Supplemental Material for "On the Convergence of a Bayesian Algorithm for Joint Dictionary Learning and Sparse Recovery"

Geethu Joseph and Chandra R. Murthy Senior Member, IEEE

I. Derivation of DL-SBL Algorithm

In this section, we provide the details of the EM-algorithm development, explaining how to obtain (3)-(8), and the γ_{k} update equations in Algorithm 1 and Algorithm 2. The EM algorithm computes the unknown parameter set $\boldsymbol{\Lambda}$ by minimizing the negative \log likelihood $-\log p\left(\boldsymbol{y}^{K} ; \boldsymbol{\Lambda}\right)$. To compute the likelihood, we first note that the SBL framework imposes a Gaussian prior on the unknown vector $\boldsymbol{x}_{k} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Gamma}_{k}\right)$, where $\boldsymbol{\Gamma}_{k}$ is an unknown diagonal matrix.. Thus, \boldsymbol{y}_{k} also follows a Gaussian distribution: $\boldsymbol{y}_{k} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}+\boldsymbol{A} \boldsymbol{\Gamma}_{k} \boldsymbol{A}^{\boldsymbol{\top}}\right)$ because the noise term $\boldsymbol{w}_{k} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)$. Therefore, we have

$$
\begin{align*}
p\left(\boldsymbol{y}^{K} ; \boldsymbol{\Lambda}\right) & =\prod_{k=1}^{K} \frac{1}{\sqrt{(2 \pi)^{m}\left|\sigma^{2} \boldsymbol{I}+\boldsymbol{A} \boldsymbol{\Gamma}_{k} \boldsymbol{A}^{\top}\right|}} \\
& \times \exp \left(-\frac{1}{2} \boldsymbol{y}_{k}^{\top}\left(\sigma^{2} \boldsymbol{I}+\boldsymbol{A} \boldsymbol{\Gamma}_{k} \boldsymbol{A}^{\top}\right)^{-1} \boldsymbol{y}_{k}\right) . \tag{97}
\end{align*}
$$

Hence, the negative log likelihood is computed as follows:

$$
\begin{align*}
-\log p\left(\boldsymbol{y}^{K} ; \boldsymbol{\Lambda}\right)= & \frac{1}{2} \sum_{k=1}^{K}\left[m \log (2 \pi)+\log \left|\sigma^{2} \boldsymbol{I}+\boldsymbol{A} \boldsymbol{\Gamma}_{k} \boldsymbol{A}^{\top}\right|\right. \\
& \left.+\frac{1}{2} \boldsymbol{y}_{k}^{\top}\left(\sigma^{2} \boldsymbol{I}+\boldsymbol{A} \boldsymbol{\Gamma}_{k} \boldsymbol{A}^{\top}\right)^{-1} \boldsymbol{y}_{k}\right] \tag{98}
\end{align*}
$$

Since the $\log (2 \pi)$ term is a constant independent of $\boldsymbol{\Lambda}$, we omit that term and the scaling factor of $\frac{1}{2}$ to obtain the cost function $T(\boldsymbol{\Lambda})$ in (3).

The EM algorithm treats the unknowns \boldsymbol{x}^{K} as the hidden data and the observations \boldsymbol{y}^{K} as the known data. It is an iterative procedure which updates the estimate of the parameters $\boldsymbol{\Lambda}$ in every iteration using two steps: an expectation step (E-step) and a maximization step (M-step). Let $\Lambda^{(r)}$ be the estimate of $\boldsymbol{\Lambda}$ at the $r^{\text {th }}$ iteration. The E-step computes the marginal log-likelihood of the observed data $Q\left(\boldsymbol{\Lambda} ; \boldsymbol{\Lambda}^{(r-1)}\right)$, and the M -step computes the parameter tuple $\boldsymbol{\Lambda}$ that maximizes $Q\left(\boldsymbol{\Lambda} ; \boldsymbol{\Lambda}^{(r-1)}\right)$.

E-step: $Q\left(\boldsymbol{\Lambda} ; \boldsymbol{\Lambda}^{(r-1)}\right)=\mathbb{E}_{\boldsymbol{x}^{K} \mid \boldsymbol{y}^{K} ; \boldsymbol{\Lambda}^{(r-1)}}\left\{\log p\left(\boldsymbol{y}^{K}, \boldsymbol{x}^{K} ; \boldsymbol{\Lambda}\right)\right\}$

$$
\begin{equation*}
\text { M-step: } \boldsymbol{\Lambda}^{(r)}=\underset{\boldsymbol{\Lambda} \in \mathbb{O} \times \mathbb{R}_{+}^{N K}}{\arg \max } Q\left(\boldsymbol{\Lambda} ; \boldsymbol{\Lambda}^{(r-1)}\right) \tag{99}
\end{equation*}
$$

The authors are with the Dept. of ECE at IISc, Bangalore, India, Emails:\{geethu, cmurthy\}@iisc.ac.in.

To simplify $Q\left(\boldsymbol{\Lambda}, \boldsymbol{\Lambda}^{(r-1)}\right)$, we note that

$$
\begin{equation*}
p\left(\boldsymbol{y}^{K}, \boldsymbol{x}^{K} ; \boldsymbol{\Lambda}\right)=\prod_{k=1}^{K} p\left(\boldsymbol{y}_{k} \mid \boldsymbol{x}_{k} ; \boldsymbol{\Lambda}\right) p\left(\boldsymbol{x}_{k} ; \boldsymbol{\Lambda}\right) \tag{100}
\end{equation*}
$$

Here, $p\left(\boldsymbol{y}_{k} \mid \boldsymbol{x}_{k} ; \boldsymbol{\Lambda}\right)=\mathcal{N}\left(\boldsymbol{A} \boldsymbol{x}_{k}, \sigma^{2} \boldsymbol{I}\right)$, and $p\left(\boldsymbol{x}_{k} ; \boldsymbol{\Lambda}\right)=$ $\mathcal{N}\left(\mathbf{0}, \boldsymbol{\Gamma}_{k}\right)$. Thus, we get,

$$
\begin{align*}
& \log p\left(\boldsymbol{y}^{K}, \boldsymbol{x}^{K} ; \boldsymbol{\Lambda}\right) \\
& =\log \left\{\prod_{k=1}^{K} \frac{1}{\sqrt{(2 \pi \sigma)^{2 m}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left\|\boldsymbol{y}_{k}-\boldsymbol{A} \boldsymbol{x}_{k}\right\|^{2}\right)\right. \\
& \left.\quad \times \frac{1}{\sqrt{(2 \pi)^{N}\left|\boldsymbol{\Gamma}_{k}\right|}} \exp \left(-\frac{1}{2} \boldsymbol{x}_{k}^{\top} \boldsymbol{\Gamma}_{k}^{-1} \boldsymbol{x}_{k}\right)\right\} \tag{101}\\
& =-\frac{K m}{2} \\
& \tag{102}
\end{align*}
$$

Therefore, eliminating the constant terms, we obtain (5) as follows:

$$
\begin{align*}
& Q\left(\boldsymbol{\Lambda} ; \boldsymbol{\Lambda}^{(r-1)}\right)= \\
& -\frac{1}{2} \sum_{k=1}^{K}\left[\log \left|\boldsymbol{\Gamma}_{k}\right|+\operatorname{Tr}\left\{\boldsymbol{\Gamma}_{k}^{-1} \mathbb{E}\left\{\boldsymbol{x}_{k} \boldsymbol{x}_{k}^{\top} \mid \boldsymbol{y}^{K} ; \boldsymbol{\Lambda}^{(r-1)}\right\}\right\}\right] \\
& -\frac{1}{2 \sigma^{2}} \sum_{k=1}^{K} \mathbb{E}\left\{\left(\boldsymbol{y}_{k}-\boldsymbol{A} \boldsymbol{x}_{k}\right)^{\top}\left(\boldsymbol{y}_{k}-\boldsymbol{A} \boldsymbol{x}_{k}\right) \mid \boldsymbol{y}^{K} ; \boldsymbol{\Lambda}^{(r-1)}\right\} \tag{103}
\end{align*}
$$

We notice that the expectation terms in the above expression depend only on $\boldsymbol{\Lambda}^{(r-1)}$, and are independent of $\boldsymbol{\Lambda}$. Thus, the dependence of $\boldsymbol{\Gamma}_{k}$ in $Q\left(\boldsymbol{\Lambda} ; \boldsymbol{\Lambda}^{(r-1)}\right)$ is only through the $k^{\text {th }}$ term in the first summation, and the dependence on \boldsymbol{A} is only through the last summation term. Therefore, the optimization in the M -step is separable in its variables $\boldsymbol{\Gamma}_{k}$ and \boldsymbol{A}. Hence, the M-step reduces as follows:

$$
\begin{equation*}
\boldsymbol{\gamma}_{k}^{(r)}=\underset{\boldsymbol{\gamma} \in \mathbb{R}_{+}^{N}}{\arg \min } \log \left|\boldsymbol{\Gamma}_{k}\right|+\operatorname{Tr}\left\{\boldsymbol{\Gamma}_{k}^{-1} \mathbb{E}\left\{\boldsymbol{x}_{k} \boldsymbol{x}_{k}^{\top} \mid \boldsymbol{y}^{k} ; \boldsymbol{\Lambda}^{(r-1)}\right\}\right\} \tag{104}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{A}^{(r)}=\underset{\boldsymbol{A} \in \mathbb{O}}{\arg \min } \sum_{k=1}^{K} \mathbb{E}\left\{\left(\boldsymbol{y}_{k}-\boldsymbol{A} \boldsymbol{x}_{k}\right)^{\top}\left(\boldsymbol{y}_{k}-\boldsymbol{A} \boldsymbol{x}_{k}\right) \mid \boldsymbol{y}^{k} ; \boldsymbol{\Lambda}^{(r-1)}\right\} \tag{105}
\end{equation*}
$$

Here, we note that (105) is same as (7). Further, differentiating the objective function, we get the update equation (6):

$$
\begin{align*}
\boldsymbol{\gamma}_{k}^{(r)} & =\operatorname{Diag}\left\{\mathbb{E}\left\{\boldsymbol{x}_{k} \boldsymbol{x}_{k}^{\top} \mid \boldsymbol{y}^{k} ; \boldsymbol{\Lambda}^{(r-1)}\right\}\right\} \tag{106}\\
& =\operatorname{Diag}\left\{\boldsymbol{\mu}_{k} \boldsymbol{\mu}_{k}^{\top}+\boldsymbol{\Sigma}_{(k)}\right\} \tag{107}
\end{align*}
$$

where we use the following facts:

$$
\begin{align*}
\boldsymbol{\mu}_{k} & \triangleq \mathbb{E}\left\{\boldsymbol{x}_{k} \mid \boldsymbol{y}_{k} ; \boldsymbol{\Lambda}^{(r-1)}\right\} \tag{108}\\
\boldsymbol{\Sigma}_{(k)} & \triangleq \mathbb{E}\left\{\left(\boldsymbol{x}_{k}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{k}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}} \mid \boldsymbol{y}_{k} ; \boldsymbol{\Lambda}^{(r-1)}\right\} \tag{109}\\
& =\operatorname{cov}\left\{\boldsymbol{x}_{k} \mid \boldsymbol{y}^{K} ; \boldsymbol{\Lambda}^{(r-1)}\right\} . \tag{110}
\end{align*}
$$

Next, we compute the conditional expectations terms needed to find $\gamma_{k}^{(r)}$. We start with the following cross-covariance matrix:

$$
\begin{align*}
\mathbb{E}\left\{\boldsymbol{y}_{k} \boldsymbol{x}_{k}^{\top} \mid \boldsymbol{\gamma}_{k}, \sigma^{2}\right\} & =\mathbb{E}\left\{\left(\boldsymbol{A} \boldsymbol{x}_{k}+\boldsymbol{w}_{k}\right) \boldsymbol{x}_{k}^{\top} \mid \boldsymbol{\gamma}_{k}, \sigma^{2}\right\} \\
& =\mathbb{E}\left\{\boldsymbol{A} \boldsymbol{x}_{k} \boldsymbol{x}_{k}^{\top} \mid \boldsymbol{\gamma}_{k}, \sigma^{2}\right\} \\
& =\boldsymbol{A} \boldsymbol{\Gamma}_{k} \tag{111}
\end{align*}
$$

Thus, the conditional mean and covariance are given as follows:

$$
\begin{align*}
& \operatorname{cov}\left\{\boldsymbol{x}_{k} \mid \boldsymbol{y}^{K} ; \boldsymbol{\Lambda}\right\} \\
&= \mathbb{E}\left\{\boldsymbol{x}_{k} \boldsymbol{x}_{k}^{\top} \mid \boldsymbol{\gamma}_{k}, \sigma^{2}\right\}-\mathbb{E}\left\{\boldsymbol{x}_{k} \boldsymbol{y}_{k}^{\top} \mid \gamma_{k}, \sigma^{2}\right\} \\
& \times \mathbb{E}\left\{\boldsymbol{y}_{k} \boldsymbol{y}_{k}^{\top} \mid \boldsymbol{\gamma}_{k}, \sigma^{2}\right\}^{-1} \mathbb{E}\left\{\boldsymbol{y}_{k} \boldsymbol{x}_{k}^{\top} \mid \boldsymbol{\gamma}_{k}, \sigma^{2}\right\} \\
&= \boldsymbol{\Gamma}_{k}-\boldsymbol{\Gamma}_{k} \boldsymbol{A}^{\top}\left(\sigma^{2} \boldsymbol{I}+\boldsymbol{A} \boldsymbol{\Gamma}_{k} \boldsymbol{A}^{\top}\right)^{-1} \boldsymbol{A} \boldsymbol{\Gamma}_{k} \tag{112}\\
& \mathbb{E}\left\{\boldsymbol{x}_{k} \mid \boldsymbol{y}^{K} ; \boldsymbol{\Lambda}\right\} \\
&= \mathbb{E}\left\{\boldsymbol{x}_{k} \mid \boldsymbol{\gamma}_{k}, \sigma^{2}\right\}+\mathbb{E}\left\{\boldsymbol{x}_{k} \boldsymbol{y}_{k}^{\top} \mid \gamma_{k}, \sigma^{2}\right\} \\
& \times \mathbb{E}\left\{\boldsymbol{y}_{k} \boldsymbol{y}_{k}^{\top} \mid \boldsymbol{\gamma}_{k}, \sigma^{2}\right\}^{-1}\left(\boldsymbol{y}_{k}-\mathbb{E}\left\{\boldsymbol{y}_{k} \mid \boldsymbol{\gamma}_{k}, \sigma^{2}\right\}\right) \\
&= \boldsymbol{\Gamma}_{k} \boldsymbol{A}^{\top}\left(\sigma^{2} \boldsymbol{I}+\boldsymbol{A} \boldsymbol{\Gamma}_{k} \boldsymbol{A}^{\top}\right)^{-1} \boldsymbol{y}_{k} \\
&= \sigma^{-2} \boldsymbol{\Gamma}_{k} \boldsymbol{A}^{\top}\left(\boldsymbol{I}-\left(\sigma^{2} \boldsymbol{I}+\boldsymbol{A} \boldsymbol{\Gamma}_{k} \boldsymbol{A}^{\top}\right)^{-1} \boldsymbol{A} \boldsymbol{\Gamma}_{k} \boldsymbol{A}^{\top}\right) \boldsymbol{y}_{k} \\
&= \sigma^{-2} \operatorname{cov}\left\{\boldsymbol{x}_{k} \mid \boldsymbol{y}^{K} ; \boldsymbol{\Lambda}\right\} \boldsymbol{A}^{\top} \boldsymbol{y}_{k} . \tag{113}
\end{align*}
$$

Therefore, (106), (116) and (121) together gives the update step for γ_{k} used in Algorithm 1 and Algorithm 2.

Similarly, the optimization problem corresponding the dictionary update (105) reduces as follows:

$$
\begin{align*}
& \underset{\boldsymbol{A} \in \mathbb{O}}{\arg \min } \sum_{k=1}^{K} \mathbb{E}\left\{\left(\boldsymbol{y}_{k}-\boldsymbol{A} \boldsymbol{x}_{k}\right)^{\top}\left(\boldsymbol{y}_{k}-\boldsymbol{A} \boldsymbol{x}_{k}\right) \mid \boldsymbol{y}_{k} ; \boldsymbol{\Lambda}^{(r-1)}\right\} \tag{114}\\
& \quad=\underset{\boldsymbol{A} \in \mathbb{O}}{\arg \min } \sum_{k=1}^{K} \mathbb{E}\left\{\left.-\boldsymbol{y}_{k}^{\top} \boldsymbol{A} \boldsymbol{x}_{k}+\frac{1}{2} \boldsymbol{x}_{k}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}_{k} \right\rvert\, \boldsymbol{y}_{k} ; \boldsymbol{\Lambda}^{(r-1)}\right\} \\
& \quad=\underset{\boldsymbol{A} \in \mathbb{O}}{\arg \min }-\operatorname{Tr}\left\{\left(\sum_{k=1}^{K} \boldsymbol{\mu}_{k} \boldsymbol{y}_{k}^{\top}\right) \boldsymbol{A}+\frac{1}{2} \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\top}\right\} \\
& \quad=\underset{\boldsymbol{A} \in \mathbb{O}}{\arg \min } \operatorname{Tr}\left\{-\boldsymbol{M} \boldsymbol{Y}^{\top} \boldsymbol{A}+\frac{1}{2} \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\top}\right\} . \tag{115}
\end{align*}
$$

Since $\boldsymbol{A} \in \mathbb{O}$, we can further simplify the second term here as follows:

$$
\begin{align*}
\operatorname{Tr}\left\{\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\top}\right\} & =\sum_{i, j=1 ; i \neq j}^{N} \boldsymbol{\Sigma}[i, j] \boldsymbol{A}_{i}^{\top} \boldsymbol{A}_{j}+\sum_{i=1}^{N} \boldsymbol{\Sigma}[i, i] \boldsymbol{A}_{i}^{\top} \boldsymbol{A}_{i} \tag{116}\\
& =\operatorname{Tr}\left\{\boldsymbol{A}(\boldsymbol{\Sigma}-\mathcal{D}\{\boldsymbol{\Sigma}\}) \boldsymbol{A}^{\top}\right\}+\sum_{i=1}^{N} \boldsymbol{\Sigma}[i, i] . \tag{117}
\end{align*}
$$

Here, the second term does not depend on \boldsymbol{A}, and hence, we remove the term from the objective function to get an equivalent optimization objective function as in (8). Thus, the derivation of algorithm development given by (3)-(8), and the update equations for γ_{k} in Algorithm 1 and Algorithm 2 are completed.

Learning the noise variance

Following a similar approach as the above, we can learn the noise variance σ^{2} along with the dictionary \boldsymbol{A} and covariance matrices $\boldsymbol{\Gamma}_{k}$. If σ^{2} is unknown, we have to incorporate its update to the M-step by maximizing the Q function defined in (103). Thus, considering the terms that depend on $\sigma 62$, we get

$$
\begin{align*}
\left(\sigma^{2}\right)^{(r)} & =\underset{\sigma^{2} \in \mathbb{R}_{+}}{\arg \min } K m \log \left(\sigma^{2}\right) \\
& +\frac{1}{\sigma^{2}} \sum_{k=1}^{K} \mathbb{E}\left\{\left(\boldsymbol{y}_{k}-\boldsymbol{A} \boldsymbol{x}_{k}\right)^{\top}\left(\boldsymbol{y}_{k}-\boldsymbol{A} \boldsymbol{x}_{k}\right) \mid \boldsymbol{y}^{K} ; \boldsymbol{\Lambda}^{(r-1)}\right\} \\
& =\frac{1}{K m} \sum_{k=1}^{K} \mathbb{E}\left\{\left(\boldsymbol{y}_{k}-\boldsymbol{A} \boldsymbol{x}_{k}\right)^{\top}\left(\boldsymbol{y}_{k}-\boldsymbol{A} \boldsymbol{x}_{k}\right) \mid \boldsymbol{y}^{K} ; \boldsymbol{\Lambda}^{(r-1)}\right\} \\
& =\frac{1}{K m} \operatorname{Tr}\left\{\boldsymbol{Y}^{\top} \boldsymbol{Y}-2 \boldsymbol{M} \boldsymbol{Y}^{\top} \boldsymbol{A}+\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\top}\right\}, \tag{118}
\end{align*}
$$

where the last step follows because of the same arguments used to derive (125) from (122).

II. Proof of Kurdyka-Łojasiewicz property based Convergence Result

Theorem 6. A bounded sequence of iterates $\left\{A^{(r, u)}\right\}_{u \in \mathbb{N}}$ generated by the ALS algorithm converges to a stationary point of \tilde{g} if the following four conditions hold:
(i) The objective function $\tilde{g}(\boldsymbol{A})$ satisfies

$$
\begin{equation*}
\inf _{\boldsymbol{A} \in \mathbb{R}^{m \times N}} \tilde{g}(\boldsymbol{A})>-\infty \tag{119}
\end{equation*}
$$

(ii) There exist constants $\theta \in[0,1), C, \epsilon>0$ such that

$$
\begin{equation*}
\left|\tilde{g}(\boldsymbol{A})-\tilde{g}\left(\boldsymbol{A}^{*}\right)\right|^{\theta} \leq C\|\boldsymbol{Z}\| \tag{120}
\end{equation*}
$$

for any stationary point \boldsymbol{A}^{*} of \tilde{g}, any \boldsymbol{A} such that $\left\|\boldsymbol{A}-\boldsymbol{A}^{*}\right\| \leq \epsilon$, and any \boldsymbol{Z} such that $\boldsymbol{Z} \in \partial g(\boldsymbol{A})$. The constant θ is called the Łojasiewicz exponent of the Lojasiewicz gradient inequality.
(iii) There exists $C_{1}>0$ such that

$$
\begin{equation*}
\tilde{g}\left(\boldsymbol{A}^{(r, u-1)}\right)-\tilde{g}\left(\boldsymbol{A}^{(r, u)}\right) \geq C_{1}\left\|\boldsymbol{A}^{(r, u-1)}-\boldsymbol{A}^{(r, u)}\right\|_{1}^{2} \tag{121}
\end{equation*}
$$

(iv) There exist $u_{0}>1, C_{2}>0$ and $\boldsymbol{Z} \in \partial g\left(\boldsymbol{A}^{(r, u)}\right)$ such that for all $u>u_{0}$

$$
\begin{equation*}
\|\boldsymbol{Z}\| \leq C_{2}\left\|\boldsymbol{A}^{(r, u-1)}-\boldsymbol{A}^{(r, u)}\right\| \tag{122}
\end{equation*}
$$

The proof is adapted from the proof of [40, Theorem 2]. At a high level, there are four steps to the proof:
A We first prove that the sequence $\left\{\boldsymbol{A}^{(r, u)}\right\}_{u \in \mathbb{N}}$ converges to a bounded connected set $\mathbb{G} \subseteq \operatorname{crit}(\tilde{g}) \subseteq \mathbb{O}$, where $\operatorname{crit}(\tilde{g})$ is the set of stationary points of \tilde{g}. Moreover, \tilde{g} is constant over the set \mathbb{G}.
B Next, we connect the above result to Condition (ii). To establish the connection, we define a new function \bar{g} : $\mathbb{O} \rightarrow \mathbb{R}_{+}$as $\bar{g}(\boldsymbol{A}) \triangleq \tilde{g}(\boldsymbol{A})-\tilde{g}\left(\boldsymbol{A}^{(r)}\right)$, where $\boldsymbol{A}^{(r)}$ is a limit point of the sequence $\left\{\boldsymbol{A}^{(r, u)}\right\}_{u \in \mathbb{N}}$, and \boldsymbol{A} is any point in the set \mathbb{O}. We note that the definition of \bar{g} is unambiguous because Step A shows that \tilde{g} is constant over the set \mathbb{G}. We then show that there exists a positive integer $U_{0} \in \mathbb{N}$ and $\tilde{C}>0$ such that for all $u \geq U_{0}$,

$$
\begin{equation*}
\left(\bar{g}\left(\boldsymbol{A}^{(r, u)}\right)\right)^{\theta} \geq \tilde{C}\|\boldsymbol{Z}\| \tag{123}
\end{equation*}
$$

for any \boldsymbol{Z} such that $\boldsymbol{Z} \in \partial \tilde{g}\left(\boldsymbol{A}^{(r, u)}\right)$.
C Finally, using the above relation and other conditions of the theorem, we show that the desired result follows.
Next, we present the details of the above steps:

A. Characterization of \mathbb{G}

From Condition (iii), we get that

$$
\begin{align*}
& \sum_{u=1}^{\infty}\left\|\boldsymbol{A}^{(r, u-1)}-\boldsymbol{A}^{(r, u)}\right\|^{2} \\
& \quad \leq \frac{1}{C_{1}}\left[\lim _{u \rightarrow \infty} \tilde{g}\left(\boldsymbol{A}^{(r, u-1)}\right)-\tilde{g}\left(\boldsymbol{A}^{(r, 0)}\right)\right]<\infty \tag{124}
\end{align*}
$$

where the last step follows because $\lim _{u \rightarrow \infty} \tilde{g}\left(\boldsymbol{A}^{(r, u-1)}\right)<$ ∞ due to Proposition 1. Further, [45, Theorem 1] states that the set of subsequential limit points of a sequence $\left\{\boldsymbol{A}^{(r, u)}\right\}_{u \in \mathbb{N}}$ in a compact metric space is a connected set if it satisfies the following:

$$
\begin{equation*}
\sum_{u=1}^{\infty}\left\|A^{(r, u-1)}-A^{(r, u)}\right\|^{2}<\infty \tag{125}
\end{equation*}
$$

Consequently, the result applies to any bounded sequence satisfying (137). Since the sequence $\left\{\boldsymbol{A}^{(r, u)}\right\}_{u \in \mathbb{N}}$ generated by the AM procedure belongs to the bounded set \mathbb{O}, it converges to a bounded connected set $\mathbb{G} \subseteq \mathbb{O}$. Also, since the set of subsequential limits is closed, \mathbb{G} is a connected compact set.

Now, for any limit point $\boldsymbol{A}^{(r)} \in \mathbb{G}$ of the sequence $\left\{\boldsymbol{A}^{(r, u)}\right\}_{u \in \mathbb{N}}$, there exists a sequence $\left\{u_{j}\right\}_{j \in \mathbb{N}}$ of natural numbers such that $\left\{\left(\boldsymbol{A}^{\left(r, u_{j}\right)}, \boldsymbol{Z}^{\left(r, u_{j}\right)}, \tilde{g}\left(\boldsymbol{A}^{\left(r, u_{j}\right)}\right)\right)\right\}_{j \in \mathbb{N}}$ converges to the tuple $\left(\boldsymbol{A}^{(r)}, \mathbf{0}, \tilde{g}\left(\boldsymbol{A}^{(r)}\right)\right)$. This is because the subsequence $\left\{\left(\boldsymbol{Z}^{\left(r, u_{j}\right)}, \tilde{g}\left(\boldsymbol{A}^{\left(r, u_{j}\right)}\right)\right)\right\}_{j \in \mathbb{N}}$ converges to the same limit point as that of the sequence
$\left\{\left(\boldsymbol{Z}^{(r, u)}, \tilde{g}\left(\boldsymbol{A}^{(r, u)}\right)\right)\right\}_{u \in \mathbb{N}}$ which is $\left(\mathbf{0}, \tilde{g}\left(\boldsymbol{A}^{(r)}\right)\right)$ due to (13) and Proposition 1. Therefore, we conclude that $\mathbb{G} \subset$ $\operatorname{crit}(\tilde{g})$ and \tilde{g} is constant over the set \mathbb{G}, completing Step A.

B. Connection to Kurdyka-Łojasiewicz property

The compact set \mathbb{G} can be covered with finite number of closed balls $\mathcal{B}_{j}=\left\{\boldsymbol{A} \in \mathbb{O}:\left\|\boldsymbol{A}-\boldsymbol{A}^{*(j)}\right\| \leq \epsilon_{j}\right\}$ such that Condition (ii) is satisfied by $\boldsymbol{A}^{(r, j)}$ with constants $C^{(j)}$ and $\epsilon_{j}>0$. Therefore, we have the following relation for $\boldsymbol{A} \in \mathcal{B}_{j}$:

$$
\begin{equation*}
\left|\tilde{g}(\boldsymbol{A})-\tilde{g}\left(\boldsymbol{A}^{*(j)}\right)\right|^{\theta_{j}} \leq C^{(j)}\|\boldsymbol{Z}\| \tag{126}
\end{equation*}
$$

for some θ_{j} and any \boldsymbol{Z} such that $\boldsymbol{Z} \in \partial \tilde{g}(\boldsymbol{A})$. Setting $\epsilon=$ $\min _{j} \epsilon_{j}, \tilde{C}=\max _{j} C^{(j)}$, and $\theta=\max _{j} \theta_{j}$ we get the following:

$$
\begin{equation*}
\left|\tilde{g}(\boldsymbol{A})-\tilde{g}\left(\boldsymbol{A}^{*}\right)\right|^{\theta} \leq \tilde{C}\|\boldsymbol{Z}\| \tag{127}
\end{equation*}
$$

for any $\boldsymbol{A}^{*} \in \mathbb{G}$ of \tilde{g}, any \boldsymbol{A} such that $\|\boldsymbol{A}-\mathbb{G}\| \leq \epsilon$, and any \boldsymbol{Z} such that $\boldsymbol{Z} \in \partial \tilde{g}(\boldsymbol{A})$. Further, since $\left\{\boldsymbol{A}^{(\bar{r}, u)}\right\}_{u \in \mathbb{N}}$ converges to \mathbb{G}, for any $\epsilon>0$, there exists a positive integer U_{0} such that for all $u \geq U_{0}$, we have $\left\|\boldsymbol{A}^{(r, u)}-\mathbb{G}\right\| \leq \epsilon$. Therefore, for all $u \geq U_{0}$,

$$
\begin{equation*}
\left|\bar{g}\left(\boldsymbol{A}^{(r, u)}\right)\right|^{\theta}=\left|\tilde{g}\left(\boldsymbol{A}^{(r, u)}\right)-\tilde{g}\left(\boldsymbol{A}^{(r)}\right)\right|^{\theta} \leq \tilde{C}\|\boldsymbol{Z}\| \tag{128}
\end{equation*}
$$

Thus, Step B is completed.

C. Convergence to a single point

Since $\left\{\tilde{g}\left(\boldsymbol{A}^{(r, u)}\right)\right\}_{u \in \mathbb{N}}$ is a non-increasing sequence, we have $\bar{g}\left(\boldsymbol{A}^{(r, u)}\right) \geq 0$, and the following relation holds.

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \bar{g}\left(\boldsymbol{A}^{(r, u)}\right)=0 \tag{129}
\end{equation*}
$$

We first note that the function $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$ defined as $h(s)=-s^{1-\theta}$ is convex for all $0 \leq \theta \leq 1$. Thus, for all $u \in \mathbb{N}$ and for θ in Condition (ii), it holds that

$$
\begin{align*}
& {\left[\bar{g}\left(\boldsymbol{A}^{(r, u-1)}\right)\right]^{1-\theta}-\left[\bar{g}\left(\boldsymbol{A}^{(r, u)}\right)\right]^{1-\theta}} \\
& \quad=h\left(\bar{g}\left(\boldsymbol{A}^{(r, u-1)}\right)\right)-h\left(\bar{g}\left(\boldsymbol{A}^{(r, u)}\right)\right) \tag{130}\\
& \quad \geq\left.\frac{d h(s)}{d s}\right|_{s=\bar{g}\left(\boldsymbol{A}^{(r, u-1)}\right)}\left[\bar{g}\left(\boldsymbol{A}^{(r, u-1)}\right)-\bar{g}\left(\boldsymbol{A}^{(r, u)}\right)\right] \tag{131}\\
& \quad=(1-\theta)\left[\bar{g}\left(\boldsymbol{A}^{(r, u-1)}\right]^{-\theta}\left[\bar{g}\left(\boldsymbol{A}^{(r, u-1)}\right)-\bar{g}\left(\boldsymbol{A}^{(r, u)}\right)\right]\right. \tag{132}\\
& \quad \geq C_{1}(1-\theta)\left[\bar{g}\left(\boldsymbol{A}^{(r, u)}\right)\right]^{-\theta}\left\|\boldsymbol{A}^{(r, u-1)}-\boldsymbol{A}^{(r, u)}\right\|^{2}, \tag{133}
\end{align*}
$$

where we use Condition (iii) to obtain the last relation. Further, from Step B, we get that

$$
\begin{align*}
& {\left[\bar{g}\left(\boldsymbol{A}^{(r, u-1)}\right)\right]^{1-\theta}-\left[\bar{g}\left(\boldsymbol{A}^{(r, u)}\right)\right]^{1-\theta}} \\
& \quad \geq \frac{C_{1}(1-\theta)}{C} \frac{\left\|\boldsymbol{A}^{(r, u)}-\boldsymbol{A}^{(r, u-1)}\right\|^{2}}{\|\boldsymbol{Z}\|} \tag{134}
\end{align*}
$$

$$
\begin{equation*}
\geq \frac{C_{1}(1-\theta)}{C C_{2}} \frac{\left\|\boldsymbol{A}^{(r, u)}-\boldsymbol{A}^{(r, u-1)}\right\|^{2}}{\left\|\boldsymbol{A}^{(r, u-1)}-\boldsymbol{A}^{(r, u-2)}\right\|} \tag{135}
\end{equation*}
$$

where we use Condition (iv).
Next, we fix a constant $0<\tau<1$. For some $u \geq U_{0}$, if $\left\|\boldsymbol{A}^{(r, u)}-\boldsymbol{A}^{(r, u-1)}\right\| \geq \tau\left\|\boldsymbol{A}^{(r, u-1)}-\boldsymbol{A}^{(r, u-2)}\right\|$, from (147), we get the following:

$$
\begin{gather*}
\frac{C C_{2}}{r C_{1}(1-\theta)}\left\{\left[\bar{g}\left(\boldsymbol{A}^{(r, u-1)}\right)\right]^{1-\theta}-\left[\bar{g}\left(\boldsymbol{A}^{(r, u)}\right)\right]^{1-\theta}\right\} \\
\geq\left\|\boldsymbol{A}^{(r, u)}-\boldsymbol{A}^{(r, u-1)}\right\| \tag{136}
\end{gather*}
$$

For all other values of $u \geq U_{0}$, we have the following relation:

$$
\begin{equation*}
\left\|\boldsymbol{A}^{(r, u)}-\boldsymbol{A}^{(r, u-1)}\right\| \leq \tau\left\|\boldsymbol{A}^{(r, u-1)}-\boldsymbol{A}^{(r, u-2)}\right\| \tag{137}
\end{equation*}
$$

Combining (148) and (149), for all $u \geq U_{0}$, we get the upper bound as given below:

$$
\begin{align*}
& \left\|\boldsymbol{A}^{(r, u)}-\boldsymbol{A}^{(r, u-1)}\right\| \leq \tau\left\|\boldsymbol{A}^{(r, u-1)}-\boldsymbol{A}^{(r, u-2)}\right\| \\
+ & \frac{C C_{2}}{r C_{1}(1-\theta)}\left\{\left[\bar{g}\left(\boldsymbol{A}^{(r, u-1)}\right)\right]^{1-\theta}-\left[\bar{g}\left(\boldsymbol{A}^{(r, u)}\right)\right]^{1-\theta}\right\} \tag{138}
\end{align*}
$$

Summing both sides, and using (141), we can simplify the expression as follows:

$$
\begin{aligned}
& \sum_{u=U_{0}}^{\infty}\left\|\boldsymbol{A}^{(r, u)}-\boldsymbol{A}^{(r, u-1)}\right\| \\
& \quad \leq \frac{\tau}{1-\tau}\left\|\boldsymbol{A}^{\left(r, U_{0}-1\right)}-\boldsymbol{A}^{\left(r, U_{0}-2\right)}\right\|
\end{aligned}
$$

$$
\begin{equation*}
+\frac{C C_{2}}{r C_{1}(1-\theta)}\left[\bar{g}\left(\boldsymbol{A}^{\left(r, U_{0}\right)}\right)\right]^{1-\theta} \tag{139}
\end{equation*}
$$

Thus, we conclude that the series converges, and there exists a finite constant $\kappa<\infty$ such that the following holds:

$$
\begin{equation*}
\sum_{u=1}^{\infty}\left\|\boldsymbol{A}^{(r, u)}-\boldsymbol{A}^{(r, u-1)}\right\|=\kappa \tag{140}
\end{equation*}
$$

Hence, for any $\epsilon>0$, there exists a positive integer U_{1} such that for all $U \geq U_{1}$, we have

$$
\begin{equation*}
\kappa-\epsilon / 2 \leq \sum_{u=1}^{U}\left\|\boldsymbol{A}^{(r, u)}-\boldsymbol{A}^{(r, u-1)}\right\| \leq \kappa+\epsilon / 2 \tag{141}
\end{equation*}
$$

Thus, for any $U_{1} \leq u_{1}<u_{2}$, we have

$$
\begin{align*}
& \left\|A^{\left(r, u_{2}\right)}\right\|-\left\|A^{\left(r, u_{1}\right)}\right\| \| \\
& \quad \leq \sum_{u=u_{1}+1}^{u_{2}}\left\|A^{(r, u)}\right\|-\left\|A^{(r, u-1)}\right\| \| \tag{142}\\
& \quad \leq \sum_{u=u_{1}+1}^{u_{2}}\left\|A^{(r, u)}-\boldsymbol{A}^{(r, u-1)}\right\| \tag{143}\\
& \quad=\sum_{u=1}^{u_{2}}\left\|\boldsymbol{A}^{(r, u)}-\boldsymbol{A}^{(r, u-1)}\right\|-\sum_{u=1}^{u_{1}}\left\|\boldsymbol{A}^{(r, u)}-\boldsymbol{A}^{(r, u-1)}\right\| \tag{144}
\end{align*}
$$

$$
\begin{equation*}
\leq \epsilon \tag{145}
\end{equation*}
$$

Therefore, the sequence $\left\{\boldsymbol{A}^{(r, u)}\right\}_{u \in \mathbb{N}}$ is Cauchy, hence it converges.

