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On the Secrecy Capacity Region of the 2-user

Symmetric Z Interference Channel with

Unidirectional Transmitter Cooperation
Parthajit Mohapatra, Chandra R. Murthy, and Jemin Lee

Abstract—In this work, the role of unidirectional limited rate
transmitter cooperation is studied for the 2-user symmetric
Z interference channel (Z-IC) with secrecy constraints at the
receivers, in achieving two conflicting goals simultaneously:
mitigating interference and ensuring secrecy. First, the problem
is studied under the linear deterministic model. A novel scheme
for partitioning the encoded messages and outputs based on the
relative strengths of the signal and interference is proposed. The
partitioning reveals the side information that needs to be provided
to the receiver and facilitates the development of tight outer
bounds on the secrecy capacity region. The achievable schemes
for the deterministic model use a fusion of cooperative precoding
and transmission of a jamming signal. The optimality of the
proposed scheme is established for the deterministic model for
all possible parameter settings. The insights obtained from the
deterministic model are used to derive inner and outer bounds on
the secrecy capacity region of the 2-user Gaussian symmetric Z-
IC. The achievable scheme for the Gaussian model uses stochastic
encoding in addition to cooperative precoding and transmission
of a jamming signal. For the Gaussian case, the secure sum
generalized degrees of freedom (GDOF) is characterized and
shown to be optimal for the weak/moderate interference regime.
It is also shown that the secure sum capacity lies within 2 bits/s/Hz
of the outer bound for the weak/moderate interference regime for
all values of the capacity of the cooperative link. Interestingly, in
the deterministic model, it is found that there is no penalty on the
capacity region of the Z-IC due to the secrecy constraints at the
receivers in the weak/moderate interference regimes. Similarly,
it is found that there is no loss in the secure sum GDOF for the
Gaussian case due to the secrecy constraint at the receiver, in
the weak/moderate interference regimes. The results highlight the
importance of cooperation in facilitating secure communication
over the Z-IC.

I. INTRODUCTION

The role of cooperation between the transmitters/receivers

in interference limited scenarios has been studied extensively

in the context of communication reliability. However, the

effect of the cooperation on communication secrecy has not

been well explored, and the ability to cooperate can have a

very different effect on the achievable rates when there is a

secrecy constraint [2], [3]. In a system operating under se-

crecy constrains at the receivers, the receivers cannot enhance
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their own rates by decoding and canceling the interference,

since this does not preserve the communication secrecy. This

leads to the following fundamental questions: (a) how much

interference can be mitigated through rate-limited transmitter

cooperation, when there are secrecy constraints at receivers?

(b) what is the corresponding gain in the rate achieved by the

cooperation between transmitters? Answering these questions

helps in understanding the role of cooperation in managing

interference and ensuring secrecy in multiuser scenarios.

The effect of transmitter cooperation on the secrecy capacity

is closely related to the underlying channel model. The channel

model considered in this paper is the Z-IC [4], [5]. In the Z-

IC, only one of the two transmitters causes interference at

the unintended receiver, and is also referred to as a partially

connected IC in [6]. As a practical example, the Z-IC can

model a 2-tier network, where the macro cell user is close to

the edge of the femtocell while the femtocell user is close to

the femto base station (BS). Since the macro BS can typically

support higher complexity transmission schemes, it could use

the side information received from the femto BS to precode its

data to improve its own rate and simultaneously ensure secrecy

at the femtocell user. At the receivers, the macro cell user

could experience significant interference from the femtocell

BS, while the femtocell user receives little or no interference

from the macro BS, leading to the Z-IC as the appropriate

model for the system. Hence, answering the aforementioned

questions in the context of the Z-IC can lead to useful insights

in the 2-tier cellular network scenario mentioned above.

A. Prior work

The IC has been studied extensively with and without

secrecy constraints at the receivers under different settings

[7]–[10]. However, the capacity region of the 2-user Gaussian

IC has remained an open problem, even without secrecy

constraint, except for some specific cases like the strong

interference regime and the very strong interference regime

[11], [12]. The Han-Kobayashi (HK) scheme proposed in [13]

is the best known achievable region for the IC.

It has been shown that cooperation between the transmitters

or receivers in the case of IC can improve the overall perfor-

mance of the system, when there is no secrecy constraint at

the receivers [14]–[17]. However, the effect of cooperation

on managing interference and ensuring secrecy in interference

limited scenarios is not well understood. In [2], it has been

shown that, with cooperation, it is possible to achieve nonzero

secrecy rate, even when the unintended receiver has a better



2

channel compared to the legitimate receiver. The effect of

cooperation on the achievable rates for other communication

models with secrecy constraints can be found in [18]–[21].

Z-IC without secrecy and without cooperation: In [4], lower

bounds on the capacity region of the Gaussian Z-IC for the

weak and moderate interference regimes are derived. In [22],

it is shown that superposition encoding with partial decoding

is optimal for a certain class of Z-IC. A simple variant of the

HK encoding scheme was proposed in [23] for the Gaussian

Z-IC and a class of mixed IC.

Z-IC without secrecy and with cooperation: The role of

cooperation in the Z-IC without the secrecy constraint has

been investigated in [24]–[29]. In [24], [29], a cognitive Z-IC

is considered, where the non-interfering user (primary user)

shares its codeword with the interfering user (secondary user).

It is shown that a combination of superposition coding and

dirty paper coding can achieve capacity over a certain subset

of the strong interference regime. The capacity region of the

cognitive Z-IC is established in the very strong interference

regime in [25]. In [26], both the encoders cooperate through

noiseless links with finite capacities and the sum capacity of

the channel is characterized to within 2 bits of the outer bound.

Z-IC with secrecy and without cooperation: In [30], the Z-

IC model is considered with secrecy constraints at the receivers

and achievable schemes are obtained for the deterministic and

the Gaussian model in the weak/moderate interference regime.

For the deterministic model, the secrecy capacity region is

characterized. In [31], it is shown that when the non-interfering

transmitter is constrained to use a deterministic encoder, the

capacity region can reduce.

B. Contributions

This work considers the 2-user symmetric Z-IC with unidi-

rectional transmitter cooperation via a rate-limited link from

transmitter 2 (which causes interference) to transmitter 1
(which does not cause interference), and with secrecy con-

straints at the receivers. The key challenge here is to de-

vise techniques for simultaneously canceling interference and

guaranteeing secrecy. First, the problem is solved under the

deterministic approximation of the channel. Using the results

in the deterministic model, an achievable scheme and outer

bounds are derived for the Gaussian channel model.

One of the key techniques used in the achievable scheme

for both the models is cooperative precoding performed at

transmitter 1, which cancels interference at receiver 1 and

thereby simultaneously ensures secrecy. However, the amount

of the interference that can be canceled at the receiver is

limited by the rate of the cooperative link. In the determin-

istic model, transmission of a jamming signal along with

interference cancelation is required to achieve the capacity.

On the other hand, the achievable scheme for the Gaussian

model uses stochastic encoding in addition to cooperative

precoding and transmission of a jamming signal. Derivation

of outer bound requires judicious use of the secrecy constraint

at receiver, along with careful selection of the side information

to be provided to the receivers. In particular, the cooperation

between the transmitters makes the encoded messages depen-

dent, which makes derivation of the outer bounds even more

difficult.

The main contributions of the paper are as follows:

1. Outer bounds on the secrecy capacity of the symmetric

Z-interference channel with unidirectional transmitter coop-

eration are derived. The key novelty in deriving the outer

bounds is the choice of side information to be provided to

the receiver(s) and the use of the secrecy constraints at the

receivers in a judicious manner. To elaborate, a novel parti-

tioning of the encoded messages and outputs is proposed for

the deterministic model based on the strength of interference

and signal. Further, this partitioning also helps to bound or

simplify the entropy terms that are difficult to evaluate due to

the dependence between the encoded messages.

2. An achievable scheme is proposed for the system under

consideration, which uses a combination of transmission of

random bits and cooperative precoding to cancel the interfer-

ence at the unintended receiver. The cooperative precoding

offers two benefits simultaneously: it cancels interference and

ensures secrecy.

3. It is shown that, for all values C and over all interference

regimes, the inner and outer bounds derived on the secrecy

capacity region match, thus yielding the capacity of the

deterministic symmetric Z-IC with unidirectional transmitter

cooperation and secrecy constraints. It is also shown that the

capacity region of the deterministic symmetric Z-IC does not

enlarge if the perfect secrecy constraint at the receiver is

replaced with the weak or strong notion of secrecy.

4. An achievable scheme is proposed for the Gaussian case,

which uses a combination of stochastic encoding, interference

cancelation and artificial noise transmission. The novelty in

the achievable scheme lies in fusing stochastic encoding

with interference cancelation. The achievable rate of secure

communication is analyzed using the notion of strong secrecy.

Interestingly, it is shown that the equivocation computation for

the Gaussian case reduces to the equivocation computation for

a Gaussian wiretap channel.

5. Tight outer bounds are developed for the Gaussian case

by providing appropriate side information and bounding the

entropy terms containing both discrete and continuous random

variables based on the insights obtained for the deterministic

case. The outer bounds derived on the secrecy capacity region

of the Gaussian symmetric Z-IC are the best known outer

bounds till date with unidirectional transmitter cooperation.

6. In the weak/moderate interference regime, the secure sum

generalized degrees of freedom (GDOF) is also characterized

and shown to be optimal for all values of the capacity of the

cooperative link. The secure sum capacity of the symmetric Z-

IC is also shown to lie within 2 bits/s/Hz of the outer bound in

the weak/moderate interference regime for all possible values

of the capacity of the cooperative link.

7. Bounds on the secrecy capacity region of the 2-user

symmetric Z-IC without cooperation between the transmitters

are special cases of the analysis for both models. Note that,

prior to this work, the capacity region of the symmetric Z-IC

for the deterministic model with secrecy constraints was not

fully known even for the non-cooperating case [30].

It is shown that limited-rate transmitter cooperation can

greatly facilitate secure communication over the Z-IC in
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Fig. 1: 2-user symmetric Z-IC with unidirectional transmitter

cooperation (from transmitter 2 to transmitter 1).

weak/moderate and high interference regimes. In the case of

the deterministic model, it is found, surprisingly, that there

is no penalty on the capacity region of the Z-IC due to

the secrecy constraints at the receivers in the weak/moderate

interference regimes. Thus, the proposed scheme allows one to

get secure communications for free. Similarly, it is found that

there is no loss in the sum GDOF for the Gaussian case due

to the secrecy constraint at the receiver, in the weak/moderate

interference regimes. For the deterministic model, it is found

that for every one bit increase in the capacity of the cooperative

link, the secure sum rate can increase by one bit, in the weak,

moderate and high interference regimes, until the sum rate is

saturated by its maximum possible value.

Notation: Lower case or upper case letters represent scalars,

lower case boldface letters represent vectors, and upper case

boldface letters represent matrices.

II. SYSTEM MODEL

Consider a 2-user Gaussian symmetric Z-IC with unidi-

rectional and rate-limited transmitter cooperation from trans-

mitter 2 to 1, as shown in Fig. 1a.1 In the Z-IC, only

transmitter 2 causes interference to receiver 1. The received

signal at receiver i, yi, is given by

y1 = hdx1 + hcx2 + z1; y2 = hdx2 + z2, (1)

where zj (j = 1, 2) is the additive white Gaussian noise,

distributed as N (0, 1). Here, hd and hc are the channel gains

of the direct and interfering links, respectively. The input

signals (xi) satisfy the power constraint: E[|xi|2] ≤ P . The

unidirectional cooperative link from the interfering transmitter

(transmitter 2) to the non-interfering transmitter (transmitter

1) is noiseless, secure, and of finite rate CG.

The equivalent deterministic model of (1) at high SNR is

given by [14], [30]

y1 = Dq−mx1 ⊕Dq−nx2; y2 = Dq−mx2, (2)

where x1 (x2) is the binary input vector of the deterministic

Z-IC from user 1 (user 2) of length m (max{m,n}); y1 (y2)
is the binary output vector of length max{m,n} (m); D is

a q × q downshift matrix with elements dj′,j′′ = 1 if 2 ≤
1The model is termed as symmetric as the links from transmitter 1 to

receiver 1 and transmitter 2 to receiver 2 are of the same strength.

j′ = j′′ + 1 ≤ q and dj′,j′′ = 0 otherwise; and the operator

⊕ stands for modulo-2 addition, i.e., the XOR operation. The

deterministic model is pictorially illustrated in Fig. 1b.

The deterministic model is a first order approximation of

a Gaussian channel, where all the signals are represented by

their binary expansions. Here, noise is modeled by truncation,

and the superposition of signals at the receiver is modeled by

modulo 2 addition. Hence, the parameters m, n, and C of

the deterministic model are related to the Gaussian symmetric

Z-IC as m = (⌊0.5 logSNR⌋)+, n = (⌊0.5 log INR⌋)+,
and C = ⌊CG⌋. Note that the notation followed for the

deterministic model is the same as that presented in [14]. The

bits ai ∈ F2 and bi ∈ F2 denote the information bits of

transmitters 1 and 2, respectively, sent on the ith level, with

the levels numbered starting from the bottom-most entry.

The transmitter i has a message Wi, which should be

decodable at the intended receiver i, but needs to be kept

secret from the other, i.e., the unintended receiver j (j 6= i),

and this is termed as the secrecy constraint. Note that, for

the Z-IC, the message W1 is secure as there is no link from

transmitter 1 to receiver 2. Hence, the goal is to ensure that W2

is not decodable at receiver 1. The encoding at transmitter 1
should satisfy the causality constraint, i.e., it cannot depend

on the signal to be sent over the cooperative link in the future.

The signal sent over the cooperative link from transmitter 2
to transmitter 1 is represented by v21. It is also assumed that

the transmitters trust each other completely and they do not

deviate from the agreed schemes, for both models.

For the deterministic model, the encoded message at trans-

mitter 1 is a function of its own data bits, the bits received

through the cooperative link, and possibly some random bits,

whereas the encoded message at transmitter 2 is independent

of the other user’s data bits. The bits transmitted on the

different levels of the deterministic model are chosen to be

equiprobable Bernoulli distributed, denoted by B(12 ). The

decoding is based on solving the linear equation in (2) at each

receiver. For secrecy, it is required to satisfy the perfect secrecy

constraint, i.e., I(Wi;yj) = 0, i, j ∈ {1, 2} and i 6= j in the

case of the deterministic model [32]. In the later part of the

sequel, it is shown that replacing the perfect secrecy constraint

at receiver with the strong or weak secrecy constraint does not

enlarge the capacity region of the deterministic model.

In the Gaussian case, the details of the encoding and

decoding schemes can be found in Sec. IV. For the Gaus-

sian model, the notion of strong secrecy is considered, i.e.,

I(W2;y
N
1 ) → 0 as N → ∞, where N corresponds to the

block length [33].

The following interference regimes are considered:

weak/moderate interference regime (0 ≤ α ≤ 1), high

interference regime (1 < α ≤ 2) and very high interference

regime (α > 2), where, with a slight abuse of notation

α , n
m

is used for the deterministic model and α ,
log INR

log SNR

is used for the Gaussian model. The quantity α captures the

amount of coupling between the signal and interference.
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Fig. 2: Deterministic Z-IC: partitioning of encoded messages

and outputs.

III. LINEAR DETERMINISTIC SYMMETRIC Z-IC:

CAPACITY REGION

In this section, the secrecy capacity region of the linear

deterministic symmetric Z-IC with unidirectional transmitter

cooperation is characterized for the different interference

regimes through Theorems 1-3. It is shown that the upper

bound on the secrecy capacity region matches with the lower

bound, and thereby establishes the capacity region for the

deterministic model. Due to lack of space, only a high level

description of the proofs of the results are provided, and the

interested reader is referred to [1], [34], [35] for details.

Note that in all interference regimes, the rate of both users

can be trivially upper bounded by m, i.e., R1 ≤ m and R2 ≤
m. One of the key techniques used in deriving tight outer

bounds is to partition the encoded message, output, or both,

depending on the value of α. The partitioning of the encoded

messages/outputs gives insights on the side information to be

provided to the receiver. This in turn allows one to exploit the

secrecy constraint at the receiver to obtain tight and tractable

outer bounds on the secrecy capacity region of the Z-IC. This

partitioning also helps to simplify the entropy terms as the

encoded messages at the transmitters are not independent due

to the cooperation between the transmitters.

The following Markov relation is used in the derivation

of these outer bounds: conditioned on the cooperating signal

(vN
21), the encoded signals and the messages at the two

transmitters are independent [14], [36], i.e.,

(W1,x
N
1 ) → (vN

21) → (W2,x
N
2 ). (3)

Outer Bounds in the Weak/Moderate Interference Regime

(0 ≤ α ≤ 1): The encoded message x1 is split into two

parts: one part (x1a), which is received without interference

at receiver 1, and another part (x1b), which is received with

interference at receiver 1. The encoded message of transmit-

ter 2 is also split into two parts: one part (x2a), which causes

interference to receiver 1, and another part (x2b), which does

not cause any interference to receiver 1. The partitioning of

the output and the encoded message is shown in Fig. 2a. In

the derivation of this outer bound, the secrecy constraints at

the receivers are not used.
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Fig. 3: Deterministic Z-IC with m = 5, n = 3 and C = 1.

Inner Bounds in the Weak/Moderate Interference Regime

(0 ≤ α ≤ 1): When there is a high capacity cooperative link

from transmitter 2 to transmitter 1, the interference caused

at receiver 1 by transmitter 2 can be completely canceled by

using the signal received from transmitter 2 via the cooperative

link at transmitter 1. This cancelation of interference offers

two benefits: it improves the achievable rate, and also ensures

secrecy, since the signal sent by transmitter 2 is no longer

decodable at receiver 1. When the capacity of the cooperative

link is not sufficiently high, it is not possible to design the

precoding to completely eliminate the interference caused by

transmitter 2 at receiver 1. In this case, the transmission of

random bits (i.e., transmission of artificial noise [37], [38])

by transmitter 1 can ensure secrecy of the data bits sent by

transmitter 2 at receiver 1, in turn enabling transmitter 2
to achieve a higher secure rate of communication. Thus,

the proposed achievable scheme uses a carefully designed

combination of interference cancelation and transmission of

random bits depending on the capacity of the cooperative link

C bits, and the value of α. A pictorial representation of the

scheme to achieve the corner points (R1, R2) = (5, 3) and

(R1, R2) = (3, 5) is shown in Figs. 3a and 3b, respectively.

Theorem 1: In the weak/moderate interference regime (0 ≤
α ≤ 1, i.e., n ≤ m), the secrecy capacity region of the 2-user

deterministic symmetric Z-IC with unidirectional and rate-

limited transmitter cooperation is

R1 ≤ m,R2 ≤ m,R1 +R2 ≤ 2m− n+ C. (4)

Remarks:

• The derivation of the outer bound [1] does not use the

secrecy constraint at the receiver. The proposed schemes

can achieve the four corner points of the outer bound,

and hence, the secrecy constraints at the receivers do not

result in any penalty on the capacity region. Thus, the

capacity region of the deterministic Z-IC is characterized

with and without secrecy constraints for all values of C.

• When 0 < α ≤ 1, both users can achieve the maximum

rate of m simultaneously if C ≥ m.

Outer Bounds in the High Interference Regime (1 < α < 2):

In this case, it is not difficult to see that the rate of user 1
can be upper bounded by m. To get insights into the outer

bounds on R2 and R1 + R2, consider Fig. 2b. One can see
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Fig. 4: Deterministic Z-IC with m = 4, n = 5 and C = 1.

that transmitter 2 cannot use the levels [1 : n − m] for

transmitting its own data as the corresponding links do not

exist at the intended receiver. Any data bits transmitted on

the levels [m + 1 : n], i.e., x2a, will be received without

interference at receiver 1. If receiver 2 can decode these data

bits, receiver 1 will also be able to decode these data bits.

Hence, these data bits y1a = x2a will not be secure. Hence,

they are provided as side information to receiver 2 to obtain the

upper bounds. Then, using the secrecy constraint at receiver 1,

the following outer bounds can be obtained.

Inner Bounds in the High Interference Regime (1 < α <

2): The achievable scheme proposed here differs from that

proposed in the weak/moderate interference regime in terms

of the placement of random bits. A high level description of

the achievable scheme to achieve the corner points (R1, R2) =
(4, 1) and (R1, R2) = (2, 3) is shown in Figs. 4a and 4b,

respectively.

Theorem 2: In the high interference regime (1 < α < 2,

i.e., m < n < 2m), the secrecy capacity region of the 2-user

deterministic symmetric Z-IC with unidirectional and rate-

limited transmitter cooperation is

R1 ≤ m,R2 ≤ 2m− n,R1 +R2 ≤ m+ C. (5)

Remarks:

• When C = 0 and 1 < α < 2, if user 1 achieves

the maximum rate of m, then user 2 cannot achieve

any nonzero secrecy rate. This is in contrast to the

weak/moderate interference case, where user 1 achieves

the maximum rate of m, while user 2 achieves the rate

of m− n even without cooperation.

• When 1 < α < 2 and C ≥ 2m− n, transmitters 1 and 2
can simultaneously achieve the maximum rates of m and

2m− n, respectively.

• In general, the principle behind the schemes to achieve

the corner points (m,m − n + C) and (m,C) in the

weak/moderate and high interference regimes, respec-

tively, is precoding of data bits at transmitter 1 using the

data bits of transmitter 2 received on the cooperative link

to cancel interference and ensure secrecy. On the other

hand, the achievability of the corner points (m−n+C,m)
and (n−m+C, 2m−n) in the weak/moderate and high

interference regimes, respectively, requires transmission

of random bits by transmitter 1 to ensure that the signal

C
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Tx 2

Rx 1

Rx 2

m

x1

x2a

y1a = x2a

y1b = x1 ⊕ x2b

y2 = x2a
x2b

m
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(Same signal y1a = y2 = x2a is

received at both the receivers)

(Not present at Rx 2,but

causes interference to Rx 1)

Fig. 5: Deterministic Z-IC with (m,n) = (2, 4): Illustration

of partitioning of the message/output.

from transmitter 2 remains secure, in addition to precod-

ing data bits received from transmitter 2 with its own data

bits.

Outer Bounds in the Very High Interference Regime (α ≥ 2):
In Fig. 5, it can be noticed that only the levels [n−m+1 : m]
can be used to send data from transmitter 2 to receiver 2, as

the links corresponding to the lower levels [1 : n − m] do

not exist at receiver 2. The data bits transmitted on the levels

[n − m + 1 : n], i.e., x2a, are received without interference

at receiver 1. If receiver 2 can decode these data bits, then

receiver 1 can also decode these data bits. Hence, transmitter 2
cannot send any data bits securely on these levels. To capture

this in the derivation, receiver 2 is provided with the side

information of the form yN
1a, which in turn helps to bound the

rate by I(W2;y
N
2 |yN

1a). It can be noticed that this quantity

is zero, as y1a = y2 = x2a. The secrecy capacity region in

the very high interference regime (α ≥ 2) is given in the

following theorem.

Theorem 3: In the very high interference regime (α ≥ 2,

i.e., 2m ≤ n) the secrecy capacity region of the 2-user

deterministic symmetric Z-IC with unidirectional and rate-

limited transmitter cooperation is

R1 ≤ m,R2 = 0. (6)

Proof: The outer bound on the rate of user 2 in Theorem 3

shows that user 2 cannot achieve any nonzero secrecy rate

irrespective of the capacity of the cooperative link. Thus,

transmitter 1 can send data bits on the levels [1 : m], while

transmitter 2 remains silent. This characterizes the capacity of

the deterministic Z-IC in the very high interference regime.

Interestingly, it turns out that the capacity region of the

deterministic symmetric Z-IC does not change if the perfect

secrecy constraint at the receiver is replaced with the strong

or the weak notion of secrecy. This result is stated in the

following Theorem.

Theorem 4: The secrecy capacity region of the determinis-

tic symmetric Z-IC with unidirectional transmitter cooperation

satisfies the following

Cperfect = Cstrong = Cweak, (7)
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where Cperfect, Cstrong and Cweak correspond to the capacity

regions of the 2-user deterministic Z-IC with unidirectional

transmitter cooperation guaranteeing the perfect, strong and

weak secrecy constraints at the receivers, respectively.

Proof: In the literature, three notions of secrecy have

been used: perfect, strong, and weak secrecy. Mathemati-

cally, perfect secrecy is defined as I(Wi;y
N
j ) = 0, i, j ∈

{1, 2} and i 6= j [32]. Strong secrecy is defined as:

lim
N→∞

I(Wi;y
N
j ) = 0, i, j ∈ {1, 2} and i 6= j [33].

Weak secrecy is defined as: lim
N→∞

1
N
I(Wi;y

N
j ) = 0, i, j ∈

{1, 2} and i 6= j [33].

Any communication scheme satisfying the perfect secrecy

condition will automatically satisfy the strong and weak se-

crecy conditions. Similarly, a communication scheme satisfy-

ing strong secrecy will automatically satisfy the weak secrecy

condition. Hence, the following holds

Cperfect ⊆ Cstrong ⊆ Cweak ⊆ Cweak
outer , (8)

where Cweak
outer corresponds to the outer bound on the capacity

region of the Z-IC with unidirectional transmitter cooperation

and weak secrecy constraints at the receivers. The achievable

results in Sec. III are obtained under the perfect secrecy

constraints at the receivers. On the other hand, it is not difficult

to show that the upper bounds on the capacity region in [1] do

not change if the perfect secrecy constraint is replaced with

the weak secrecy constraint.2 As the achievable rate regions

(i.e., Cperfect) match with the upper bounds on the capacity

region (i.e., Cweak
outer ), the relation in (7) holds.

IV. GAUSSIAN SYMMETRIC Z-IC: ACHIEVABLE SCHEME

For the Gaussian case, a unified achievable scheme is

proposed, which is applicable in the weak, moderate and

high interference regimes. The achievable scheme is based

on the cooperative precoding performed at the transmitters to

cancel the interference at the unintended receiver, along with

stochastic encoding and transmission of artificial noise. When

the capacity of the cooperative link is not sufficiently high,

it is not possible to share the entire message of transmitter 2
with transmitter 1 through the cooperative link. Hence, the

interference caused at receiver 1 by transmitter 2 cannot be

completely eliminated. Thus, stochastic encoding performed at

transmitter 2 and artificial noise transmission by transmitter 1
can provide additional randomness to increase the secrecy rate

of user 2.

The achievable scheme for the deterministic model is ex-

tended to the Gaussian model as follows. Since there is no

cooperative link from transmitter 1 to transmitter 2, transmit-

ter 1 cannot share its message with transmitter 2 for coop-

eration. The message of transmitter 1 intended to receiver 1
is inherently secure, as there is no link from transmitter 1 to

receiver 2. This translates to having a non-cooperative private

message wp1 ∈ Wp1 = {1, 2, . . . , 2NR1} at transmitter 1, and

for each message, it transmits a codeword from a Gaussian

codebook of size 2NR1 . Next, for the transmission of data by

2This can be shown by using 1

N
I(Wi;y

N
j ) ≤ ǫ, i 6= j, (weak secrecy)

as a measure of secrecy in the derivation of the outer bounds, instead of
I(Wi,yj) = 0 (perfect secrecy).

transmitter 2, recall that, in the deterministic case, the data

bits sent by transmitter 2 on the lower levels [1 : m− n] are

inherently secure in the weak/moderate interference regime

(See Fig. 3a). To enable secure transmission of data bits on

the higher levels (specifically, levels [m − n + 1 : m] in the

weak/moderate interference regime and levels [n−m+1 : n]
in the high interference regime), transmitter 2 needs the

assistance of transmitter 1. That is, transmitter 1 needs to

precode the data bits received through the cooperative link,

or needs to send a jamming signal, so that the other user’s

data bits remain undecodable at receiver 1. To translate this

scheme to the Gaussian case, the message at transmitter 2
is split into two parts: a non-cooperative private message

wp2 ∈ Wp2 = {1, 2, . . . , 2NRp2} and a cooperative private

message wcp2 ∈ Wcp2 = {1, 2, . . . , 2NRcp2}. Transmitter 2
encodes the non-cooperative private message into xN

p2 using

stochastic encoding. A stochastic encoder is specified by

a matrix of conditional probability fp2(xp2,k|wp2), where

xp2,k ∈ Xp2 and wp2 ∈ Wp2.

For the cooperative private message, transmitters 1 and 2
precode the message wcp2 cooperatively such that the code-

word carrying the cooperative private message is completely

canceled at the non-intended receiver. This cooperative pre-

coding also helps ensure secrecy for the cooperative private

message. The details of the encoding and decoding process

of the achievable scheme are presented in the following

subsection.

A. Encoding and decoding

For the non-cooperative private part, transmitter 1 generates

a codebook Cp1 containing 2NR1 codewoards of length N

with i.i.d. N (0, Pp1) entries. Transmitter 2 generates two

codebooks as follows. For the non-cooperative private mes-

sage, it generates a codebook Ccp2 containing 2N(Rp2+R′

p2)

codewords of length N with i.i.d. N (0, Pp2) entries. The

2N(Rp2+R′

p2) codewords in the codebook Cp2 are randomly

grouped into 2NRp2 bins, with each bin containing 2NR′

p2

codewords. Any codeword in Cp2 is indexed as xN
p2(wp2, w

′
p2)

for wp2 ∈ Wp2 and w′
p2 ∈ W ′

p2 = {1, 2, . . . , 2NR′

p2}. To

send wp2, transmitter 2 selects w′
p2 uniformly at random from

the set W ′
p2 and transmits the codeword xN

p2(wp2, w
′
p2). For

the cooperative private message, transmitter 2 generates a

codebook Ccp2 consisting of 2NRcp2 codewords of length N

with i.i.d. N (0, Pcp2) entries. This codebook is made available

at transmitter 1.

To send a message (wp2, wcp2), transmitter 2 superimposes

the cooperative codeword xcp2(wp2) with the non-cooperative

codeword xN
p2(wp2, w

′
p2) as

xN
2 (wp2, w

′
p2, wcp2) = xN

p2(wp2, w
′
p2) + hdx

N
cp2(wcp2). (9)

The following power constraint is required to be satisfied at

transmitter 2: Pp2 + h2
dPcp2 ≤ P , where Pp2 and Pcp2 are

parameters to be chosen later.

Transmitter 1 performs precoding as mentioned in (10), so

that the codeword carrying the cooperative private message

of transmitter 2 is canceled at receiver 1. This is termed

as cooperative precoding. Transmitter 1 also adds artificial
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Gaussian noise (xN
a1) to increase the achievable secrecy rate

for transmitter 2. Thus, transmitter 1 sends

xN
1 (wp1, wcp2) = xN

p1(wp1)− hcx
N
cp2(wcp2) + xN

a1. (10)

The power constraint at transmitter 1 reads: Pp1 + h2
cPcp2 +

Pa1 ≤ P , where Pp1 and Pa1 are parameters to be chosen

later.

The decoding at the receivers is performed as follows. Re-

ceiver 1 looks for a unique index ŵp1 such that (yN
1 ,xN

1 (ŵp1))
is jointly typical. Receiver 2 looks for a unique tuple

(ŵp2, ŵ
′
p2, ŵcp2) such that (yN

2 ,xN
p2(ŵp2, ŵ

′
p2),x

N
cp2(ŵcp2)) is

jointly typical. Decoding errors at the receivers can occur in

one of two ways. First, the receiver may not be able to find

any codeword that is jointly typical with the received sequence.

Second, a wrong codeword is jointly typical with the received

sequence.

Based on the above encoding and decoding strategy, the

following theorem gives a lower bound on the secrecy capacity

region of the Z-IC with unidirectional transmitter cooperation.

Theorem 5: For the Gaussian symmetric Z-IC with unidi-

rectional transmitter cooperation and secrecy constraints at the

receivers, the achievable rate region is given by

R1 ≤ I(xp1;y1),

R2 ≤ min {I(xp2,xcp2;y2), I(xp2;y2|xcp2) + min{CG,

I(xcp2;y2|xp2)}} −R′
p2, where R′

p2 = I(xp2;y1|xp1).
(11)

Proof: See Appendix A.

Remarks:

1) The term R′
p2 in Theorem 5 accounts for the rate sacri-

ficed by transmitter 2 in confusing receiver 1 to keep the

non-cooperative message of transmitter 2 secret. As the

capacity of the cooperative link increases, the loss in rate

due to the stochastic encoding decreases, as more power

can be assigned to the cooperative private message.

2) When CG = 0 and α ≥ 1, the transmission of artificial

noise by transmitter 1 is required along with stochastic

encoding for user 2 to achieve a non-zero secrecy rate.

By evaluating the mutual information terms in (11) and tak-

ing convex closure of the union of the set of regions obtained

over different codebook parameters (Pp1, Pa1, Pp2, Pcp2), the

following lower bound on the secrecy capacity region is

obtained.

Corollary 1: Using the result in Theorem 5, the following

rate region is achievable

Rs , convex closure of
⋃

0≤(θi,βi,λi)≤1, i=1,2

Rs
Z-IC(θi, βi, λi), (12)

where

Rs
Z-IC ,{(R1, R2) : R1 ≥ 0, R2 ≥ 0,

R1 ≤ 0.5 log

(

1 +
h2
dPp1

1 + h2
dPa1 + h2

cPp2

)

,

R2 ≤ 0.5 log(1 + h2
dPp2 + h4

dPcp2)−R′
p2,

R2 ≤ 0.5 log(1 + h2
dPp2) + min{CG,

0.5 log(1 + h4
dPcp2)} −R′

p2}, (13)

where R′
p2 , 0.5 log

(

1 +
h2

cPp2

1+h2

d
Pa1

)

, Pcp2 , λ2

(λ1+λ2)h2

d

P2,

Pp2 , λ1

λ1+λ2

P2, Pp1 , θ1
θ1+θ2

P ′, Pa1 , θ2
θ1+θ2

P ′, P ′ ,

(P1 − h2
cPcp2)

+, P1 , β1P , and P2 , β2P .

Proof: See Appendix B.

Remarks:

1) In Corollary 1, the parameter βi (0 ≤ βi ≤ 1) acts as

a power control parameter for transmitter i (i = 1, 2).
The parameters θi and λi act as rate splitting parameters

for transmitter i.

2) When C = 0 (or CG = 0), the system reduces to the

2-user Z-IC (Gaussian Z-IC) without cooperation, which

was studied in [30]. The achievable results in Theorem 2
(Theorem 3) in [30] can be obtained as a special case of

achievable results for the deterministic model (Gaussian

model) in Theorem 1 (Theorem 5), by setting C = 0
(CG = 0) and 0 ≤ α ≤ 1. Note that, for both the

deterministic and Gaussian models, achievable schemes

on the secrecy capacity region have not been addressed

in the literature for the high interference regime (α > 1),
even when C = 0 (CG = 0).

3) It is straightforward to extend the result in Corollary 1

by using time-division multiplexing [31, Lemma 2] and

allowing transmitter 1 to transmit over a different sub-

band [31, Lemma 3] to obtain the corresponding results

in [31], by setting CG = 0 and Pa1 = 0, for the

weak/moderate interference regime.

V. GAUSSIAN SYMMETRIC Z-IC: OUTER BOUNDS

In this section, the outer bounds on the secrecy capacity

region for the Z-IC with unidirectional transmitter cooperation

are stated as Theorems 6-8. In addition to the differences

between the deterministic model and the Gaussian model

(noise modeled by truncation and carry-overs ignored in

the module-2 addition), the derivation of outer bounds for

the Gaussian case requires the bounding of differential en-

tropy terms containing continuous as well as discrete random

variables, due to the unidirectional cooperation between the

transmitters. The partitioning of the encoded messages or

outputs used in the derivation of the outer bounds for the

deterministic case cannot be directly applied to the Gaussian

case. To overcome this problem, either analogous quantities

that serve as side information at receiver need to be found

to mimic the partitioning of the encoded messages/outputs,

or the bounding steps need to be modified taking cue from

the deterministic model. This helps to obtain tractable outer

bounds on the secrecy capacity region, which are presented in

the following subsections.

A. Weak/moderate interference regime (0 ≤ α ≤ 1)

The outer bound derived in Theorem 1 involved providing

the side information (x2a,v21) to receiver 2 by a genie.

The quantity x2a corresponds to the part of the encoded

message x2 of transmitter 2 which causes interference at

receiver 1 (See Fig. 2a). In the Gaussian case, to mimic the

approach used for the deterministic case, receiver 2 is provided

with side information (s2 , hcx2 + z1,v21). Note that an
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outer bound based on this idea was presented in [26], which

considered the Gaussian Z-IC with unidirectional transmitter

cooperation, but without secrecy constraints at the receivers.

For the sake of completeness, the result is stated as Theorem 6

for the symmetric case. The outer bound in Theorem 1 for

the weak/moderate interference regime can be considered as a

deterministic equivalent of the outer bound presented below.

Theorem 6 ( [26]): The capacity region of the 2-user Gaus-

sian symmetric Z-IC with unidirectional transmitter coopera-

tion is upper bounded as

R1 ≤ 0.5 log(1 + SNR), R2 ≤ 0.5 log(1 + SNR),

R1 +R2 ≤ 0.5 log(1 + SNR + INR + 2
√

SNR · INR)

+ 0.5 log

(

1 +
SNR

1 + INR

)

+ CG, (14)

where SNR , h2
dP and INR , h2

cP .

Note that the outer bound stated in Theorem 6 does not

use the secrecy constraint at receiver. In the weak/moderate

interference regime, the data bits transmitted on the lower

levels [1 : m − n] of transmitter 2 are inherently secure in

the deterministic case as shown in Fig. 3a. However, in the

Gaussian case, there is no one-to-one correspondence of this as

noise cannot be modeled by truncation. The secrecy constraint

at the receiver may lead to a nonzero penalty in rate for the

Gaussian case. Hence, outer bounds are derived on the rate

of user 2 and the sum rate using the secrecy constraint at

receiver 1, which is stated as the theorem below.

Theorem 7: The secrecy capacity region of the 2-user Gaus-

sian symmetric Z-IC with unidirectional transmitter coop-

eration in the weak/moderate interference regime is upper

bounded as

R1 ≤ 0.5 log(1 + SNR),

R2 ≤ max
−1≤ρ≤1

0.5 log

(

1 + SNR

− (ρSNR +
√

SNR · INR)2

1 + SNR + INR + 2ρ
√

SNR · INR

)

,

R1 +R2 ≤ log(1 + SNR)− 0.5 log(1 + INR) + CG. (15)

Proof: See Appendix C.

Remarks:

• It is easy to show that the outer bound on the sum rate in

Theorem 7 is tighter than the outer bound in Theorem 6

for all values of SNR, INR and CG. Thus, the outer bound

in Theorem 7 improves over Theorem 6. From the outer

bound on the rate of user 2 in Theorems 6 and 7, it can

be observed that outer bound obtained with the secrecy

constraint is tighter than the outer bound obtained without

using the secrecy constraint.

• When CG = 0, the outer bound on the rate of user 2

reduces to 0.5 log
(

1 + SNR − SNR·INR
1+SNR+INR

)

, as the only

possible value ρ can take is 0. Hence, this outer bound

indicates that user 2 cannot achieve the maximum pos-

sible rate of 0.5 log (1 + SNR). This is in contrast to

the deterministic case, where user 2 can achieve the

maximum rate of m, as observed from Theorem 1.

• The outer bound on the sum rate in Theorem 6 is appli-

cable in all interference regimes whereas the outer bound

in Theorem 7 is applicable only in the weak/moderate

interference regime.

B. High interference regime (1 < α < 2)

The derivation of the outer bound in this regime is based on

the outer bound in Theorem 2 obtained for the deterministic

model. In the proof of Theorem 2, to upper bound the rate

of user 2, a part of the output at receiver 1 which does not

contain the signal sent by transmitter 1 is provided as side

information to receiver 2, i.e., yN
1a. In the Gaussian case, it

is not possible to partition the encoded message as was done

for the deterministic model (See Fig. 2b). To overcome this

problem, the output at receiver 1, i.e., yN
1 , is provided as side

information to receiver 2. Providing side information in this

way creates a degraded channel from transmitter 2 to receiver 1
with respect to the channel from transmitter 2 to receiver 2.

In the deterministic case, to upper bound the sum rate, the

output at receiver 1 (yN
1 ) is partitioned into two parts: yN

1a

and yN
1b, and receiver 2 is provided with side information of

the form yN
1a. To mimic this in the Gaussian case, the output

of receiver 2, i.e., yN
2 , is provided as side information to

receiver 1 and (W1,y
N
1 ) is provided as side information to

receiver 2. The outer bound on the secrecy capacity region is

stated in the following theorem.

Theorem 8: The secrecy capacity region of the 2-user Gaus-

sian symmetric Z-IC with unidirectional transmitter coopera-

tion is upper bounded as

R1 ≤ 0.5 log(1 + SNR),

R2 ≤ max
−1≤ρ≤1

0.5 log

(

1 + SNR

− (ρSNR +
√

SNR · INR)2

1 + SNR + INR + 2ρ
√

SNR · INR

)

,

R1 +R2 ≤ max
−1≤ρ≤1

0.5 log

(

1 + SNR + INR

+ 2ρ
√

SNR · INR − (ρSNR +
√

SNR · INR)2

1 + SNR

)

+ 0.5 logΣy2|s + CG, (16)

where Σy2|s , 1 + SNR − Σy2,sΣ
−1
s,sΣ

T
y2,s

, Σy2,s ,
[

ρSNR ρSNR +
√

SNR · INR
]

and Σs,s ,
[

1 + SNR SNR + ρ
√

SNR · INR

SNR+ρ
√

SNR · INR 1+SNR+INR+2ρ
√

SNR · INR

]

.

Proof: See Appendix D.

Remarks:

• When there is no cooperation between the transmitters,

the encoded messages at the two transmitters are indepen-

dent of each other. Hence, for the non-cooperating case,

the outer bound on the rate is obtained by setting ρ = 0
in Theorem 8.

• The outer bound in Theorem 8 is applicable over all

the interference regimes. Note that the outer bound in
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Theorem 6 is also applicable to the high interference

regime. In the later part of the paper, it is demonstrated

that the outer bound in Theorem 8 is tighter than the outer

bound in Theorem 6 in this interference regime.

C. Relation between the outer bounds for the deterministic

and Gaussian models

In the following, it is shown that, for high SNR and

INR, the outer bounds for the Gaussian case in Theorems 7

and 8 are approximately equal to the outer bounds for the

deterministic model. For ease of presentation, it is assumed

that 0.5 logSNR, 0.5 log INR, and CG are integers. Recall

that, the parameters m, n and C of the deterministic model

are related to the Gaussian model as m = (⌊0.5 log SNR⌋)+,

n = (⌊0.5 log INR⌋)+ and C = ⌊CG⌋, respectively.

1) Weak/moderate interference regime (0 ≤ α ≤ 1): It is

easy to see that for high SNR and INR (i.e., SNR, INR ≫ 1),
the upper bounds on the individual rates in Theorem 6 can be

approximated as

R1≤0.5log(1 + SNR)≈m, and R2≤0.5log(1 + SNR)≈m.

(17)

When SNR > INR (i.e., 0 ≤ α ≤ 1), the outer bound on the

sum rate in Theorem 6 is approximated as

R1 +R2 ≤ 0.5 log
(

1 + SNR + INR + 2
√

SNR · INR
)

+ 0.5 log

(

1 +
SNR

1 + INR

)

+ CG,

≈ 2m− n+ C. (18)

From (17) and (18), the outer bound derived for the Gaussian

case matches with the corresponding outer bound for the

deterministic model stated in Theorem 1.

In Theorem 7, due to the maximization involved in the outer

bound on R2 over ρ, CG = 0 is considered to simplify the

exposition. For the non-cooperating case, the outer bound is

optimized by setting ρ = 0. The outer bound on the rate of

user 2 is approximated as

R2 ≤ 0.5 log

(

1 + SNR − SNR · INR

1 + SNR + INR

)

≈ m. (19)

Hence, the outer bound on the rate of user 2 is approximately

equal to m for high SNR and INR.

It is also easy to see that, for high SNR and INR, the outer

bound on the sum rate in Theorem 7 can be approximated as

R1 +R2 ≈ 2m− n+ C. (20)

It can be noticed that the outer bound derived for the Gaussian

case corresponds to the outer bound for the deterministic

model stated in Theorem 1. It is interesting to note that

both the outer bounds on the sum rate in Theorems 6 and

7 correspond to the outer bound for the deterministic model

stated in Theorem 1 for high SNR and INR. As mentioned

earlier in the remark to Theorem 7, the outer bound in

Theorem 7 is tighter than Theorem 6. However, for high values

of SNR and INR, the gap between these two outer bounds

decreases and these two outer bounds are approximately equal

to each other.

2) High interference regime (1 < α < 2): In Theorem 8,

due to the maximization involved in the upper bounds on R2

and R1 + R2 over ρ, CG = 0 is considered in the following

analysis to simplify the exposition. For the non-cooperating

case, the outer bound is optimized by setting ρ = 0. First, the

outer bound on the rate of user 1 is approximated as

R1 ≤0.5 log(1 + SNR) ≈ m. (21)

The outer bound on the rate of user 2 is also approximated as

R2≤0.5 log

(

1 + SNR − SNR · INR

1 + SNR + INR

)

≈2m− n.

(22)

The outer bound on the sum rate becomes

R1 +R2 ≤ 0.5 log

(

1 + SNR + INR − SNR · INR

1 + SNR

)

+ 0.5 logΣy2|s, (23)

where with some algebraic manipulation it can be shown that

Σy2|s = 1+ SNR −Σy2,sΣ
−1
s,sΣ

T
y2,s

≈ 1. Hence, the sum rate

outer bound in (23) reduces to

R1 +R2 ≤ m. (24)

From (21), (22), and (24), it can be observed that the approx-

imated outer bound of Gaussian case in Theorem 8 matches

with the outer bound of deterministic case in Theorem 2 for

the high interference regime.

This validates that the approaches used in obtaining outer

bounds in the two models are consistent with each other.

VI. APPROXIMATE SECURE SUM CAPACITY

CHARACTERIZATION OF THE GAUSSIAN SYMMETRIC Z-IC

IN THE WEAK/MODERATE INTERFERENCE REGIME

A. Secure sum generalized degrees of freedom (GDOF)

As mentioned earlier, the capacity region for many multiuser

scenarios has remained an open problem, even without secrecy

constraints at the receivers. Due to this, there has been an

active research interest in approximate characterizations of the

capacity. In this context, the notion of generalized degrees of

freedom (GDOF) has been used as a proxy for the capacity at

high SNR and INR, for the IC, without secrecy constraint [7].

A natural extension of this is the secure sum GDOF given by

dsum(κ, γ) = lim
SNR→∞

Csum(SNR, INR)

0.5 logSNR
, (25)

where κ , lim
SNR→∞

log INR

log SNR
, γ , lim

SNR→∞
CG

0.5 log SNR
and Csum

is the secure sum capacity of the 2-user Gaussian Z-IC with

unidirectional transmitter cooperation. To characterize the sum

GDOF, hd = 1 is assumed without loss of generality, and the

following power allocation is used.

Pp1 =
P

2
, Pp2 =

1

h2
c

, Pcp2 =
1

2

(

P − 1

h2
c

)

and Pa1 = 0.

(26)

It is also assumed that h2
cP > 1, so that the above power

allocation is always feasible. The motivation for this power
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allocation is as follows. The power for the message of trans-

mitter 1 is set as P
2 to ensure that user 1 achieves the maximum

GDOF of 1. Recall that, in the weak/moderate interference

regime, transmitter 2 can send data bits securely on the lower

levels [1 : m − n], as the links corresponding to these levels

are not present at receiver 1. In other words, the data bits

transmitted on the lower levels [1 : m−n] of transmitter 2 are

received at or below the noise floor of receiver 1. Hence, in

the Gaussian case, the power for the non-cooperative private

message is chosen such that it is received at the noise floor

of the receiver 1. Due to this power allocation, the loss in

rate of user 2 due to stochastic encoding is R′
p1 = 0.5

bits/s/Hz. Hence, the loss in achievable secrecy rate due to

stochastic encoding does not scale with SNR and INR. The

cooperative private message of transmitter 2 is assigned a

power of 1
2

(

P − 1
h2
c

)

.

In the following theorem, the secure sum GDOF is charac-

terized using the power allocation in (26) for all values of CG

in the weak/moderate interference regime.

Theorem 9: The optimal secure sum GDOF of the 2 user

Gaussian symmetric Z-IC with unidirectional transmitter co-

operation in the weak/moderate interference regime is

dsum(κ, γ) = min {2, 2− κ+min (γ, 1)} . (27)

Proof: See Appendix E.

Remarks:

1) The outer bound on the sum rate in Theorems 6 and 7

are used to obtain outer bound on the sum GDOF. Both

the bounds give the same results in terms of the GDOF.

Note that the derivation of the outer bound in Theorem 6

does not use the secrecy constraint at receiver 1 [26].

Hence, there is no penalty in the sum GDOF due to

the secrecy constraint at receiver in the weak/moderate

interference regime for all values of CG.

2) When γ = κ, dsum(κ, γ) = 2. Hence, both users

can achieve the maximum GDOF of 1 simultaneously.

Similarly, in the deterministic model, when C = n

(or C
m

= α), both users can simultaneously achieve a

maximum rate of m.

As the proposed scheme with the power allocation in (26)

can achieve the optimal sum GDOF, the achievable sum rate

will be within a finite number of bits from the outer bound.

In the following subsection, the gap between the achievable

sum rate and outer bound is characterized.

B. Finite bit gap result on the sum rate capacity

In this section, the sum rate capacity of the 2-user Gaussian

Z-IC with unidirectional transmitter cooperation is shown to

lie within 2 bits/s/Hz of the outer bound in the weak/moderate

interference regime (INR < SNR) for all values of CG. Note

that this gap is the worst case gap. To show the finite gap

result, the power allocation in (26) is used in Corollary 1 to

obtain a lower bound on the secure sum capacity. This result

is stated in the following theorem.

Theorem 10: The secure sum rate capacity (Csum) of the 2-

user Gaussian symmetric Z-IC with unidirectional transmitter

cooperation is bounded from above by the outer bound, which

in turn is within 2 bits/s/Hz of the inner bound in the

weak/moderate interference regime for all values of CG, i.e.,

Rsum ≤ Csum ≤ Couter
sum ≤ Rsum + 2, (28)

where Rsum and Couter
sum correspond to the lower bound and

upper bound on the secure sum capacity, respectively.

Proof: See Appendix F.

VII. NUMERICAL RESULTS AND DISCUSSION

In Fig. 6a, the secure sum capacity of the deterministic Z-

IC is plotted against α for different values of C using the

result in Sec. III. In this case, the secure sum capacity is

normalized by m. When C = 0, as α increases, the sum

capacity decreases and becomes constant for α > 1. As the

value of the cooperative link increases, in the initial part

of the weak interference regime, both users can achieve the

maximum rate, i.e., m. This is due to the fact that the capacity

of the cooperative link is sufficient to cancel the interference

at receiver 1. However, with further increase in the value of

C, the secure sum capacity starts decreasing. In the very high

interference regime, user 2 cannot achieve any nonzero secrecy

rate irrespective of the value of C.

In Fig. 6b, the upper bounds on the secrecy capacity

region of the Z-IC in Theorems 6, 7 and 8 are compared for

the weak/moderate interference regime. The outer bound in

Theorem 7 is tighter than the outer bounds in Theorems 6

and 8 except for the corner points for transmitter 2. Recall

that, the outer bound in Theorem 6 does not use the secrecy

constraint at the receiver in its derivation. The outer bound in

Theorem 8 is derived using the intuitions obtained from the

high interference regime case considered in the deterministic

model for Theorem 2. This is reflected in the plot as explained

above. In Fig. 6c, the outer bound on the secrecy capacity

region of the Z-IC in Theorems 6 and 8 are compared for the

high interference regime. The proposed outer bound is tighter

than the outer bound in Theorem 6.

In Figs. 7a and 7b, the achievable results in Corollary 1

are plotted along with the outer bounds obtained in Sec. V

for different values of CG, in the weak and high interference

regimes, respectively. When CG > 0, a part of the interference

can be canceled at the unintended receiver, which leads to

a gain in the rate due to cooperation. In particular, the

improvement in the sum rate performance for both the cases

can be observed from these figures. As the capacity of the

cooperative link increases, less power is assigned to send the

non-cooperative private message of transmitter 2, which in turn

also reduces the loss in rate due to stochastic encoding.

In Fig. 7c, the secure sum GDOF stated in Theorem 9 is

plotted against α for various values of γ. From the figure, it

can be noticed that with cooperation it is possible for both

users to achieve the maximum GDOF, i.e., 1, in the initial

part of the weak/moderate interference regime, if the capacity

of the cooperative link scales with SNR. In these cases, there

is no loss in terms of GDOF due to the secrecy constraint at

the receiver.
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Fig. 6: (a) Sum rate capacity for the deterministic symmetric Z-IC with m = 4, n = 5 and C = 1; (b) Comparison of the

outer bounds on the secrecy capacity region for the Gaussian symmetric Z-IC: P = 100, hd = 1, hc = 0.5, α = 0.69, and

CG = 0, and (c) Comparison of the outer bounds on the secrecy capacity region for the Gaussian symmetric Z-IC: P = 100,

hd = 1, hc = 1.5, α = 1.17, and CG = 1.
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Fig. 7: (a) Achievable rate region for the Gaussian model in the weak/moderate interference regime: P = 100, hd = 1, hc = 0.5
and α = 0.69; (b) Achievable rate region for the Gaussian model in the high interference regime: P = 100, hd = 1, hc = 1.5
and α = 1.17; and (c) Secure sum GDOF in the weak/moderate interference regime for the Gaussian model. In the plot, γ

corresponds to the scaling of the capacity of the cooperative link with respect to 0.5 logSNR.

VIII. CONCLUSIONS

This work explored the role of limited-rate unidirectional

transmitter cooperation in facilitating secure communication

over the 2-user symmetric Z-IC. For the deterministic case,

the achievable scheme used a combination of interference

cancelation and transmission of random bits. The secrecy

capacity region of the deterministic model was characterized

over all interference regimes and for all values of C. The

study of the deterministic model gave useful insights for the

Gaussian case. The proposed scheme for the Gaussian model

used a fusion of cooperative precoding for interference can-

celation, stochastic encoding and artificial noise transmission

for ensuring secrecy of the unintended message at the receiver.

The secure sum GDOF of the Gaussian symmetric Z-IC was

characterized in the weak/moderate interference regimes. The

sum rate capacity was also shown to lie within 2 bits of

the outer bound in the weak/moderate interference regime for

all values of the capacity of the cooperative link, CG. The

results showed that cooperation between the users can facilitate

secure communication over Z-IC except for the very high

interference regime. It is also found that secrecy constraint at

the receiver does not hurt the capacity in the weak/moderate

interference regime for the deterministic model. Similarly, it

was found that there is no loss in the secure sum GDOF

in the weak/moderate interference regime due to the secrecy

constraint at the receiver.

APPENDIX

A. Proof of Theorem 5

The proof involves analyzing the error probability at the

decoders for the proposed encoding scheme, along with

equivocation computation. The equivocation computation is
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necessary to choose how much of its own rate transmitter 2
must sacrifice to keep the non-cooperative private message

secret. The main novelty in the proof lies in precoding of the

cooperative private message of transmitter 2 at transmitter 1,

which cancels the interference at receiver 1 and at the same

time ensures secrecy of the cooperative private message.

1) Error probability analysis: For receivers 1 and 2, define

the following events: Ei , {(yN
1 ,xN

p1(i)) ∈ TN
ǫ (PY1Xp1

)},

and Fijk , {(yN
2 ,xN

p2(i, j),x
N
cp2(k)) ∈ TN

ǫ (PY2Xp2Xcp2
)},

where TN
ǫ (PY1Xp1

) denotes the set of jointly typical sequences

y1 and xp1 with respect to P (y1,xp1) and TN
ǫ (PY2Xp2Xcp2

)
denotes the set of jointly typical sequences y2, xp2 and

xcp2 with respect to P (y2,xp2,xcp2). Without loss of gen-

erality, assume that transmitters 1 and 2 send xN
1 (1, 1) and

xN
2 (1, 1, 1), respectively. An error occurs if the transmitted

and received sequences are not jointly typical, or a wrong

codeword is jointly typical with the received sequences. Using

the union of events bound and asymptotic equipartition prop-

erty (AEP), it can be shown that λN
e1 = P (Ec

1

⋃∪i6=1Ei) ≤
P (Ec

1) +
∑

i6=1

P (Ei) → 0 as N → ∞ provided

R1 ≤ I(xp1;y1). (29)

Similarly, the probability of error at receiver 2, i.e.,

λN
e2 = P (F c

111

⋃∪(i,j,k) 6=(1,1,1)Fijk) ≤ P (F c
111) +

∑

(i,j,k) 6=(1,1,1)

P (Fijk) → 0 as N → ∞ provided

Rp2 +R′
p2 ≤ I(xp2;y2|xcp2), Rcp2 ≤ I(xcp2;y2|xp2),

Rp2 +R′
p2 +Rcp2 ≤ I(xp2,xcp2;y2). (30)

Due to the rate-limited cooperation, the following condition is

required to be satisfied for the cooperative private message

Rcp2 ≤ CG. (31)

Hence, using (29), (30), (31), and R2 = Rp2 + Rcp2, (11) is

obtained.

In the following, R′
p2 is determined for ensuring secrecy

of the non-cooperative private message of transmitter 2 at

receiver 1.

2) Equivocation computation: For ensuring strong secrecy,

the following condition is required to be satisfied3

lim
N→∞

I(W2;y
N
1 ) = 0. (32)

Consider the following

I(W2;y
N
1 ) = I(Wp2,Wcp2;y

N
1 ),

= I(Wp2;y
N
1 ) + I(Wcp2;y

N
1 |Wp2). (33)

Note that H(Wcp2|yN
1 ,Wp2) = H(Wcp2) because the code-

word carrying the cooperative private message is completely

canceled at receiver 1 and the cooperative private message is

chosen independent of the non-cooperative private message at

transmitter 2. Hence, lim
N→∞

I(Wcp2;y
N
1 |Wp2) = 0. Now, it

is required to show that strong secrecy condition is satisfied

3In the equivocation computation, it is assumed for ease of presentation
that transmitter 1 does not send any artificial noise. However, the derivation
holds even when transmitter 1 sends artificial noise.

for the non-cooperative private message of transmitter 2 at

receiver 1. First, consider the following:

I(Wp2;y
N
1 ) ≤ I(Wp2;y

N
1 ,xN

p1)
(a)
= I(Wp2;y

N
1 |xN

p1),

(b)
= I(Wp2;y

′N
1 ), (34)

where (a) is obtained using the fact that Wp2 is independent

of xN
p1 and (b) is obtained using the fact that xN

p1 and xN
p2 are

chosen independent of each other during code construction

and y′N
1 , hcx

N
p2 + zN1 .

It is not difficult to see that transmitter 2 forms a hypo-

thetical Gaussian wiretap channel with receiver 2 (legitimate

user) and receiver 1 (eavesdropper) with outputs yN
2 and y′N

1 ,

respectively. Using the result in [39, Corollary 2], one can

ensure that I(Wp2;y
′N
1 ) → 0 as N → ∞ provided

R′
p2 = I(xp2;y

′
1) + ǫn = I(xp2;y1|xp1) + ǫn. (35)

Note that, although Corollary 2 in [39] is stated for the

memoryless wiretap channel with additive cost function, the

result is applicable in the Gaussian case also, as the approach

can be directly generalized from the discrete case to the

continuous case [40, Chapter 6].

B. Proof of Corollary 1

The first term in (11) is evaluated as follows

R1 ≤ 0.5 log

(

1 +
h2
dPp1

1 + h2
dPa1 + h2

cPp2

)

(36)

where the power allocations are as mentioned in the statement

of the theorem. The second term in (11) is simplified as follows

R2 ≤ 0.5 log(1 + h2
dPp2 + h4

dPcp2)−R′
p2, (37)

where R′
p2 = 0.5 log

(

1 +
h2

cPp2

1+h2

d
Pa1

)

.

The last term in (11) is simplified as follows

R2 ≤ 0.5 log(1 + h2
dPp2) + min

{
CG, 0.5 log(1 + h4

dPcp2)
}

−R′
p2. (38)

Taking convex closure of (36) and the minimum of (37) and

(38) over different values of θi, βi and λi, the achievable

secrecy rate in (12) is obtained. The parameters θi, βi and λi

are defined in the statement of the Corollary. This completes

the proof.

C. Proof of Theorem 7

It is easy to see that the rate of transmitter 1 is upper

bounded by 0.5 log(1 + SNR). Hence, it is required to prove

the upper bounds on the rate of transmitter 2 and the sum

rate. Using Fano’s inequality, the rate of transmitter 2 is upper

bounded as follows

NR2 ≤ I(W2;y
N
2 ) +NǫN ,

≤ I(W2;y
N
2 ,yN

1 ) +NǫN ,

= I(W2;y
N
1 ) + I(W2;y

N
2 |yN

1 ) +NǫN ,

(a)

≤ h(yN
2 |yN

1 )− h(yN
2 |yN

1 ,W2) +NǫN ,
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or R2

(b)

≤ max
0≤|ρ|≤1

0.5 log

(

1 + SNR−

(ρSNR +
√

SNR · INR)2

1 + SNR + INR + 2ρ
√

SNR · INR

)

, (39)

where (a) is obtained using the secrecy constraint at the

receiver 1; (b) is obtained using the approach in [7], [41].

In the following, the sum rate is upper bounded using Fano’s

inequality, secrecy constraint at receiver 1 and chain rule of

mutual information.

N [R1 +R2]

≤ I(W1;y
N
1 ) + I(W2;y

N
2 )− I(W2;y

N
1 ) +NǫN ,

= I(W1;y
N
1 ) + I(W2;y

N
2 )− I(W2;y

N
1 , sN2 )

+ I(W2; s
N
2 |yN

1 )+NǫN , where sN2 , hcx
N
2 + zN1 . (40)

The main novelty in the proof lies in bounding these mutual

information terms. To upper bound the sum rate further,

consider the first two terms of (40), where the cooperative

signal vN
21 is provided as side information to both the receivers.

I(W1;y
N
1 ) + I(W2; s

N
2 |yN

1 )

(a)

≤ I(W1;y
N
1 |vN

21) + I(W2;v
N
21|yN

1 ) + I(W2; s
N
2 |yN

1 ,vN
21),

≤ I(W1,x
N
1 ;yN

1 |vN
21) + I(W2;v

N
21|yN

1 )+

I(W2; s
N
2 |yN

1 ,vN
21),

(b)
= I(xN

1 ;yN
1 |vN

21) + I(W2;v
N
21|yN

1 ) + I(W2; s
N
2 |yN

1 ,vN
21),

= I(xN
1 ;yN

1 |vN
21) +H(vN

21|yN
1 )−H(vN

21|yN
1 ,W2)

+ h(sN2 |yN
1 ,vN

21)− h(sN2 |yN
1 ,vN

21,W2),

(c)

≤ I(xN
1 ;yN

1 |vN
21) +H(vN

21) + h(sN2 ,yN
1 |vN

21)− h(yN
1 |vN

21)

− h(sN2 |yN
1 ,vN

21,W2),

= I(xN
1 ;yN

1 |vN
21) +H(vN

21) + h(sN2 |vN
21) + h(yN

1 |sN2 ,vN
21)

− h(yN
1 |vN

21)− h(sN2 |yN
1 ,vN

21,W2), (41)

where (a) is obtained using the chain rule for mutual in-

formation and the fact that v21 is not a function of W1;

(b) is obtained using the Markov chain relation: W1 →
(v21,x1) → y1, which can shown using the signal flow

graph (SFG) approach in [42]; (c) follows because removing

conditioning cannot decrease entropy and h(sN2 ,yN
1 |vN

21) =
h(yN

1 |vN
21) + h(sN2 |yN

1 ,vN
21).

Note that bounding the differential entropy terms above

is difficult as it involves continuous and discrete random

variables. To overcome this problem, using relation in (3),

it can be shown that h(sN2 |vN
21) = h(sN2 |vN

21,x
N
1 ). This also

implies that h(sN2 |vN
21,x

N
1 ) = h(yN

1 |vN
21,x

N
1 ). This is one of

the key steps in the derivation as it leads to cancelation of

I(xN
1 ;yN

1 |vN
21) as shown below.

I(W1;y
N
1 ) + I(W2; s

N
2 |yN

1 )

≤ I(xN
1 ;yN

1 |vN
21) +H(vN

21) + h(sN2 |vN
21,x

N
1 )

+ h(yN
1 |sN2 ,vN

21)− h(yN
1 |vN

21)− h(sN2 |yN
1 ,vN

21,W2),

= I(xN
1 ;yN

1 |vN
21) +H(vN

21) + h(yN
1 |vN

21,x
N
1 )

+ h(yN
1 |sN2 ,vN

21)− h(yN
1 |vN

21)− h(sN2 |yN
1 ,vN

21,W2),

(a)

≤ I(xN
1 ;yN

1 |vN
21) +NCG − I(xN

1 ;yN
1 |vN

21)

+ h(yN
1 |sN2 ,vN

21)− h(sN2 |yN
1 ,vN

21,W2,x
N
2 ),

(b)
= NCG + h(yN

1 |sN2 ,vN
21)− h(sN2 |yN

1 ,vN
21,x

N
2 ),

= NCG + h(yN
1 |sN2 ,vN

21)− h(sN2 ,yN
1 |vN

21,x
N
2 )

+ h(yN
1 |vN

21,x
N
2 ),

= h(yN
1 |sN2 ,vN

21)− h(sN2 |xN
2 ,vN

21)− h(yN
1 |sN2 ,xN

2 ,vN
21)

+ h(yN
1 |xN

2 ,vN
21) +NCG,

(c)

≤ h(sN1 )− h(zN1 ) +NCG, where sN1 , hdx
N
1 + zN1 ,

(42)

where (a) is obtained using the fact that conditioning cannot

increase the differential entropy and H(vN
21) ≤ NCG; (b)

is obtained using the fact that I(W2; s
N
2 |yN

1 ,vN
21,x

N
2 ) = 0,

which can again be shown with the help of an SFG [42];

and (c) is obtained by noticing that first and third term cancel

with each other using the relation in (3) and using the fact

that conditioning cannot increase the differential entropy.

Now, consider the bounding of the remaining two terms in

(40). As it involves the difference of two mutual information

terms, it is not straightforward to upper bound these terms.

In the weak/moderate interference regime, the channel from

transmitter 2 to receiver 1 is weaker than the channel from

transmitter 2 to receiver 1. Hence, x2, y2 and s2 satisfy the

following Markov chain: x2 → y2 → s2 and this channel can

be viewed as a degraded broadcast channel. Using the result

in [30], [43], the following bound is obtained.

I(W2;y
N
2 )− I(W2;y

N
1 , sN2 )

= I(W2;y
N
2 )− I(W2; s

N
2 )− I(W2,y

N
1 |sN2 ),

≤ I(W2;y
N
2 )−I(W2; s

N
2 )≤ N [I(x2;y2)− I(x2; s2)].

(43)

Finally, using (42) and (43), (40) becomes

R1 +R2 ≤ log(1 + SNR)− 0.5 log(1 + INR) + CG. (44)

This completes the proof.

D. Proof of Theorem 8

As mentioned earlier, the rate of transmitter 1 is upper

bounded by 0.5 log(1 + SNR). Hence, it is required to prove

the upper bounds on the rate of transmitter 2 and the sum

rate. Using the steps used to obtain outer bound on the rate

of user 2 in the proof of Theorem 7, the following bound is

obtained

NR2 ≤ max
0≤|ρ|≤1

0.5 log

(

1 + SNR

− (ρSNR +
√

SNR · INR)2

1 + SNR + INR + 2ρ
√

SNR · INR

)

. (45)

The derivation of the outer bound on the sum rate goes

as follows. First, an outer bound on the rate of user 1 is
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obtained. Then, an outer bound on the rate of user 2 is derived.

Adding these two outer bounds leads to cancelation of negative

differential entropy terms, which in turn allows one to obtain

a single letter characterization of the sum rate outer bound.

In the following, an outer bound on the rate of user 1 is

obtained by providing yN
2 as side information to receiver 1.

NR1 ≤ I(W1;y
N
1 ,yN

2 ) +NǫN ,

(a)
= I(W1;y

N
1 |yN

2 ) +NǫN ,

(b)

≤ h(yN
1 |yN

2 )− h(sN1 |yN
2 ,W1,x

N
2 ,vN

21) +NǫN ,

where sN1 , hdx
N
1 + zN1

(c)

≤ h(yN
1 |yN

2 )− h(s̃N1 |yN
2 ,W1,x

N
2 ,vN

21) +NǫN ,

where s̃N1 , hdx
N
1 + z̃N1 ,

(d)
= h(yN

1 |yN
2 )− h(s̃N1 |W1,v

N
21) +NǫN , (46)

where (a) is obtained using the fact that yN
2 is independent

of W1; (b) is obtained using the fact that conditioning cannot

increase the differential entropy; (c) is obtained using the fact

that the secrecy capacity region of the Z-IC with confidential

messages is invariant under any joint channel noise distribu-

tion P (zN1 , zN2 ) that leads to the same marginal distributions

P (zN1 ) and P (zN2 ) [44]. Although this invariance property

is stated for the Gaussian IC in [44], it holds for the Z-IC

with limited-rate transmitter cooperation also. The need for

replacing zN1 with z̃N1 will become clear later in the proof.

Finally, (d) is obtained using the relation in (3).

Next, to bound the rate of user 2, starting from Fano’s

inequality, one proceeds as follows. The genie provides

(yN
1 ,W1) as side information to receiver 2 and the rate of

user 2 is further upper bounded as follows

NR2 ≤ I(W2;y
N
1 ,W1) + I(W2;y

N
2 |yN

1 ,W1) +NǫN .

(47)

Consider the first term in (47)

I(W2;y
N
1 ,W1)

(a)

≤ NǫN +H(W1|yN
1 )−H(W1|yN

1 ,W2),

(b)

≤ NǫN , (48)

where (a) is obtained using the secrecy constraint at receiver 1,

i.e., I(W2;y
N
1 ) ≤ NǫN and (b) is obtained from the reliability

condition for message W1, i.e., H(W1|yN
1 ) ≤ NδN and

dropping the negative entropy term. In the above, for notational

simplicity, δN is absorbed into ǫN . Using (48), (47) reduces to

NR2≤I(W2;y
N
2 ,vN

21|yN
1 ,W1) +NǫN ,

=I(W2;v
N
21|yN

1 ,W1)+I(W2;y
N
2 |vN

21,y
N
1 ,W1)+NǫN .

(49)

To bound the rate of user 2 further, s̃N1 is included in the

second mutual information term. In the following, it can

be noticed that working with s̃N1 instead of sN1 leads to

−h(z̃N1 ) instead of 0. Thus, replacing the noise in sN1 with

an independent noise leads to a tighter outer bound. Hence,

the outer bound on R2 becomes

R2 ≤ H(vN
21|yN

1 ,W1)−H(vN
21|yN

1 ,W1,W2)

+ I(W2;y
N
2 , s̃N1 |vN

21,y
N
1 ,W1) +NǫN ,

(a)

≤ H(vN
21) + I(W2; s̃

N
1 |vN

21,y
N
1 ,W1)

+ I(W2;y
N
2 |vN

21,y
N
1 ,W1, s̃

N
1 ) +NǫN ,

(b)

≤ H(vN
21)+h(s̃N1 |vN

21,W1)−
h(s̃N1 |vN

21,y
N
1 ,W1,W2,x

N
1 ,xN

2 ) + h(yN
2 |yN

1 , s̃N1 )−
h(yN

2 |vN
21,y

N
1 ,W1, s̃

N
1 ,W2,x

N
2 ) +NǫN ,

= H(vN
21) + h(s̃N1 |vN

21,W1)− h(z̃N1 ) + h(yN
2 |yN

1 , s̃N1 )

− h(zN2 ) +NǫN , (50)

where (a) and (b) are obtained using the fact that removing

(or adding) conditioning cannot decrease (or cannot increase)

the differential entropy.

Adding (46) and (50), the following is obtained

R1 +R2

≤ H(v21) + h(y1|y2) + h(y2|y1, s̃1)− h(z̃1)− h(z2),

≤ max
0≤|ρ|≤1

CG + 0.5 log

[

1 + SNR + INR + 2ρ
√

SNR · INR

− (ρSNR +
√

SNR · INR)2

1 + SNR

]

+ 0.5 logΣy2|s, (51)

where Σy2|s is as defined in the statement of the theorem.

The above inequality is obtained using the approach in [7],

[41]. The individual terms in the above equations are obtained

as follows: h(y1|y2) = 0.5 log 2πeΣy1|y2
, where Σy1|y2

=

E[y2
1] − E[y1y2]

2

E[y2

2
]

= 1 + SNR + INR + 2ρ
√

SNR · INR −
(ρSNR+

√
SNR·INR)2

1+SNR
. The term Σy2|s is obtained as follows:

Σy2|s = E[y2
2] − E[y2s

T ]E[ssT ]−1E[sy2] = 1 + SNR −
Σy2,sΣ

−1
s,sΣ

T
y2,s

, where s , [s̃1 y1]
T . In the above equation,

the terms Σy2,s and Σs,s are as defined in the statement of the

theorem. This completes the proof.

E. Proof of Theorem 9

Using Corollary 1 and the power allocation in (26), the

lower bound on the sum rate reduces to

R1 +R2

≤ 0.5 log

(

1 +
P

4

)

+min

{

0.5 log

(

1 +
1

2h2
c

+
P

2

)

,

0.5 log

(

1 +
1

h2
c

)

+min {CG, 0.5 log (1+

1

2

(

P − 1

h2
c

))}}

− 0.5 log 2,

= 0.5 logSNR +min

{

0.5 logSNR, 0.5 log
SNR

INR

+min {CG, 0.5 logSNR}}+O(1),

or dsum(κ, γ) = min{2, 2− κ+min (1, γ)}. (52)

Hence, the achievable sum GDOF becomes

dsum(κ, γ) = min {2, 2− κ+ γ} . (53)
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To establish the GDOF optimality of the proposed scheme,

consider the following trivial outer bound on the sum rate,

i.e., R1 + R2 ≤ log (1 + SNR). Hence, the outer bound on

the secure sum GDOF becomes dsum(κ, γ) ≤ 2.

Next, consider the outer bound on the sum rate in Theorem 6

R1 +R2 ≤ 0.5 log(1 + SNR + INR + 2
√

SNR · INR)

+ 0.5 log

(

1 +
SNR

1 + INR

)

+ CG,

≤ 0.5 log (1 + 3SNR + INR) + 0.5 log (1 + SNR + INR)

− 0.5 log (1 + INR) + CG,

= log SNR − 0.5 log INR + CG +O(1),

or dsum(κ, γ) ≤ 2− κ+ γ. (54)

Next, starting from the sum rate bound in Theorem 7 and

using a similar procedure as the above, it can be shown that

dsum(κ, γ) ≤ 2 − κ+ γ. Hence, although (unlike Theorem 6)

Theorem 7 was derived accounting for the secrecy constraint,

both the theorems lead to the same outer bound on the GDOF:

dsum(κ, γ) ≤ min {2, 2− κ+ γ} . (55)

It can be verified that the outer bound in (55) coincides with

the achievable GDOF in (53). Hence, the proposed scheme is

GDOF optimal, and this completes the proof.

F. Proof of Theorem 10

Using Corollary 1 and the power allocation in (26), the

lower bound on the sum rate reduces to

R1 +R2

≥0.5 log

(

1 +
Pp1

1 + h2
cPp2

)

+min{0.5 log(1+Pp2+Pcp2)
︸ ︷︷ ︸

I1

,

0.5 log(1 + Pp2) + min{CG, 0.5 log(1 + Pcp2)}
︸ ︷︷ ︸

I2

}

− 0.5 log(1 + h2
cPp2). (56)

To bound the gap, consider the following exhaustive cases:

1) When I1 ≤ I2: In this case, (56) reduces to

R1 +R2

≥ 0.5 log

(

1 +
P

4

)

+ 0.5 log

(

1 +
1

2h2
c

+
P

2

)

− 0.5 log 2,

(57)

> 0.5 log(1 + SNR) + 0.5 log(1 + SNR)− 2. (58)

A trivial outer bound on the sum rate is R1 + R2 < log(1 +
SNR). Hence, comparing this outer bound on the sum rate

with (58), the gap is at most 2 bits/s/Hz.

2) When I1 > I2 and 0.5 log(1+Pcp2) > CG: In this case,

the lower bound on the sum rate in (56) reduces to

R1 +R2≥ 0.5 log

(

1+
SNR

4

)

+0.5 log

(

1+
SNR

INR

)

+CG

− 0.5 log(1 + h2
cPp2),

> 0.5 log(1 + SNR) + 0.5 log

(

1 +
SNR

INR

)

+ CG − 1.5.

(59)

To calculate the gap, the following outer bound on the sum

rate in Theorem 7 is used.

R1 +R2 ≤ log (1 + SNR)− 0.5 log (1 + INR) + CG. (60)

Subtracting (59) from the sum rate outer bound in (60), it can

be seen that the gap is at most 2 bits/s/Hz.

3) When I1 > I2 and 0.5 log(1+Pcp2) ≤ CG: In this case,

the lower bound on the sum rate reduces to (57), for which

the gap is shown to be at most 2 bits/s/Hz.

Hence, the sum rate capacity of the Z-IC with unidirec-

tional transmitter cooperation and the secrecy constraints at

the receivers is within 2 bits/s/Hz of the outer bound. This

completes the proof.
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