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A Fast Fading Channel Model

The discrete-time memoryless noncoherent Rayleigh fading channel
(DTM-NRFC) well represents the fast fading mobile wireless channel

Coherence time ≈ symbol duration
Coherence bandwidth ≈ signal bandwidth

Neither the transmitter nor the receiver has the channel state information
Fading process: i.i.d. zero-mean complex-Gaussian
Very pessimistic model indeed!
Can lead to robust receivers
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DTM-NRFC: Known Results

[Taricco, Elia; 1997]:
Capacity bounds for very low and very high SNRs
Capacity ∝ log log SNR

[Abou-Faycal, Trott, Shamai; 2001]:
Capacity is achieved by a discrete constellation
One of the mass points is at the origin

[Rezki, Haccoun, Gagnon; 2008]
Capacity at low-SNR
Upper and lower bounds on the capacity-achieving input

Energy detection with equiprobable signaling
[Mallik, Murch; 2014]: “regular” SIMO systems
[Knott, Chowdhury, Manolakos, Goldsmith; 2014]: “massive” SIMO systems

Very little is reported on the error performance with optimal detection
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System Model

Single-input and single-output signal model:

y = hx + n

h ∼ CN (0, σ2
h)

n ∼ CN (0, σ2
n)

x ∈ X = {x1, . . . , xN}: signal set
Pj = Prob(x = xj): prior probabilities
γi = γ(xi) = σ2

h ∣xi ∣2/σ2
n : instantaneous received SNR

Sufficient statistic: z = ∣y ∣2/σ2
n

fz∣x(z ∣x) =
exp (− z

1+γ(x))

1 + γ(x)
z ≥ 0

≜ M (z,x) .
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ML Detection Error Probability: SISO

With x = xj

Pe,j = Prob
⎛
⎝⋃i /=j
Bi,j

RRRRRRRRRRR
x = xj

⎞
⎠

=
N−1

∑
l=1

(−1)l−1 ∑
Ij⊂Sj ,∣Ij ∣=l

Prob
⎛
⎝⋂i∈Ij

Bi,j ∣x = xj
⎞
⎠

Bi,j : confusing xi for xj

Bi,j ≜ {z ≥ 0 ∶M (z, xi) >M (z, xj)}

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{z ∶ z > (1+γi)(1+γj)
γi−γj

log ( 1+γi
1+γj

)} if γi > γj

{z ∶ z < (1+γi)(1+γj)
γj−γi

log ( 1+γj
1+γi

)} if γi < γj

Overall probability of error

Pe,ML =
N

∑
j=1

PjPe,j
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ML Detection Error Probability: SISO

Since z ∣xi is an exponential rv with mean 1 + γi

Prob (BIj ,j ∣x = xj )

= Prob
⎛
⎝

⎧⎪⎪⎨⎪⎪⎩
⋂

i∈Ij,A

{z ∶ z > λi,j}
⎫⎪⎪⎬⎪⎪⎭
⋂

⎧⎪⎪⎨⎪⎪⎩
⋂

i∈Ij,B

{z ∶ z < λi,j}
⎫⎪⎪⎬⎪⎪⎭
∣x = xj

⎞
⎠

= [e−maxi∈Ij,A
µi,j − e−mini∈Ij,B

µi,j ] × 1
{maxi∈Ij,A

µi,j<mini∈Ij,B
µi,j}

Ij : A proper subset of Sj = {1, . . . ,N} ∖ {j}

Ij,A ≜ {i ∈ Ij ∶ γi > γj}

Ij,B ≜ {i ∈ Ij ∶ γi < γj}

λi,j ≜
(1 + γi) (1 + γj)

γi − γj
log(

1 + γi

1 + γj
)

and µi,j ≜
λi,j

1 + γj

(1)
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ML Detection Error Probability: SIMO

L: Number of receive antennas
Straightforward extension since z is now a conditional Gamma rv
Confusion event Bi,j is also simple in form

Bi,j = {
{z ∶ z > Lλi,j} if γi > γj

{z ∶ z < Lλi,j} if γi < γj

Closed-form expression for Prob (BIj ,j ∣x = xj ) in terms of incomplete
Gamma function
Relies on i.i.d fading across diversity branches
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Extensions: Coded Sequence Detection

A SIMO system with i.i.d fading in space and time
P: Codeword length
Confusion event, Bi,j : hyperplane in P dimensional i.i.d Gamma rvs
BIj ,j = ⋂i∈Ij Bi,j : intersection of ∣Ij ∣ hyperplanes

Prob (BIj ,j ∣x = xj ): A multi-dimensional integral
Can be evaluated using inverse Laplace transform or saddle-point
integration techniques
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Average Probability of Error
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3 Signal Points; ML Detection over DTMNRFC

 

 

Symbol Probabilities = [0.6,0.3,0.1]

Simulations (1 Antenna)
Analysis (1 Antenna)
Simulations (2 Antennas)
Analysis (2 Antennas)
Simulations (4 Antennas)
Analysis (4 Antennas)

3 signal points.
P1 = 0.6,P2 = 0.3,P3 = 0.1. γ1 = 0, γ2 = 2 and γ3 = 4.
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Average Probability of Error
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4 Signal Points; ML Detection over DTMNRFC

 

 

Simulations (Unequal Probability)
Analysis (Unequal Probability)
Simulations (Equal Probability)
Analysis (Equal Probability)

4 signal points.
P1 = 0.4,P2 = 0.4,P3 = 0.1, and P4 = 0.1. γ1 = 0, γ2 = 2, γ3 = 4, and γ4 = 6.

R. Annavajjala (Draper Labs) Noncoherent ML Reception September 09, 2015 15 / 22



Outline

1 Motivation

2 System Model

3 Error Probability Analysis

4 Validation

5 Optimal Signal Constellation

6 Concluding Remarks

R. Annavajjala (Draper Labs) Noncoherent ML Reception September 09, 2015 16 / 22



Optimal Signal Constellation: Challenges

Unknown number of mass points, N
Unknown prior probabilities, {Pi}

Unknown mass point locations, {∣xi ∣}

Not clear whether Pe,ML is convex in ({Pi},{∣xi ∣})
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Making Progress: Parametric Search

Start with the information-theoretic result that one mass point is at origin
Fix the number of constellation points
A geometric sequence of prior probabilities:

Pi = P0α
i−1, i = 1, . . . ,N

A geometric sequence of mass points:

γi = β i−1, i = 2, . . . ,N
γ1 = 0

Constraints:

N

∑
i=1

Pi = 1 Ô⇒ P0 =
1 − α

1 − αN 0 < α < 1

N

∑
i=1

Piγi = γ Ô⇒
N

∑
i=2
(βα)

i
− γ/P0 = 0
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Optimal Constellations: Preliminary Results

With L = 1 receive antennas:

SNR (dB) N Pe,ML,min αopt βopt

0 8 1.87 × 10−2 0.01 50.4604
5 8 1.22 × 10−2 0.01 80.2650
10 8 9.1 × 10−3 0.01 109.1809
20 8 5.9 × 10−3 0.01 171.1322
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Parametric Constellation Optimization
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Simulations. 1 Antenna
Analysis. 1 Antenna
Simulations. 2 Antennas
Analysis. 2 Antennas
Simulations. 4 Antennas
Analysis. 4 Antennas

8 signal points. NR = 1,2 and 4 receive antennas.
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Concluding Remarks

Take-away Message
1 Analyzed the ML error probability of DTM-NRFC
2 Uncoded and coded transmission with multiple receive antennas
3 Surprisingly simple closed-form error probability expression for the

uncoded case
4 Useful tool to validate the relative performances of two signal sets
5 Too many unknowns for practical constellation optimization
6 Parametric approach lead to a manageable search space

Outlook
1 Analysis of MAP detection on DTM-NRFC (we made good progress ,)
2 Noncoherent joint-source coding
3 Simplified massive SIMO systems
4 Improved constellation designs
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