − p01)
[
ωNWt+1 (τ (ω1), . . . , 0, . . . , p11)

+ (1 − ωN)Wt+1(p11, . . . , 0, . . . , τ (ωN−1)
]
. (21)
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Combining (20) and (21) and noting the fact that τ (ωl) =
p11ωl + (1 − ωl)p01, we get

ωlWt(ω1, . . . , 1, . . . , ωN) + (1 − ωl)Wt(ω1, . . . , 0, . . . , ωN)

= f (ωN) + βτ(ωl)
[
ωNWt+1(τ (ω1), . . . , 1, . . . , p11)

+ (1 − ωN)Wt+1(p01, . . . , 1, . . . , τ (ωN−1)
]

+ β (1 − τ (ωl))
[
ωNWt+1 (τ (ω1), . . . , 0, . . . , p11)

+ (1 − ωN)Wt+1(p01, . . . , 0, . . . , τ (ωN−1)
]

= f (ωN) + β
[
ωNWt+1 (τ (ω1), . . . , τ (ωl), . . . , p11)

+ (1 − ωN)Wt+1(p01, . . . , τ (ωl), . . . , τ (ωN−1)
]

= Wt(ω1, . . . , ωl, . . . , ωN). (22)

This proves (18) for the case when l �= N. Now, consider the
case, when l = N, and expand the LHS of (18), to get

Wt (�(t)) = f (ωN) + βωNWt+1 (τ (ω1), . . . , p11)

+ β(1 − ωN)Wt+1 (p01, . . . , τ (ωN−1)) . (23)

Expanding the RHS of (18), when l = N, gives the following
terms:

ωNWt(ω1, . . . , ωN−1, 1)

= ωN
[
f (1) + βWt+1 (τ (ω1), . . . , τ (ωN−1), p11)

]
, (24)

(1 − ωN)Wt(ω1, . . . , ωN−1, 0)

= (1 − ωN)
[
f (0) + βWt+1 (p01, τ (ω1), . . . , τ (ωN−1))

]
.

(25)

Noting that f (ωN) = ωNf (1) + (1 − ωN)f (0), it is straight for-
ward to verify that combining (24) and (25)gives the RHS of (23).

APPENDIX B
PROOF OF LEMMA 1

The two inequalities in the lemma will be proven together
by induction. For time t = T, equation (14) becomes � +
f (ω1) ≥ f (ωN). This is true, since � is the maximum value
f (ωN) − f (ω1) can take. In (15), for time t = T and when
l = N − 2, we have f (x) ≥ f (y) since x ≥ y. When l ≤ N − 3,
we have the equality. Assuming both (14) and (15) are true
for time t + 1, t + 2, . . . , T, let us first prove (14) holds for t.
The second term in the LHS of (14) corresponds to the case
when antenna 1 is selected and the RHS to that when antenna
N is selected, at time t. A sample path argument similar to
the one in [49] is adopted in our proof. We consider all the
four realizations for AEs 1 and N and show that (14) holds in
all cases.

1) Case 1.a: The states of AE 1 and N are 0 and 1,
respectively. Let us denote the LHS and RHS of (14) under this
realization as L|[0,1] and R|[0,1], respectively. We have

L|[0,1] = � + f (0) + βWt+1 (p01, τ (ω2), . . . , τ (ωN−1), p11)

(26)

R|[0,1] = f (1) + βWt+1 (p01, τ (ω2), . . . , τ (ωN−1), p11)) .

(27)

The last summation term in both the above equations is evi-
dently the same. Noting that in this particular realization f (0) +
� = f (1), we have L|[0,1] = R|[0,1].

2) Case 1.b: The states of AE 1 and N are both 0.

L|[0,0] = � + f (0) + βWt+1 (p01, τ (ω2), . . . , τ (ωN−1), p01)

R|[0,0] = f (0) + βWt+1 (p01, p01, τ (ω2), . . . , τ (ωN−1))

≤ f (0) + β
[
� + Wt+1 (p01, τ (ω2), . . . , τ (ωN−1), p01)

]
≤ f (0) + � + βWt+1 (p01, τ (ω2), . . . , τ (ωN−1), p01)

= L|[0,0] (28)

where the first inequality is due to the induction hypothesis of
(14). The second inequality utilizes the fact that β ≤ 1.

3) Case 1.c: The states of AE 1 and N are both 1.

L|[1,1] = � + f (1) + βWt+1 (τ (ω2), . . . , τ (ωN−1), p11, p11)

R|[1,1] = f (1) + βWt+1 (p11, τ (ω2), . . . , τ (ωN−1), p11)

≤ f (1) + βWt+1 (τ (ω2), . . . , τ (ωN−1), p11, p11)

= L|[1,1] − �

≤ L|[1,1] (29)

where the first inequality is due to the repeated application of
the induction hypothesis of (15) and the last equality is due to
the assumption that � ≥ 0.

4) Case 1.d: The states of AE 1 and N are 1 and 0
respectively.

L|[1,0] = � + f (1) + βWt+1 (τ (ω2), . . . , τ (ωN−1), p01, p11)

R|[1,0] = f (0) + βWt+1 (p01, p11, τ (ω2), . . . , τ (ωN−1))

≤ f (0) + βWt+1 (p01, τ (ω2), . . . , τ (ωN−1), p11)

≤ f (0) + β
[
� + Wt+1 (τ (ω2), . . . , τ (ωN−1), p11, p01)

]
≤ f (0) + � + βWt+1 (τ (ω2), . . . , τ (ωN−1), p01, p11)

= L|[1,0] − �

≤ L|[1,0] (30)

where the first and third inequality uses the induction hy-
pothesis of (15). The second inequality utilizes the induction
hypothesis of (14).

Now we proceed to prove (15) for time t. We consider two
cases as given below.

5) Case 2.a: l ≤ N − 3.

LHS = f (ωN) + βωNWt+1 (τ (ω1), . . . , τ (y), τ (x), . . . , p11)

+β(1−ωN)Wt+1(p01, τ (ω1), . . . , τ (y), τ (x), . . . , τ (ωN−1))

≥ f (ωN) + βωNWt+1 (τ (ω1), . . . , τ (x), τ (y), . . . , p11)

+β(1−ωN)Wt+1(p01, τ (ω1), . . . , τ (x), τ (y), . . . , τ (ωN−1))

= RHS (31)

where the inequality is due to the induction hypothesis of (15).
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6) Case 2.b: l = N − 2. From (12), we have

Wt(ω1, . . . , ωN−2, y, x) − Wt(ω1, . . . , ωN−2, x, y)

= (x − y)
[
Wt(ω1, . . . , ωN−2, 0, 1)

− Wt(ω1, . . . , ωN−2, 1, 0)
]
. (32)

Expanding the last term on the RHS,

Wt(ω1, . . . , ωN−2, 1, 0, )

= f (0) + βWt+1 (p01, τ (ω1), . . . , τ (ωN−2), p11)

≤ f (0) + β (� + Wt+1 (τ (ω1), . . . , τ (ωN−2), p11, p01))

≤ f (0) + � + βWt+1 (τ (ω1), . . . , τ (ωN−2), p11, p01)

≤ f (1) + βWt+1 (τ (ω1), . . . , τ (ωN−2), p01, p11)

= Wt(ω1, . . . , ωN−2, 0, 1). (33)

The first inequality is due to the induction hypothesis of (14)
and the second inequality is due to β ≤ 1. The last inequality is
due to the induction hypothesis of (15) and also f (0) + � =
f (1). Since x ≥ y, (32) evaluates to a positive quantity. This
completes the proof of Lemma 1.
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