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Abstract—In this work, the role of unidirectional limited rate  their own rates by decoding and canceling the interference,
transmitter cooperation is studied for the 2-user symmetric since this does not preserve the communication secrecy. Thi

Z interference channel (Z-IC) with secrecy constraints at he o545 o the following fundamental questions: (a) how much
receivers, in achieving two conflicting goals simultaneols . terf b itiqated th h rate-limited traitt
mitigating interference and ensuring secrecy. First, the problem Interierence can be mitigate rough rate-imited tratem

is studied under the linear deterministic model. A novel sckme ~Cooperation, when there are secrecy constraints at reseive
for partitioning the encoded messages and outputs based ohe (b) what is the corresponding gain in the rate achieved by the
relative strengths of the signal and interference is propasd. cooperation between transmitters? Answering these qussti

The partitioning reveals the side information that needs tobe ; ; N i ;
provided to the receiver and facilitates the development ofight helps in understanding the role of cooperation in managing

outer bounds on the secrecy capacity region. The achievableint(:"rf(:"r(:"nce and ensu_ring secrecy _in multiuser scenarios. .
schemes for the deterministic model use a fusion of coopeiaé The effect of transmitter cooperation on the secrecy capaci
precoding and transmission of a jamming signal. The optimaty  is closely related to the underlying channel model. The okan

of the proposed scheme is established for the deterministmodel model considered in this paper is the Z-IC [4], [5]. In the Z-

for all possible parameter settings. The insights obtainedrom = oy one of the two transmitters causes interference at
the deterministic model are used to derive inner and outer '

bounds on the secrecy capacity region of th@-user Gaussian the unlntendeq receiver, and is 5_“50 referred to paréially

symmetric Z-IC. The achievable scheme for the Gaussian model connected IC in [6]. As a practical example, the Z-IC can
uses stochastic encoding in addition to cooperative precoty and model a 2-tier network, where the macro cell user is close to
transmission of jamming signal. For the Gaussian case, thesure  the edge of the femtocell while the femtocell user is close to

sum generalized degrees of freedom (GDOF) is characterizathd o famto base station (BS). Since the macro BS can typically
shown to be optimal for the weak/moderate interference regne.

Itis also shown that the secure sum capacity lies withi bits/s/Hz Suppprt hlgher CQmpIeXIty transmission schemes, it costel u
of the outer bound for the weak/moderate interference regine for ~ the side information received from the femto BS to precosle it
all values of the capacity of the cooperative link. Interesngly, in  data to improve its own rate and simultaneously ensure cgcre
the deterministic model, it is found that there is no penaltyon the gt the femtocell user. At the receivers, the macro cell user
capacity region of the Z-IC due to the secrecy constraints athe  .,,14 experience significant interference from the femitoce
receivers in the weak/moderate interference regimes. Sittairly, . . : .
it is found that there is no loss in the secure sum GDOF for the BS, while the femtocell us_er receives little or no |nterfme_
Gaussian case due to the secrecy constraint at the receivén  from the macro BS, leading to the Z-IC as the appropriate
the weak/moderate interference regimes. The results higight the  model for the system. Hence, answering the aforementioned
importance of cooperation in facilitating secure communiation questions in the context of the Z-IC can lead to useful insigh

over the Z-IC. in the 2-tier cellular network mentioned above.

A. Prior work
|. INTRODUCTION

The role of cooperation between the transmitters/recgiver The IC ha;s _b?ent tShtUd'ed _exten5|zj/elyd¥fV|th and without
in interference limited scenarios has been studied extelysi secrecy constraints at the receivers under di erent- gt}
in the context of communicatiomeliability. However, the [9]. However, the capacity region of thieuser Gaussian |C has
effect of the cooperation on communicatisecrecy haé not remained an open problem, even without secrecy constraint,

been well explored, and the ability to cooperate can haveféci?r']oé E)r: dS(t)r:T;evzrrJeCsTrCor?asirewferl;ZEr}ert:::ee ?;roi?r?emi%rferi;ce
very different effect on the achievable rates when there is & Han-Koba ashinK sc%eme ronosed ig 12 Es tL’e[be]s.t
secrecy constraint [2], [3]. In a system operating under Skﬁo n achie a)tl)le re( 'on)for the ICE) P [12]
crecy constrains at the receivers, the receivers cannaeineeh W eV g .' :
It has been shown that cooperation between the transmitters
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Part of this work has appeared in [1]. with cooperation, it is possible to achieve nonzero secratey



in most of the cases, even when the unintended receiver hae &e provided to the receivers. In particular, the coopamat
better channel compared to the legitimate receiver. Treceff between the transmitters makes the encoded messages depen-
of cooperation on the achievable rates for other communitat dent, which makes derivation of the outer bounds even more
models with secrecy constraints can be found in [18]-[21]. difficult.
The Z-IC model has also been studied in existing literature The main contributions of the paper are as follows:
under different setups as follows: 1. Outer bounds on the secrecy capacity of the symmetric
Z-1C without secrecy and without cooperation: In [4], lower Z-interference channel with unidirectional transmitterop-
bounds on the capacity region of the Gaussian Z-IC for tleeation are derived. The key novelty in deriving the outer
weak and moderate interference regimes are derived. In [28punds is the choice of side information to be provided to
it is shown that superposition encoding with partial dengdi the receiver(s) and the use of the secrecy constraints at the
is optimal for a certain class of Z-IC. A simple variant of theeceivers in a judicious manner. To elaborate, a novel parti
HK encoding scheme was proposed in [23] for the Gaussitioning of the encoded messages and outputs is proposed for
Z-IC and a class of mixed IC. the deterministic model based on the strength of interferen
Z-1C without secrecy and with cooperation: The role of and signal. Further, this partitioning also helps to bound o
cooperation in the Z-IC without secrecy constraint has besimplify the entropy terms that are difficult to evaluate doe
investigated in [24]-[29]. In [24], [29], a cognitive Z-IC the dependence between the encoded messages.
is considered, where the non-interfering user (primary)use 2. An achievable scheme is proposed for the system under
shares its codeword with the interfering user (secondagy)us consideration, which uses a combination of transmission of
It is shown that a combination of superposition coding anéndom bits and cooperative precoding to cancel the interfe
dirty paper coding can achieve capacity over a certain subsace at the unintended receiver. The cooperative precoding
of the strong interference regime. The capacity region ef tloffers two benefits simultaneously: it cancels interfescand
cognitive Z-IC is established in the very strong interf@@n ensures secrecy.
regime in [25]. In [26], both the encoders cooperate through3. It is shown that, for all value€’ and over all interference
noiseless links with finite capacities and the sum capadity egimes, the inner and outer bounds derived on the secrecy
the channel is characterized to witlibits of the outer bound. capacity region match, thus yielding the capacity of the
Z-1C with secrecy and without cooperation: In [30], the Z- deterministic symmetric Z-IC with unidirectional trangtar
IC model is considered with secrecy constraints at thevecgi cooperation and secrecy constraints. It is also shown kbieat t
and achievable schemes are obtained for the determinific @apacity region of the deterministic symmetric Z-IC does no
the Gaussian model in the weak/moderate interference eegimanlarge if the perfect secrecy constraint at the receiver is
For the deterministic model, the secrecy capacity region rigplaced with the weak or strong notion of secrecy.
characterized. In [31], it is shown that when the non-irgenfy 4. An achievable scheme is proposed for the Gaussian case,
transmitter is constrained to use a deterministic encdter, which uses a combination of stochastic encoding, intenfere
capacity region can reduce. cancelation and artificial noise transmission. The novaity
the achievable scheme lies in fusing stochastic encoding
with interference cancelation. The achievable rate of igecu
This work considers the-user symmetric Z-1C with unidi- communication is analyzed using the notion of strong sgcrec
rectional transmitter cooperation via a rate-limited liinkm Interestingly, it is shown that the equivocation compuatafior
transmitter 2 (which causes interference) to transmitter the Gaussian case reduces to the equivocation computation f
(which does not cause interference), and with secrecy canGaussian wiretap channel.
straints at the receivers. The key challenge here is to deb. Tight outer bounds are developed for the Gaussian case
vise techniques for simultaneously canceling interfeeesied by providing appropriate side information and bounding the
guaranteeing secrecy. First, the problem is solved under #mtropy terms containing both discrete and continuousaiend
deterministic approximation of the channel. Using the ltssuvariables based on the insights obtained for the detertitinis
in the deterministic model, an achievable scheme and outase. The outer bounds derived on the secrecy capacitynregio
bounds are derived for the Gaussian channel model. of the Gaussiarsymmetric Z-IC are the best known outer
One of the key techniques used in the achievable schebwunds till date with unidirectional transmitter coopérat
for both the models isooperative precoding performed at 6. In the weak/moderate interference regime, the secure sum
transmitter 1, which cancels interference at receiverand generalized degrees of freedom (GDOF) is also characterize
thereby simultaneously ensures secrecy. However, the @maoand shown to be optimal for all values of the capacity of the
of the interference that can be canceled at the receivercmoperative link. The secure sum capacity of the symmetric Z
limited by the rate of the cooperative link. In the determiniC is also shown to lie withir2 bits/s/Hz of the outer bound in
istic model, transmission of a jamming signal along witthe weak/moderate interference regime for all possiblaesl
interference cancelation is required to achieve the capacbf the capacity of the cooperative link.
On the other hand, the achievable scheme for the Gaussiaid. Bounds on the secrecy capacity region of theaser
model uses stochastic encoding in addition to cooperatisgmmetricZ-1C without cooperation between the transmitters
precoding and transmission of a jamming sigriaérivation are special cases of the analy&is both models Note that,
of outer bound requires judicious use of the secrecy canstraprior to this work, the capacity region of ttsymmetricZ-IC
at receiver, along with careful selection of the side infation for the deterministic model with secrecy constraints was no

B. Contributions



wherex; (x2) is the binary input vector of the deterministic

I W W %
Wi ; Wi 3 1a30__053% Z-IC from userl (user2) of lengthm (max{m,n}); y1 (y2)
Tx 1 d Rx 1 agh {1 ay by is the binary output vef:tor.of lengtax{m,n} (m).; D is
ajp— a16by a q x g downshift matrix with elements;, ;» = 1 if 2 <
Tx 1 Rx 1 j'=j7"4+1<gqandd; ;» = 0 otherwise; and the operator
Ca C . @ stands for modul@-addition, i.e., theXOR operation. The
W, [ W, Wy 5 ( bZV2 deterministic que_zl is pictor_ially i_IIustrated in Fig. _1b. _
- by LGS The deterministic model is a first order approximation of
Tx2 y Rx 2 bipb v Ay a Gaussian channel, where all the signals are represented by
d Tx2 - Rx2 their binary expansions. Here, noise is modeled by truonati
() Gaussian model (b) Deterministic model and the superposition of signals at the receiver is modejed b
Fig. 1: 2-user Z-IC with unidirectional transmitter cooperatiormodulo 2 addition. Hence, the parameters, n, and C' of
(from transmitter2 to transmitterl). the deterministic model are related to the Gaussian synumetr

ZIC asm = (|0.510gSNR))*, n = ([0.5logINR])",
and C = |C¢]. Note that the notation followed for the

It is shown that limited-rate transmitter cooperation cafitS a; € J2 andb; € J, denote the information bits of
greatly facilitate secure communication over the z-IC iffansmittersl and2, respectively, sent on thé" level, with
weak/moderate and high interference regimes. In the casel¥f 1evels numbered starting from the bottom-most entry.
the deterministic model, it is found, surprisingly, thaeta ~ The transmitteri has a messagél’;, which should be
is no penalty on the capacity region of the Z-IC due tgecodable at the mteqded recel\(zerbut needs .to be kept
the secrecy constraints at the receivers in the weak/mtede@ecret from the other, i.e., the unintended recejvéj # ),
interference regimes. Thus, the proposed scheme allowtoon@nd this is termed as theecrecy constraint. Note that, for
get secure communications for free. Similarly, it is fouhett the Z-IC, the messag#’, is secure as there is no link from
there is no loss in the sum GDOF for the Gaussian case d{@NSmitterl to receiver2. Hence, the goal is to ensure théb
to the secrecy constraint at the receiver, in the weak/nageler’S Not decodable at receivér The encoding at transmittér
interference regimes. For the deterministic model, it isn Should satisfy the causality constraint, i.e., it cannqiede
that for every one bit increase in the capacity of the codjpera N the signal to be sent over the cooperative link in the &itur
link, the secure sum rate can increase by one bit, in the wedk® Signal sent over the cooperative link from transmiter
moderate and high interference regimes, until the sum satel§ transmitterl is represented bys;. It is also assumed that
saturated by its maximum possible value. the transmitters trust each other completely and they do not

Notation: Lower case or upper case letters represent scaldigViate from the agreed schemes, fioth models

lower case boldface letters represent vectors, and upper ca _I':or the deterministic model, the encoded message at trans-
boldface letters represent matrices. mitter 1 is a function of its own data bits, the bits received

through the cooperative link, and possibly some random bits
whereas the encoded message at transnatierindependent
Il. SySTEM MODEL of the other users data bits. The bits transmitted on the
Consider a2-user Gaussian symmetric Z-IC with unidi-different levels of the deterministic model are chosen to be
rectional and rate-limited transmitter cooperation fraams- €quiprobable Bernoulli distributed, denoted #(3). The
mitter 2 to 1, as shown in Fig. 14.In the Z-IC, only decoding is based on solving the linear equation in (2) at eac

transmitter2 causes interference to receiver The received receiver. For secrecy, it is required to satisfy the peectecy

signal at receivet, y;, is given by constraint, i.e..](W;;y;) = 0,4,5 € {1,2} andi # j in the
case of the deterministic model [32]. In the later part of the
Y1 = har1 + hexa + 21592 = haxa + 22, (1) sequel, it is shown that replacing the perfect secrecy cainst

at receiver with the strong or weak secrecy constraint doés n
enlarge the capacity region of the deterministic model.

In the Gaussian case, the details of the encoding and
ecoding schemes can be found in Sec. IV. For the Gaus-
sian model, the notion o$trong secrecy is considered, i.e.,
I(Wa;yY) — 0 as N — oo, where N corresponds to the
block length [33].

) L . . The following interference regimes are considered:
_Thebeqlins/alegé deterministic model of (1) at high SNR I8 /eak/moderate interference reginfe < a < 1), high
given by [13], [30] interference regim¢l < « < 2) and very high interference
_ D N . _ Di- [ 2), where, with a slight abuse of notation
y1=D7"x; @ D7 "xa; y2 = D9 ""xy, (2) regime (o > 2), ’ e
a £ 2 is used for the deterministic model and® {2558

1The model is termed as symmetric as the links from transmittéo 1S used for the Qaussmn model. The quandi.tycaptures the

receiverl and transmitte to receiver2 are of the same strength. amount of coupling between the signal and interference.

where z; (j = 1,2) is the additive white Gaussian noise
distributed as\V/(0,1). Here,hy andh, are the channel gains
of the direct and interfering links, respectively. The inpud
signals {;) satisfy the power constrainf[|z;|?] < P. The
unidirectional cooperative link from the interfering teamitter
(transmitter 2) to the non-interfering transmitter (tnauitser
1) is noiseless, secure, and of finite ratg.




(Same signal y1, = y2a = X235 Precoding with Tx 2 Precoding with Tx 2 Random bits
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Fig. 2: Deterministic Z-IC: partitioning of encoded messag Fig. 3: Deterministic Z-IC withm =5, n =3 andC = 1.
and outputs.

Inner Bounds in the Weak/Moderate Interference Regime
[1l. LINEAR DETERMINISTIC SYMMETRIC Z-IC: (0 < a < 1): When there is a high capacity cooperative link
CAPACITY REGION from transmitter2 to transmitterl, the interference caused

In this section, the secrecy capacity region of the IinegillI receiverl by transmitter2 can be completely canceled by

deterministic symmetric Z-IC with unidirectional transtar lgsll(ngtthte S|gnz_a:tre;:el¥ﬁq from tr?nfm'%”.atthi cooperatf|fve
cooperation is characterized for the different interfesen Ik at transmittert. This cancelation of Interierence ofiers

regimes through Theorems 1-3. It is shown that the uppt¥¥0 benefits: it improves the achievable rate, and also essur
: ecrecy, since the signal sent by transmitteis no longer

bound on the secrecy capacity region matches with the IOt i ) .
bound, and thereby establishes the capacity region for jﬁ%((:odable at receivdr. When the capacity of the cooperative
Vi

deterministic model. Due to lack of space, only a high le Is not sufficiently high., it. is not p(_)ssible to design the
description of the proofs of the results are provided, ared tﬁ)recodmg to completely eliminate the interference cauned

: : : transmitter2 at receiverl. In this case, the transmission of
terested read ferred to [1], [34], [35] for detail o o .
interested reader is referred to [1], [34], [35] for details random bits (i.e., transmission of artificial noise [37]8]8

Note that in all interference regimes, the rateboth users : .
can be trivially upper bounded by, i.e., By < m and Ry < by transmitterl can ensure secrecy of the data bits sent by
T — _transmitter2 at receiverl, in turn enabling transmittel

m. One of the key techniques used in deriving tight outer achieve a higher secure rate of communication. Thus,

bounds is to partition the encoded message, output, or b . .
. L € proposed achievable scheme uses a carefully designed
depending on the value ef. The partitioning of the encoded L : ) o
combination of interference cancelation and transmissibn

mes_sages/outputs gives |ns_|g_hts on the side informati . to random bits depending on the capacity of the cooperatike lin
provided to the receiver. This in turn allows one to explbé t . S .
: . S C bits, and the value ofv. A pictorial representation of the
secrecy constraint at the receiver to obtain tight and dtdet . .
scheme to achieve the corner poirif3;, R2) = (5,3) and

outer bounds on the secrecy capacity region of the Z-IC. Tk@l R») = (3,5) is shown in Figs. 3a and 3b, respectively.

partitioning also helps to simplify the entropy terms as th ) : .
encoded messages at the transmitters are not independaent da‘heorem 1: In theweak/moderate interference regifte<

to the cooperation between the transmitters. @< 1,i.e.,n < m), the secrecy capacity region of tReuser
. o . ... deterministicsymmetric Z-IC with unidirectional and rate-
The following Markov relation is used in the derivatio

of these outer bounds: conditioned on the cooperating tsigl@'ted transmitter cooperation Is

(v, _the encoded signals and the messages at the two Ri<m,Ry <m,Ri+ Ry <2m —n+C. (4)
transmitters are independent [13], [36], i.e.,

N N N Remarks:
(W, x17) = (va1) = (W2, x37). (), The derivation of theouter bound [1] does not use the

Outer Bounds in the Weak/Moderate Interference Regime secrecy constraint at the receivEhe proposed schemes
(0 < a < 1): The encoded message is split into two can achieve the four corner points of the outer bound,
parts: one partx,), which is received without interference and hence, the secrecy constraints at the receivers do not
at receiverl, and another part;), which is received with result in any penalty on the capacity region. Thus, the
interference at receiver. The encoded message of transmit- ~ Capacity region of the deterministic Z-IC is characterized
ter 2 is also split into two parts: one part4,), which causes with and without secrecy constraints for all valuesaf
interference to receiver, and another part;), which does ~ * When0 < o < 1, both userscan achieve the maximum
not cause any interference to receiverThe partitioning of rate ofm simultaneously ifC' > m.

the output and the encoded message is shown in Fig. 2a. IOuter Boundsin the High Interference Regime (1 < a < 2):
the derivation of this outer bound, the secrecy constraihtsin this case, it is not difficult to see that the rate of user
the receivers are not used. can be upper bounded by. To get insights into the outer



(Same signal y1, = y2 = X2, is

Precg:::i i‘zlth Tx 2 Precoding with Tx 2 Rand(s)gér%lct;f ensure received at both the receivers)
\ data bit Transpissipn of X
a \ . jamming signa _
a a T, ]YIU = X2q
b b 5a a b, ] ®
a FY 2 [by \:g &) -IYH) =X1 O Xy
| )
Tx 1 \Rx 1 T Rx 1
Cc=1 nterference cancelation o1 nterference cancelation
) by by
Py, by b b ] Y2
) g™ ) q™
—— Tx 2 Rx 2
Tx2 Rx2 Tx2 Rx2 T\It \t t Rx 2, but )
(@ (R, Ba) = (4,1) (0) (Ri, R2) = (2,3) (ot present at x 2, bu

causes interference to Rx 1)

Fig. 4. Deterministic Z-IC withm =4, n =5 andC = 1. Fig. 5: Deterministic Z-IC with(m,n) = (2,4): lllustration

of partitioning of the message/output.

bounds onR, and R; + R,, consider Fig. 2b. One can see
that transmitter2 cannot use the level§l : n — m] for
transmitting its own data as the corresponding links do not interference regimes, respectively, requires transomissi
exist at the intended receiver. Any data bits transmitted on of random bits by transmitter to ensure that the signal
the levels[m + 1 : n], i.e., xa,, Will be received without from transmitter2 remains secure, in addition to precod-
interference at receivelr. If receiver2 can decode these data ing data bits received from transmitt&wvith its own data
bits, receiverl will also be able to decode these data bits.  bits.
Hence, these data bifg, = x2, Will not be secure. Hence, Outer Bounds in the Very High Interference Regime (o > 2):
they are provided as side information to rece®éo obtain the |n Fig. 5, it can be noticed that only the levéls—m+1: m)]
upper bounds. Then, using the secrecy constraint at recgivecan be used to send data from transmiftdo receiver2, as
the following outer bounds can be obtained. the links corresponding to the lower levdls : n — m] do
Inner Bounds in the High Interference Regime (1 < a < not exist at receive?. The data bits transmitted on the levels
2): The achievable scheme proposed here differs from that— 1 1 : 7], i.e., xo,, are received without interference
proposed in the weak/moderate interference regime in tergsreceiverl. If receiver2 can decode these data bits, then
of the placement of random bits. A high level description gqceiverl can also decode these data bits. Hence, transmitter

the achievable scheme to achieve the corner pofisR») =  cannot send any data bits securely on these levels. To eaptur
(4,1) and (R, Rz) = (2,3) is shown in Figs. 4a and 4b, this in the derivation, receive is provided with the side
respectively. information of the formy2",, which in turn helps to bound the

~ Theorem 2: In the high interference regimel (< o < 2, rate byI(Ws;y'|yl,). It can be noticed that this quantity is
le.,m<n< 2m), thg secrecy.capaqty region of tReuser zero asyi, = y» = x2,. The secrecy capacity region in the
deterministic symmetric Z-IC with unidirectional and rate- very high interference regim@ > 2) is given in the following

limited transmitter cooperation is theoremThe capacity region shows that ugecannot achieve
Ry <m, Ry <2m —n, Ry + Ry <m+C. (5) 2anynonzero secrecy rate. On _the other hanq,hsan acr_ueve
the maximum possible rate, i.en, by sending data bits on

Remarks: the levels[1 : m|, whereas, use? remains silent.

e WhenC' = 0 and1 < a < 2, if user 1 achieves Theorem 3: In the very high interference regimex(> 2,
the maximum rate ofm, then user2 cannot achieve i.e., 2m < n) the secrecy capacity region of theuser
any nonzero secrecy rate. This is in contrast to thdeterministicsymmetric Z-IC with unidirectional and rate-
weak/moderate interference case, where usachieves limited transmitter cooperation is
the maximum rate ofn, while user2 achieves the rate

of m — n even without cooperation. Ry <m, Ry =0. (6)

e Whenl < «a < 2andC > 2m — n, transmittersl and2 Proof: The outer bound on the rate of u€ein Theorem 3
can simultaneously achieve the maximum ratesiadnd shows that useB cannot achieve any nonzero secrecy rate
2m — n, respectively. irrespective of the capacity of the cooperative link. Thus,

« In general, the principle behind the achievable schemesttansmitterl can send data bits on the levéls: m], while
achieve the corner poinfsn, m —n+ C) and(m,C) in  transmitter2 remains silent. This characterizes the capacity of
the weak/moderate and high interference regimes, respéte deterministic Z-IC in the very high interference reginme
tively, is precoding of data bits at transmitteusing the Interestingly, it turns out that the capacity region of the
data bits of transmitte2 received on the cooperative linkdeterministicsymmetricZ-IC does not change if the perfect
to cancel interference and ensure secrecy. On the otBecrecy constraint at the receiver is replaced with thengtro
hand, the achievability of the corner poirits—n+C, m) or the weak notion of secrecy. This result is stated in the
and(n —m+ C, 2m — n) in the weak/moderate and highfollowing Theorem.



Theorem 4: The secrecy capacity region of the determinidgs inherently secure, as there is no link from transmitte¢o
tic symmetricZ-IC with unidirectional transmitter cooperationreceiver2. This translates to having a non-cooperative private
satisfies the following messagev,; € Wy = {1,2,...,2N} at transmitterl, and
for each message, it transmits a codeword from a Gaussian
codebook of siz&NF1, Next, for the transmission of data by
where cpeect cstong gng cweak correspond to the capacitytransmitter2, recall that, in the deterministic case, the data
regions of the2-user deterministic Z-IC with unidirectional bits sent by transmitte2 on the lower levelgl : m — n] are
transmitter cooperation guaranteeing the perfect, staumd) inherently secure in the weak/moderate interference regim
weak secrecy constraints at the receivers, respectively.  (See Fig. 3a). To enable secure transmission of data bits on
Proof: In the literature, three notions of secrecy havthe higher levels (specifically, levels: — n 4+ 1 : m] in the
been usedperfect, strong, and weak secrecy. Mathemati- weak/moderate interference regime and leyels m + 1 : n]
cally, perfect secrecy is defined J$Wi;y§v) = 0,4,5 € in the high interference regime), transmitter 2 needs the
{1,2}andi # 5 [32]. Strong secrecy is defined asassistance of transmitter 1. That is, transmitter 1 needs to
J\}Enoo I(Wi;yév) = 0,4,5j € {1,2}andi # j [33]. precode the data bits received through the cooperative link
Weak secrecy is defined astim %I(Wi;yj-v) —0,i,] € or nee_ds to send a jamming signal, SO that the other users
N—o0 data bits remain undecodable at receivefTo translate this

{1"0\2} andi # j _[33]_' h . h ; scheme to the Gaussian case, the message at transitter
ny comr.nunlcatlon.sc eme.sansfymgt e perfect secregy split into two parts: a non-cooperative private message
condition will automatically satisfy the strong and weak se

" o 2 W € Wy = {1,2,...,2N¥%2) and a cooperative private
crecy conditions. Similarly, a communication scheme 8atis P2 2 = { } P P

. : : ‘ messagewepe € Wepe = {1,2,...,2N 2} Transmitter2
ing strong secrecy will automatically satisfy the weak segr encodes the non-cooperative private messagexmousing
condition. Hence, the following holds

stochastic encoding. A stochastic encoder is specified by
cperfest C pstrong  pweak - cweak (8) a matrix of conditional probabilityf,s(zp2,x|wy2), Where
2.k € Xpo andwpz € Wpo.

For the cooperative private message, transmitterand
precode the message.,, cooperatively such that the
deword carrying the cooperative private message is com-
&’étely canceled at the non-intended receiver. This cadijyer
recoding also helps ensure secrecy for the cooperativateri

Cperfect: Cstrong: Cweak7 (7)

where Cl¢3k corresponds to the outer bound on the capaci%f
region of the Z-IC with unidirectional transmitter cooptoa
and weak secrecy constraints at the receivers. The acleev
results in Sec. lll are obtained under the perfect secre
constraints at the receivers. On the other hand, it is ntcdif

to show that_the upper bounds on the capapity region in [1] essage. The details of the encoding and decoding process
not change if the perfect secrecy constraint is replacetd wif

: . f the achievable scheme are presented in the following
the weak secrecy constramtAs the achievable rate regions,, v« ction

(i.e.,CPe) match with the upper bounds on the capacity
region (i.e., CY%3), the relation in (7) holds. [ |

A. Encoding and decoding

IV. GAUSSIAN SYMMETRIC Z-IC: ACHIEVABLE SCHEME ) . )
For the Gaussian case, a unified achievable scheme i:!:: or the non-cooperative p]rv|\1/%ate. part, transmifigienerates
a_codebookC,,; containing2™'* i.i.d. sequences of length

proposed, which is applicable in the weak, moderate a%j nd its entries are i.i.d. random variables frvif0, P,,)
Jd.d.  Pp1).

high interference regimes. The achievable scheme is baslff‘ansmittem generates two codebooks as follows. For the

on the cooperative precoding performed at the transmittersnon_COO erative private message, it generates a codebgok
cancel the interference at the unintended receiver, aldtig w P P ge. g po

stochastic encoding and transmission of artificial noisbeldv containing2™(++1%2) codewords of lengthV. The entries
the capacity of the cooperative link is not sufficiently higho}cvgge fg/d?bo‘)k are drawn at random frow(0, F2). The
it is not possible to share the entire message of transniitte " ” codewor(_js n t_he COdEbQO@P? are Ta”g%m'y
with transmitter1 through the cooperative link. Hence, thedrouped into2™ = bins, with each bin containing™ >
interference caused at receiverby transmitter2 cannot be codewords. Any codeword ifl,» is indexed as‘z%(wzj% Wp2)
completely eliminated. Thus, stochastic encoding peréarat  for wye € Wy and wi, € W), = {1,2,...,2V%=2}. To
transmitter2 and artificial noise transmission by transmitter S€ndwz, transmitter2 selectsw;,, uniformly at random from
can provide additional randomness to increase the secaéey the setW), and transmits the codeword), (w2, w},). For
of user2. the cooperative private message, transmitegenerates a
The achievable scheme for the deterministic model is esedeboolC,,» consisting of2"#»> i.i.d. sequences of length
tended to the Gaussian model as follows. Since there is o The entries of the codebook are chosen at random from
cooperative link from transmitter to transmitter2, transmit- (0, Pep2). This codebook is made available at transmitter
ter 1 cannot share its message with transmifiefor coop- To send a messagevys, wep2), transmitter2 superimposes
eration. The message of transmitteintended to receivet the cooperative codeword.,»(w,2) with the non-cooperative

codewordx)) (wyz, wh,) as
This can be shown by usin%I(Wi;yjN) < e i # j, (weak secrecy)
as a measure of secrecy in the derivation of the outer boundtead of N ’ N / N
I(W;,y;) = 0 (perfect secrecy). X (wp27 Wpas wCPQ) = Xp2 (wPQ’ wp2) + hdxch (wCPQ)' (9)



The following power constraint is required to be satisfied at Corollary 1: Using the result in Theorem 5, the following
transmitter2: rate region is achievable

Py + h2Popy < P, (10) R = convex closure of_JR3.c(0:, B, \i),  (14)
0<(6:,8:,7:) <1, i=1,2
where Py, and P, are parameters to be chosen later. where
Transmitterl performs precoding as mentioned in (11), so
that the codeword carrying the cooperative private message
of transmitter2 is canceled at receiver. This is termed as

Rz.c é{(Rl,Rz) :R1>0,Ry >0,
cooperative precoding. Transmitterl also adds artificial noise

) R . h2P,
(xM) generated from a Gaussian distribution to increase the Ry <0.5log | 1+ d_ Pl ,
al : : 14 hZPa + h2Pp
achievable secrecy rate for transmitferThus, transmitted ) d ) et P g
sends Ry < 0.51log(1 + hgPp2 + hgPep2) — Ry,

Ry < 0.51log(1 4+ h3P,s) + min{Cg,
Xiv(wplv Wep) = X;]:Vl (wp1) — hcxgﬁ(wcm) + X¢]zvl- (11) g

4 !
The following power constraint is required to be satisfied at 0.5log(1 + hyPep2)} — Rzﬂ}’ (15)
transmitterl:

h2P, A
WhereR;Q £ 0.5log (1+ 22 ), Pepo £ WP%

Ppl + hipch + Pal S Pa (12) A A A 1;~h§Pa1 A 0 A
Pp2 - >\1+1)\2P2’ Ppl - 914*192PI’ Pu = 91+292P/’ P =

where P,; and P,; are parameters to be chosen later. (Py — h2P.p2)*, Py £ 51 P, and P, £ B3, P.
The decoding at the receivers is performed as follows. Re- Proof: See Appendix B. [ |

ceiver1 looks for a unique index,; such thaty?, x (1,1)) Remarks:

is jointly typical. Receiver2 looks for a unique tuple 1) In Corollary 1, the parametet; (0 < ; < 1) acts as
(p2, Wy, Wep2) SUch thallys’, x5 (wye, Wy ), X0 (Wep2)) i a power control parameter for transmitiefi = 1,2).
jointly typical. Decoding errors at the receivers can oceur The parameters; and)\; act as rate splitting parameters
one of two ways. First, the receiver may not be able to find gy transmitter;.
any codeword that is jointly typical with the received senge 2) WhenC = 0 (or C¢ = 0), the system reduces to the
Second, a wrong codeword is jointly typical with the recelive 2-user Z-IC (Gaussian Z-IC) without cooperation, which
sequence. was studied in [30]. The achievable results in Theogem
Based on the above encoding and decoding strategy, the (Theorem3) in [30] can be obtained as a special case of
following theorem gives a lower bound on the secrecy capacit ~ achievable results for the deterministic model (Gaussian

of the Z-IC with unidirectional transmitter cooperation. model) in Theorem 1 (Theorem 5), by settify = 0
Theorem 5: For the GaussiasymmetricZ-1C with unidi- (Ce = 0)and0 < a < 1. Note that, for both the
rectional transmitter cooperation and secrecy constainthe deterministic and Gaussian models, achievable schemes
receivers, the achievable rate region is given by on the secrecy capacity region have not been addressed
in the literature for the high interference regifae> 1),
Ry < 1(xp15y1), even whenC' = 0 (Cg = 0).
Ry < min {I(Xp2, Xcp2; ¥2), I (Xp2; Y2|Xep2) + min{Cq, 3) It is straightforward to extend the result in Corollary 1
I(Xep2; y2l%p2)}} — Ry, Where Ry, = I(xp2; y1]%p1)- by using time-division multiplexing [31, Lemn] and
(13) allowing transmitterl to transmit over a different sub-
] band [31, Lemma] to obtain the corresponding results
Proof: See Appendix A. u in [31], by settingCs = 0 and P,; = 0, for the
Remarks: weak/moderate interference regime.

1) The termR,, in Theorem 5 accounts for the rate sacri-
ficed by transmitte® in confusing receivet to keep the V. OUTER BOUNDS FOR THEGAUSSIAN SYMMETRIC Z-I1C
non-cooperative message of transmittesecret. As the MODEL
capacity of the cooperative link increases, the loss in rate| this section, the outer bounds on the secrecy capacity
due to the stochastic encoding decreases, as more POygfion for the Z-IC with unidirectional transmitter cooption
can be assigned to the cooperative private message. gre stated as Theorems 648 addition to the differences
2) WhenCg = 0 anda > 1, the transmission of artificial petween the deterministic model and the Gaussian model
noise by transmittet is required along with stochastic (noise modeled by truncation and carry-overs ignored in
encoding for usee to achieve a non-zero secrecy rateghe module-2 addition), the derivation of outer bounds for
By evaluating the mutual information terms in (13) anthe Gaussian case requires the bounding of differential en-
taking convex closure of the union of set of regions obtainérbpy terms containing continuous as well as discrete rando
over different codebook parametdB,, Py1, Pp2, Pep2), the variables, due to the unidirectional cooperation betwéen t
following lower bound on the secrecy capacity region igansmitters.The partitioning of the encoded messages or
obtained. outputs used in the derivation of the outer bounds for the



deterministic case cannot be directly applied to the Gaussi Proof: See Appendix C. ]
case. To overcome this problem, either analogous quantiti@emarks:

that serve as side-information at receiver need to be found )
to mimic the partitioning of the encoded messages/outputs? 't iS €asy to show that the outer bound on the sum rate in
or the bounding steps need to be modified taking cue from Theorem 7 is tighter than the outer bound in Theorem 6
the deterministic model. This helps to obtain tractableeput  for @ll values of SNR, INR and’s. Thus, the outer bound

bounds on the secrecy capacity region, which are presemted i N Theorem 7 improves over Theorem 6. From the outer
the following subsections. bound on the rate of userin Theorems 6 and 7, it can

be observed that outer bound obtained with the secrecy
A q interf , 0<o<1 constraint is tighter than the outer bound obtained without
. moderate interference regime (0 < o < 1) using the secrecy constraint.
The outer bound derived in Theorem 1 involved providing . When C; = 0, the outer bound on the rate of user
the side informatior(x.,, v21) to receiver2 by a genie. The reduces td).5log (1 + SNR— —SNRINR as the only
. : 14+-SNR+INR /?
guantity x,, corresponds to the part of the encoded message

: ) ) . possible valuep can take is). Hence, this outer bound
xo Of transmitter2 which causes interference at receiver indicates that use2 cannot achieve the maximum pos-

(See Fig. 2a). In the Gaussian case, to mimic the approach gjhie rate 0f0.5log (1 + SNR). This is in contrast to
u_sed_ for the_deterTmlstlc case, receieis provided with the deterministic case, where us2rcan achieve the
side mforma’qor(sQ = hexo+ 121, le)._Note that quter bou_nd maximum rate ofin, as observed from Theorem 1.
based on this idea was presented in [26], which considered The outer bound on the sum rate in Theorem 6 is appli-

the Gaussian Z-IC with unidirectional transmitter coofiera cable in all interference regimes whereas the outer bound
but without secrecy constraints at the receivers. For the sa i, Theorem 7 is applicable only in the weak/moderate

of completeness, the result is stated as Theorem 6. The ;.o ference regime.
outer bound in Theorem 1 for the weak/moderate interference
regime can be considered as a deterministic equivalenteof th
outer bound presented below.
Theorem 6 ( [26]): The capacity region of the 2-user Gausg. High interference regime (1<a<?2)
sian Z-IC with unidirectional transmitter cooperation {sper
bounded as The derivation of the outer bound in this regime is based on
the outer bound in Theorem 2 obtained for the deterministic
Ry < 0.5log(1 + SNR), Ry < 0.51og(1 + SNR), model. In the proof of Theorem 2, to upper bound the rate

Ri + Ry < 0.51og(1 + SNR+ INR + 2vSNR- INR) of user2, a part of the output at receivérwhich does not
SNR contain the signal sent by transmitteris provided as side-
+0.5log (1 + 1+ INR) + Ce; (16) information to receivee, i.e.,y¥ . In the Gaussian case, it is
Ao Ao not possible to partition the encoded message as it was done
where SNR= 75 P and INR= Ao P. for the deterministic model (See Fig. 2b). To overcome this

Note that the outer bound stated in Theorem 6 does ngbplem, the output at receivér i.e.,y', is provided as side
use the secrecy constraint at receiver. In the weak/madergformation to receiver. Providing side information in this
interference regime, the data bits transmitted on the lowghy creates a degraded channel from transnittterreceivert
levels [1 : m — n] of transmitter2 are inherently secure in wth respect to the channel from transmiteito receiver?.

the deterministic case as shown in Fig. 3a. However, in the the deterministic case, to upper bound the sum rate, the
Gaussian case, there is no one-to-one correspondencs aﬁthioutput at received (yV) is partitioned into two partsy®.
noise cannot be modeled by truncation. The secrecy constraj,q y, and receiver is provided with side information of

at the receiver may lead to a nonzero penalty in rate for tge, formy¥.. To mimic this in the Gaussian case, the output
Gaussian case. Hence, outer bounds are derived on the g@t@eceiver2, i.e., y¥, is provided as side information to
of user2 and the sum rate using the secrecy constraint @iceiver1 and (W;,yY) is provided as side information to

receiverl, which is stated as a theorem below. receiver2. The outer bound on the secrecy capacity region is
Theorem 7: The secrecy capacity region of theiser Gaus- giated in the following theorem.

sian symmetric Z-IC with unidirectional transmitter coop-
eration in theweak/moderate interference reginge upper
bounded as

Theorem 8: The secrecy capacity region of the 2-user Gaus-
sian symmetricZ-IC with unidirectional transmitter coopera-
tion is upper bounded as
R; <0.5log(1 + SNR),

R; <0.5log(1 + SNR),
R < max . 0.5log | 1+ SNR

—1<p<
- Ry < max 0.5log <1+SNR
B (pSNR+ +/SNR- INR)? —lsest
1+ SNR+INR +2pvSNR-INR )’ B (pPSNR+ v/SNR- INR)?
Ry + Ry < log(1+ SNR) — 0.5log(1 + INR) + C¢. (17) 14 SNR+ INR + 2pv/SNR-INR )’



optimized by settingp = 0. The outer bound on the rate of

R+ Re < max 0.5log |1+ SNR+ INR . .
~1<p<t user2 is approximated as

(pSNR+ v/SNR- INR)? < ~__SNR-INR -
+2pVSNR- INR — T SNR Ry <0.5log [ 1+ SNR 1T SNRLINR m. (21)
(18) Hence, the outer bound on the rate of udés approximately

0.5logX C .
+ 00008 2y, + Ca, equal tom for high SNR and INR.

where X, £ 1 4+ SNR — Ey%SE;;z;’s, Yyos A It is also easy to see '_[hat, for high SNR and INR, t_he outer

[pSNR HSNR+ \/m} andy, . 2 bound on the sum rate in Theorem 7 can be approximated as

[ 1+ SNR SNR+ pv/SNR- INR } Ry + Ry = 2m —n+C. (22)
SNR+pvSNR-INR  1+SNR+INR+2pvSNR-INR |* |t can be noticed that the outer bound derived for the Ganssia

Proof: See Appendix D. case corresponds to the outer bound for the deterministic
Remarks: model stated in Theorem 1. It is interesting to note that
« When there is no cooperation between the transmittetsth the outer bounds on the sum rate in Theorems 6 and
the encoded messages at the two transmitters are indepgerorrespond to the outer bound for the deterministic model
dent of each other. Hence, for the non-cooperating caseated in Theorem 1 for high SNR and INR. As mentioned
the outer bound on the rate is obtained by setfing 0 earlier in the remark to Theorem 7, the outer bound in
in Theorem 8. Theorem 7 is tighter than Theorem 6. However, for high values
« The outer bound in Theorem 8 is applicable over agf SNR and INR, the gap between these two outer bounds
the interference regimes. Note that the outer bound decreases and these two outer bounds are approximately equa
Theorem 6 is also applicable to the high interferenae each other.
regime. In the later part of the paper, it is demonstrated2) High interference regime (1 < o < 2): In Theorem 8,
that the outer bound in Theorem 8 is tighter than the outeéue to the maximization involved in the upper boundsiton
bound in Theorem 6 in this interference regime. and R; + Rs over p, Cg = 0 is considered in the following
analysis to simplify the exposition. For the non-coop@gti
case, the outer bound is optimized by setting 0. First, the

C. Relation between the outer bounds for the deterministic ) )
outer bound on the rate of useérs approximated as

and Gaussian models
In the following, it is shown that, for high SNR and Ry <0.51og(1 + SNR) ~ m. (23)
INR, the outer bounds for the Gaussian case in Theorems e outer bound on the rate of useis also approximated as
and 8 are approximately equal to the outer bounds for the
deterministic model. For ease of presentation, it is assume R, <(0.51lo (1 + SNR— w
2= g
that 0.51og SNR, 0.5logINR, and C are integers. Recall 1+ SNR+INR
that, the parameters, n and C of the deterministic model (24)
are related to the Gaussian modelras= (|0.5log SNR|)™, The outer bound on the sum rate becomes
n = (]0.5logINR|)* andC = |C¢], respectively. SNR- INR
1) Weak/moderate interference regime (0 < o < 1): Itis R+ Ry < 0.51log (1 + SNR+INR — m)
easy to see that for high SNR and INRe,, SNR INR > 1), 405log) (25)
the upper bounds on the individual rates in Theorem 6 can be ' vals)
approximated as where with some algebraic manipulation it can be shown that
Sy,s = 1+ SNR—-Xy, S0I8T _~ 1. Hence, the sum rate
outer bound in (25) reduces to

)z2m—n.

R1<0.510og(1 + SNR)~m, and Ry <0.5log(1 + SNR)~m.

When SNR> INR (i.e., 0 < « < 1), the outer bound on the _
sum rate in Theorem 6 is approximated as From (23), (24), and (26), it can be observed that the approx-
imated outer bound of Gaussian case in Theorem 8 matches

R1 + R <0.5log (1 + SNR+ INR + 2V SNR- INR) with the outer bound of deterministic case in Theorem 2 for
the high interference regime.
+ Cg, This validates that the approaches used in obtaining outer

+ 0.5log <1 +
bounds in the two models are consistent with each other.

1+ INR)
~2m—n+C. (20)

From (19) and (20), the outer bound derived for the Gaussian VI. APPROXIMATE SECURE SUM CAPACITY

. . CHARACTERIZATION OF THE GAUSSIAN SYMMETRIC Z-IC
case matches with the corresponding outer bound for the

o . IN THE WEAK/MODERATE INTERFERENCE REGIME
deterministic model stated in Theorem 1. .
In Theorem 7, due to the maximization involved in the outd Secure sum generalized degrees of freedom (GDOF)

bound onR: over p, Csz = 0 is considered to simplify the As mentioned earlier, the capacity region for many multiuse
exposition. For the non-cooperating case, the outer bosindscenarios has remained an open problem, even without gecrec
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constraints at the receivers. Due to this, there has been an Similarly, in the deterministic model, whet® = n
active research interest in approximate characterizatidmhe (or % = «), both userscan simultaneously achieve a
capacity. In this context, the notion géneralized degrees of maximum rate ofm.

freedom (GDOF) has been used as a proxy for the capacity at As the proposed scheme with the power allocation in (28)
high SNR and INR, for the IQuithout secrecy constraint [7].  can achieve the optimal sum GDOF, the achievable sum rate
A natural extension of this to the secure sum GDOF is giv&fill be within a finite number of bits from the outer bound.
by In the following subsection, the gap between the achievable
Csun(SNR INR) sum rate and outer bound is characterized.

dsun(,7) = _lim T 0.510gSNR

log INR N . Cg
ToaSNR' | — hmoo 751ossnr and Csum

. B. Finite bit gap result on the sum rate capacity
wherex = < lim

NR— oo In this section, the sum rate capacity of theser Gaussian

IS fch-e secure sum cgpacny of the_ 2-user Gaussmn Z-1IC WBly¢ with unidirectional transmitter cooperation is shovm
unidirectional transmitter cooperation. To charactetigesum lie within 2 bits/s/Hz of the outer bound in the weak/moderate

GDOF, iy = 1 is assumed without loss of generality, and thgye terence regiméINR < SNR) for all values ofC. Note

following power allocation is used. that this gap is the worst case gap. To show the finite gap

P 1 1 result, the power allocation in (28) is used in Corollary 1 to

9 Py = h2’ Fepz = 9 (P - ﬁ) and Poy = 0. obtain a lower bound on the secure sum capacity. This result
‘ ‘ (28) s stated in the following theorem.

) Theorem 10: The secure sum rate capacity of tBeuser

It is also assumed thaﬁ?? > 1, so that the above power gayssiarsymmetricZ-1C with unidirectional transmitter co-

allocation is always feasible. The motivation for this peweyseration lies withire bits/s/Hz of the sum rate outer bound

allocation is as follows. The power for the message of trang ihe weak/moderate interference regime for all valueSef
mitter 1 is set ast’ to ensure that usérachieves the maximum ie.

GDOF of 1. Recall that, in the weak/moderate interference
regime, transmitte2 can send data bits securely on the lower Rsum < Csum < Cm' < Reum+ 2, (30)
levels[1 : m — n], as the_ links corresponding to these le\_’el\ﬁlhereRsum and Coue" correspond to the lower bound and up-
are not present at receivér In other words, the data bits per bound on the secure sum capacity (Gaun), respectively.
transmitted on the lower leve[$ : m —n] of transmitter2 are Proof: See Appendix F. -
received at or below the noise floor of receiderHence, in

the Gaussian case, the power for the non-cooperative @rivat VII

. L . . . NUMERICAL RESULTS ANDDISCUSSION
message is chosen such that it is received at the noise floor ) ) ]
of the receiverl. Due to this power allocation, the loss in !N the following sections, some numerical examples are
rate of user2 due to stochastic encoding &, = 0.5 presented for the Gaussian case, to get insights into thersys

bits/s/Hz. Hence, the loss in achievable secrecy rate duePgfformance in different interference regimes. o
stochastic encoding does not scale with SNR and INR. The!l Fid. 6a, the secure sum capacity of the deterministic Z-

cooperative private message of transmitteis assigned a 'C 1S plotied against for different values ofC' using the
1 1 result in Sec. lll. In this case, the secure sum capacity is
power of 5 ( P

Rz _ normalized bym. When C' = 0, as « increases, the sum
I_n the fqllowmg theorem, thg secure sum GDOF is Chara&%\pacity decreases and becomes constantfor 1. As the
terized using the power allocation in (28) for all valuesCef value of the cooperative link increases, in the initial part

n _:_T]e Weal;/.m_?gerate.mttTrference reglncwae[.)OF f the of the weak interference regime, both users can achieve the
eorem 9: The optimal secure sum of tReuser o imum rate, i.ean. This is due to the fact that the capacity

Gausslf!arsynl?etnczl—(I/C V\(’j'th utn|Q|{e(;t|onaI trans_mntgr €0 of the cooperative link is sufficient to cancel the interfere
operation in the weax/moderate interierence regime 1s at receiverl. However, with further increase in the value of

P, =

dsum(k,7) = min {2,2 — x + min (7, 1)} . (29) C, the secure sum capacity starts decreasing. In the very high
interference regime, us@rcannot achieve any nonzero secrecy
Proof: See Appendix E. B rate irrespective of the value @f.
Remarks: In Fig. 6b, the upper bounds on the secrecy capacity

1) The outer bound on the sum rate in Theorems 6 andégion of the Z-IC in Theorems 6, 7 and 8 are compared for
are used to obtain outer bound on the sum GDOF. Botile weak/moderate interference regime. The outer bound in
the bounds give the same results in terms of the GDOFheorem 7 is tighter than the outer bounds in Theorems 6
Note that the derivation of the outer bound in Theorem#&nd 8 except for the corner points for transmitterRecall
does not use the secrecy constraint at receivi26]. that, the outer bound in Theorem 6 does not use the secrecy
Hence, there is no penalty in the sum GDOF due wmonstraint at the receiver in its derivation. The outer lbim
the secrecy constraint at receiver in the weak/moderdtheorem 8 is derived using the intuitions obtained from the
interference regime for all values 6fs. high interference regime case considered in the detertiginis

2) Wheny = &k, dam(k,7) = 2. Hence,both users model for Theorem 2. This is reflected in the plot as explained
can achieve the maximum GDOF ofsimultaneously. above. In Fig. 6¢, the outer bound on the secrecy capacity
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Fig. 6: (a) Sum rate capacity for the deterministic symmnaefHlC with m = 4, n = 5 andC = 1; (b) Comparison of the
outer bounds on the secrecy capacity region for the Gausgimmetric Z-IC:P = 100, hgy = 1, h. = 0.5, a = 0.69, and
Cs =0, and (c) Comparison of the outer bounds on the secrecy agpagion for the Gaussian symmetric Z-I€: = 100,

hg=1,h.=15 a=1.17 andCqs = 1.

region of the Z-IC in Theorems 6 and 8 are compared for thised a fusion of cooperative precoding for interference can
high interference regime. From the plot, it can be seen thadlation, stochastic encoding and artificial noise trassion
the proposed outer bound is tighter than the outer boundfar ensuring secrecy of the unintended message at the ezceiv
Theorem 6. The secure sum GDOF of the GaussgymmetricZ-IC was
In Figs. 7a and 7b, the achievable results in Corollary dharacterized for the weak/moderate interference regiiftes
are plotted along with the outer bounds obtained in Sec. 3¥m rate capacity was also shown to lie wittinbits of
for different values ofC, in the weak and high interferencethe outer bound in the weak/moderate interference regime fo
regimes, respectively. Wheti; > 0, a part of the interference all values of the capacity of the cooperative linkg. The
can be canceled at the unintended receiver, which leadsreésults showed that cooperation between the users caieftecil
a gain in the rate due to cooperation. In particular, theecure communication over Z-IC except for the very high
improvement in the sum rate performance for both the cadeterference regime. It is also found that secrecy corstiati
can be observed from these figures. As the capacity of tte receiver does not hurt the capacity in the weak/moderate
cooperative link increases, less power is assigned to dend interference regime for the deterministic model. Simylait
non-cooperative private message of transmitfevhich in turn was found that there is no loss in the secure sum GDOF
also reduces the loss in rate due to stochastic encoding. in the weak/moderate interference regime due to the secrecy
In Fig. 7c, the secure sum GDOF stated in Theorem 9 ¢enstraint at the receiver.
plotted againsty for various values ofy. From the figure, it
can be noticed that with cooperation it is possible lath APPENDIX
usersto achieve the maximum GDOF, i.ell, in 'Fhe initjal A Proof of Theorem 5
part of the weak/moderate interference regime, if the dapac ) ) B
of the cooperative link scales with SNR. In these casesether 1€ Proof involves analyzing the error probability at the

is no loss in terms of GDOF due to the secrecy constraint &¢coders for the proposed encoding scheme, along with
the receiver. equivocation computation. The equivocation computat®n i

necessary to choose how much of its own rate transmiltter
must sacrifice to keep the non-cooperative private message
VIIl. CONCLUSIONS secret. The main novelty in the proof lies in precoding of the
This work explored the role of limited-rate unidirectionakooperative private message of transmiteat transmittert,
transmitter cooperation in facilitating secure commutiica Which cancels the interference at receiteand at the same
over the2-usersymmetricZ-IC. For the deterministic case,time ensures secrecy of the cooperative private message.
the achievable scheme used a combination of interferencd) Error probability analysis: For receivers and2, define
cancelation and transmission of random bits. The secrdbg following events:E; £ {(yI¥,x)(i)) € TN (Py,x,.)}
capacity region of the deterministic model was charaaterizand Fij. = {(y3,x0,(i,7),x25(k)) € TN (Pyyx,0x000) 1}
over all interference regimes and for all values @f The WhereTEN(Pylxpl) denotes the set of jointly typical sequences
study of the deterministic model gave useful insights fa thy; andx,; with respect toP(y1,x,1) and T (Py, x,.x.,.)
Gaussian case. The proposed scheme for the Gaussian mdderbtes the set of jointly typical sequences, x,2 and
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Fig. 7: (a)Achievable rate region for the Gaussian model in the weallérate interference regime: = 100, hy = 1, h, = 0.5
anda = 0.69; (b) Achievable rate region for the Gaussian model in thé ligerference regime? = 100, hy = 1, h. = 1.5
anda = 1.17; and (c) Secure sum GDOF in the weak/moderate interferezgiene for the Gaussian model. In the plet,
corresponds to the scaling of the capacity of the cooperditik with respect td).5log SNR.

Xep2 With respect toP(y2, xp2, Xep2). Without loss of gen- Consider the following
erality, assume that transmittetsand 2 sendx?(1,1) and N N
x5'(1,1,1), respectively. An error occurs if the transmitted I(Wasy1') = (W2, Wepas y1'),

and received codewords are not jointly typical, or a wrong = I(sz;y{V) + I(chz;Y{VIng). (37)
codeword is jointly typical with the received codewordsingds
the union of events bound and asymptotic equipartition prop
erty (AEP), it can be shown that)) = P(Ef(JU; 1 E;) <
P(ES) + ZP(EZ-) — 0 as N — oo provided

Note thatH (W pa |y, W) = H(W.y2) because the code-
word carrying the cooperative private message is completel
canceled at receiver and the cooperative private message is

7 chosen independent of the non-cooperative private mesgage
Ry < I(xp15y1). (31) transmitter?. Hence,}\}im I(Wepa; ¥y [Wye) = 0. Now, it
— 00
Similarly, the probability of error at receiveR, i.e., IS required to show that strong secrecy condition is satisfie
Y= P(FfUUujmzaanFir) < P(Fh,) + for the non-cooperative private message of transmittet
S P(Fg) - 0 as N — oo provided receiverl. First, consider the following:
(iaj7k)7é(171al) (a)
, I(Wpasy1') < T(Wpas w1, xp1) = T(Wia y7 %)),
Rpa + R < I(Xp2;y2[Xep2), (32) ) N -
ch2 S I(ch2§Y2|Xp2)7 (33) o I(Wp27y 1 )7 ( )
Ryo + R;,Q + Repe < I(Xp2, Xep2; ¥2)- (34) where (a) is obtained using the fact tH&i,, is independent

of x)} and (b) is obtained using the fact tha}; andx/), are
chosen independent of each other during code construction
€ /N a N N

andy’y = hexpy + 27 -

Repe < Cq. (35) It is not difficult to see that transmitte forms a hypo-

; thetical Gaussian wiretap channel with receigeflegitimate
H , 31), (32), (33), (34), (35), = ep2s . .
(1e3r)lci§ (;J;[Igi%éd.) (32), (33), (34). (35), afid = Rpo+Fepo user) and receiver (eavesdropper) with outpugg) andy’”,

In the following, R}, is determined for ensuring secreC))’eSpeCt“;]el%f" I;J/S'r_]g,}?e regult;\r; [39, Coro!?%’ one can
of the non-cooperative private message of transmitteat ensure that (Wy2;y'y') — 0 @s N — oo provide

receiverl. ) ) , Rip = I(xp2;y'1) + €n = I(Xp2; y1[Xp1) + €n. (39)
2) Equivocation computation: For ensuring strong secrecy,

the following condition is required to be satisffed
lim I(Way;yY) =0. (36)
N—o0

Due to the rate-limited cooperation, the following conatitis
required to be satisfied for the cooperative private messag

Note that, although Corollarg in [39] is stated for the
memoryless wiretap channel with additive cost functior th
3 _ _ o _result is applicable in the Gaussian case also, as the agproa

In the equivocation computation, it is assumed for ease e§gntation

that transmitterl does not send any artificial noise. However, the derivatios@n .be dlrectly generahzed from the discrete case to the
holds even when transmitter sends artificial noise. continuous case [40, Chapt&}.
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B. Proof of Corollary 1 v2 is provided as side-information to both the receivers.

The first term in (13) is evaluated as follows IWeyN) + I(Wa;sY |y M)
h2P 1 (a)
Ry <0.5log (1 TR, T hgppz) (40) < I(Wi; v [var) + I(Was varlyl') + 1(Was 3|yt var),

_ S < I(W,x1 537 [var) + T(Was vy |y ) + I(Wass3'[y1, vai),
where the power allocations are as mentioned in the statem N NN NN NN N
of the theorem. The second term in (13) is simplified as fadlow= £ (x1°:¥1 [vo1) + I (Wasvarlyr ) + 1(Wassy' |yr', val ),

= 115y [vay) + H(villyl) — H(valyi, Wa)

Ry <0.51og(1 + h3Pps 4+ h3P.p) — R.,, (41)
s v +h(s3ly1 s va1) — h(sy [yT, vay, Wa),
2
here R, = 0.51 (1 WePpe ) ©
where ffy, =0.5log {1+ Tiere < 1Yyl VA + H(VED) + h(sY T VD) = Ay IvA))
The last term in (13) is simplified as follows NI.N N
- h(SQ |y1 » Vol W2)7
Ry <0.5log(1 4+ h3Pp2) +min {Cq,0.5log(1 + hgPp2)} = IxN;yN v + HEY) + h(sY V) + h(yN s, vi)
_R;ﬁ (42) —h(y{V|V§V1)—h(Sévly{V,Vévl,W2),
Taking convex closure of (40) and the minimum of (41) and (45)

(42) over different values of;, 5; and A;, the achievable \yhere (a) is obtained using the chain rule for mutual in-
secrecy rate in (14) is obtained. The paramefers; and\;  formation and the fact thats; is not a function of Wy
are defined in the statement of the Corollary. This completﬁﬁ is obtained using the Markov chain relatiod; —s
the proof. (vo1,x1) — y1, which can shown using the signal flow
graph (SFG) approach in [42]; (c) follows because removing
C. Proof of Theorem 7 Z(()ngirio]\rf]i)ni ;?n]\r[]r)t]vdec]ge)ase entropy an@)’, yy'[v3]) =
. e Y1 IVal 82 1¥1,Va1)-
It is easy to see that the rate of transmitleris upper  Note that the bounding these differential entropy terms in
bounded by0.5log(1 + SNR). Hence, it is required to prove gpove s difficult as it involves continuous and discretedem
the upper bounds on the rate of transmitteand the sum ariaples. To overcome this problem, using relation in (),
rate. Using Fano’s inequality, the rate of transmiftés upper -asn be shown thab(s) [v)) = h(s¥[vd,x). This also
bounded as follows implies thath(s) [vY,xV) = h(yY |vd],x)). This is one of
the key steps in the derivation as it leads to cancelation of
NRy < I(Wa;y%) + Nen, I N.yN Je h bel
N (x1';¥7 |v5)) as shown below.
<I(Wa3yy,y1 ) + Nen, N NN
= I(Wa;y7) + I(Wa;y3'y1) + New, I(Wl;zrvl ):IEVWQ;SQ |y11v) VN N
< I(xy3y7 [var) + H(vay) + h(sy [var, x7)
+h(yy |82, va1) — h(yt [var) — h(s2'y1 . vay, Wa),

)
b
or Ry & (max 0.5log <1 4 SNR- = I(x1;y7 [var) + H(vay) + h(y? [vor, x1)
=lel= +h(y{v|sév,vévl)—h(y{V|V£V1)—h(Sévly{V,Vé\[hWQ),

(a)
< h(yd |ylY) — h(y5 |y, W2) + New,

(@)
< I(x;y vl + NCo — I(xY sy [v)

+ h(y? sy, vay) — h(sy |y1  var, Wa, x3),

(pPSNR+ v/SNR- INR)? 43)
14 SNR+INR + 2pv/SNR-INR /’

where (a) is obtained using the secrecy constraint at thegs) NN N NN .N N
receiver1; (b) is obtained using the approach used in [7], — ~Y¢¢ T h(y]b |S]3 ’Vjil) - h(sﬁ |y]1\[’V]3[1’X]3] ),
[41]. =NCq + h(yy [s3,va1) = h(s3, y7 Va1, %5')
In the following, the sum rate is upper bounded using Fano’s 4 p(y N v xV),
inequality, secrecy constraint at receiMerand chain rule of
mutual information.
= h(y{\qsévvvévl) - h(Sé”XéV, Vévl) - h(y{\/|sé\f’xé\f’ Vévl)
N[R: + Ry +h(y?' x5, v31) + NCa,
< T(WiyyN) + I(Wa; y) — I(Wa; yY) + Ney, (©)
< I y;V) (W y?v) (W y}V) N N < h(s) = h(z)) + NCg, wheres) 2 hgx¥ + 2z,
=I(Wisyr ) +1(Wasyy ) — I(Wa3y7 5 87)

(46)
+ I(Wa; sy |yN) 4+ Ney, wheres) £ h.x) + 22, _ _ _ o
(Wi lyr) N 52 *2 21(44) where (a) is obtained using the fact that conditioning canno

increase the differential entropy and(vY) < NCg; (b)
The main novelty in the proof lies in bounding these mutué obtained using the fact thd(Ws; sy |y, v, xY) = 0,
information terms. To upper bound the sum rate further, cowhich can again be shown with the help of an SFG [42];
sider the first two terms of (44), where the cooperative dignand (c) is obtained by noticing that first and third term cénce
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with each other using the relation in (3) and using the faoicrease the differential entropy; (c) is obtained usirg férct
that conditioning cannot increase the differential enfrop  that the secrecy capacity region of the Z-IC with confidéntia
Now, consider the bounding of the remaining two terms imessages is invariant under any joint channel noise distrib
(44). As it involves the difference of two mutual informatio tion P(z),z)) that leads to the same marginal distributions
terms, it is not straightforward to upper bound these termB(z{) and P(z)') [44]. Although this invariance property
In the weak/moderate interference regime, the channel frasnstated for the Gaussian IC in [44], it holds for the Z-IC
transmitter2 to receiverl is weaker than the channel fromwith limited-rate transmitter cooperation also. The need f
transmitter2 to receiverl. Hence,x», y» ands, satisfy the replacingzy¥ with z{¥ will become clear later in the proof.
following Markov chain:xs — y2 — so and this channel can Finally, (d) is obtained using the relation in (3).
be viewed as the following degraded broadcast channel (BC)Next, to bound the rate of use, starting from Fano's
Using the result in [30], [43], following bound is obtained. inequality, one proceeds as follows. The genie provides
I(Was ) — I(Wa; v, s) (yV,W1) as side-information to receiver and the rate of

user?2 is further upper bounded as follows
= I(Wasy3') — I(Wass3') — I(Wa, y1'[s3),

< I(Wayy ) — I(Wa;sy), NRy < I(Wa;yy, Wh) + I(Waiy3 [yr, W) + Nen.
< N[I(x23y5) = I(x2;50)], (47) (51)
Finally, using (46) and (47), (44) becomes Consider the first term in (51)

R; + Re <log(1+ SNR) — 0.5log(1 + INR) + C¢, (48) N (a) N v
I(Wasyy, W1) < N H(W: — H(W , Wa),
where the above equation is obtained using the fact that for a( 2y v ®) v+ HWilyr) (Wily2', We)
given power constraint, the Gaussian distribution maxésiz < Nep, (52)
the differential entropy. This completes the proof. B
where (@) is obtained using the secrecy constraint at reckiv
D. Proof of Theorem 8 i.e., [(Wa;ylV) < Ney and (b) is obtained from the reliability
As mentioned earlier, rate of transmittefs upper bounded condition for messagéVs, i.e., H(Wilyy) < Néy and

by 0.51og(1 + SNR). Hence, it is required to prove the uppefropping the negative entropy term. In above, for notationa
bounds on the rate of transmitterand the sum rate. Using Simplicity, o is absorbed intay. Using (52), (51) reduces

the steps used to obtain outer bound on the rate of 2iger (©

the proof of Theorem 7, the following bound is obtained N NN
NRy < I(Wa3yy ,varlyr , Wi) + Nen,

NRy < max 0.5log <1 +SNR = [(Wa; v |y, Wh) 4+ T(Wa; y Y v, vV, W)
0<|p|<1
+ NEN. (53)

(pSNR+ v/SNR- INR)?
- 1+ SNR+ INR + 2v/SNR-INR /)’ (49) 7o bound the rate of usez further, 8%V is included in the
second mutual information term. In the following, it can

The derivation of the outer bound on the sum rate goga noticed that working withs instead ofs) leads to
as follows. First, an outer bound on the rate of useis —h(z) instead of0. Thus, replacing the noise i with

obtained. Then, an outer bound on the rate of aserderived. an independent noise leads to a tighter outer bound. Hence,
Adding these two outer bounds leads to cancelation of negatine outer bound o, becomes

differential entropy terms, which in turn allows one to abta
a single letter characterization of the sum rate outer boundp,
In the following, an outer bound on the rate of uders NN NN
. S . . <H Wi)—H W, W
obtained by providing/) as side-information to receivar ~ — (Vm% ’~N1)N N(V21|Y1 W1, W)
+I(Wa23y5 .87 |[var, y1 , W) + Nen,

NRy < I(Wy;y7,y5) + New,

@ Wy yY) + New,

®)
< h(ylys) — h(s{ [yd, Wi, x5, v3}) + Nen,

N A N N
wheres;' = hgxy' + 23

(a) ~
S H(V%)+I(WQ;S{V|VéV1,y{V,W1)
+ I(Was vy |[vo, 1, W1,87) + Nen,

(®) ) )
S H(Vévl)—’—h(si\]'vé\g’ Wl)_h(s{v|vévlay{vvwla WQ,X{V7XéV)

(c) +h(yév|y{v3§{\]) - h(yév|vévlay{vvwla§iv7Wanév) +N€N7

< h(y?lys ) = h(87 |y s Wi, x5, viy) + New, = HY) + hEN WY, W) — h(@Y) + hyY |y, &)
wheres £ p xV + 2z, — h(z)) + Ney, (54)

@ .

= h(ylys ) = h(87[Wi,v5)) + Nen, (50)

where (a) and (b) are obtained using the fact that removing
where (a) is obtained using the fact tha} is independent (or adding) conditioning cannot decrease (or cannot irs&ea
of W7; (b) is obtained using the fact that conditioning canndhe differential entropy.
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Adding (50) and (54), the following is obtained Next, consider the outer bound on the sum rate in Theorem 6

Ri+ R» Ri 4+ Rs
< H(va1) + h(y1ly2) + h(yzly1,81) — h(z1) — h(z2), < 0.5log(1 + SNR+ INR 4 2VSNR- INR)
SNR
< max Cg +0.5log |1+ SNR+INR +2pvVSNR-INR +0.5log (1+17) + Ca,
0<|p|<1 + INR
< 0.5log (1 +3SNR+ INR) + 0.5log (1 + SNR+ INR
()SNR+ v/SNR-INR)? < 0.51og (14 3SNR+ INR) + 0.5 log (1 + SNR+INR)
- T+ SNR +0.5log Xy, s, (55) —0.5log (1 +INR) + Cqg,
=log SNR— 0.5logINR + C¢ + O(1),
whereXly s is as defined in the statement of the theorem. Thgr dsum(K,7) < 2 — K + 7. (61)

above equations obtained using the approach used in [7],
[41]. The individual terms in the above equations are obtaindtkxt, starting from the sum rate bound in Theorem 7 and
as follows using a similar procedure as the above, it can be shown that
dsum(k,v) < 2 — Kk + . Hence, although (unlike Theorem 6)

h(y1lyz2) = 0.5log2meXy, |y, (56) Theorem 7 was derived accounting for the secrecy constraint
where both the theorems lead to the same outer bound on the GDOF:
E[Y1Y2]2 < mi —
EY1\Y2 = E[y%] - E[y2] ) dsum(#5,7) < min{2,2 — x5 + 7} (62)
2 JENRINR It can be verified that the outer bound in (62) coincides with
=1+SNR+INR +2pvSNR-INR the achievable GDOF in (60). Hence, the proposed scheme is
(pSNR+ v/SNR- INR)? GDOF optimal, and this completes the proof.
- . (57)
1+ SNR
The termXy, s is obtained as follows F. Proof of Theorem 10
Syls = Ely?] — Ely»sT|E[ssT] " E[sys] Using Corollary 1 and the power allocation in (28), the
e A e s lower bound on the sum rate reduces to
wheres = [s1 y1]°,
— 14 SNR-%,,,5,!%7 . (58) [+l

In the above equation, the terr, ¢ andX ¢ are as defined

Py .
in the statement of the theorem. This completes the proof. = -5108 (1 + ) +min{ 0.5log(1 + Pp2 + Pop2),

14 h2Pp

I
E. Proof of Theorem 9
Using Corollary 1 and the power allocation in (28), the  0.5log(1l + Pp2) + min{Cq,0.5log(1 + Pep2)}

lower bound on the sum rate reduces to A
Ry + Ry —0.5log(1 4+ hZPys). (63)
P . 1 P To bound the gap, consider the following exhaustive cases:
<0.51 1+ — 0.51 1+—=+=, ’ .
- Og( + 4) +mm{ Og( + 2h? + 2) 1) When I; < I5: In this case, (63) reduces to
1
0.5log (1 + ﬁ) + min {Cg, 0.5log (1 Ry + Ry
¢ P 1 r
1 1 >0.51 1+ — 0.51 1+ —+ =) —0.5log2,
+—(P——2)>}}—0.510g2, = Og( +4)+ Og( +2h§+2> °8
NR
= 0.5log SNR+ min {0.5 log SNR 0.5 log INR > 0.5log(1 4+ SNR) 4 0.5log(1 + SNR) — 2. (65)
+min {Cg,0.5log SNR}} + O(1), A trivial outer bound on the sum rate i3; + R2 < log(1 +
or d ~ ninf2.9 (1 (59) SNR). Hence, comparing this outer bound on the sum rate
sum(#5,7) = min{2,2 — £ + min (1,7)}. with (65), the gap is at most bits/s/Hz.
Hence, the achievable sum GDOF becomes 2) When I; > I, and 0.5log(1+ P.,2) > Cq: In this case,
) the lower bound on the sum rate in (63) reduces to
dsum(’ia ’7) = min {21 2—K + 7} . (60)

SNR SNR
To establish the GDOF optimality of the proposed schem&; + fi2 = 0.5log (1 + T) +0.5log (1 + m) + Cq

consider the following outer bounds on the sum rate. As 9

the individual rates of each user is upper bounded by — 0.5log(1 + heFpo), s
0.5log (1 4+ SNR), a trivial outer bound on the sum rate is: > 0.5log(1 + SNR) + 0.5 log <1 n NR) L Ce
Ri + Ry < log(1+ SNR). Hence, the outer bound on the INR

secure sum GDOF becomégm(x, ) < 2. —1.5. (66)



To calculate the gap, the following outer bound on the surm]
rate in Theorem 7 is used.

Ry + Ry <log (1 + SNR) — 0.51og (1 + INR) + Ce. (67)

Subtracting (66) from the sum rate outer bound in (67), it can
be seen that the gap is at ma@sbits/s/Hz. (23]

3) When I; > I and 0.5log(1+4 Pep2) < Cg: In this case,
the lower bound on the sum rate reduces to (64), for whi¢¥
the gap is shown to be at matbits/s/Hz.

Hence, the sum rate capacity of the Z-IC with unidireqgzs)
tional transmitter cooperation and the secrecy consgaant
the receivers is withir2 bits/s/Hz of the outer bound. This[26]
completes the proof.
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