Analysis of Error Probability with Maximum Likelihood Detection over Discrete-Time Memoryless Noncoherent Rayleigh Fading Channels

Ramesh Annavajjala ¹ Chandra R. Murthy ²

¹ The Charles Stark Draper Laboratory, Inc., 555 Technology Sq., Cambridge, MA, 02139, USA

² Dept. of Electrical and Communication Engineering Indian Institute of Science (I.I.Sc), Bangalore, INDIA

IEEE Vehicular Technology Conference, Fall 2015, Boston, MA, USA

September 09, 2015

Outline

Motivation

- Error Probability Analysis
 - 4 Validation
- Optimal Signal Constellation
- 6 Concluding Remarks

Outline

Motivation

- 3 Error Probability Analysis
- 4 Validation
- 5 Optimal Signal Constellation
- 6 Concluding Remarks

- The discrete-time memoryless noncoherent Rayleigh fading channel (DTM-NRFC) well represents the fast fading mobile wireless channel
 - Coherence time \approx symbol duration
 - Coherence bandwidth \approx signal bandwidth
- Neither the transmitter nor the receiver has the channel state information
- Fading process: i.i.d. zero-mean complex-Gaussian
- Very pessimistic model indeed!
- Can lead to robust receivers

- [Taricco, Elia; 1997]:
 - Capacity bounds for very low and very high SNRs
 - Capacity $\propto \log \log SNR$
- [Abou-Faycal, Trott, Shamai; 2001]:
 - · Capacity is achieved by a discrete constellation
 - One of the mass points is at the origin
- [Rezki, Haccoun, Gagnon; 2008]
 - Capacity at low-SNR
 - Upper and lower bounds on the capacity-achieving input
- Energy detection with equiprobable signaling
 - [Mallik, Murch; 2014]: "regular" SIMO systems
 - [Knott, Chowdhury, Manolakos, Goldsmith; 2014]: "massive" SIMO systems
- Very little is reported on the error performance with optimal detection

- 3 Error Probability Analysis
- 4 Validation
- 5 Optimal Signal Constellation
- 6 Concluding Remarks

Single-input and single-output signal model:

$$y = hx + n$$

h ~ CN(0, σ_h²)
n ~ CN(0, σ_n²)
x ∈ X = {x₁,..., x_N}: signal set
P_j = Prob(x = x_j): prior probabilities
γ_i = γ(x_i) = σ_h²|x_i|²/σ_n²: instantaneous received SNR
Sufficient statistic: z = |y|²/σ_n²

$$f_{Z|X}(Z|X) = \frac{\exp\left(-\frac{Z}{1+\gamma(X)}\right)}{1+\gamma(X)} \quad Z \ge 0$$

$$\triangleq \mathcal{M}(Z,X).$$

- Error Probability Analysis
 - 4 Validation
 - 5 Optimal Signal Constellation
 - 6 Concluding Remarks

ML Detection Error Probability: SISO

• With $x = x_j$

$$P_{e,j} = \operatorname{Prob}\left(\bigcup_{i \neq j} \mathcal{B}_{i,j} \middle| x = x_j\right)$$
$$= \sum_{l=1}^{N-1} (-1)^{l-1} \sum_{\mathcal{I}_j \subset \mathcal{S}_j, |\mathcal{I}_j| = l} \operatorname{Prob}\left(\bigcap_{i \in \mathcal{I}_j} \mathcal{B}_{i,j} \middle| x = x_j\right)$$

• $\mathcal{B}_{i,j}$: confusing x_i for x_j

$$\begin{aligned} \mathcal{B}_{i,j} &\triangleq \{ z \geq 0 : \mathcal{M}(z, x_i) > \mathcal{M}(z, x_j) \} \\ &= \begin{cases} \left\{ z : z > \frac{(1+\gamma_i)(1+\gamma_j)}{\gamma_i - \gamma_j} \log\left(\frac{1+\gamma_i}{1+\gamma_j}\right) \right\} & \text{if } \gamma_i > \gamma_j \\ \left\{ z : z < \frac{(1+\gamma_i)(1+\gamma_j)}{\gamma_j - \gamma_i} \log\left(\frac{1+\gamma_j}{1+\gamma_i}\right) \right\} & \text{if } \gamma_i < \gamma_j \end{cases} \end{aligned}$$

Overall probability of error

$$P_{e,ML} = \sum_{j=1}^{N} P_j P_{e,j}$$

ML Detection Error Probability: SISO

• Since $z|x_i$ is an exponential rv with mean 1 + γ_i

$$\operatorname{Prob}\left(\mathcal{B}_{\mathcal{I}_{j},j} | \boldsymbol{x} = \boldsymbol{x}_{j}\right)$$
$$= \operatorname{Prob}\left(\left\{\bigcap_{i \in \mathcal{I}_{j,A}} \left\{\boldsymbol{z} : \boldsymbol{z} > \lambda_{i,j}\right\}\right\} \bigcap \left\{\bigcap_{i \in \mathcal{I}_{j,B}} \left\{\boldsymbol{z} : \boldsymbol{z} < \lambda_{i,j}\right\}\right\} | \boldsymbol{x} = \boldsymbol{x}_{j}\right)$$
$$= \left[\boldsymbol{e}^{-\max_{i \in \mathcal{I}_{j,A}} \mu_{i,j}} - \boldsymbol{e}^{-\min_{i \in \mathcal{I}_{j,B}} \mu_{i,j}}\right] \times \mathbf{1}_{\left\{\max_{i \in \mathcal{I}_{j,A}} \mu_{i,j} < \min_{i \in \mathcal{I}_{j,B}} \mu_{i,j}\right\}}$$

• \mathcal{I}_j : A proper subset of $\mathcal{S}_j = \{1, \dots, N\} \setminus \{j\}$

а

$$\begin{split} \mathcal{I}_{j,\mathcal{A}} &\triangleq & \left\{ i \in \mathcal{I}_j : \gamma_i > \gamma_j \right\} \\ \mathcal{I}_{j,\mathcal{B}} &\triangleq & \left\{ i \in \mathcal{I}_j : \gamma_i < \gamma_j \right\} \\ \lambda_{i,j} &\triangleq & \frac{\left(1 + \gamma_i\right) \left(1 + \gamma_j\right)}{\gamma_i - \gamma_j} \log \left(\frac{1 + \gamma_i}{1 + \gamma_j}\right) \\ \text{nd} \quad \mu_{i,j} &\triangleq & \frac{\lambda_{i,j}}{1 + \gamma_j} \end{split}$$

(1)

- L: Number of receive antennas
- Straightforward extension since z is now a conditional Gamma rv
- Confusion event B_{i,j} is also simple in form

$$\mathcal{B}_{i,j} = \begin{cases} \{z : z > L\lambda_{i,j}\} & \text{if } \gamma_i > \gamma_j \\ \{z : z < L\lambda_{i,j}\} & \text{if } \gamma_i < \gamma_j \end{cases}$$

- Closed-form expression for $\operatorname{Prob}(\mathcal{B}_{\mathcal{I}_j,j} | x = x_j)$ in terms of incomplete Gamma function
- Relies on i.i.d fading across diversity branches

- A SIMO system with i.i.d fading in space and time
- P: Codeword length
- Confusion event, B_{i,j}: hyperplane in P dimensional i.i.d Gamma rvs
- $\mathcal{B}_{\mathcal{I}_j,j} = \bigcap_{i \in \mathcal{I}_j} \mathcal{B}_{i,j}$: intersection of $|\mathcal{I}_j|$ hyperplanes
- Prob $(\mathcal{B}_{\mathcal{I}_{j},j} | x = x_j)$: A multi-dimensional integral
 - Can be evaluated using inverse Laplace transform or saddle-point integration techniques

2 System Model

3 Error Probability Analysis

4 Validation

5 Optimal Signal Constellation

6 Concluding Remarks

Average Probability of Error

< 3 >

Image: Image:

Average Probability of Error

4 signal points. $P_1 = 0.4, P_2 = 0.4, P_3 = 0.1$, and $P_4 = 0.1$. $\gamma_1 = 0, \gamma_2 = 2, \gamma_3 = 4$, and $\gamma_4 = 6$.

2 System Model

3 Error Probability Analysis

4 Validation

5 Optimal Signal Constellation

6 Concluding Remarks

- Unknown number of mass points, N
- Unknown prior probabilities, $\{P_i\}$
- Unknown mass point locations, {|x_i|}
- Not clear whether $P_{e,ML}$ is convex in $(\{P_i\}, \{|x_i|\})$

Making Progress: Parametric Search

- Start with the information-theoretic result that one mass point is at origin
- Fix the number of constellation points
- A geometric sequence of prior probabilities:

$$\boldsymbol{P}_i = \boldsymbol{P}_0 \boldsymbol{\alpha}^{i-1}, \quad i = 1, \dots, \boldsymbol{N}$$

• A geometric sequence of mass points:

$$\gamma_i = \beta^{i-1}, \quad i = 2, \dots, N$$

 $\gamma_1 = 0$

Constraints:

$$\sum_{i=1}^{N} P_i = 1 \implies P_0 = \frac{1-\alpha}{1-\alpha^N} \quad 0 < \alpha < 1$$
$$\sum_{i=1}^{N} P_i \gamma_i = \overline{\gamma} \implies \sum_{i=2}^{N} (\beta \alpha)^i - \overline{\gamma} / P_0 = 0$$

Optimal Constellations: Preliminary Results

With L = 1 receive antennas:

SNR (dB)	N	P _{e,ML,min}	α_{opt}	β_{opt}
0	8	1.87 × 10 ⁻²	0.01	50.4604
5	8	1.22×10^{-2}	0.01	80.2650
10	8	9.1 × 10 ^{−3}	0.01	109.1809
20	8	5.9 × 10 ⁻³	0.01	171.1322

Parametric Constellation Optimization

8 signal points. $N_R = 1, 2$ and 4 receive antennas.

2 System Model

- 3 Error Probability Analysis
- 4 Validation
- 5 Optimal Signal Constellation

6 Concluding Remarks

Concluding Remarks

Take-away Message

- Analyzed the ML error probability of DTM-NRFC
- Incoded and coded transmission with multiple receive antennas
- Surprisingly simple closed-form error probability expression for the uncoded case
- Useful tool to validate the relative performances of two signal sets
- Too many unknowns for practical constellation optimization
- Parametric approach lead to a manageable search space

Outlook

- Analysis of MAP detection on DTM-NRFC (we made good progress ©)
- Noncoherent joint-source coding
- Simplified massive SIMO systems
- Improved constellation designs