
Variational Soft Symbol Decoding for Sweep
Spread Carrier Based Underwater Acoustic

Communications
Arunkumar K.P. and Chandra R. Murthy

Abstract—We present a scheme for data detection in sweep
spread carrier (S2C) based point-to-point communication over
doubly-spread underwater acoustic (UWA) channels. The existing
schemes for data detection – based on the gradient heterodyne
receiver – are only effective when the path delay and Doppler
spread are moderate. Based on the principle of variational Bayes’
inference, we develop a new variational soft symbol decoding
(VSSD) algorithm for a general linear channel model. We
show that, in benign underwater channels with moderate delay
and Doppler spreads, the VSSD algorithm is equivalent to the
existing receivers for S2C communications. We apply the VSSD
algorithm to the i.i.d. Gaussian multiple-input multiple-output
(MIMO) channel and show, through numerical simulations, that
it far outperforms the minimum mean squared error (MMSE)
data detection in both uncoded and coded communications.
Further, even with channel estimation errors, the VSSD retains
its performance advantage over the MMSE receiver. In UWA
channels where the existing S2C receivers completely fail, or
must compromise on the data rate to maintain the bit error rate
(BER) performance, the proposed VSSD algorithm recovers the
data symbols at a signal-to-noise ratio (SNR) which is at least
10 dB (8 dB) lower than the MMSE decoder for uncoded (rate
2/3 LDPC coded) communications.

Index Terms—Underwater acoustic communications, sweep
spread carrier communication, variational Bayes.

I. INTRODUCTION

The underwater acoustic (UWA) environment presents a
formidable challenge for wireless communication due to large
delay spreads and path-dependent Doppler shifts. Multipath
propagation of sound results in a delay spread which is in
the order of tens of milliseconds [2]. Time variations cause
path-dependent Doppler shifts that are non-uniform over the
bandwidth of the acoustic signal. Moreover, the sensor nodes
used in an underwater sensor network comprising stationary
or mobile underwater and surface vehicles are usually battery
operated, and are therefore highly constrained on the amount
of transmission power. High performance receiver processing,
that recover data symbols at a low signal-to-noise ratio, is
highly desirable in these applications.

Sweep spread carrier (S2C) communications, developed
in [3] and used in a practical UWA modem [4], is well
suited for battery operated modems due to its ideal peak-to-
average power ratio (PAPR) for the transmitted waveform. The
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details of the S2C transmitter and receiver side processing,
performance analysis, and experimental results are found in
[5]–[9]. The S2C receiver in [3] relies on extracting the symbol
arriving along the direct path. Consequently, the part of the
transmitted symbol energy arriving along paths other than the
direct path is not exploited. In [10], authors use a maximum
ratio combiner (MRC) to leverage the multipath diversity
and hence improve the performance of an S2C receiver. The
receiver in [10] works well only when (a) the ratio of the
maximum delay spread to minimum differential delay among
path arrivals is below a certain value, and (b) the Doppler
spread is small. If either condition is violated, the intersymbol
interference (ISI) cancellation becomes imperfect and MRC
becomes suboptimal and ineffective.

In this paper, we consider an S2C communication system
similar to [3] and [10] but for a more general underwater
channel model. We tie the existing S2C receivers – the gradient
heterodyne (GradH) receiver and the path-matched gradient
heterodyne (pGradH) receiver – that were heuristically mo-
tivated in [3] and [10], to the minimum mean squared error
(MMSE) decoder for certain benign UWA channel models. In
more severe channels, the performance of these detectors fall
short of the MMSE decoder designed for such channels.

Several works have considered the MMSE equalizer for
(hard) data symbol detection or joint channel estimation
and data detection in orthogonal frequency division multi-
plex (OFDM) and code division multiple access (CDMA)
based UWA communications [11]–[15]. However, in coded
communications, it is more important to estimate the soft
symbols rather than hard symbols. The variational Bayes’
(VB) inference is a promising approach to obtain soft symbol
estimates because it approximates the maximum a posteriori
(MAP) decoder in an iterative manner. However, to the best of
our knowledge, VB based soft symbol estimation has not been
explored in the literature. We, therefore, develop a new soft
symbol decoder based on the principle of variational Bayes’
inference. The soft symbol estimate is found by solving a
set of fixed points equations. We show that the fixed point
iterations converge to a local minimum in the general case,
and to a global minimum for orthogonal channel matrices
whose important special cases are the AWGN and Rayleigh
channels. Finally, we present the simulation results that evince
the strong performance of the proposed soft symbol decoder
in harsh channel conditions.



II. SYSTEM MODEL

We consider an S2C system as in [3] and [10]. At the
transmitter side, a succession of linear frequency modulated
chirp pulses, each swept from a lower frequency limit fL to
an upper frequency limit fH over a sweep duration Tsw, is
employed as the carrier waveform:

c(t) = ej2π(fLtr(t)+mctr(t)2), 0 ≤ t ≤ Tc, (1)

where
tr(t) = t−

⌊
t

Tsw

⌋
Tsw, (2)

is a periodic ramp function with period Tsw, 2mc = fH−fL
Tsw

is the chirp rate, Tc = NcTsw is the overall carrier duration,
and Nc is the number of chirp pulses comprising the carrier
waveform.

The message signal, containing pilot and data symbols
from a quadrature phase shift key (QPSK) constellation, is
represented by:

s(t) =

N−1∑
k=0

skg(t− kT ), (3)

where sk, k = 0, . . . , N−1, are a sequence of QPSK symbols,
T is the symbol duration, N = Tc

T is the number of symbols
mounted on the entire carrier waveform and g(t) is a pulse
shaping function, for example, a root-raised-cosine pulse with
roll-off factor α. We denote the symbol bandwidth by B, and
is given by B u 1+α

T . We also assume that Tsw is a multiple
of T so that there are M = Tsw

T symbols in every chirp pulse
within a carrier waveform. Note that N = MNc.

The modulated signal, to be transmitted, is given by:

x(t) = Re [s(t)c(t)] , (4)

which is prefixed with a preamble pulse and appended with a
post-amble pulse to form a transmission frame. The preamble
and post-amble are used for timing and synchronization, and
for estimating the channel. The preamble (post-amble) is a
chirp pulse modulated by a message signal made up of known
pilot symbols. A guard interval of Tg is used after (before)
the preamble (post-amble) pulse to allow the estimation of
channel. Using Nc > 1 helps with amortizing the overhead
due to guard interval over the total duration Tc.

The time-varying channel impulse response of the under-
water acoustic channel is modeled as [16]:

h(t, τ) =

Np−1∑
p=0

hp(t)δ (τ − τp(t)) , (5)

where hp(t) and τp(t) are the time-varying amplitude and
delay, respectively, of the pth path, and Np is the number of
significant paths in the channel. As in [11], we assume that,
the path amplitudes are constant within a data packet, that is,
hp(t) = hp, and that the time variation of the path delays due
to Doppler rate ap can be approximated as

τp(t) = τp − apt. (6)

The received signal after timing, synchronization, coarse
Doppler scale estimation and compensation, is given by:

y(t) =

Np−1∑
p=0

yp(t) + w(t), (7)

where w(t) is the additive white Gaussian noise (AWGN),
yp(t) = hpR{s(t̃− τp(t̃))c(t̃− τp(t̃))} is the timing adjusted
and Doppler compensated version of the S2C signal reaching
via the pth path, t̃ = t

1+â + τ̂ is the shifted and rescaled time-
axis, τ̂ is the starting time instance of the first (data) chirp
pulse estimated from the preamble/post-amble as in [3], â is
the coarse Doppler scale estimated using both the preamble
and post-amble as in [16]. Using (6), we can write,

yp(t) = hp

N−1∑
k=0

(sk,Re cosφp(t)− sk,Im sinφp(t))

× g
(
1 + bpt− τ̃p − kT

)
, (8)

where τ̃p = τp − τ̂ and bp =
ap−â
1+â are the residual delay and

Doppler scale, respectively, of the pth path after compensation,
sk,Re (sk,Im) is the real (imaginary) part of the QPSK symbol
sk and,

φp(t) , 2π
(
fLtr(1 + bpt− τ̃p) +mct

2
r(1 + bpt− τ̃p)

)
.
(9)

Upon sampling at a rate Fs (= 1/Ts, where Ts is the
sampling period), we may re-express the received signal in
(7) in a vector form relevant to data detection, as:

y = Hs + w, (10)

where,

H = [C0h,−S0h, . . . , CN−1h,−SN−1h] ∈ RNL×2N ,
h = [h0, h1, . . . , hNp−1]T ∈ RNp×1,
s = [s0,Re, s0,Im, . . . , sN−1,Re, sN−1,Im]T ∈ R2N×1,

w ∼ N
(
0, σ2I2N

)
,

L = bFsT c is the number of samples in the symbol duration,
and Ck ∈ RNL×Np and Sk ∈ RNL×Np are matrices whose
entries are given by:

Ck(l, p) = cosφp(lTs)g
(
1 + bplTs − τ̃p − kT

)
,

Sk(l, p) = sinφp(lTs)g
(
1 + bplTs − τ̃p − kT

)
,

for 0 ≤ k ≤ N − 1, 0 ≤ l ≤ NL − 1 and 0 ≤
p ≤ Np − 1. Since g(t) = 0, t /∈ [0, T ], entries of Ck(:
, p) ∈ RNL×1 and Sk(:, p) ∈ RNL×1 are zeros except for
l ∈
{⌈

τ̃p+kT

1+bpTs

⌉
, . . . ,

⌊
τ̃p+k+1T

1+bpTs

⌋}
.

We now address the problem of data detection for the S2C
communication model. First, we examine the two existing S2C
receivers in the literature – the GradH receiver, pioneered in
[3], and the pGradH receiver proposed in [10].



III. EXISTING S2C RECEIVERS: GRADH AND PGRADH

We show that the GradH and pGradH based S2C receivers
are minimum mean square error (MMSE) symbol detectors
for the AWGN channel and a delay spread channel with well
resolved path delays, respectively.

A. Optimality of GradH Receiver

Consider the received signal for the AWGN channel (Np =
1, τ̃0 = 0, b0 = 0, h0 = 1) which is given by:

y(t) =

N−1∑
i=0

(sk,Re cosφ0(t)− sk,Im sinφ0(t)) g (t− kT )

+ w(t), (11)

where φ0(t) , 2π
(
fLtr(t) +mct

2
r(t)

)
. Upon sampling, the

received signal is as in (7) with the channel matrix taking the
specific form:

H = Q =


Q0 0 0 . . . 0
0 Q1 0 . . . 0
...

...
...

...
...

0 0 0 . . . QN−1

 ∈ RNL×2N ,

where,

Qk = diag (g)


cosφ

(k)
0 [0] sinφ

(k)
0 [0]

cosφ
(k)
0 [1] sinφ

(k)
0 [1]

...
...

cosφ
(k)
0 [L− 1] sinφ

(k)
0 [L− 1]

 ∈ RL×2,

g ∈ RL has entries that are samples of the pulse shaping
function, gl = g(lTs), and φ

(k)
0 [l] = φ0

(
(k̃ − 1)T + lTs

)
,

k̃ = k − b kM cM , l = 0, . . . , L − 1, k = 0, 1, . . . , N − 1, and
φ0(t) = 2π

(
fLtr(t) +mct

2
r(t)

)
. In this case, there is no inter-

symbol interference (ISI), and the measurement corresponding
to the kth symbol is given by:

yk = Qksk + wk, (12)

where,

yk = [ y[(k − 1)L], y[(k − 1)L+ 1], . . . , y[kL− 1] ]
T
,

sk =
[
sk,Re, sk,Im

]T ∈ {[±1/
√

2,±1/
√

2
]T
},

wk =
[
wk[0], . . . , wk[L− 1]

]T ∼ N (0, σ2IL
)
,

for k = 0, . . . , N − 1.
For equiprobable symbols sk, the maximum a posteriori

probability (MAP) solution to (12), which minimizes the
probability of symbol error, is the maximum likelihood (ML)
solution given by:

ŝ
(ML)
k = arg min

sk∈{[±1/
√
2,±1/

√
2]
T }‖yk −Qksk‖2. (13)

The MMSE solution to (12) is given by:

ŝ
(MMSE)
k = S

[(
QTkQk + σ2I2

)−1
QTk yk

]
, (14)

where S [.] is the slicing operation that quantizes each
entry of its argument vector to the nearest symbol in
the QPSK constellation. For large enough symbol time,
T (and hence L), and smoothly varying pulse shaping
function, g(t), such that

∑L−1
l=0 g2(lTs) cos2

(
φ
(k)
0 [l]

)
u∑L−1

l=0 g2(lTs) sin2
(
φ
(k)
0 [l]

)
= β (say) which is nearly the

same for all 0 ≤ k ≤ N − 1, we have QTkQk ≈ βI2. Under
these conditions, the MMSE receiver in (14) simplifies to the
GradH receiver in [3]:

ŝ
(GradH)
k = S [zk] , (15)

where zk = QTk yk. From (12), we see that zk ≈ βsk + vk,
where vk = QTkwk ∼ N (0, βσ2I2), is affected only by the
kth symbol. Notice that zk is a sub-vector of z = QTy ∈
R2N×1, whose entries are precisely the sampled versions
of the low-pass filtered in-phase and quadrature outputs of
gradient heterodyne operation on the received signal [3].

The measurement model at the output of GradH preprocess-
ing, i.e., gradient heterodyne operation and low pass filtering
is given by:

z = Gs + v, (16)

where G = QTH ∈ R2N×2N is the channel matrix at the out-
put of GradH preprocessor and v = QTw ∼ N (0, σ2QTQ).
In the case of AWGN channel and large symbol duration,
G = βI2N and v ∼ N (0, βσ2I2N ).

While the GradH receiver in (15) is an MMSE symbol
detector for the AWGN channel, the receiver works reasonably
well even for ISI channels with moderate delay spreads, as
elaborated in [3]. The GradH receiver recovers the symbol
arriving along the direct path when [10],

M
M− 1

δτmax ≤ Tsw ≤Mδτmin, (17)

where δτmin = min0≤i<j≤Np−1 |τi − τj | and δτmax =
max0≤i,j≤Np−1 |τi−τj | are the smallest and largest separation
between any two path arrival times τi and τj , andM , fH−fL

B
is called the spreading factor.

B. Optimality of pGradH Receiver

The pGradH receiver in [10] additionally combines the
symbol arriving along paths other than the direct path to
leverage the multipath diversity. We briefly show that pGradH
is the MMSE receiver when the path delays are well resolved
and condition (17) holds. The MMSE receiver is given by:

ŝ(MMSE) = S
[(
HTH + σ2I2N

)−1
HTy

]
. (18)

When the path delays τp, p = 0, 1, . . . , Np − 1, are well
resolved and condition (17) holds, then CTi Cj ≈ κCINpδi,j ,
where κC = Ci(:, p)

TCi(:, p) is nearly the same for all
0 ≤ i ≤ N−1 and 0 ≤ p ≤ Np−1, and δi,j is the Kronecker-
delta function. Similarly, STi Sj ≈ κSINpδi,j , where κS =
Si(:, p)

TSi(:, p), and CTi Sj ≈ 0. Under these conditions, the



MMSE receiver in (18) simplifies to the pGradH receiver in
[10]:

ŝ
(pGradH)
k = S

Np−1∑
p=0

hp
|hp|2

z
(p)
k

 , (19)

where,
z
(p)
k = Q

(p)T
k yk, (20)

Q
(p)
k = diag

(
g(p)

)


cosφ
(k)
p [0] sinφ

(k)
p [0]

cosφ
(k)
p [1] sinφ

(k)
p [1]

...
...

cosφ
(k)
p [L− 1] sinφ

(k)
p [L− 1]

 ,
g(p) ∈ RL has entries that are samples of the com-
pressed/dilated and delayed pulse shaping function, g(p)l =

g
(
1 + bplTs − τ̃p

)
, φ(k)p [l] = φp

(
(k̃ − 1)T + lTs

)
, k̃ =

k − b kM cM , l = 0, . . . , L − 1, p = 0, . . . , Np − 1, and
k = 0, 1, . . . , N − 1. Stacking up z

(p)
k , k = 0, 1, . . . , N − 1,

into a vector, we get:

z(p) = Q(p)Ty ∈ R2N×1, (21)

where,

Q(p) =


Q

(p)
0 0 0 . . . 0

0 Q
(p)
1 0 . . . 0

...
...

...
...

...
0 0 0 . . . Q

(p)
N−1

 ∈ RNL×2N .

The entries of z(p) are precisely the sampled versions of the
low-pass filtered in-phase and quadrature outputs of path-
matched gradient heterodyne operation on the received signal
[10].

The measurement model at the output of pGradH pre-
processing, i.e., path-matched gradient heterodyne operation
followed by low-pass filtering of the received signal, is given
by:

z(p) = G(p)s + v(p), p = 0, . . . , Np − 1, (22)

where G(p) = Q(p)TH ∈ R2N×2N is the channel matrix
at the output of MRC preprocessor and v(p) = Q(p)Tw ∼
N (0, σ2Q(p)TQ(p)). For a moderately delay spread channel
with well resolved path delays and large symbol duration,
G(p) = βhpI2N and v(p) ∼ N (0, βσ2I2N ). By stacking up
z(p), p = 0, 1, . . . , Np − 1, into a vector z ∈ R2NNp , we get
the same form of measurement model as in (16) where the
channel matrix G is obtained by vertically stacking G(p).

The channel matrix, G, at the output of the GradH and
pGradH preprocessors are diagonal for a moderately delay
spread channel with well resolved path delays, thanks to the
condition in (17) that makes Q(p)TQ(q) ≈ βδp,qI2N , 0 ≤
p, q ≤ Np − 1. In the next subsection, we bring out the need
to consider alternate S2C receiver processing in large delay
spread channels.

Fig. 1. An S2C frame consisting of preamble, Nc chirp pulses (data blocks),
and post-amble. Choosing T ≥ 1√

2mc
avoids ISI among adjacent symbols.

But, inter-block interference (IBI) among the symbols mounted on the same
frequency sweep slots can happen over a duration corresponding to channel
delay spread.

C. Limitations Of GradH and pGradH Receivers

For both GradH and pGradH receivers, the condition in (17)
is needed to ensure a negligible ISI after gradient heterodyne
operation and low pass filtering. The condition (17) places a
lower limit on the minimum differential path delay, δτmin, of
the multipath arrivals to avoid ISI ensuing from the mixing
of adjacent symbols at the GradH and pGradH preprocessor
outputs [10]. The condition (17) also places an upper limit on
the channel delay spread, δτmax, to avoid interference between
the symbols on the corresponding frequency sweep slots of
different chirp pulses. Together, these limits require the symbol
rate, R = 1/T , of the existing S2C receivers to satisfy:

R ≤
(
fH − fL

1 + α

)
min{δτmin, Tsw − δτmax}

Tsw
. (23)

The upper limit on the achievable rate, in (23), is maximized
when Tsw = δτmax +δτmin, and the maximum rate achievable
by the existing S2C receivers is given by:

Rmax =

(
fH − fL

1 + α

)
δτmin

δτmax + δτmin
. (24)

Note that the rate limiting condition R ≤ Rmax, to avoid
ISI at the preprocessor output of the existing S2C receivers,
is equivalent to the condition on the spreading factor: M ≥
δτmax

δτmin
+ 1. When the system is operated at a symbol rate R =

Rmax, the spreading factor M = δτmax

δτmin
+ 1.

Existing S2C receivers entail ISI when operating at a symbol
rate greater than Rmax in a channel with a minimum differ-
ential delay of δτmin and delay spread of δτmax. Consider,
for example, the S2C system in Table I operating in a UWA
channel with a maximum delay spread of δτmax = 25 ms.
There are 20 QPSK symbols (i.e., 40 bits) in one chirp pulse
(S2C block) of duration Tsw = 10 ms. Figure 1 shows a
transmitted S2C frame, where the symbols si,j and si,j+1

can potentially interfere with the detection of the symbol
si,j+2, j = 1, 2, 3. Figure 2 and 3 show the images of the
channel matrix H , in (10), and the effective channel matrix
G, in (16), for such a channel. While the gradient heterodyne
and low pass filtering operation has significantly reduced
ISI, strong residual inter-block interference remains at the
GradH/pGradH preprocessor output.

In the following section, we consider alternate receivers for
S2C communications that can handle channel delay spreads
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Fig. 2. Channel matrix image, |H| ∈ RNL×2N , before GradH processing.

20 40 60 80 100 120

bit index

20

40

60

80

100

120

b
it
 i
n
d
e
x

10

20

30

40

50

60

Fig. 3. Channel matrix image, |G| ∈ R2N×2N , after GradH processing.

greater than the chirp pulse duration and work well for symbol
rates higher than the upper limit, Rmax, on the data rate in the
existing receivers.

IV. IMPROVED S2C RECEIVERS

A. MMSE Based S2C Receiver

A solution to the symbol detection problem for S2C com-
munications over fairly large delay and Doppler spread UWA
channel model, as in (10), is to use the MMSE receiver in (18).
Alternatively, we could use the MMSE receiver at the output
of the GradH/pGradH preprocessor. The MMSE receiver for
uncoded communication is given by:

ŝ(MMSE) = S
[(
GTG+ σ2I2N

)−1
GT z

]
. (25)

In a coded communication, instead of slicing the MMSE
equalizer output,

(
GTG+ σ2I2N

)−1
GT z, it is converted to

log-likelihood ratio (LLR) vector and fed to the channel
decoder that decides the final hard symbol vector.

Next, we develop a symbol detector based on the variational
Bayes inference that approximates the optimum MAP decoder
and offers a significantly improved performance over the
MMSE receiver. The development of the VSSD is the main
contribution of this work.

B. Variational Soft Symbol Decoder

The optimum (MAP) decoder is the symbol vector s ∈ P =

{− 1√
2
,+ 1√

2
}2N that maximizes the posterior p(s|G, z) =

p(z|G, s)p(s)/p(z|G). Direct maximization of the posterior
requires a computationally intensive search over 22N lattice
points in P . Computing the posterior, that represents the soft
symbol vector, is also hard since the marginalization over s
in p(z|G) =

∑
s∈P p(s, z|G) is involved. We instead seek

a good approximation to the posterior, qφ(s|G, z), called the
variational decoder. Here, φ represents the model parameters,
whose values are estimated based on the variational principle
in order to maximize the evidence lower bound, as explained
below.

To make the problem tractable, we assume that the approx-
imate posterior is fully factorizable:

qφ(s|G, z) =

N−1∏
k=0

qφ(sk,Re|G, z)qφ(sk,Im|G, z). (26)

Following Kingma et al. [17], the evidence lower bound
(ELBO) on the log likelihood of observation is given by:

L(θ, φ, z) = Eqφ(s|G,z) log pθ(z|G, s)

− Eqφ(s|G,z)

[
log

qφ(s|G, z)

pθ(s)

]
, (27)

where log pθ(z|G, s) is the likelihood function and pθ(s) is a
prior on the symbol vector.

In order to bring qφ(s|G, z) close to p(s|G, z), we maximize
the ELBO, L(θ, φ, z). The ELBO consists of the likelihood
term,

Eqφ(s|G,z) log pθ(z|G, s) = −N log(2πσ2)

− Eqφ(s|G,z)

[
‖z−Gs‖2

2σ2

]
, (28)

and the regularizing term,

Eqφ(s|G,z)

[
log

qφ(s|G, z)

pθ(s)

]
= KL(qφ||pθ). (29)

We assume a simple uniform prior pθ(s) = 1
22N

. Therefore,
when maximizing ELBO, the regularizing term acts to penalize
the departure of the variational approximation qφ from the
uniform prior. On maximizing the ELBO, we get the following
fixed point equations (see appendix for details):

q = ϕ(α), (30)



where

αj =

√
2

σ2

(
zTG:,j −

2N−1∑
l=0

Gl,j

(∑
i

vl,i − vl,j

))
,

(31)

vl,j =
1√
2
Gl,j (2qj − 1) , (32)

ϕ(αj) =
1

1 + e−αj
, (33)

for j = 1, . . . , 2N − 1.
Note that the fixed point iterations lead to soft symbol

estimates in the form of the probability vector q. We perform
symbol detection by slicing the probability vector in uncoded
communications. In coded communication, the soft symbols
are converted to LLRs and fed to the channel decoder for
deciding the hard symbol vector.

The fixed point updates do not involve any matrix inversion
and their computational complexity, O(N2), is an order of
magnitude smaller than the computational complexity, O(N3),
of the MMSE receiver.

It is insightful to specialize the fixed point iterations for
some simple channel models. Consider the case when the
channel matrix is orthogonal, i.e.,

GT:,iG:,j =‖ G:,i ‖22 δi,j .

Note that the AWGN channel and Rayleigh fading channel are
special cases of the orthogonal channels. In these cases, the
fixed point iterations in (30) reduce to the following one point
update:

q =
1

1 + e
−
(√

2

σ2
GT z

) . (34)

Therefore, deciding the hard symbols from the probability
vector q is tantamount to slicing the matched filtered obser-
vation: z̃ = GT z. Deciding sk = ± 1√

2
based on qk ≷ 0.5 is

equivalent to that based on z̃k ≷ 0. In other words, VSSD is
an ML decoder for orthogonal channels.

Further, for any channel matrix, the ELBO is upper bounded
by the marginal log likelihood, log pθ(z), and (as shown in the
appendix) the fixed point updates never decrease the ELBO.
Therefore, the fixed point iterations always converge to a local
maximizer of the ELBO.

Finally, we propose to accelerate the fixed point updates to
achieve a faster convergence. Specifically, we choose γn at the
nth iterate so that the update,

qn = qn−1 + γn [ϕ(αn−1)− qn−1] , (35)

results in maximal ELBO increase. The optimum value of γn
can be found through a 1-D search over a bounded interval in
R (as provided in the appendix).

In the next section, we investigate the performance of the
VSSD based symbol detection via Monte Carlo simulations.

TABLE I
S2C PARAMETERS USED IN THE SIMULATION.

Carrier frequency (fc) 15 kHz
Bandwidth (B) 10 kHz

Chirp rate (2mc) 1 MHz/s
Symbol duration (T ) 0.5 ms
Sweep duration (Tsw) 10 ms
Guard interval (Tg) 25 ms
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Fig. 4. BER performance of VSSD and MMSE receivers for i.i.d Gaussian
channel matrix.

V. NUMERICAL SIMULATIONS

First, we demonstrate the performance of VSSD over
the benchmark i.i.d. Gaussian channel matrix, with entries
Gi,j

i.i.d.∼ N (0, 1), and compare that with the MMSE receiver.
We define the signal to noise ratio (SNR) as

SNR =
E{‖Gs‖22}
E{‖w‖22}

. (36)

We compare the BER performance of the VSSD and MMSE
receivers for N = 288 symbols, for uncoded and coded
QPSK communications, assuming perfect channel knowledge.
For coded communication, we use a rate 1/2 and rate 2/3
LDPC code from [18]. We terminate the VSSD iterations
at the nth iteration if ‖qn − qn−1‖2 < 10−3. Figure 4
shows the BER plots at different SNR values. In uncoded
communication, the VSSD receiver achieves a BER of 10−3

at about 10 dB lower SNR than the MMSE receive. In the rate
2/3 (1/2) coded communication, for a BER of 10−3, VSSD
outperforms MMSE receiver by an SNR margin of 8 dB (2
dB). For the same BER (10−3), the VSSD receiver for a rate
2/3 coded communication works at about 1 dB lower SNR
than the MMSE receiver for a rate 1/2 coded communication.
Therefore, VSSD receiver offers 33% higher data rate than the
MMSE receiver, while achieving the same BER.

The effect of imperfect channel knowledge, due to channel
estimation error, on the BER performance is considered next.
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To do so, we perturb the entries of the i.i.d. Gaussian channel
matrix with i.i.d. Gaussian noise, i.e. Gi,j = Gi,j+εi,j , where
εi,j ∼ N (0,∆), 1 ≤ i, j,≤ 2N . Figure 5 shows the effect
on the BER performance of VSSD and MMSE decoders for
∆ = 1/4, 1/5 and coded communications using a rate 2/3
LDPC code. VSSD receiver retains its performance advantage
over MMSE even with channel estimation errors.

We next consider the performance of VSSD based receiver
for the S2C communication system in Table I. Note that the
symbol rate is twice the limit Rmax =

√
2mc = 1 kHz on the

existing S2C receivers. A total of N = 288 QPSK symbols
are mounted on a train of Nc = 15 chirp pulses. The channel
is generated, as in [11], [12], with Np = 16 discrete paths
whose inter-arrival times are exponentially distributed with a
mean of 1 ms. The path amplitudes are Rayleigh distributed
with the average power decreasing exponentially with delay,
where the difference between the beginning and the end of the
guard time is 20 dB. Figure 6 shows the BER performance
of the VSSD and MMSE based data detection algorithms
assuming perfect channel knowledge. Again, from these plots,
we notice a strong performance of the VSSD based symbol
detection in an S2C receiver. The VSSD receiver attains a
BER = 10−3 at about 18 dB lower SNR than MMSE in
uncoded communication. In coded communication, the SNR
margin of VSSD over MMSE receiver is 8 dB (3 dB) for
rate 2/3 (1/2) LDPC code. Finally, figure 7 shows the number
of VSSD iterations (averaged over at least 1000 trials) for
different SNR. On an average, the number of iterations stay
below 10 and the maximum number of iterations never crossed
15.

VI. CONCLUSIONS

In this work, we considered data symbol detection in an
S2C receiver for doubly spread UWA channels. We linked the
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Fig. 6. BER performance of VSSD and MMSE receivers over a UWA channel
simulated according to the model in Berger et al. [11].
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Fig. 7. Number of VSSD iterations averaged over at least 1000 trials for each
SNR.

two existing S2C receivers to the MMSE decoder for certain
benign UWA channels. For more severe channels, where the
existing receivers either completely fail or must compromise
on the data rate, we developed a new soft symbol decoder
based on the variational Bayes’ inference. Our proposed VSSD
decoder estimates a probability vector (soft symbols) whose
KL-distance to the true posterior of the symbol vector is
minimized by iterating through a fixed point equation. Sim-
ulation results showed that VSSD significantly outperforms
the MMSE decoder and maintains robust performance under
channel estimation errors.



APPENDIX

Evidence Lower Bound (ELBO): We derive the ELBO for
the soft symbol estimation. The likelihood term in (27) is given
by,

Eqφ(s|G,z) log pθ(z|G, s) = −N log(2πσ2)

− Eqφ(s|G,z)

[
‖z−Gs‖2

2σ2

]
. (37)

On expanding the last term in (37), we get:

Eqφ(s|G,z)
[
‖z−Gs‖2

]
= ‖z‖2 − 2zTG.Eqφ(s|G,z) [s]

+ Eqφ(s|G,z)
[
‖Gs‖2

]
. (38)

We define:

qk,Re , qφ

(
sk,Re =

1√
2

∣∣∣∣G, z) ∈ [0, 1], (39)

qk,Im , qφ

(
sk,Im =

1√
2

∣∣∣∣G, z) ∈ [0, 1]. (40)

Note that the approximate posterior is completely specified
by the soft symbol vector q ∈ R2N formed by stacking up
qk = [qk∗,Re, qk∗,Im]T ∈ R2, k = 0, 1, . . . , N − 1. For our
problem, we let the parameter φ , q.

Expectations in the expression in (38) can be readily eval-
uated as follows:

Eqφ(s|G,z) [sk,Re] =
1√
2

(2qk,Re − 1) , (41)

Eqφ(s|G,z) [sk,Im] =
1√
2

(2qk,Im − 1) , (42)

Eqφ(s|G,y)

[
‖Gs‖2

]
= trace

[
GTGEqφ(s|G,z)ss

T
]

=

2N−1∑
l=0

Eqφ(s|G,z) [Gs]
2
l (43)

Eqφ(s|G,z) [Gs]
2
l =

N−1∑
k=0

ηl,k + νl,k
∑
m6=k

νl,m

 ,

(44)

where,

ηl,k =
1

2
G2
l,k,Re +

1

2
G2
l,k,Im

+Gl,k,ReGl,k,Im (2qk,Re − 1) (2qk,Im − 1) , (45)

νl,m =
1√
2
Gl,m,Re (2qm,Re − 1)

+
1√
2
Gl,m,Im (2qm,Im − 1) . (46)

The ELBO regularizing term in (27) is:

Eqφ(s|G,z)

[
log

qφ(s|G, z)

pθ(s)

]
= KL(qφ||pθ). (47)

We assume a simple uniform prior pθ(s) = 1
22N

. Therefore,
when maximizing ELBO, the regularizing term acts to penalize

the departure of the variational approximation qφ from the
simple uniform prior model. We have:

Eqφ(s|G,z)

[
log

qφ(s|G, z)

pθ(s)

]
= log 22N−

N−1∑
k=0

[H(qk,Re) +H(qk,Im)] , (48)

where

H(q) = −q log q − (1− q) log(1− q). (49)

On combining the likelihood and regularization terms, we
find the overall ELBO to be:

L(θ,q, z) = −N log(2πσ2)− ‖z‖
2

2σ2
+

1√
2σ2

zTG(2q− 1)

− 1

2σ2

2N−1∑
l=0

N−1∑
k=0

ηl,k + νl,k
∑
m6=k

νl,m

− log 22N

+

N−1∑
k=0

−qk,Re log qk,Re − (1− qk,Re) log(1− qk,Re)

+

N−1∑
k=0

−qk,Im log qk,Im − (1− qk,Im) log(1− qk,Im). (50)

Known Noise Variance: In this case, we take θ to be the
empty set. The derivative of the overall cost function with
respect to qk∗,Re is given by:

∂L
∂qk∗,Re

=

√
2

σ2
zTG:,k∗,Re

− 1

2σ2

2N−1∑
l=0

 ∂ηl,k∗

∂qk∗,Re
+ 2

∂νl,k∗

∂qk∗,Re

∑
m6=k∗

νl,m


− log qk,Re + log(1− qk,Re). (51)

We have ∂ηl,k
∂qk,Re

= 2Gl,k,ReGl,k,Im(2qk,Im − 1) and ∂νl,k
∂qk,Re

=√
2Gl,k,Re. Setting ∂L

∂qk∗,Re
= 0 and solving for qk∗,Re, we get

qk∗,Re = ϕ(αk∗,Re),

where ϕ(x) = 1
1+e−x and

αk∗,Re =

√
2

σ2
zTG:,k∗,Re

− 1

σ2

2N−1∑
l=0

Gl,k∗,ReGl,k∗,Im(2qk∗,Im − 1)

−
√

2

σ2

2N−1∑
l=0

Gl,k∗,Re

∑
m 6=k∗

νl,m. (52)

Similarly, setting ∂L
∂qk∗,Im

= 0, we get qk∗,Im = ϕ(αk∗,Im)



where

αk∗,Im =

√
2

σ2
zTG:,k∗,Im

− 1

σ2

2N−1∑
l=0

Gl,k∗,ImGl,k∗,Re(2qk∗,Re − 1)

−
√

2

σ2

2N−1∑
l=0

Gl,k∗,Im
∑
m 6=k∗

νl,m. (53)

Stacking up qk = [qk∗,Re, qk∗,Im]T ∈ R2 into a vector, we
get the following fixed point equations:

q = ϕ(α), (54)

where the vector α ∈ R2N is formed by stacking
αk = [αk∗,Re, αk∗,Im]T ∈ R2, k = 0, 1, . . . , N − 1.

Unknown Noise Variance: In this case, we take θ = {σ2}.
Differentiating the ELBO in (50) with respect to σ2, we get:

∂L
∂σ2

= −N
σ2

+
‖z‖2

2σ4
− 1√

2σ4
zTG(2q− 1)

+
1

2σ4

2N−1∑
l=0

N−1∑
k=0

ηl,k + νl,k
∑
m6=k

νl,m

 . (55)

Setting ∂L
∂σ2 = 0 and solving for σ2, we find:

σ̂2 =
‖z‖2

2N
− 1√

2N
zTG(2q− 1)

+
1

2N

2N−1∑
l=0

N−1∑
k=0

ηl,k + νl,k
∑
m6=k

νl,m

 . (56)

Convergence: We show that every update of the fixed point
iteration is along the ELBO gradient (ascent direction) and
therefore cannot decrease the ELBO. To see this, consider the
inner product of ϕ(α)− q and ∇L:

(ϕ(α)− q)
T ∇L =

2N−1∑
j=0

(ϕ(αj)− qj)∇Lj . (57)

We recognize, from equations (51) and (53), that
∇Lj = αj− log qj+log(1−qj). Each term in (57) is nonneg-
ative since σ(αj)− qj ≷ 0⇔ αj − log qj + log(1− qj) ≷ 0.
Therefore, the inner product is nonnegative and hence the
update q → ϕ(α(q)) cannot decrease ELBO. Since the
ELBO is also upper bounded by the marginal log likelihood,
log pθ(z), the fixed point iterations always converge.

Global Maxima: The entries of the Hessian matrix of L with
respect to q, i.e., ∇2

qL ∈ R2N×2N , are given by:

∂2L
∂q2j

= − 1

qj(1− qj)
< 0,

∂2L
∂qi∂qj

=
∂2L
∂qj∂qi

= − 2

σ2

∑
l

Gl,iGl,j , i 6= j,

where i, j ∈ {0, 1, . . . , 2N − 1}. For orthogonal channel
matrices, the matrix G satisfies

∑
lGl,iGl,j = 0, which makes

the Hessian negative definite and therefore the stationary point
q? a global maximizer of the ELBO.

A larger class of channel matrices, that guarantees global
convergence, can be found by requiring −∇2

qL to be diago-
nally dominant, i.e.,

ηj ,
2

σ2
|
∑
i 6=j

∑
l

Gl,iGl,j | <
1

qj(1− qj)
,∀j, (58)

which implies:

q2j − qj + 1/ηj > 0,∀j. (59)

Now, the condition in (59) holds for every 0 ≤ qj ≤ 1
if and only if 0 ≤ ηj < 4. Since diagonal
dominance implies positive definiteness (p.d.),
−∇2

qL is p.d. for the class of channel matrices
G = {G ∈ R2N×2N : |

∑
i 6=j
∑
lGl,iGl,j | < 2σ2,∀j}

and therefore global convergence is guaranteed whenever
G ∈ G.

Local Maxima: If G ∈ G, the limit point q? is a global max-
imizer. Or else, if G /∈ G and qj,? /∈ (κ

(1)
j , κ

(2)
j ) ⊂ [0, 1],∀j,

where κ(1,2)j are the roots of the equation q2j − qj + 1/ηj = 0
(ηj > 4) given by:

κ
(1,2)
j =

1±
√

1− 4/ηj
2

,∀j, (60)

then the limit point q? is a local maxima.

Either Local Maxima or Saddle Point: If G /∈ G and qj,? ∈
(κ

(1)
j , κ

(2)
j ), then the limit point q? is either a local maxima

or a saddle point. Consider, for example, the random channel
matrix whose entries are i.i.d. N (0, 1). The root mean square
(RMS) length of the interval (κ

(1)
j , κ

(2)
j ) is given by:

lj =

√
E
[
(κ

(1)
j − κ

(2)
j )2

]
=
√

1− 4/E(ηj). (61)

From the definition of ηj in (58), triangle inequality, and i.i.d
property of the entries of G, we have:

E[ηj ] ≤
2

σ2

∑
i 6=j

∑
l

E [|Gl,i|]E [|Gl,j |] =
2

σ2

√
2

π
2N(2N−1),

(62)
and therefore,

lj ≤

√
1−

√
π

2

σ2

N(2N − 1)
. (63)

Since lj → 1 and P{ηj > 4} → 1, as N → ∞, for i.i.d.
Gaussian channel matrices, the fixed point is (almost surely)
in (κ

(1)
j , κ

(2)
j ). Since, in this case, fixed point q? could be a

saddle point, we seek to perturb q? so as to move out of the
saddle region in an attempt to further increase the ELBO.



Acceleration: The optimum value of γn in (35), that best
increases ELBO, lies within [γmin, γmax] ∈ R, where

γmin = max
0≤j≤2N−1

−qj
ϕ(αj)− qj

,

γmax = min
0≤j≤2N−1

1− qj
ϕ(αj)− qj

.
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