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Abstract—This work analyzes the limiting behavior of the un-
certainty in localizing an unknown number of transmitters within
a given geographical area. The set-up consists of n binary sensors
that are deployed uniformly at random locations within the area.
These sensors detect for the presence of a transmitter within
their radio range, and their individual decisions are combined
to estimate the number of transmitters as well as their locations.
With the mean sum absolute error in transmitter localization
as the metric, the optimal scaling of the radio range and the
necessary minimum transmitter separation is determined, as n
gets large. It is shown that both the localization error and the
radio range optimally scale as log(n)/n. The analysis is extended
to the case of unreliable sensors, where, surprisingly, the optimal
scaling is found to still be log(n)/n. The cognitive radio problem
of identifying the available whitespace, i.e., the regions that do
not contain any transmitter, emerges as a special case. Finally, the
optimal distribution of sensor deployment is determined, given
the distribution of the transmitters. Simulation results illustrate
the significant performance benefit that can be obtained by
optimally scaling the radio range, compared to existing fixed
sensing range based designs.

Index Terms—Multiple transmitter localization, whitespace
identification, k-coverage, cognitive radio.

I. INTRODUCTION

Determining the number of transmitters, their locations,
and communication footprints within a given geographical
area of interest is useful in several applications [2]–[5]. A
related problem in cognitive radios (CRs) is of whitespace
identification, where whitespace is defined as the regions that
are not covered by any transmitter. This information is also
useful to wireless service providers, for finding dead-zones or
the coverage holes in their service area. In cognitive radio (CR)
networks, knowledge of the available whitespace is crucial for
effective spatial spectral reuse by CRs and in order to ensure
that the CR nodes do not cause harmful interference to the
licensed/primary receivers.

This paper addresses the problem of multiple transmit-
ter localization and whitespace detection, using an approach
where n binary sensors are deployed in the geographical
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area of interest. Their collective observations regarding the
presence or absence of a transmitter in their radio range rs
are used to localize the transmitters and estimate the available
whitespace. A challenge here is to determine the optimal
scaling of the radio range of the sensors that minimizes the
error in estimating the transmitter locations and the available
whitespace, as a function of the number of sensors deployed.

In the literature, various approaches for transmitter local-
ization and whitespace identification have been considered.
One approach is to use the received signal strength (RSS)
measurements obtained from the sensors, and, to estimate the
number of transmitters and their powers such that the sum of
the MSE in the location and power estimates is minimized [6].
Other range-based approaches include localization based on
the time difference of arrival, angle of arrival, etc [7], [8].
Alternatively, a small, fixed number of sensors are used, and
deterministic results for the MSE in transmitter localization
are derived [9]–[12]. Decentralized estimation of transmitter
locations using messages exchanged between neighboring
nodes was considered in [13]–[17]. More recently, this was
extended to include the possibility of node failures in [18].

Another popular technique for estimating the locations of
transmitters is by using binary sensors instead of the analog
RSS measurements [19]–[23]. These binary sensors detect
the presence or absence of a transmitter within a sensing
radius rs from their location. In practice, binary sensing is
accomplished by comparing the RSS observed at the sensor
with a predetermined threshold. The sensors return a reading
of 1 if the RSS is above the threshold, meaning that there
is a transmitter in their vicinity, and return 0 otherwise. In
the sequel, we will consider a model where rs is allowed
to decrease with the number of sensors n. This can be
accomplished, for example, by appropriately increasing the
threshold signal level for declaring the presence of a primary
transmitter in the vicinity of the sensor, when the primary
transmitters emit their signals at the same power. The latter
assumption is reasonable, for example, in a factory floor where
the primary transmitters are access points or two-way walkie-
talkie radios operating at a fixed power, and our goal is to
determine the available whitespace in the factory floor in
order to set up a secondary network in that area. The binary
measurement model, although idealized, is attractive because
of its simplicity and analytical tractability, well as because it
is a promising option for use in inexpensive, energy-starved
motes that may be deployed purely for monitoring the spatial
spectral usage. Moreover, even though binary sensing model



requires low-complexity sensors, it is a robust and effective
approach, as demonstrated in [24]. Hence, this paper focuses
on the binary sensing model for developing the results.

Tracking one or more targets with the help of multiple sen-
sors is another related problem that has received considerable
research attention in recent years (see [25] for a comprehensive
review of literature). More specifically, the problem of target
tracking under the binary sensing model has been studied
both theoretically [10], [25]–[29] and experimentally [30]. In
[25], [31]–[33], one or more targets that are located arbitrarily
in the field of interest are tracked using multiple sensors,
while in [26], [29], binary sensor measurements are used
to decide on the presence or absence of targets at given
locations. However, to the best of our knowledge, there have
been no studies in the literature on the fundamental limits of
localization accuracy and whitespace detection as a function
of the number of deployed sensors. Of particular interest are
the optimal scaling of the radio range of the sensors to achieve
the minimum transmitter localization and whitespace recovery
error, the resulting recovery performance, the optimum spatial
distribution of sensors, etc., and this forms the focus of this
work.

In this paper, we consider a scenario where n binary
sensors are deployed uniformly at random locations in a given
geographical area for transmitter localization and whitespace
identification. Random deployment of sensors is often desir-
able when the transmitters that need to be localized can be
arbitrarily distributed in the area of interest. It is also used
in military applications, where a systematic deployment is
generally not feasible [34], [35]. We also note that, given
the locations of transmitters, one can compute their com-
munication footprints, and thereby determine the available
whitespace. However, the opposite is not true; i.e., given the
available whitespace, one cannot directly find the locations of
the transmitters. Thus, in this paper, we first address the harder
problem of transmitter localization, and then use the results to
determine the available whitespace in Secs. III and IV. Our
main contributions are:

1) We start with the problem of determining the number
of active transmitters and their locations, with the sum
absolute error in transmitter localization as the metric.
We show that the optimum minimum localization error
scales as log(n)/n, and derive the optimum radio range
as well as the minimum separation between transmitters
that guarantees that the localization error scales as
log(n)/n with high probability. (see Sec. II.)

2) Next, we focus on the problem of whitespace recovery
error, where the total whitespace recovered is determined
as the union of the sensing regions around the sensors
that return 0. We show that the whitespace recovery error
(loss), i.e., the fraction of the available whitespace that
is not recovered by the n sensors, and the radio range
rs, both optimally scale as log(n)/n as n gets large.1

(see Sec. III.)
3) We extend the analysis to a more practical case, where

the sensors report possibly erroneous measurements.

1All logarithms in the sequel are to the base e.

We show that, surprisingly, the optimal scaling of the
whitespace recovery error and the optimal radio range
is still log(n)/n. (see Sec. IV.)

4) Finally, for a given spatial distribution of the trans-
mitter locations, we derive closed-form expressions for
the optimal spatial distribution of sensor locations that
minimizes the probability of not detecting a transmitter
and the resulting minimum miss-detection probability.
(see Sec. V.)

Through our derived results, we obtain insights into the
number of sensors to be deployed, and their radio range,
for accurately localizing the transmitters and for maximizing
the recovered whitespace within a given geographical area.
We validate our analytical results through Monte Carlo sim-
ulations. (see Sec. VI.) The simulation results also illustrate
the significant performance improvement that is obtainable by
using the optimal scaling for rs, as the number of sensors n
is increased, compared to using a slower or faster decrease of
rs with n (see Fig. 1). Moreover, even though the results are
true for large n, the scaling of rs = log(n)/n is optimal even
at moderate or low values of n.

We note that, under a similar binary observation model
in a 2-dimensional region with fixed sensor placements, the
expected whitespace identification error is known to scale as
1
ρrs

, where ρ is the density of sensors and rs is the radio
range [25]. However, in [25], rs is assumed to remain fixed as
ρ is increased, i.e., the results do not hold if rs is allowed to
vary as ρ increases. Intuitively, the optimal rs should decrease
with increasing n, since, otherwise, increasing n does not
improve the transmitter localization error. In this paper, with
ρ = n, we are interested in optimal scaling of rs with n,
as ρ is increased. We show that we can achieve a whitespace
identification error scaling of Θ

(
logn
n

)
, with high probability.

The organization of the rest of this paper is as follows.
In Sec. II, we derive fundamental limits on the sum absolute
error in jointly identifying the number of transmitters and their
locations, as the number of sensors gets large. In Sec. III, we
derive optimal scaling results on the whitespace identification
when the sensors are reliable. Section IV extends the results
to the case of unreliable sensors. Section V presents the
optimum distribution of sensors that minimizes the probability
of missing a transmitter. Simulation results are presented in
Sec. VI, and concluding remarks are offered in Sec. VII.

II. TRANSMITTER LOCALIZATION

We let S denote the region of interest within which M
arbitrarily distributed transmitters need to be localized. With-
out loss of generality, we consider the unit-square [0, 1]2, i.e.,
the square formed by the points (0, 0), (0, 1), (1, 0), (1, 1), as
the area of interest. In the sequel, for simplicity of exposition
while developing the fundamental ideas, we will first discuss
the results in the 1-dimensional (1-d) case, with the unit length
segment L , [0, 1] as our region of interest. We assume that n
binary sensors are deployed uniformly at random locations on
S. Physically, this corresponds to an unplanned deployment
of sensors, or the use of existing sensors (e.g., cell-phone
users) whose locations can be modeled as being uniformly



distributed over the area of interest. Each sensor returns one
of two possible readings b ∈ {0, 1}; b = 1 if there is at least
one transmitter within a distance of rs(n) from it, and b = 0
otherwise [10], [25], [26], [29]–[33]. This corresponds to the
sensors thresholding their observed RSS value to determine
the presence or absence of a primary transmitter. It ignores
the effects of path loss and shadowing of the signal, but we
include these effects in terms of the analysis of sensing errors
in Sec. IV and while presenting simulation results in Sec. VI.
We find that the scaling laws derived do carry over to the more
practical scenarios. Note that, the sensing radius is allowed to
scale with n. Also, M is fixed but possibly unknown, and
does not depend on n. The sensor readings are combined at
a fusion center to localize the transmitters and find the region
Avoid of S that is guaranteed to not contain any transmitter.
For example, in the absence of sensing errors, the whitespace
is identified as the union of circular regions of radius rs(n)
around the sensors that return a reading of 0.

In this section, we are interested in finding how many
transmitters are present and estimating their locations in S,
using binary readings from n sensors deployed uniformly at
random over S. To this end, we note that each disjoint region
containing sensors that returned the value 1 contains at least
one transmitter. Hence, we estimate the number of transmitters
to be equal to the number of disjoint regions containing sensors
that returned the value 1, and we estimate the transmitter loca-
tions x̂i to be the geometric centroid of each such region. Note
that, any contiguous region containing sensors that returned the
value of 1 could potentially have more than 1 transmitter.2 This
could lead to errors in estimating the number of transmitters
and/or their locations, as there is no way of identifying the
number of transmitters within regions containing sensors that
measured a 1. To overcome this, in this section, we assume
that any two transmitters are at at least δ(n) > 0 distance
apart. As we will see, under mild assumptions on δ(n), one
can accurately estimate the number of transmitters and their
locations with high probability, as n → ∞. Moreover, even
if the transmitter are located less than δ(n) apart, since the
whitespace is identified as the area outside the coverage of
the the transmitters, the proposed scheme will still identify
whitespace available, although the number of transmitters may
not be correctly determined.

Let the true location of the transmitters be denoted by
xj , j = 1, 2, . . . ,M . Let the estimate of M be denoted by
M̂ , and let the estimate of the location of the ith transmitter
using the n sensor readings be denoted by x̂i, i = 1, 2, . . . , M̂ .
In the 1-d case, for both the true locations and their estimates,
we index the transmitters from left to right on L, such that
x1 ≤ x2 ≤ · · · ≤ xM and x̂1 ≤ x̂2 ≤ · · · ≤ x̂M̂ . In the
2-d case, we index the true locations and their estimates in
increasing order of their distance from the origin. We define
the localization error metric as

err =

max{M,M̂}∑
i=1

‖xi − x̂i‖`.

2In particular, if the region is of width greater than 4rs in the 1-d case,
or of area greater than 4πr2s in the 2-d case, then it must necessarily contain
more than one transmitter.

Here, ‖ · ‖` is the absolute value for the 1-d case, and
the squared Euclidean distance in the 2-d case. Now, since
M could differ from M̂ , we follow the convention that for
M < M̂ , xi is at the origin for i = M + 1, . . . , M̂ , and for
M > M̂ , x̂i is at 1 in the 1-d case and at (1, 1) in the 2-d
case, for i = M̂ + 1, . . . ,M . This ensures that a mismatch
between the actual and estimated number of transmitters is
always positively penalized. We note that the above penalty
function is not necessarily unique. Other notions of local-
ization error could also be defined, for example, by pairing
true transmitter locations with estimated locations based on
minimum distance, and computing the corresponding mean
squared error in localization. However, for any such notion
of error that associates a strictly positive error corresponding
the transmitters that are missed or falsely detected, as n gets
large, the number of transmitters is estimated correctly, and the
minimum error scales as log n/n. Hence, any such notion that
leads to a positive penalty when the number of transmitters is
incorrectly estimated suffices for our purposes in this paper.

Our goal is to find the minimum error ε(n), transmitter sep-
aration δ(n) and radio range rs(n), that solve the optimization
problem

arg min
rs(n),δ(n)

ε(n)

such that lim
n→∞

P

max{M,M̂}∑
i=1

‖xi − x̂i‖` ≤ ε(n)

 = 1, (1)

where the probability is defined over the uniformly ran-
dom distribution of binary sensor locations. Note that the
localization error ε(n) depends on the chosen radio range
rs(n) and the transmitter separation δ(n), and (1) is a multi-
objective optimization problem. For example, if rs(n) is too
small, then a very small area is sensed, while if rs(n) is
too large, the sensing areas overlap too much, and in both
cases the localization accuracy could suffer. We note that it is
challenging to exactly solve the above optimization problem
for a given number of sensors, i.e., it is difficult to arrive at
an explicit sequence of sensing radius, transmitter separation
and error that solves (1). However, by letting the number
of sensors grow large, we obtain order-optimal results that
uncover the fundamental relationships between the different
parameters of interest. Thus, the goal here is to jointly find
the order-optimal radio range and localization error as n gets
large. Similar connections exist for the transmitter separation
and localization error as well.

The next two Theorems characterize a lower bound that
ε(n), rs(n) and δ(n) need to satisfy for accurate estimation
of the number and locations of the transmitters with high
probability in the 1-d and 2-d cases, respectively.

Theorem 1: For the 1-d case, if limn→∞
ε(n)
logn
n

= 0, or

limn→∞
rs(n)
logn
n

= 0, or limn→∞
δ(n)
logn
n

= 0 then

lim
n→∞

P

max{M,M̂}∑
i=1

‖xi − x̂i‖` ≤ ε(n)

 < 1.

In words, if ε(n), rs(n), or δ(n) go to zero faster than logn
n ,



then the probability that we are able to estimate the number
of transmitters and their locations with an error at most ε(n)
cannot be made arbitrarily close to 1. Hence, logn

n is a lower
bound on the mean absolute error in location estimation.

Remark 1: Note that in (1), the min is defined jointly over
rs(n) and ε(n). In Theorem 1, we are essentially showing that
if any one of rs(n) or ε(n) approach zero faster than logn

n ,
the probability in (1) is strictly smaller than 1. Thus, we have
a decoupled lower bound on the optimal rs(n) and ε(n) for
the problem in (1). A similar approach is used to state the all
the results in the sequel.

The proof of Theorem 1 requires the following coverage
Lemma from [36]:

Lemma 1: (Theorem 3.11 [36]) Let n sensors be deployed
uniformly at random locations on L , [0, 1], where each sen-
sor has radio range of r(n). A point x on L is said to be cov-
ered if there is at least one sensor in the interval [x−cr(n), x+

cr(n)], where c is a constant. Then, if limn→∞
r(n)

(logn)/n = 0,
then limn→∞ P (all points in L are covered) < 1. For a 2-
d region S , [0, 1]2, where again n sensors be deployed
uniformly at random locations, and a point is said to be
covered if there is a sensor within a circle of radius cr(n)

around it, we have that if limn→∞
r(n)√

(logn)/n
= 0, then

limn→∞ P (all points in S are covered) < 1.
Proof: (Theorem 1) See Appendix A.

Next, we present the 2-d counterpart of the lower bound
obtained in Theorem 1.

Theorem 2: For a 2-d region S, if limn→∞
ε(n)
logn
n

= 0,

or limn→∞
rs(n)√

logn
n

= 0, or limn→∞
δ(n)√
logn
n

= 0, then

limn→∞ P
(∑max{M,M̂}

i=1 ‖xi − x̂i‖` ≤ ε(n)
)
< 1.

Proof: See Appendix B.
Our next result shows that for the 1-d case, ε(n) = rs(n) =

δ(n) = Θ
(

logn
n

)
is sufficient for estimating the number and

location of transmitters with high probability, asymptotically
in n.

Theorem 3: For the 1-d case, if rs(n) = δ(n) = ε(n) =

Θ
(

logn
n

)
,

lim
n→∞

P

max{M,M̂}∑
i=1

‖xi − x̂i‖` ≤ ε(n)

 = 1.

In words, if we choose rs(n) of the order logn
n , then the lower

bound on the error ε(n) of order logn
n is in fact achievable.

Remark 2: Note that the minimum transmitter separation,
δ(n) = Θ

(
logn
n

)
is a mild requirement. Since the number of

transmitters M is fixed while δ(n) is monotonically decreasing
with n, for n large enough, the minimum separation between
the transmitters will exceed δ(n).
To prove the Theorem, we need the following Chernoff bound.

Lemma 2: Let X1, X2, . . . be independent and identically
distributed Bernoulli random variables, and let X =

∑n
i=1Xi,

with E{X} = µ = nE{Xi}. Then for 0 < δ < 1, we have
that P (X < (1− δ)µ) ≤ exp

(
− δ2µ2

)
.

Proof: (Theorem 3) See Appendix C.
The result for 2− d region follows similarly, as follows.

Theorem 4: For a 2-d region, if rs(n) = δ(n) =

Θ

(√
logn
n

)
and ε(n) = Θ

(
logn
n

)
, then

lim
n→∞

P

max{M,M̂}∑
i=1

‖xi − x̂i‖` ≤ ε(n)

 = 1.

Proof: See Appendix D
In this section, we considered the problem of estimating

both the number of transmitters as well as their locations
using n sensors making binary measurements. We first showed
that if the minimum transmitter separation is less than order
logn
n , then the localization error probability cannot go to zero.

Conversely, with the minimum transmitter separation of order
logn
n , using the Chernoff bound, we showed that if the radio

range is of order logn
n , we can partition L or S into small

enough intervals so that with high probability, no interval
contains more than one transmitter, while simultaneously
ensuring that there are enough sensors in each interval for
detection of the transmitter with high probability. In practice,
since transmitters typically have a minimum geographical
separation, the separation requirement for our results to hold
is easily satisfied, and, hence, the number of transmitters and
their locations can be detected efficiently.

Remark 3: Another localization problem of interest is when
the number of transmitters scales with the number of sensors n
as M(n). Theorem 3 suggests that, in the 1-d case, if M(n)
is such that the minimum distance between any two trans-
mitters scales no faster than order logn

n , then a localization
error of M(n) logn

n can be guaranteed with high probability.
So, clearly, for M(n) = O

(√
n

logn

)
, where the minimum

distance between any two transmitters scales no faster than
logn
n [29], the localization error scales as

√
n

logn
logn
n , i.e., as√

logn
n . Thus, our results also extend to the case where the

number of transmitters scales with n, under certain conditions.
In the next section, we consider the problem of finding the
whitespace Avoid that contains no transmitters using binary
sensors randomly deployed in the area.

III. WHITESPACE DETECTION

In cognitive radios, to avoid interference, it is important
to find regions that do not contain any primary transmitter;
and such regions are called as whitespace. Let x1, x2, . . . , xn,
be the sensor locations in L or S and b1, b2, . . . , bn, be the
corresponding sensor readings, where, as before, bi = 1 if
there is at least one transmitter within a distance rs(n) from
it sensor i, and bi = 0 otherwise. The sensor readings are
combined at a fusion center to find the region Avoid of L or
S that is guaranteed not to contain any transmitter. In the 1-d
case,

Avoid =

n⋃
i=1

(1− bi)[max(xi − rs, 0),min(xi + rs, 1)]. (2)

In the 2-d case, letting S , [0, 1]2, we have

Avoid =

n⋃
i=1

(1− bi)B(xi, rs(n)) ∩ S, (3)



where B(x, r) denotes a Euclidean disc of radius r centered
at x.

Let `(A) =
∫
x∈A dx denote the Lebesgue measure, i.e.,

in the 1-d case, the length of the region formed by A. For
example, if A is the union of a finite set of disjoint regions,
then `(A) is the sum of the lengths of the disjoint regions.
Similarly, in the 2-d case, `(A) =

∫
(x,y)∈A dxdy, i.e., it

represents the area of the region denoted by A.
We define the recovered whitespace Avoid = `(Avoid) as

the Lebesgue measure of the region where no transmitter
is located. Note that, since the transmitters are located at
distinct points that occupy no area, we would expect that,
as n → ∞, the transmitters are perfectly localized, and,
Avoid → 1. Hence, we want to find the minimum ε(n) and
the corresponding optimum radio range rs(n) that guarantees
that P ((1−Avoid) ≤ ε(n)) = 1. Formally, we want to solve

arg min
rs(n)

ε(n) subject to lim
n→∞

P ((1−Avoid) ≤ ε(n)) = 1.

(4)
The probability in the above equation is evaluated over
the distribution of the sensor locations, with the unknown
transmitter locations assumed to be fixed but arbitrary. This
metric essentially captures the scaling of the relative loss in
recovering the whitespace, with increasing n, as a function
of rs(n). So, there are two problems to solve, i) finding the
minimum scaling of the error ε(n), and ii) finding the optimal
radio range rs(n), both as a function of n. As before, finding
an exact solution to the problem is difficult; hence, we look
for order-optimal results that hold as n→∞.

Clearly, whitespace detection is a special case of localization
considered in Section II, since once we know the number
of transmitters and their location, we automatically get the
whitespace as well. Hence, from Section II, we get the
following results.

Theorem 5: For the whitespace recovery problem in a 1-
d unit-length region, the optimal radio range and whitespace
recovery error scale as ε(n) = rs(n) = Θ

(
logn
n

)
. In words,

if we choose rs(n) of the order logn
n , then the whitespace

recovery loss also scales as order logn
n , and this is the best

scaling that can be achieved.
Proof: Follows from Theorems 1 and 3. We omit the

details to avoid repetition.
The result for the 2-d region is as follows.
Theorem 6: For the whitespace recovery problem in a 2-

d region S, the optimal radio range and whitespace recovery

error scale as ε(n) = Θ
(

logn
n

)
and rs(n) = Θ

(√
logn
n

)
.

Proof: Follows from Theorems 2 and 4. For brevity, we
omit the details.

In this section, we obtained the optimal scaling laws for
the radio range and the whitespace recovery error in the 1-
d and 2-d cases. In deriving the results, we assumed that the
sensor readings were error-free. Surprisingly, the above results
hold even when the sensors are unreliable, as we show in the
following section.

IV. UNRELIABLE SENSORS

So far in this paper, we have assumed the case of ideal
sensors, that make no errors. To study the robustness of
this binary sensing model, in this section, we assume that
the sensors make an error in their reading with probability
p < 1

2 independently of all other sensors. The errors could
be attributed to hardware failures at the node, receiver noise,
interference leakage from other frequency bands, etc. Thus,
a sensor reading could be 1 even if there is no transmitter
within a range of rs around it (i.e., a false alarm), or a sensor
reading could be 0 even if there is a transmitter within a
range of rs around it (i.e., a missed detection), and both events
happen with probability at most p. In practice, the error rate
could be a function of the distance between the transmitter
and the sensor. However, since the transmitter locations are
unknown, analyzing that case becomes intractable. To simplify
the problem, we consider p to be the largest error probability
with which a sensor can make errors, which essentially takes
care of the worst case scenario.

We illustrate the results in this section for the slightly
simpler problem of whitespace detection, as we have already
described in detail how to analyze the localization problem in
Section II.

Thus, we are interested in finding the minimum error ε(n)
and radio range rs(n) that solves the optimization problem

arg min
rs(n)

ε(n) subject to lim
n→∞

P ((1−Avoid) ≤ ε(n)) = 1.

(5)
The following Theorem is the analog of Theorem 5, with

unreliable sensors. Its proof follows simply because the lower
bound with unreliable sensors cannot be better than the lower
bound with reliable sensors derived in Theorem 5.

Theorem 7: When the sensor measurements are in er-
ror with probability of error p < 1

2 , and for the
whitespace recovery problem in a 1-d unit-length region,
if limn→∞

ε(n)
logn
n

= 0 or limn→∞
rs(n)
logn
n

= 0, then
limn→∞ P ((1−Avoid) ≤ ε(n)) < 1.
The 2-d version follows similarly from Theorem 6.

Next, we show that the lower bound in Theorem 7 is
also achievable. The proof is constructive, and follows by
proposing a reconstruction strategy and analyzing its error
performance.

Theorem 8: For the 1-d case, when the sensor mea-
surements are in error with probability of error p <
1
2 , if rs(n) = Θ

(
logn
n

)
, then for ε(n) = Θ

(
logn
n

)
,

limn→∞ P (1−Avoid ≤ ε(n)) = 1.
Proof: See Appendix E.

Theorem 9: For the 2-d case, when the sensor measure-
ments are in error with probability of error p < 1

2 ,

if rs(n) = Θ

(√
logn
n

)
, then for ε(n) = Θ

(
logn
n

)
,

limn→∞ P (1−Avoid ≤ ε(n)) = 1.
Proof: Let the unit square S be tiled into smaller squares

of side
√

c logn
n . Using the Chernoff bound, each square con-

tains at least c logn
2 sensors with high probability. Thereafter,

the proof follows identically to the proof of Theorem 8.



In this section, we considered the case when each sensor
makes an error with probability p in the detection of any
transmitter within its radio range. The lower bound on the
whitespace recovery error is the same as in the case of reliable
sensors, since the error with unreliable sensors cannot be better
than that with reliable sensors. For finding the matching upper
bound on the whitespace recovery error, we let the radio range
be of order logn

n , so that each interval of width logn
n contained

more or less log n sensors with high probability. Then, for
each interval of width logn

n , we proposed a majority rule
for declaring the presence or absence of transmitter in that
interval. Since there are a large number of sensors (roughly
log n) in each interval, if p < 1/2, it followed from a repetition
code argument that the probabilities of false alarm and missed
detection go to zero for large n. Thus, we showed that, if the
radio range is such that there are enough number of sensors
in each small interval, asymptotically, the lack of reliability of
the sensors has no effect on the whitespace recovery error.

Remark 4: In our setup, n sensors detect the presence or ab-
sence of a primary transmitter in their vicinity, and the binary
outputs of the sensors is used to localize the transmitters and
determine the available whitespace. The above analysis can
handle sensing errors, by setting p = max(pf , pm), where pf
and pm are the false alarm and missed detection probabilities.
Specifically, our approach of using majority decisions across
nearby sensors leads to asymptotically optimal localization
accuracy of primary transmitters even under sensing errors.

Also note that, once the whitespace has been declared
by the n sensors, a location could be within the coverage
area of the primary transmitters but declared as being out of
the coverage area, or vice versa. This can be quantified in
terms of (a) the fraction of the available whitespace that is
declared as occupied (which is akin to a false alarm) and
(b) the fraction of the area covered by the primary users
that is declared as whitespace (which is akin to a missed
detection). These quantities represent the probability that, if
a cognitive radio deployed uniformly at random in the area
of interest follows the whitespace output by the sensors to
determine whether or not it can transmit makes an error: a
false alarm or missed detection, respectively. From our results,
since the optimal localization error scales as ε(n) = Θ

(
logn
n

)
,

the area uncertainty in whitespace identification can be upper

bounded by 2πRM
√
ε(n)

|A| , where R is the coverage radius of the
primary transmitter, M is the number of primary transmitters,
and |A| is the area of the region of interest. Due to this,
the average probability of detection error over A also scales

as Θ

(√
logn
n

)
.

V. OPTIMUM DISTRIBUTION OF THE SENSOR LOCATIONS

Thus far, we assumed that the transmitters are arbitrarily
located on L, and obtained bounds on the minimum localiza-
tion error and the optimal sensing radius in the worst case
scenario. In some scenarios, it may be possible to obtain
the spatial distribution of the transmitters on L, either as
side information from the primary network or from long-term
statistics collected by the sensors. In this section, we consider

the optimization of the spatial distribution of the sensor loca-
tions given the spatial distribution of transmitter. We assume
that the transmitters are distributed over L = [0, 1] with pdf
fX(x), and seek to find the optimum sensor distribution fλ(x)
over L that minimizes the probability of missing a transmitter.
Intuitively, minimizing the probability of missing a transmitter
can lead to low transmitter localization error, and, in turn,
result in good whitespace recovery properties. Mathematically,
we wish to solve

Pf = min
fλ(x):

∫ 1
0
fλ(x)dx=1∫ 1

0

(
1−

∫ {y+rs,1}
max{y−rs,0}

fλ(z)dz

)n
fX(y)dy, (6)

In (6), given that the location of transmitter is y, p(y) ,∫ {y+rs,1}
max{y−rs,0} fλ(z)dz is the probability that there is a sen-

sor that is able to detect its presence. Hence, (1− p(y))
n

represents the probability that none of the sensors lie within
the sensing range rs of the transmitter. By averaging over
the distribution of y, Pf captures the probability that all the
sensors have their reading equal to 0, and hence completely
miss the transmitter at a random location in L. For small rs,
the (6) can be approximated by the more tractable expression

P̂f = min
fλ(x):

∫ 1
0
fλ(x)dx=1

∫ 1

0

(1− 2rsfλ(x))
n
fX(x)dx. (7)

The above is obtained by approximating the probability that
there is a sensor that that detects the presence of a transmitter
located at x by 2rsfλ(x), which is valid for continuous fλ(x),
small rs, and ignoring edge effects.

It might appear at first glance that the optimal i.i.d. sensor
location distribution to solve (7) be equal to the transmitter
location distribution, however, that is not true, as shown below,
since it depends on rs.

Using elementary results from variational calculus [37] to
construct the Lagrangian from (6), differentiating it, setting
the derivative equal to zero and solving, the optimum fλ(x)
that minimizes (6) must satisfy

{x+rs,1}∫
max{x−rs,0}

n

(
1−

∫ {y+rs,1}
max{y−rs,0}

fλ(z)dz

)n−1
fX(y)dy = µ,

(8)

∀x ∈ [0, 1), where the Lagrange multiplier µ has to be chosen
to satisfy the constraint

∫ 1

0
fλ(x)dx = 1. Unfortunately, it is

difficult to solve for fλ(x) from the above equation. Hence, we
use the more tractable approximation for the miss probability
given by (7), which leads to the optimality condition,

n (1− 2rsfλ(x))
n−1

fX(x)2rs = µ, (9)

where µ is a Lagrange multiplier factor, and is chosen such
that

∫ 1

0
fλ(x)dx = 1. This leads to

fλ(x) =

(
1−

(
µ

2nrsfX(x)

) 1
n−1

)
1

2rs
. (10)



In the above, fλ(x) is taken to be 0 when fX(x) = 0 or
when the right hand side is negative. In some cases, the above
reduces to intuitively satisfying results. For example, when
fX(x) = 1, 0 ≤ x < 1, the above implies that fλ(x) =
1, 0 ≤ x < 1, i.e., the optimum density is also uniform. On
the other hand, when n = 1, i.e., when only one sensor is
deployed, fλ(x) drops out of (9), but since (7) is linear in
fλ(x), the optimal solution must occur at an extreme point.
This leads to the the optimal distribution fλ(x) = δ(x− x0),
where x0 = arg maxx fX(x).

The value of µ that ensures
∫ 1

0
fλ(x)dx = 1 has to be

obtained using numerical techniques. This is not difficult, since
the right hand side in (10) is monotonically decreasing in µ,
taking the value 1/2rs > 1 when µ = 0, and taking the value
0 as µ gets large. Thus, any simple numerical technique such
as the bisection method can be used to find the value of µ.

Now, substituting the optimum fλ(x) into (7) and simpli-
fying, we get

P
(opt)
f =

(1− 2rs)
n[∫ 1

0
(fX(x))−

1
n−1 dx

]n−1 . (11)

We recognize the denominator as the `p quasi-norm of
1/fX(x), with p = 1/(n − 1). Note that, substituting the
uniform point distribution for fλ(x) = 1, 0 ≤ x < 1 in
(7) results in P

(unif)
f = (1 − 2rs)

n. Thus, the performance
improvement from the optimized point density depends on the
magnitude of the denominator in (11). For example, consider
the case were X has a triangular distribution: fX(x) = 4x for
0 ≤ x < 1/2, and = 4(1 − x) for 1/2 ≤ x < 1. With some
algebra, it can be shown that (11) reduces to

P
(opt)
f =

2(1− 2rs)
n(

n−1
n−2

)n−1 ≈ 2(1− 2rs)
n

e
(
n−1
n−2

) . (12)

Thus, the optimum point density does improve performance
over the uniform point density, but both scale as (1 − 2rs)

n

with n. When rs = (log n)/n, for large n, (1 − 2rs)
n ≈

1/n2, i.e., the probability of missing a transmitter is inversely
proportional to n2.

VI. SIMULATION RESULTS

We now present Monte Carlo simulation results to illustrate
the analytical results developed in this paper. We consider
M transmitters and n sensors deployed uniformly at random
locations over L = [0, 1]. Sensors return a 1 if there is a
transmitter within the sensing radius rs around them, and
return 0 otherwise. We identify the whitespace as the union of
the 2rs-width regions around sensors that return 0. To estimate
the number of transmitters and their locations, we first identify
the occupied space as the union of the 2rs regions around
sensors that return 1. Then, for each contiguous occupied
region of width smaller than 2rs, we identify one transmitter
at the center of the region. In contiguous occupied regions of
width greater than 2rs, we identify bwidth/2rsc transmitters,
placed uniformly in the region. We compute the probability of
the whitespace recovered exceeding 1−ε(n), i.e., the objective
function in (4), with ε(n) = log(n)/n, and the probability of
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Fig. 1. Probability that the sum absolute error in localizing the transmitters
is < ε(n), with ε(n) = log(n)/n.

the transmitter localization error exceeding ε(n) as in (1), by
averaging over 10, 000 instantiations of transmitter and sensor
deployments.

In Fig. 1, we plot the probability that the sum absolute
error in localizing the transmitters is < ε(n), given by (1).
We set ε(n) = log(n)/n, and compare the performance of
three different scalings for rs: log(n)/n, (log(n)/n)2, and√

log(n)/n, for M = 1 and M = 4 transmitters. We see
that log(n)/n captures the optimal scaling of the radio range
with n, and it significantly outperforms the other scalings
considered. Moreover, even at moderate or low values of n,
scaling rs(n) at a rate that is higher or lower than log(n)/n
results in a significant degradation in the performance.

Figure 2 shows the probability of the whitespace recovered
exceeding 1 − ε(n), i.e., the objective function in (4), versus
the number of sensors n, with M = 1 and 4 transmitters. To
show the behavior over a similar range of values of n, we use
ε(n) = log(n)/n in the M = 1 transmitter case, and ε(n) =
4 log(n)/n for the M = 4 transmitter case. In Fig. 3, we plot
the probability of the whitespace recovered exceeding 1−ε(n)
as a function of M , for n = 250, 500 and 1000. In both Figs. 2
and 3, we see that radio range scaling of rs(n) = log(n)/n
outperforms other faster or slower scaling factors, which is in
line with the result in Theorem 5. Figure 4 shows an analogous
result in the 2-d case, where we compare the scaling factors

rs(n) =
√

log(n)
n , 2

n1/4 , and
(

log(n)
n

)1/4
. Again, we see that

the optimal scaling factor of rs(n) =
√

log(n)
n outperforms

the other scaling factors.
In Fig. 5, we include the effect of lognormal shadowing

and Rayleigh-distributed multipath fading into the simulation,
as follows. We map the unit length interval to a physical
distance of 10 km. We consider the primary transmitters to
be transmitting at PT = 10 dB relative to the noise floor at
the sensor nodes. We assume a path loss exponent of η = 4,
a reference distance of d0 = 10 m, a lognormal shadowing
standard deviation of σs = 3.5 dB, and standard exponentially
distributed multipath fading [38]. The received power at the
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Fig. 5. Probability that the sum absolute error in localizing the transmitters
is < ε(n), with ε(n) = log(n)/n. The plot includes the effect of lognormal
shadowing with standard deviation 3.5 dB and Rayleigh fading.

sensors is computed as the sum of the powers from the
different transmitters. The received power is compared to a
threshold based on rs(n) to determine the sensor readings.
The threshold itself is computed as PT /(rs(n)/d0)η , i.e., it
is the received power at a distance of rs(n) from a single
primary transmitter, in the absence of shadowing and fading.
We assume the shadowing and fading are i.i.d. across the
sensors, and average the results over 1000 different channel
instantiations. Due to the effect of shadowing and fading,
sensors within rs(n) could miss the primary transmitter, and
sensors outside rs(n) could detect the presence of a trans-
mitter. Hence, we divide the interval into small regions of
length log(n)/n, and use the majority decision rule proposed
in Sec. IV to determine the presence or absence of sensors
in each of the small regions. We estimate the number of
primary transmitters as the number of contiguous regions
containing intervals that detect a primary transmitter. Also, we
estimate the transmitter locations as the centroids of each of
the contiguous intervals. We plot the probability that the sum
absolute error in localizing the transmitters is < ε(n). We see
that the scaling of rs(n) = log(n)/n outperforms the other
scaling rates, even after incorporating the effect of shadowing
and multipath fading. Note that, this result also illustrates that
the binary sensing model is accurate, even in the presence of
multiple transmitters, and after accounting for signal fading
and shadowing effects.

Finally, Fig. 6 shows the probability of missing a transmitter
uniformly distributed on [0, 1], and n sensors with sensing
radius rs(n) = log(n)/n are deployed according to the
triangular, truncated Gaussian and uniform distributions. For
the triangular distribution, we consider fλ(x) = 4x for 0 ≤
x < 1/2, and = 4(1− x) for 1/2 ≤ x < 1. For the truncated
Gaussian distribution, we consider the Gaussian distribution
with mean 0.5 and standard deviation 0.25, truncated to [0, 1].
We see that, as expected, the uniform distribution outperforms
the other distributions, and its performance matches with the
Pf ≈ 1/n2 result derived in Sec. V.



10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

Number of sensors, n

P
ro

b
a
b
ili

ty
 o

f 
m

is
s
in

g
 t
h
e
 t
ra

n
s
m

it
te

r

 

 

Triangular

Truncated Gaussian

Uniform

Theory = 1/n
2
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VII. CONCLUSIONS

In this paper, we studied the localization of transmitters
and recovery of whitespace using n binary sensors that are
deployed at random locations within a given geographical area.
We derived the limiting behavior of the mean absolute error
in localization and the recovered whitespace as a function of
n and the sensing radius rs. Using the sum absolute error
in transmitter localization as the metric, we analyzed the
optimal scaling of rs that minimizes the localization error with
high probability, as n gets large. We derived the correspond-
ing minimal localization error, and showed that it scales as
log(n)/n. We showed that both the whitespace recovery error
(loss) and the radio range optimally scale as log(n)/n as n
gets large. We also showed that, surprisingly, the radio range
scaling of log(n)/n is optimal even with unreliable sensors.
Finally, we derived the optimal distribution of sensors that
minimizes the probability of missing a transmitter, for a given
distribution of the transmitters, and analyzed the behavior of
the missed detection probability as n is increased. Our results
yielded useful insights into the interplay between the number
of sensors to be deployed and the corresponding optimal radio
range for detecting transmitters, that maximizes the recovered
whitespace and accurately localizes the transmitters within the
given geographical area.

In our work, we considered that the sensors make one-bit
readings. Effectively, this amounts to quantizing the power
measured at the sensors to a single bit. In contrast, sensors
with multi-bit quantization capability changes the problem
considerably. In practice, successively using different values
of rs, one can convey different bits (MSB to LSB) of RSS
observed by the sensors. The bit (correspondingly, the value of
rs) that is the most relevant for accurate reconstruction of the
whitespace would perhaps correspond to the value of rs used
in our work. In general, with multi-bit quantization, one needs
to first come up with an appropriate quantization scheme, and
an associated algorithm to identify the whitespace, and then
analyze its performance. This is an interesting line for future
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x

3rs(n)

I

rs(n)

M

Fig. 7. Illustration of the area that needs to be empty of sensors to get a lower
bound of rs(n) on the localization error. If the region marked I around any
transmitter (whose location is marked by an X) does not contain any sensor,
the localization error is at least rs(n).

work. Another possible extension is to consider the problem of
tracking temporal variations in the whitespace (see, e.g., [39]).

APPENDIX A
PROOF OF THEOREM 1

In order to establish the lower bound, it is sufficient to
consider the case of a single transmitter, i.e., M = 1, since
the error can only be higher for M > 1. Consider Fig. 7,
where a single transmitter is located at location x, and consider
the interval I of length 3rs(n) centered at x. If I does not
contain any sensors, the middle interval M of length rs(n) is
beyond the sensing range of any sensor, since the radio range
is rs(n). Therefore, M lies in the uncertainty region, if I
does not contain any sensors, and hence the localization error
is at least rs(n). Since the location of the transmitter x can
be arbitrary, to have localization error ε(n) of at most rs(n),
we need all intervals of width 3rs(n) to contain at least one
sensor.

From Lemma 1, if rs(n) is less than order logn
n , then

limn→∞ P (each point in L is covered) ≤ c2, c2 < 1. If any
point on L is not covered, then surely the interval of length
2crs(n) (for a constant c) around it has no sensor. Hence, if
3rs(n) is less than order logn

n , then there exists an interval of
width 3rs(n) that does not have any sensor with probability
greater than 1 − c2. Hence, if rs(n) is less than order logn

n ,
then for any localization error ε(n) less than order logn

n ,

limn→∞ P
(∑max{M,M̂}

i=1 ‖xi − x̂i‖` ≤ ε(n)
)
< 1.

Now we work towards finding the lower bound on δ(n).
Consider M = 2 transmitters at locations x1 and x2 with
distance ‖x2 − x1‖` = δ(n) between them. To be able to
decide that two transmitters are present, i) at least one sensor
has to lie between x1 and x2 with a reading of 0, or ii) rs(n)
has to be less than or equal to δ(n), since otherwise the sensors
lying outside the interval (x1, x2) cannot discern whether there
are one or two transmitters, as both x1 and x2 may possibly
be in their range rs.

Since the two transmitters can be arbitrarily located on L,
condition i) implies that each interval of length δ(n) on L
should contain at least one sensor or rs(n) ≤ δ(n). From
Lemma 1, the probability that each interval of length δ(n)
contains at least one sensor is upper bounded by a constant
less than 1 if limn→∞

δ(n)
logn
n

= 0. We already know that, for

limn→∞
rs(n)
logn
n

= 0, P
(∑max{M,M̂}

i=1 ‖xi − x̂i‖` ≤ ε(n)
)
<
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Fig. 8. Empty areas for sensors in 2-dimensions to get a lower bound on
localization error. If the ball B(x, 2rs(n)) does not contain any sensor, the
localization error is at least rs(n).

1. Thus, conditions i) and ii) together imply that for
limn→∞

δ(n)
logn
n

= 0, P
(∑max{M,M̂}

i=1 ‖xi − x̂i‖` ≤ ε(n)
)
< 1.

APPENDIX B
PROOF OF THEOREM 2

Once again, to find the lower bound, consider the case of
a single transmitter, i.e., M = 1. Consider Fig. 8, where
a single transmitter is located at location x, and consider
the disc B(x, 2rs(n)) of radius 2rs(n) centered at x. If
B(x, 2rs(n)) does not contain any sensors, then clearly, since
the radio range is rs(n), the smaller disc B(x, rs(n)) of radius
rs(n) is beyond the sensing range of any sensor. Therefore,
B(x, rs(n)) lies in the uncertainty region if B(x, 2rs(n)) does
not contain any sensors, and hence the localization error is at
least equal to the area of B(x, rs(n)). Since the location of
the transmitter x can be arbitrary, to have localization error
ε(n) of at most πr2s(n), we need all discs of radius 2rs(n) to
contain at least one sensor.

From the 2-d part of Lemma 1, if rs(n) is less than order√
logn
n , for c = 2,

lim
n→∞

P (each point in S is covered) ≤ c2,

where c2 < 1. If any point on S is not covered, then surely
the disc of radius 2rs(n) around it has no sensor. Hence, if

2rs(n) is less than order
√

logn
n , then there exists a disc of

radius 2rs(n) that does not have any sensor with probability

greater than 1− c2. Hence, if rs(n) is less than order
√

logn
n ,

then for any localization error ε(n) less than order logn
n ,

limn→∞ P
(∑max{M,M̂}

i=1 ‖xi − x̂i‖` ≤ ε(n)
)
< 1.

The lower bound on δ(n) follows identically along the lines
of the proof of Theorem 1.

APPENDIX C
PROOF OF THEOREM 3

Let rs(n) = c logn
n , c > 1, and let the minimum transmitter

separation δ(n) = d logn
n , where d > 10c. Divide the region

L into smaller intervals of length
(

10c logn
n

)
, and index

All sensor 
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Fig. 9. Worst case positions of transmitters for estimating their locations.

these segments as z1 to zd( n
10c logn )e. Hence, each interval zk

contains at most one transmitter.
Partition each zi into five equal parts of width

(
2c logn
n

)
,

and index them with Pi,1, . . . , Pi,5. Let the number of sensors
lying in Pi,j be Ni,j . From the Chernoff bound, P (Ni,j <
c log n) ≤ n−c/4, and taking the union bound, P (Ni,j <
c log n for any i, j = 1, . . . , 5) < c4n

1−c/4, where c4 is a
constant. Thus, with high probability, each partition of each
interval contains at least c log n sensors for large enough c.

Consider any interval zk. If all the sensor readings in zk are
zero, or if only the readings of the sensors lying in left half
of Pk,1 or right half of Pk,5 are 1, then no transmitter lies
in zk. Otherwise, we know that there is a transmitter lying
in zk, say xi. Note that, it is hardest to detect the location of
transmitter lying in zk if there are transmitters in both intervals
zk−1 and zk+1, and they lie closest to the boundary of zk, as
shown in Fig. 9, where black dots represent the transmitters.
Let xi ∈ Pk,j . Then, an interval Wi of width

(
2c logn
n

)
around

xi contains at least
(
c logn
n

)
sensors with high probability

from the Chernoff bound, and all these sensors have reading
1. In addition, irrespective of the index j of partition Pk,j
to which xi belongs, there exists lm, lm ∈ {1, . . . , 5} for
which all sensors lying in the partition Pk,lm have a reading
of 0, since all the sensors lying in Pk,lm are at a distance
greater than the radio range

(
c logn
n

)
from the transmitter

xi in Pk,j . For example, in Fig. 9, all sensors lying in Pk,4
have their reading equal to 0. Hence, using the readings from
sensors in Wi and Pk,lm , we can localize the transmitter in
Wi, and the uncertainty about the ith transmitter location is
no more than twice the width of any partition. This equals(

4c logn
n

)
, and hence, ‖x̂i − xi‖` <

(
4c logn
n

)
. Since this is

true for each transmitter i, M̂ = M , the total localization error∑max{M,M̂}
i=1 ‖xi − x̂i‖` ≤

∑M
i=1

(
4c logn
n

)
≤ M

(
4c logn
n

)
with high probability. This concludes the proof.

APPENDIX D
PROOF OF THEOREM 4

The proof follows along the lines of the proof of Theorem
3. We tile the unit square S into smaller squares si,j with

side
√

10c logn
n . We further partition each small square into

25 smaller squares, with side 1
5

√
10c logn

n . Using the Chernoff
bound (Lemma 2), each smaller square contains at least
c log n sensors for, large enough c. Once again, with minimum

separation of δ(n) = Θ

(√
logn
n

)
, at most one transmitter is

present in any one smaller square. Hereafter, the proof follows



identically to the proof of Theorem 3, where the 25 smaller
squares within each square, play the role of 5 vertical and 5
horizontal partitions of each interval, defined in the proof of
Theorem 3.

APPENDIX E
PROOF OF THEOREM 8

Let rs(n) =
(
c logn
n

)
, where c > 1 is a constant. Divide

the segment L into smaller intervals of length
(
c logn
n

)
, and

index these segments as z1 to zd( n
c logn )e. Let the number

of sensors lying in zk be Nk. From the Chernoff bound,
P (Nk < c logn

2 ) ≤ n−c/8, and taking the union bound,
P (Nk < c logn

2 for any k) < c4n
1−c/8, where c4 is a

constant. Thus, with high probability, for large c > 8, each
smaller interval zk contains at least c logn

2 sensors.
As before, since there are only M transmitters, at the

maximum only M smaller intervals among z1 . . . zd( n
c logn )e

contain any transmitter. Since a transmitter lying in zk can
only influence readings of sensors lying in 3 adjacent intervals
zk−1, zk and zk+1. Therefore, ideally, at least

⌈(
n

c logn

)⌉
−

3M intervals among z1 . . . zd( n
c logn )e should have all sensor

readings as 0. However, because of errors in sensor readings,
some of the sensors in these intervals have readings 1 instead
of 0. To resolve this problem, we use the majority rule to
decide whether an interval zk contains a transmitter or not.
Thus, a transmitter is declared to be present in an interval
zk, if the number of sensors with reading 1 are more than the
number of sensors with reading 0, and a transmitter is declared
to be absent in an interval zk otherwise.

With this decision rule, Avoid = ∪Maj(zk)=0 zk, where
the function Maj(zk) equals 1 if zk has a larger number
of sensors with a reading of 1 than with a reading of 0,
and equals 0 otherwise. We first consider the probability
of missed detection, Pmd, which is the probability that the
majority of sensor readings in zk is 0, given that there is a
transmitter in an interval zk. Recall that each sensor makes
an error with probability p independently of all other sensors.
From the Chernoff bound, we know that in each interval zk
there are at least c logn

2 sensors with high probability, for
large enough c. Let Nk denote the number of sensors in
zk. Without loss of generality, we assume that Nk is odd,
as otherwise, we can consider one less sensor for making
decisions. Then Pmd =

∑Nk

k=
Nk+1

2

(
Nk
k

)
pk(1− p)Nk−k. From

an upper bound known in coding theory for repetition codes

[40],
∑Nk

k=
Nk+1

2

(
Nk
k

)
pk(1 − p)Nk−k ≤

(
2
√
p(1− p)

)Nk
.

Hence, for p < 1
2 , Pmd ≤ aNk , where a < 1, and Nk is

of the order log n with high probability. Thus, the probability
of missed detection Pmd decreases exponentially with c logn

2 .
Since there are at the maximum

⌈(
n

c logn

)⌉
intervals in L,

using the union bound, the probability that there is a missed
detection in any one of the

⌈(
n

c logn

)⌉
intervals is at most⌈(

n
c logn

)⌉
a
c logn

2 , where a < 1. Thus, for c large enough,

limn→∞ P
(⌈(

n
c logn

)⌉
a
c logn

2 = 0
)

= 1.

Using an identical analysis, we can show that the probability
of false alarm in any interval zk, i.e., the probability that the
majority of sensor readings in zk is 1, given that there is no
transmitter in an interval zk, goes to zero as n goes to infinity.

Thus, with high probability, we have that(⌈(
n

c logn

)⌉
− 3M

)
intervals not containing any transmitter

have their majority of reading equal to 0. Hence,
Avoid >

(⌈(
n

c logn

)⌉
− 3M

)(
c logn
n

)
= 1 − 3M

(
c logn
n

)
with high probability, proving the Theorem.
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