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On the Secrecy Capacity Region of the2-user
Symmetric Z Interference Channel with
Unidirectional Transmitter Cooperation

Parthajit Mohapatra, Chandra R. Murthy, and Jemin Lee

Abstract—In this work, the role of unidirectional limited rate
transmitter cooperation is studied for the 2-user symmetric
Z interference channel (Z-IC) with secrecy constraints at the
receivers, in achieving two conflicting goals simultaneously:
mitigating interference and ensuring secrecy. First, the problem
is studied under the linear deterministic model. A novel scheme
for partitioning the encoded messages and outputs based on the
relative strengths of the signal and interference is proposed.
The partitioning reveals the side information that needs tobe
provided to the receiver and facilitates the development oftight
outer bounds on the secrecy capacity region. The achievable
schemes for the deterministic model use a fusion of cooperative
precoding and transmission of a jamming signal. The optimality
of the proposed scheme is established for the deterministicmodel
for all possible parameter settings. The insights obtainedfrom
the deterministic model are used to derive inner and outer
bounds on the secrecy capacity region of the2-user Gaussian
symmetric Z-IC. The achievable scheme for the Gaussian model
uses stochastic encoding in addition to cooperative precoding and
transmission of jamming signal. For the Gaussian case, the secure
sum generalized degrees of freedom (GDOF) is characterizedand
shown to be optimal for the weak/moderate interference regime.
It is also shown that the secure sum capacity lies within2 bits/s/Hz
of the outer bound for the weak/moderate interference regime for
all values of the capacity of the cooperative link. Interestingly, in
the deterministic model, it is found that there is no penaltyon the
capacity region of the Z-IC due to the secrecy constraints atthe
receivers in the weak/moderate interference regimes. Similarly,
it is found that there is no loss in the secure sum GDOF for the
Gaussian case due to the secrecy constraint at the receiver,in
the weak/moderate interference regimes. The results highlight the
importance of cooperation in facilitating secure communication
over the Z-IC.

I. I NTRODUCTION

The role of cooperation between the transmitters/receivers
in interference limited scenarios has been studied extensively
in the context of communicationreliability. However, the
effect of the cooperation on communicationsecrecy has not
been well explored, and the ability to cooperate can have a
very different effect on the achievable rates when there is a
secrecy constraint [2], [3]. In a system operating under se-
crecy constrains at the receivers, the receivers cannot enhance
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their own rates by decoding and canceling the interference,
since this does not preserve the communication secrecy. This
leads to the following fundamental questions: (a) how much
interference can be mitigated through rate-limited transmitter
cooperation, when there are secrecy constraints at receivers?
(b) what is the corresponding gain in the rate achieved by the
cooperation between transmitters? Answering these questions
helps in understanding the role of cooperation in managing
interference and ensuring secrecy in multiuser scenarios.

The effect of transmitter cooperation on the secrecy capacity
is closely related to the underlying channel model. The channel
model considered in this paper is the Z-IC [4], [5]. In the Z-
IC, only one of the two transmitters causes interference at
the unintended receiver, and is also referred to as apartially
connected IC in [6]. As a practical example, the Z-IC can
model a 2-tier network, where the macro cell user is close to
the edge of the femtocell while the femtocell user is close to
the femto base station (BS). Since the macro BS can typically
support higher complexity transmission schemes, it could use
the side information received from the femto BS to precode its
data to improve its own rate and simultaneously ensure secrecy
at the femtocell user. At the receivers, the macro cell user
could experience significant interference from the femtocell
BS, while the femtocell user receives little or no interference
from the macro BS, leading to the Z-IC as the appropriate
model for the system. Hence, answering the aforementioned
questions in the context of the Z-IC can lead to useful insights
in the 2-tier cellular network mentioned above.

A. Prior work

The IC has been studied extensively with and without
secrecy constraints at the receivers under different settings [7]–
[9]. However, the capacity region of the2-user Gaussian IC has
remained an open problem, even without secrecy constraint,
except for some specific cases like the strong interference
regime and the very strong interference regime [10], [11].
The Han-Kobayashi (HK) scheme proposed in [12] is the best
known achievable region for the IC.

It has been shown that cooperation between the transmitters
or receiversin the case of ICcan improve the overall perfor-
mance of the system, when there is no secrecy constraint at
the receivers [13]–[16]. However, the effect of cooperation
on managing interference and ensuring secrecy in interference
limited scenarios is not well understood. Some of the works in
this direction can be found in [2], [17]. It has been shown that,
with cooperation, it is possible to achieve nonzero secrecyrate
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in most of the cases, even when the unintended receiver has a
better channel compared to the legitimate receiver. The effect
of cooperation on the achievable rates for other communication
models with secrecy constraints can be found in [18]–[21].

The Z-IC model has also been studied in existing literature
under different setups as follows:

Z-IC without secrecy and without cooperation: In [4], lower
bounds on the capacity region of the Gaussian Z-IC for the
weak and moderate interference regimes are derived. In [22],
it is shown that superposition encoding with partial decoding
is optimal for a certain class of Z-IC. A simple variant of the
HK encoding scheme was proposed in [23] for the Gaussian
Z-IC and a class of mixed IC.

Z-IC without secrecy and with cooperation: The role of
cooperation in the Z-IC without secrecy constraint has been
investigated in [24]–[29]. In [24], [29], a cognitive Z-IC
is considered, where the non-interfering user (primary user)
shares its codeword with the interfering user (secondary user).
It is shown that a combination of superposition coding and
dirty paper coding can achieve capacity over a certain subset
of the strong interference regime. The capacity region of the
cognitive Z-IC is established in the very strong interference
regime in [25]. In [26], both the encoders cooperate through
noiseless links with finite capacities and the sum capacity of
the channel is characterized to within2 bits of the outer bound.

Z-IC with secrecy and without cooperation: In [30], the Z-
IC model is considered with secrecy constraints at the receivers
and achievable schemes are obtained for the deterministic and
the Gaussian model in the weak/moderate interference regime.
For the deterministic model, the secrecy capacity region is
characterized. In [31], it is shown that when the non-interfering
transmitter is constrained to use a deterministic encoder,the
capacity region can reduce.

B. Contributions

This work considers the2-user symmetric Z-IC with unidi-
rectional transmitter cooperation via a rate-limited linkfrom
transmitter 2 (which causes interference) to transmitter1
(which does not cause interference), and with secrecy con-
straints at the receivers. The key challenge here is to de-
vise techniques for simultaneously canceling interference and
guaranteeing secrecy. First, the problem is solved under the
deterministic approximation of the channel. Using the results
in the deterministic model, an achievable scheme and outer
bounds are derived for the Gaussian channel model.

One of the key techniques used in the achievable scheme
for both the models iscooperative precoding performed at
transmitter1, which cancels interference at receiver1 and
thereby simultaneously ensures secrecy. However, the amount
of the interference that can be canceled at the receiver is
limited by the rate of the cooperative link. In the determin-
istic model, transmission of a jamming signal along with
interference cancelation is required to achieve the capacity.
On the other hand, the achievable scheme for the Gaussian
model uses stochastic encoding in addition to cooperative
precoding and transmission of a jamming signal.Derivation
of outer bound requires judicious use of the secrecy constraint
at receiver, along with careful selection of the side information

to be provided to the receivers. In particular, the cooperation
between the transmitters makes the encoded messages depen-
dent, which makes derivation of the outer bounds even more
difficult.

The main contributions of the paper are as follows:
1. Outer bounds on the secrecy capacity of the symmetric

Z-interference channel with unidirectional transmitter coop-
eration are derived. The key novelty in deriving the outer
bounds is the choice of side information to be provided to
the receiver(s) and the use of the secrecy constraints at the
receivers in a judicious manner. To elaborate, a novel parti-
tioning of the encoded messages and outputs is proposed for
the deterministic model based on the strength of interference
and signal. Further, this partitioning also helps to bound or
simplify the entropy terms that are difficult to evaluate dueto
the dependence between the encoded messages.

2. An achievable scheme is proposed for the system under
consideration, which uses a combination of transmission of
random bits and cooperative precoding to cancel the interfer-
ence at the unintended receiver. The cooperative precoding
offers two benefits simultaneously: it cancels interference and
ensures secrecy.

3. It is shown that, for all valuesC and over all interference
regimes, the inner and outer bounds derived on the secrecy
capacity region match, thus yielding the capacity of the
deterministic symmetric Z-IC with unidirectional transmitter
cooperation and secrecy constraints. It is also shown that the
capacity region of the deterministic symmetric Z-IC does not
enlarge if the perfect secrecy constraint at the receiver is
replaced with the weak or strong notion of secrecy.

4. An achievable scheme is proposed for the Gaussian case,
which uses a combination of stochastic encoding, interference
cancelation and artificial noise transmission. The noveltyin
the achievable scheme lies in fusing stochastic encoding
with interference cancelation. The achievable rate of secure
communication is analyzed using the notion of strong secrecy.
Interestingly, it is shown that the equivocation computation for
the Gaussian case reduces to the equivocation computation for
a Gaussian wiretap channel.

5. Tight outer bounds are developed for the Gaussian case
by providing appropriate side information and bounding the
entropy terms containing both discrete and continuous random
variables based on the insights obtained for the deterministic
case. The outer bounds derived on the secrecy capacity region
of the Gaussiansymmetric Z-IC are the best known outer
bounds till date with unidirectional transmitter cooperation.

6. In the weak/moderate interference regime, the secure sum
generalized degrees of freedom (GDOF) is also characterized
and shown to be optimal for all values of the capacity of the
cooperative link. The secure sum capacity of the symmetric Z-
IC is also shown to lie within2 bits/s/Hz of the outer bound in
the weak/moderate interference regime for all possible values
of the capacity of the cooperative link.

7. Bounds on the secrecy capacity region of the2-user
symmetricZ-IC without cooperation between the transmitters
are special cases of the analysisfor both models. Note that,
prior to this work, the capacity region of thesymmetricZ-IC
for the deterministic model with secrecy constraints was not
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Ŵ1

Tx 1

Ŵ2
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Fig. 1:2-user Z-IC with unidirectional transmitter cooperation
(from transmitter2 to transmitter1).

fully known even for the non-cooperating case [30].
It is shown that limited-rate transmitter cooperation can

greatly facilitate secure communication over the Z-IC in
weak/moderate and high interference regimes. In the case of
the deterministic model, it is found, surprisingly, that there
is no penalty on the capacity region of the Z-IC due to
the secrecy constraints at the receivers in the weak/moderate
interference regimes. Thus, the proposed scheme allows oneto
get secure communications for free. Similarly, it is found that
there is no loss in the sum GDOF for the Gaussian case due
to the secrecy constraint at the receiver, in the weak/moderate
interference regimes. For the deterministic model, it is found
that for every one bit increase in the capacity of the cooperative
link, the secure sum rate can increase by one bit, in the weak,
moderate and high interference regimes, until the sum rate is
saturated by its maximum possible value.

Notation: Lower case or upper case letters represent scalars,
lower case boldface letters represent vectors, and upper case
boldface letters represent matrices.

II. SYSTEM MODEL

Consider a2-user Gaussian symmetric Z-IC with unidi-
rectional and rate-limited transmitter cooperation from trans-
mitter 2 to 1, as shown in Fig. 1a.1 In the Z-IC, only
transmitter2 causes interference to receiver1. The received
signal at receiveri, yi, is given by

y1 = hdx1 + hcx2 + z1; y2 = hdx2 + z2, (1)

where zj (j = 1, 2) is the additive white Gaussian noise,
distributed asN (0, 1). Here,hd andhc are the channel gains
of the direct and interfering links, respectively. The input
signals (xi) satisfy the power constraint:E[|xi|2] ≤ P . The
unidirectional cooperative link from the interfering transmitter
(transmitter 2) to the non-interfering transmitter (transmitter
1) is noiseless, secure, and of finite rateCG.

The equivalent deterministic model of (1) at high SNR is
given by [13], [30]

y1 = Dq−mx1 ⊕Dq−nx2; y2 = Dq−mx2, (2)

1The model is termed as symmetric as the links from transmitter 1 to
receiver1 and transmitter2 to receiver2 are of the same strength.

wherex1 (x2) is the binary input vector of the deterministic
Z-IC from user1 (user2) of lengthm (max{m,n}); y1 (y2)
is the binary output vector of lengthmax{m,n} (m); D is
a q × q downshift matrix with elementsdj′,j′′ = 1 if 2 ≤
j′ = j′′ + 1 ≤ q anddj′,j′′ = 0 otherwise; and the operator
⊕ stands for modulo-2 addition, i.e., theXOR operation. The
deterministic model is pictorially illustrated in Fig. 1b.

The deterministic model is a first order approximation of
a Gaussian channel, where all the signals are represented by
their binary expansions. Here, noise is modeled by truncation,
and the superposition of signals at the receiver is modeled by
modulo 2 addition. Hence, the parametersm, n, and C of
the deterministic model are related to the Gaussian symmetric
Z-IC as m = (⌊0.5 logSNR⌋)+, n = (⌊0.5 log INR⌋)+,
and C = ⌊CG⌋. Note that the notation followed for the
deterministic model is the same as that presented in [13]. The
bits ai ∈ F2 and bi ∈ F2 denote the information bits of
transmitters1 and 2, respectively, sent on theith level, with
the levels numbered starting from the bottom-most entry.

The transmitteri has a messageWi, which should be
decodable at the intended receiveri, but needs to be kept
secret from the other, i.e., the unintended receiverj (j 6= i),
and this is termed as thesecrecy constraint. Note that, for
the Z-IC, the messageW1 is secure as there is no link from
transmitter1 to receiver2. Hence, the goal is to ensure thatW2

is not decodable at receiver1. The encoding at transmitter1
should satisfy the causality constraint, i.e., it cannot depend
on the signal to be sent over the cooperative link in the future.
The signal sent over the cooperative link from transmitter2
to transmitter1 is represented byv21. It is also assumed that
the transmitters trust each other completely and they do not
deviate from the agreed schemes, forboth models.

For the deterministic model, the encoded message at trans-
mitter 1 is a function of its own data bits, the bits received
through the cooperative link, and possibly some random bits,
whereas the encoded message at transmitter2 is independent
of the other user’s data bits. The bits transmitted on the
different levels of the deterministic model are chosen to be
equiprobable Bernoulli distributed, denoted byB(12 ). The
decoding is based on solving the linear equation in (2) at each
receiver. For secrecy, it is required to satisfy the perfectsecrecy
constraint, i.e.,I(Wi;yj) = 0, i, j ∈ {1, 2} and i 6= j in the
case of the deterministic model [32]. In the later part of the
sequel, it is shown that replacing the perfect secrecy constraint
at receiver with the strong or weak secrecy constraint does not
enlarge the capacity region of the deterministic model.

In the Gaussian case, the details of the encoding and
decoding schemes can be found in Sec. IV. For the Gaus-
sian model, the notion ofstrong secrecy is considered, i.e.,
I(W2;y

N
1 ) → 0 as N → ∞, whereN corresponds to the

block length [33].
The following interference regimes are considered:

weak/moderate interference regime(0 ≤ α ≤ 1), high
interference regime(1 < α ≤ 2) and very high interference
regime (α > 2), where, with a slight abuse of notation
α , n

m
is used for the deterministic model andα ,

log INR
log SNR

is used for the Gaussian model. The quantityα captures the
amount of coupling between the signal and interference.
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Fig. 2: Deterministic Z-IC: partitioning of encoded messages
and outputs.

III. L INEAR DETERMINISTIC SYMMETRIC Z-IC:
CAPACITY REGION

In this section, the secrecy capacity region of the linear
deterministic symmetric Z-IC with unidirectional transmitter
cooperation is characterized for the different interference
regimes through Theorems 1-3. It is shown that the upper
bound on the secrecy capacity region matches with the lower
bound, and thereby establishes the capacity region for the
deterministic model. Due to lack of space, only a high level
description of the proofs of the results are provided, and the
interested reader is referred to [1], [34], [35] for details.

Note that in all interference regimes, the rate ofboth users
can be trivially upper bounded bym, i.e.,R1 ≤ m andR2 ≤
m. One of the key techniques used in deriving tight outer
bounds is to partition the encoded message, output, or both,
depending on the value ofα. The partitioning of the encoded
messages/outputs gives insights on the side information tobe
provided to the receiver. This in turn allows one to exploit the
secrecy constraint at the receiver to obtain tight and tractable
outer bounds on the secrecy capacity region of the Z-IC. This
partitioning also helps to simplify the entropy terms as the
encoded messages at the transmitters are not independent due
to the cooperation between the transmitters.

The following Markov relation is used in the derivation
of these outer bounds: conditioned on the cooperating signal
(vN

21), the encoded signals and the messages at the two
transmitters are independent [13], [36], i.e.,

(W1,x
N
1 ) → (vN

21) → (W2,x
N
2 ). (3)

Outer Bounds in the Weak/Moderate Interference Regime
(0 ≤ α ≤ 1): The encoded messagex1 is split into two
parts: one part (x1a), which is received without interference
at receiver1, and another part (x1b), which is received with
interference at receiver1. The encoded message of transmit-
ter 2 is also split into two parts: one part (x2a), which causes
interference to receiver1, and another part (x2b), which does
not cause any interference to receiver1. The partitioning of
the output and the encoded message is shown in Fig. 2a. In
the derivation of this outer bound, the secrecy constraintsat
the receivers are not used.
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Fig. 3: Deterministic Z-IC withm = 5, n = 3 andC = 1.

Inner Bounds in the Weak/Moderate Interference Regime
(0 ≤ α ≤ 1): When there is a high capacity cooperative link
from transmitter2 to transmitter1, the interference caused
at receiver1 by transmitter2 can be completely canceled by
using the signal received from transmitter2 via the cooperative
link at transmitter1. This cancelation of interference offers
two benefits: it improves the achievable rate, and also ensures
secrecy, since the signal sent by transmitter2 is no longer
decodable at receiver1. When the capacity of the cooperative
link is not sufficiently high, it is not possible to design the
precoding to completely eliminate the interference causedby
transmitter2 at receiver1. In this case, the transmission of
random bits (i.e., transmission of artificial noise [37], [38])
by transmitter1 can ensure secrecy of the data bits sent by
transmitter 2 at receiver1, in turn enabling transmitter2
to achieve a higher secure rate of communication. Thus,
the proposed achievable scheme uses a carefully designed
combination of interference cancelation and transmissionof
random bits depending on the capacity of the cooperative link
C bits, and the value ofα. A pictorial representation of the
scheme to achieve the corner points(R1, R2) = (5, 3) and
(R1, R2) = (3, 5) is shown in Figs. 3a and 3b, respectively.

Theorem 1: In theweak/moderate interference regime(0 ≤
α ≤ 1, i.e., n ≤ m), the secrecy capacity region of the2-user
deterministicsymmetric Z-IC with unidirectional and rate-
limited transmitter cooperation is

R1 ≤ m,R2 ≤ m,R1 +R2 ≤ 2m− n+ C. (4)

Remarks:

• The derivation of theouter bound [1] does not use the
secrecy constraint at the receiver.The proposed schemes
can achieve the four corner points of the outer bound,
and hence, the secrecy constraints at the receivers do not
result in any penalty on the capacity region. Thus, the
capacity region of the deterministic Z-IC is characterized
with and without secrecy constraints for all values ofC.

• When0 < α ≤ 1, both userscan achieve the maximum
rate ofm simultaneously ifC ≥ m.

Outer Bounds in the High Interference Regime (1 < α < 2):
In this case, it is not difficult to see that the rate of user1
can be upper bounded bym. To get insights into the outer
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Fig. 4: Deterministic Z-IC withm = 4, n = 5 andC = 1.

bounds onR2 andR1 + R2, consider Fig. 2b. One can see
that transmitter2 cannot use the levels[1 : n − m] for
transmitting its own data as the corresponding links do not
exist at the intended receiver. Any data bits transmitted on
the levels [m + 1 : n], i.e., x2a, will be received without
interference at receiver1. If receiver2 can decode these data
bits, receiver1 will also be able to decode these data bits.
Hence, these data bitsy1a = x2a will not be secure. Hence,
they are provided as side information to receiver2 to obtain the
upper bounds. Then, using the secrecy constraint at receiver 1,
the following outer bounds can be obtained.

Inner Bounds in the High Interference Regime (1 < α <

2): The achievable scheme proposed here differs from that
proposed in the weak/moderate interference regime in terms
of the placement of random bits. A high level description of
the achievable scheme to achieve the corner points(R1, R2) =
(4, 1) and (R1, R2) = (2, 3) is shown in Figs. 4a and 4b,
respectively.

Theorem 2: In the high interference regime (1 < α < 2,
i.e., m < n < 2m), the secrecy capacity region of the2-user
deterministicsymmetric Z-IC with unidirectional and rate-
limited transmitter cooperation is

R1 ≤ m,R2 ≤ 2m− n,R1 +R2 ≤ m+ C. (5)

Remarks:
• When C = 0 and 1 < α < 2, if user 1 achieves

the maximum rate ofm, then user2 cannot achieve
any nonzero secrecy rate. This is in contrast to the
weak/moderate interference case, where user1 achieves
the maximum rate ofm, while user2 achieves the rate
of m− n even without cooperation.

• When1 < α < 2 andC ≥ 2m− n, transmitters1 and2
can simultaneously achieve the maximum rates ofm and
2m− n, respectively.

• In general, the principle behind the achievable schemes to
achieve the corner points(m,m−n+C) and(m,C) in
the weak/moderate and high interference regimes, respec-
tively, is precoding of data bits at transmitter1 using the
data bits of transmitter2 received on the cooperative link
to cancel interference and ensure secrecy. On the other
hand, the achievability of the corner points(m−n+C,m)
and(n−m+C, 2m−n) in the weak/moderate and high
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Fig. 5: Deterministic Z-IC with(m,n) = (2, 4): Illustration
of partitioning of the message/output.

interference regimes, respectively, requires transmission
of random bits by transmitter1 to ensure that the signal
from transmitter2 remains secure, in addition to precod-
ing data bits received from transmitter2 with its own data
bits.

Outer Bounds in the Very High Interference Regime (α ≥ 2):
In Fig. 5, it can be noticed that only the levels[n−m+1 : m]
can be used to send data from transmitter2 to receiver2, as
the links corresponding to the lower levels[1 : n − m] do
not exist at receiver2. The data bits transmitted on the levels
[n − m + 1 : n], i.e., x2a, are received without interference
at receiver1. If receiver 2 can decode these data bits, then
receiver1 can also decode these data bits. Hence, transmitter2
cannot send any data bits securely on these levels. To capture
this in the derivation, receiver2 is provided with the side
information of the formyN

1a, which in turn helps to bound the
rate byI(W2;y

N
2 |yN

1a). It can be noticed that this quantity is
zero asy1a = y2 = x2a. The secrecy capacity region in the
very high interference regime(α ≥ 2) is given in the following
theorem.The capacity region shows that user2 cannot achieve
any nonzero secrecy rate. On the other hand, user1 can achieve
the maximum possible rate, i.e.,m, by sending data bits on
the levels[1 : m], whereas, user2 remains silent.

Theorem 3: In the very high interference regime (α ≥ 2,
i.e., 2m ≤ n) the secrecy capacity region of the2-user
deterministicsymmetric Z-IC with unidirectional and rate-
limited transmitter cooperation is

R1 ≤ m,R2 = 0. (6)

Proof: The outer bound on the rate of user2 in Theorem 3
shows that user2 cannot achieve any nonzero secrecy rate
irrespective of the capacity of the cooperative link. Thus,
transmitter1 can send data bits on the levels[1 : m], while
transmitter2 remains silent. This characterizes the capacity of
the deterministic Z-IC in the very high interference regime.

Interestingly, it turns out that the capacity region of the
deterministicsymmetricZ-IC does not change if the perfect
secrecy constraint at the receiver is replaced with the strong
or the weak notion of secrecy. This result is stated in the
following Theorem.
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Theorem 4: The secrecy capacity region of the determinis-
tic symmetricZ-IC with unidirectional transmitter cooperation
satisfies the following

Cperfect= Cstrong= Cweak, (7)

where Cperfect, Cstrong and Cweak correspond to the capacity
regions of the2-user deterministic Z-IC with unidirectional
transmitter cooperation guaranteeing the perfect, strongand
weak secrecy constraints at the receivers, respectively.

Proof: In the literature, three notions of secrecy have
been used:perfect, strong, and weak secrecy. Mathemati-
cally, perfect secrecy is defined asI(Wi;y

N
j ) = 0, i, j ∈

{1, 2} and i 6= j [32]. Strong secrecy is defined as:
lim

N→∞
I(Wi;y

N
j ) = 0, i, j ∈ {1, 2} and i 6= j [33].

Weak secrecy is defined as:lim
N→∞

1
N
I(Wi;y

N
j ) = 0, i, j ∈

{1, 2} and i 6= j [33].
Any communication scheme satisfying the perfect secrecy

condition will automatically satisfy the strong and weak se-
crecy conditions. Similarly, a communication scheme satisfy-
ing strong secrecy will automatically satisfy the weak secrecy
condition. Hence, the following holds

Cperfect⊆ Cstrong⊆ Cweak⊆ Cweak
outer, (8)

whereCweak
outer corresponds to the outer bound on the capacity

region of the Z-IC with unidirectional transmitter cooperation
and weak secrecy constraints at the receivers. The achievable
results in Sec. III are obtained under the perfect secrecy
constraints at the receivers. On the other hand, it is not difficult
to show that the upper bounds on the capacity region in [1] do
not change if the perfect secrecy constraint is replaced with
the weak secrecy constraint.2 As the achievable rate regions
(i.e., Cperfect) match with the upper bounds on the capacity
region(i.e., Cweak

outer), the relation in (7) holds.

IV. GAUSSIAN SYMMETRIC Z-IC: ACHIEVABLE SCHEME

For the Gaussian case, a unified achievable scheme is
proposed, which is applicable in the weak, moderate and
high interference regimes. The achievable scheme is based
on the cooperative precoding performed at the transmittersto
cancel the interference at the unintended receiver, along with
stochastic encoding and transmission of artificial noise. When
the capacity of the cooperative link is not sufficiently high,
it is not possible to share the entire message of transmitter2
with transmitter1 through the cooperative link. Hence, the
interference caused at receiver1 by transmitter2 cannot be
completely eliminated. Thus, stochastic encoding performed at
transmitter2 and artificial noise transmission by transmitter1
can provide additional randomness to increase the secrecy rate
of user2.

The achievable scheme for the deterministic model is ex-
tended to the Gaussian model as follows. Since there is no
cooperative link from transmitter1 to transmitter2, transmit-
ter 1 cannot share its message with transmitter2 for coop-
eration. The message of transmitter1 intended to receiver1

2This can be shown by using1
N
I(Wi;y

N
j ) ≤ ǫ, i 6= j, (weak secrecy)

as a measure of secrecy in the derivation of the outer bounds,instead of
I(Wi,yj) = 0 (perfect secrecy).

is inherently secure, as there is no link from transmitter1 to
receiver2. This translates to having a non-cooperative private
messagewp1 ∈ Wp1 = {1, 2, . . . , 2NR1} at transmitter1, and
for each message, it transmits a codeword from a Gaussian
codebook of size2NR1 . Next, for the transmission of data by
transmitter2, recall that, in the deterministic case, the data
bits sent by transmitter2 on the lower levels[1 : m− n] are
inherently secure in the weak/moderate interference regime
(See Fig. 3a). To enable secure transmission of data bits on
the higher levels (specifically, levels[m − n + 1 : m] in the
weak/moderate interference regime and levels[n−m+1 : n]
in the high interference regime), transmitter 2 needs the
assistance of transmitter 1. That is, transmitter 1 needs to
precode the data bits received through the cooperative link,
or needs to send a jamming signal, so that the other user’s
data bits remain undecodable at receiver1. To translate this
scheme to the Gaussian case, the message at transmitter2
is split into two parts: a non-cooperative private message
wp2 ∈ Wp2 = {1, 2, . . . , 2NRp2} and a cooperative private
messagewcp2 ∈ Wcp2 = {1, 2, . . . , 2NRcp2}. Transmitter2
encodes the non-cooperative private message intoxN

p2 using
stochastic encoding. A stochastic encoder is specified by
a matrix of conditional probabilityfp2(xp2,k|wp2), where
xp2,k ∈ Xp2 andwp2 ∈ Wp2.

For the cooperative private message, transmitters1 and
2 precode the messagewcp2 cooperatively such that the
codeword carrying the cooperative private message is com-
pletely canceled at the non-intended receiver. This cooperative
precoding also helps ensure secrecy for the cooperative private
message. The details of the encoding and decoding process
of the achievable scheme are presented in the following
subsection.

A. Encoding and decoding

For the non-cooperative private part, transmitter1 generates
a codebookCp1 containing2NR1 i.i.d. sequences of length
N and its entries are i.i.d. random variables fromN (0, Pp1).
Transmitter2 generates two codebooks as follows. For the
non-cooperative private message, it generates a codebookCcp2
containing2N(Rp2+R′

p2) codewords of lengthN . The entries
of the codebook are drawn at random fromN (0, Pp2). The
2N(Rp2+R′

p2) codewords in the codebookCp2 are randomly
grouped into2NRp2 bins, with each bin containing2NR′

p2

codewords. Any codeword inCp2 is indexed asxN
p2(wp2, w

′
p2)

for wp2 ∈ Wp2 and w′
p2 ∈ W ′

p2 = {1, 2, . . . , 2NR′

p2}. To
sendwp2, transmitter2 selectsw′

p2 uniformly at random from
the setW ′

p2 and transmits the codewordxN
p2(wp2, w

′
p2). For

the cooperative private message, transmitter2 generates a
codebookCcp2 consisting of2NRcp2 i.i.d. sequences of length
N . The entries of the codebook are chosen at random from
N (0, Pcp2). This codebook is made available at transmitter1.

To send a message(wp2, wcp2), transmitter2 superimposes
the cooperative codewordxcp2(wp2) with the non-cooperative
codewordxN

p2(wp2, w
′
p2) as

xN
2 (wp2, w

′
p2, wcp2) = xN

p2(wp2, w
′
p2) + hdx

N
cp2(wcp2). (9)
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The following power constraint is required to be satisfied at
transmitter2:

Pp2 + h2
dPcp2 ≤ P, (10)

wherePp2 andPcp2 are parameters to be chosen later.
Transmitter1 performs precoding as mentioned in (11), so

that the codeword carrying the cooperative private message
of transmitter2 is canceled at receiver1. This is termed as
cooperative precoding. Transmitter1 also adds artificial noise
(xN

a1) generated from a Gaussian distribution to increase the
achievable secrecy rate for transmitter2. Thus, transmitter1
sends

xN
1 (wp1, wcp2) = xN

p1(wp1)− hcx
N
cp2(wcp2) + xN

a1. (11)

The following power constraint is required to be satisfied at
transmitter1:

Pp1 + h2
cPcp2 + Pa1 ≤ P, (12)

wherePp1 andPa1 are parameters to be chosen later.
The decoding at the receivers is performed as follows. Re-

ceiver1 looks for a unique index̂wp1 such that(yN
1 ,xN

1 (ŵp1))
is jointly typical. Receiver 2 looks for a unique tuple
(ŵp2, ŵ

′
p2, ŵcp2) such that(yN

2 ,xN
p2(ŵp2, ŵ

′
p2),x

N
cp2(ŵcp2)) is

jointly typical. Decoding errors at the receivers can occurin
one of two ways. First, the receiver may not be able to find
any codeword that is jointly typical with the received sequence.
Second, a wrong codeword is jointly typical with the received
sequence.

Based on the above encoding and decoding strategy, the
following theorem gives a lower bound on the secrecy capacity
of the Z-IC with unidirectional transmitter cooperation.

Theorem 5: For the GaussiansymmetricZ-IC with unidi-
rectional transmitter cooperation and secrecy constraints at the
receivers, the achievable rate region is given by

R1 ≤ I(xp1;y1),

R2 ≤ min {I(xp2,xcp2;y2), I(xp2;y2|xcp2) + min{CG,

I(xcp2;y2|xp2)}} −R′
p2, whereR′

p2 = I(xp2;y1|xp1).
(13)

Proof: See Appendix A.
Remarks:

1) The termR′
p2 in Theorem 5 accounts for the rate sacri-

ficed by transmitter2 in confusing receiver1 to keep the
non-cooperative message of transmitter2 secret. As the
capacity of the cooperative link increases, the loss in rate
due to the stochastic encoding decreases, as more power
can be assigned to the cooperative private message.

2) WhenCG = 0 andα ≥ 1, the transmission of artificial
noise by transmitter1 is required along with stochastic
encoding for user2 to achieve a non-zero secrecy rate.

By evaluating the mutual information terms in (13) and
taking convex closure of the union of set of regions obtained
over different codebook parameters(Pp1, Pa1, Pp2, Pcp2), the
following lower bound on the secrecy capacity region is
obtained.

Corollary 1: Using the result in Theorem 5, the following
rate region is achievable

Rs , convex closure of
⋃

0≤(θi,βi,λi)≤1, i=1,2

Rs
Z-IC(θi, βi, λi), (14)

where

Rs
Z-IC ,

{

(R1, R2) : R1 ≥ 0, R2 ≥ 0,

R1 ≤ 0.5 log

(

1 +
h2
dPp1

1 + h2
dPa1 + h2

cPp2

)

,

R2 ≤ 0.5 log(1 + h2
dPp2 + h4

dPcp2)−R′
p2,

R2 ≤ 0.5 log(1 + h2
dPp2) + min{CG,

0.5 log(1 + h4
dPcp2)} −R′

p2

}

, (15)

whereR′
p2 , 0.5 log

(

1 +
h2

cPp2

1+h2

d
Pa1

)

, Pcp2 , λ2

(λ1+λ2)h2

d

P2,

Pp2 , λ1

λ1+λ2

P2, Pp1 , θ1
θ1+θ2

P ′, Pa1 , θ2
θ1+θ2

P ′, P ′ ,

(P1 − h2
cPcp2)

+, P1 , β1P , andP2 , β2P .
Proof: See Appendix B.

Remarks:

1) In Corollary 1, the parameterβi (0 ≤ βi ≤ 1) acts as
a power control parameter for transmitteri (i = 1, 2).
The parametersθi andλi act as rate splitting parameters
for transmitteri.

2) WhenC = 0 (or CG = 0), the system reduces to the
2-user Z-IC (Gaussian Z-IC) without cooperation, which
was studied in [30]. The achievable results in Theorem2
(Theorem3) in [30] can be obtained as a special case of
achievable results for the deterministic model (Gaussian
model) in Theorem 1 (Theorem 5), by settingC = 0
(CG = 0) and 0 ≤ α ≤ 1. Note that, for both the
deterministic and Gaussian models, achievable schemes
on the secrecy capacity region have not been addressed
in the literature for the high interference regime(α > 1),
even whenC = 0 (CG = 0).

3) It is straightforward to extend the result in Corollary 1
by using time-division multiplexing [31, Lemma2] and
allowing transmitter1 to transmit over a different sub-
band [31, Lemma3] to obtain the corresponding results
in [31], by settingCG = 0 and Pa1 = 0, for the
weak/moderate interference regime.

V. OUTER BOUNDS FOR THEGAUSSIAN SYMMETRIC Z-IC
MODEL

In this section, the outer bounds on the secrecy capacity
region for the Z-IC with unidirectional transmitter cooperation
are stated as Theorems 6-8.In addition to the differences
between the deterministic model and the Gaussian model
(noise modeled by truncation and carry-overs ignored in
the module-2 addition), the derivation of outer bounds for
the Gaussian case requires the bounding of differential en-
tropy terms containing continuous as well as discrete random
variables, due to the unidirectional cooperation between the
transmitters.The partitioning of the encoded messages or
outputs used in the derivation of the outer bounds for the
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deterministic case cannot be directly applied to the Gaussian
case. To overcome this problem, either analogous quantities
that serve as side-information at receiver need to be found
to mimic the partitioning of the encoded messages/outputs,
or the bounding steps need to be modified taking cue from
the deterministic model. This helps to obtain tractable outer
bounds on the secrecy capacity region, which are presented in
the following subsections.

A. Weak/moderate interference regime (0 ≤ α ≤ 1)

The outer bound derived in Theorem 1 involved providing
the side information(x2a,v21) to receiver2 by a genie. The
quantityx2a corresponds to the part of the encoded message
x2 of transmitter2 which causes interference at receiver1
(See Fig. 2a). In the Gaussian case, to mimic the approach
used for the deterministic case, receiver2 is provided with
side information(s2 , hcx2+z1,v21). Note that outer bound
based on this idea was presented in [26], which considered
the Gaussian Z-IC with unidirectional transmitter cooperation,
but without secrecy constraints at the receivers. For the sake
of completeness, the result is stated as Theorem 6. The
outer bound in Theorem 1 for the weak/moderate interference
regime can be considered as a deterministic equivalent of the
outer bound presented below.

Theorem 6 ( [26]): The capacity region of the 2-user Gaus-
sian Z-IC with unidirectional transmitter cooperation is upper
bounded as

R1 ≤ 0.5 log(1 + SNR), R2 ≤ 0.5 log(1 + SNR),

R1 +R2 ≤ 0.5 log(1 + SNR+ INR + 2
√

SNR· INR)

+ 0.5 log

(

1 +
SNR

1 + INR

)

+ CG, (16)

where SNR, h2
dP and INR, h2

cP .
Note that the outer bound stated in Theorem 6 does not
use the secrecy constraint at receiver. In the weak/moderate
interference regime, the data bits transmitted on the lower
levels [1 : m − n] of transmitter2 are inherently secure in
the deterministic case as shown in Fig. 3a. However, in the
Gaussian case, there is no one-to-one correspondence of this as
noise cannot be modeled by truncation. The secrecy constraint
at the receiver may lead to a nonzero penalty in rate for the
Gaussian case. Hence, outer bounds are derived on the rate
of user 2 and the sum rate using the secrecy constraint at
receiver1, which is stated as a theorem below.

Theorem 7: The secrecy capacity region of the2-user Gaus-
sian symmetric Z-IC with unidirectional transmitter coop-
eration in theweak/moderate interference regimeis upper
bounded as

R1 ≤ 0.5 log(1 + SNR),

R2 ≤ max
−1≤ρ≤1

0.5 log

(

1 + SNR

− (ρSNR+
√

SNR· INR)2

1 + SNR+ INR + 2ρ
√

SNR· INR

)

,

R1 +R2 ≤ log(1 + SNR)− 0.5 log(1 + INR) + CG. (17)

Proof: See Appendix C.

Remarks:

• It is easy to show that the outer bound on the sum rate in
Theorem 7 is tighter than the outer bound in Theorem 6
for all values of SNR, INR andCG. Thus, the outer bound
in Theorem 7 improves over Theorem 6. From the outer
bound on the rate of user2 in Theorems 6 and 7, it can
be observed that outer bound obtained with the secrecy
constraint is tighter than the outer bound obtained without
using the secrecy constraint.

• When CG = 0, the outer bound on the rate of user2

reduces to0.5 log
(

1 + SNR− SNR·INR
1+SNR+INR

)

, as the only
possible valueρ can take is0. Hence, this outer bound
indicates that user2 cannot achieve the maximum pos-
sible rate of0.5 log (1 + SNR). This is in contrast to
the deterministic case, where user2 can achieve the
maximum rate ofm, as observed from Theorem 1.

• The outer bound on the sum rate in Theorem 6 is appli-
cable in all interference regimes whereas the outer bound
in Theorem 7 is applicable only in the weak/moderate
interference regime.

B. High interference regime (1 < α < 2)

The derivation of the outer bound in this regime is based on
the outer bound in Theorem 2 obtained for the deterministic
model. In the proof of Theorem 2, to upper bound the rate
of user2, a part of the output at receiver1 which does not
contain the signal sent by transmitter1 is provided as side-
information to receiver2, i.e.,yN

1a. In the Gaussian case, it is
not possible to partition the encoded message as it was done
for the deterministic model (See Fig. 2b). To overcome this
problem, the output at receiver1, i.e.,yN

1 , is provided as side
information to receiver2. Providing side information in this
way creates a degraded channel from transmitter2 to receiver1
with respect to the channel from transmitter2 to receiver2.
In the deterministic case, to upper bound the sum rate, the
output at receiver1 (yN

1 ) is partitioned into two parts:yN
1a

andyN
1b, and receiver2 is provided with side information of

the formyN
1a. To mimic this in the Gaussian case, the output

of receiver 2, i.e., yN
2 , is provided as side information to

receiver1 and (W1,y
N
1 ) is provided as side information to

receiver2. The outer bound on the secrecy capacity region is
stated in the following theorem.

Theorem 8: The secrecy capacity region of the 2-user Gaus-
sian symmetricZ-IC with unidirectional transmitter coopera-
tion is upper bounded as

R1 ≤ 0.5 log(1 + SNR),

R2 ≤ max
−1≤ρ≤1

0.5 log

(

1 + SNR

− (ρSNR+
√

SNR· INR)2

1 + SNR+ INR + 2ρ
√

SNR· INR

)

,
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R1 +R2 ≤ max
−1≤ρ≤1

0.5 log

(

1 + SNR+ INR

+ 2ρ
√

SNR· INR − (ρSNR+
√

SNR· INR)2

1 + SNR

)

+ 0.5 logΣy2|s + CG, (18)

where Σy2|s , 1 + SNR − Σy2,sΣ
−1
s,sΣ

T
y2,s

, Σy2,s ,
[

ρSNR ρSNR+
√

SNR· INR
]

andΣs,s ,
[

1 + SNR SNR+ ρ
√

SNR· INR
SNR+ρ

√
SNR· INR 1+SNR+INR+2ρ

√
SNR· INR

]

.

Proof: See Appendix D.
Remarks:

• When there is no cooperation between the transmitters,
the encoded messages at the two transmitters are indepen-
dent of each other. Hence, for the non-cooperating case,
the outer bound on the rate is obtained by settingρ = 0
in Theorem 8.

• The outer bound in Theorem 8 is applicable over all
the interference regimes. Note that the outer bound in
Theorem 6 is also applicable to the high interference
regime. In the later part of the paper, it is demonstrated
that the outer bound in Theorem 8 is tighter than the outer
bound in Theorem 6 in this interference regime.

C. Relation between the outer bounds for the deterministic
and Gaussian models

In the following, it is shown that, for high SNR and
INR, the outer bounds for the Gaussian case in Theorems 7
and 8 are approximately equal to the outer bounds for the
deterministic model. For ease of presentation, it is assumed
that 0.5 logSNR, 0.5 log INR, and CG are integers. Recall
that, the parametersm, n andC of the deterministic model
are related to the Gaussian model asm = (⌊0.5 logSNR⌋)+,
n = (⌊0.5 log INR⌋)+ andC = ⌊CG⌋, respectively.

1) Weak/moderate interference regime (0 ≤ α ≤ 1): It is
easy to see that for high SNR and INR(i.e.,SNR, INR ≫ 1),
the upper bounds on the individual rates in Theorem 6 can be
approximated as

R1≤0.5 log(1 + SNR)≈m, andR2≤0.5 log(1 + SNR)≈m.

(19)

When SNR> INR (i.e., 0 ≤ α ≤ 1), the outer bound on the
sum rate in Theorem 6 is approximated as

R1 +R2 ≤ 0.5 log
(

1 + SNR+ INR + 2
√

SNR· INR
)

+ 0.5 log

(

1 +
SNR

1 + INR

)

+ CG,

≈ 2m− n+ C. (20)

From (19) and (20), the outer bound derived for the Gaussian
case matches with the corresponding outer bound for the
deterministic model stated in Theorem 1.

In Theorem 7, due to the maximization involved in the outer
bound onR2 over ρ, CG = 0 is considered to simplify the
exposition. For the non-cooperating case, the outer bound is

optimized by settingρ = 0. The outer bound on the rate of
user2 is approximated as

R2 ≤ 0.5 log

(

1 + SNR− SNR· INR
1 + SNR+ INR

)

≈ m. (21)

Hence, the outer bound on the rate of user2 is approximately
equal tom for high SNR and INR.

It is also easy to see that, for high SNR and INR, the outer
bound on the sum rate in Theorem 7 can be approximated as

R1 +R2 ≈ 2m− n+ C. (22)

It can be noticed that the outer bound derived for the Gaussian
case corresponds to the outer bound for the deterministic
model stated in Theorem 1. It is interesting to note that
both the outer bounds on the sum rate in Theorems 6 and
7 correspond to the outer bound for the deterministic model
stated in Theorem 1 for high SNR and INR. As mentioned
earlier in the remark to Theorem 7, the outer bound in
Theorem 7 is tighter than Theorem 6. However, for high values
of SNR and INR, the gap between these two outer bounds
decreases and these two outer bounds are approximately equal
to each other.

2) High interference regime (1 < α < 2): In Theorem 8,
due to the maximization involved in the upper bounds onR2

andR1 + R2 over ρ, CG = 0 is considered in the following
analysis to simplify the exposition. For the non-cooperating
case, the outer bound is optimized by settingρ = 0. First, the
outer bound on the rate of user1 is approximated as

R1 ≤0.5 log(1 + SNR) ≈ m. (23)

The outer bound on the rate of user2 is also approximated as

R2≤0.5 log

(

1 + SNR− SNR· INR
1 + SNR+ INR

)

≈2m− n.

(24)

The outer bound on the sum rate becomes

R1 +R2 ≤ 0.5 log

(

1 + SNR+ INR − SNR· INR
1 + SNR

)

+ 0.5 logΣy2|s, (25)

where with some algebraic manipulation it can be shown that
Σy2|s = 1+ SNR−Σy2,sΣ

−1
s,sΣ

T
y2,s

≈ 1. Hence, the sum rate
outer bound in (25) reduces to

R1 +R2 ≤ m. (26)

From (23), (24), and (26), it can be observed that the approx-
imated outer bound of Gaussian case in Theorem 8 matches
with the outer bound of deterministic case in Theorem 2 for
the high interference regime.

This validates that the approaches used in obtaining outer
bounds in the two models are consistent with each other.

VI. A PPROXIMATE SECURE SUM CAPACITY

CHARACTERIZATION OF THE GAUSSIAN SYMMETRIC Z-IC
IN THE WEAK /MODERATE INTERFERENCE REGIME

A. Secure sum generalized degrees of freedom (GDOF)

As mentioned earlier, the capacity region for many multiuser
scenarios has remained an open problem, even without secrecy
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constraints at the receivers. Due to this, there has been an
active research interest in approximate characterizations of the
capacity. In this context, the notion ofgeneralized degrees of
freedom (GDOF) has been used as a proxy for the capacity at
high SNR and INR, for the IC,without secrecy constraint [7].
A natural extension of this to the secure sum GDOF is given
by

dsum(κ, γ) = lim
SNR→∞

Csum(SNR, INR)

0.5 logSNR
, (27)

whereκ , lim
SNR→∞

log INR
log SNR, γ , lim

SNR→∞

CG

0.5 log SNR and Csum

is the secure sum capacity of the 2-user Gaussian Z-IC with
unidirectional transmitter cooperation. To characterizethe sum
GDOF,hd = 1 is assumed without loss of generality, and the
following power allocation is used.

Pp1 =
P

2
, Pp2 =

1

h2
c

, Pcp2 =
1

2

(

P − 1

h2
c

)

andPa1 = 0.

(28)

It is also assumed thath2
cP > 1, so that the above power

allocation is always feasible. The motivation for this power
allocation is as follows. The power for the message of trans-
mitter1 is set asP2 to ensure that user1 achieves the maximum
GDOF of 1. Recall that, in the weak/moderate interference
regime, transmitter2 can send data bits securely on the lower
levels [1 : m − n], as the links corresponding to these levels
are not present at receiver1. In other words, the data bits
transmitted on the lower levels[1 : m−n] of transmitter2 are
received at or below the noise floor of receiver1. Hence, in
the Gaussian case, the power for the non-cooperative private
message is chosen such that it is received at the noise floor
of the receiver1. Due to this power allocation, the loss in
rate of user2 due to stochastic encoding isR′

p1 = 0.5
bits/s/Hz. Hence, the loss in achievable secrecy rate due to
stochastic encoding does not scale with SNR and INR. The
cooperative private message of transmitter2 is assigned a
power of 1

2

(

P − 1
h2
c

)

.
In the following theorem, the secure sum GDOF is charac-

terized using the power allocation in (28) for all values ofCG

in the weak/moderate interference regime.
Theorem 9: The optimal secure sum GDOF of the2 user

GaussiansymmetricZ-IC with unidirectional transmitter co-
operation in the weak/moderate interference regime is

dsum(κ, γ) = min {2, 2− κ+min (γ, 1)} . (29)

Proof: See Appendix E.
Remarks:

1) The outer bound on the sum rate in Theorems 6 and 7
are used to obtain outer bound on the sum GDOF. Both
the bounds give the same results in terms of the GDOF.
Note that the derivation of the outer bound in Theorem 6
does not use the secrecy constraint at receiver1 [26].
Hence, there is no penalty in the sum GDOF due to
the secrecy constraint at receiver in the weak/moderate
interference regime for all values ofCG.

2) When γ = κ, dsum(κ, γ) = 2. Hence, both users
can achieve the maximum GDOF of1 simultaneously.

Similarly, in the deterministic model, whenC = n

(or C
m

= α), both userscan simultaneously achieve a
maximum rate ofm.

As the proposed scheme with the power allocation in (28)
can achieve the optimal sum GDOF, the achievable sum rate
will be within a finite number of bits from the outer bound.
In the following subsection, the gap between the achievable
sum rate and outer bound is characterized.

B. Finite bit gap result on the sum rate capacity

In this section, the sum rate capacity of the2-user Gaussian
Z-IC with unidirectional transmitter cooperation is shownto
lie within 2 bits/s/Hz of the outer bound in the weak/moderate
interference regime(INR < SNR) for all values ofCG. Note
that this gap is the worst case gap. To show the finite gap
result, the power allocation in (28) is used in Corollary 1 to
obtain a lower bound on the secure sum capacity. This result
is stated in the following theorem.

Theorem 10: The secure sum rate capacity of the2-user
GaussiansymmetricZ-IC with unidirectional transmitter co-
operation lies within2 bits/s/Hz of the sum rate outer bound
in the weak/moderate interference regime for all values ofCG,
i.e.,

Rsum≤ Csum≤ Couter
sum ≤ Rsum+ 2, (30)

whereRsum andCouter
sum correspond to the lower bound and up-

per bound on the secure sum capacity (i.e.,Csum), respectively.
Proof: See Appendix F.

VII. N UMERICAL RESULTS AND DISCUSSION

In the following sections, some numerical examples are
presented for the Gaussian case, to get insights into the system
performance in different interference regimes.

In Fig. 6a, the secure sum capacity of the deterministic Z-
IC is plotted againstα for different values ofC using the
result in Sec. III. In this case, the secure sum capacity is
normalized bym. When C = 0, as α increases, the sum
capacity decreases and becomes constant forα > 1. As the
value of the cooperative link increases, in the initial part
of the weak interference regime, both users can achieve the
maximum rate, i.e.,m. This is due to the fact that the capacity
of the cooperative link is sufficient to cancel the interference
at receiver1. However, with further increase in the value of
C, the secure sum capacity starts decreasing. In the very high
interference regime, user2 cannot achieve any nonzero secrecy
rate irrespective of the value ofC.

In Fig. 6b, the upper bounds on the secrecy capacity
region of the Z-IC in Theorems 6, 7 and 8 are compared for
the weak/moderate interference regime. The outer bound in
Theorem 7 is tighter than the outer bounds in Theorems 6
and 8 except for the corner points for transmitter2. Recall
that, the outer bound in Theorem 6 does not use the secrecy
constraint at the receiver in its derivation. The outer bound in
Theorem 8 is derived using the intuitions obtained from the
high interference regime case considered in the deterministic
model for Theorem 2. This is reflected in the plot as explained
above. In Fig. 6c, the outer bound on the secrecy capacity
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Fig. 6: (a) Sum rate capacity for the deterministic symmetric Z-IC with m = 4, n = 5 andC = 1; (b) Comparison of the
outer bounds on the secrecy capacity region for the Gaussiansymmetric Z-IC:P = 100, hd = 1, hc = 0.5, α = 0.69, and
CG = 0, and (c) Comparison of the outer bounds on the secrecy capacity region for the Gaussian symmetric Z-IC:P = 100,
hd = 1, hc = 1.5, α = 1.17, andCG = 1.

region of the Z-IC in Theorems 6 and 8 are compared for the
high interference regime. From the plot, it can be seen that
the proposed outer bound is tighter than the outer bound in
Theorem 6.

In Figs. 7a and 7b, the achievable results in Corollary 1
are plotted along with the outer bounds obtained in Sec. V
for different values ofCG, in the weak and high interference
regimes, respectively. WhenCG > 0, a part of the interference
can be canceled at the unintended receiver, which leads to
a gain in the rate due to cooperation. In particular, the
improvement in the sum rate performance for both the cases
can be observed from these figures. As the capacity of the
cooperative link increases, less power is assigned to send the
non-cooperative private message of transmitter2, which in turn
also reduces the loss in rate due to stochastic encoding.

In Fig. 7c, the secure sum GDOF stated in Theorem 9 is
plotted againstα for various values ofγ. From the figure, it
can be noticed that with cooperation it is possible forboth
usersto achieve the maximum GDOF, i.e.,1, in the initial
part of the weak/moderate interference regime, if the capacity
of the cooperative link scales with SNR. In these cases, there
is no loss in terms of GDOF due to the secrecy constraint at
the receiver.

VIII. C ONCLUSIONS

This work explored the role of limited-rate unidirectional
transmitter cooperation in facilitating secure communication
over the2-user symmetricZ-IC. For the deterministic case,
the achievable scheme used a combination of interference
cancelation and transmission of random bits. The secrecy
capacity region of the deterministic model was characterized
over all interference regimes and for all values ofC. The
study of the deterministic model gave useful insights for the
Gaussian case. The proposed scheme for the Gaussian model

used a fusion of cooperative precoding for interference can-
celation, stochastic encoding and artificial noise transmission
for ensuring secrecy of the unintended message at the receiver.
The secure sum GDOF of the GaussiansymmetricZ-IC was
characterized for the weak/moderate interference regimes. The
sum rate capacity was also shown to lie within2 bits of
the outer bound in the weak/moderate interference regime for
all values of the capacity of the cooperative link,CG. The
results showed that cooperation between the users can facilitate
secure communication over Z-IC except for the very high
interference regime. It is also found that secrecy constraint at
the receiver does not hurt the capacity in the weak/moderate
interference regime for the deterministic model. Similarly, it
was found that there is no loss in the secure sum GDOF
in the weak/moderate interference regime due to the secrecy
constraint at the receiver.

APPENDIX

A. Proof of Theorem 5

The proof involves analyzing the error probability at the
decoders for the proposed encoding scheme, along with
equivocation computation. The equivocation computation is
necessary to choose how much of its own rate transmitter2
must sacrifice to keep the non-cooperative private message
secret. The main novelty in the proof lies in precoding of the
cooperative private message of transmitter2 at transmitter1,
which cancels the interference at receiver1 and at the same
time ensures secrecy of the cooperative private message.

1) Error probability analysis: For receivers1 and2, define
the following events:Ei , {(yN

1 ,xN
p1(i)) ∈ TN

ǫ (PY1Xp1
)},

and Fijk , {(yN
2 ,xN

p2(i, j),x
N
cp2(k)) ∈ TN

ǫ (PY2Xp2Xcp2
)},

whereTN
ǫ (PY1Xp1

) denotes the set of jointly typical sequences
y1 andxp1 with respect toP (y1,xp1) andTN

ǫ (PY2Xp2Xcp2
)

denotes the set of jointly typical sequencesy2, xp2 and
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Fig. 7: (a)Achievable rate region for the Gaussian model in the weak/moderate interference regime:P = 100, hd = 1, hc = 0.5
andα = 0.69; (b) Achievable rate region for the Gaussian model in the high interference regime:P = 100, hd = 1, hc = 1.5
andα = 1.17; and (c) Secure sum GDOF in the weak/moderate interference regime for the Gaussian model. In the plot,γ

corresponds to the scaling of the capacity of the cooperative link with respect to0.5 logSNR.

xcp2 with respect toP (y2,xp2,xcp2). Without loss of gen-
erality, assume that transmitters1 and 2 sendxN

1 (1, 1) and
xN
2 (1, 1, 1), respectively. An error occurs if the transmitted

and received codewords are not jointly typical, or a wrong
codeword is jointly typical with the received codewords. Using
the union of events bound and asymptotic equipartition prop-
erty (AEP), it can be shown thatλN

e1 = P (Ec
1

⋃∪i6=1Ei) ≤
P (Ec

1) +
∑

i6=1

P (Ei) → 0 asN → ∞ provided

R1 ≤ I(xp1;y1). (31)

Similarly, the probability of error at receiver2, i.e.,
λN
e2 = P (F c

111

⋃∪(i,j,k) 6=(1,1,1)Fijk) ≤ P (F c
111) +

∑

(i,j,k) 6=(1,1,1)

P (Fijk) → 0 asN → ∞ provided

Rp2 +R′
p2 ≤ I(xp2;y2|xcp2), (32)

Rcp2 ≤ I(xcp2;y2|xp2), (33)

Rp2 +R′
p2 +Rcp2 ≤ I(xp2,xcp2;y2). (34)

Due to the rate-limited cooperation, the following condition is
required to be satisfied for the cooperative private message

Rcp2 ≤ CG. (35)

Hence, using (31), (32), (33), (34), (35), andR2 = Rp2+Rcp2,
(13) is obtained.

In the following, R′
p2 is determined for ensuring secrecy

of the non-cooperative private message of transmitter2 at
receiver1.

2) Equivocation computation: For ensuring strong secrecy,
the following condition is required to be satisfied3

lim
N→∞

I(W2;y
N
1 ) = 0. (36)

3In the equivocation computation, it is assumed for ease of presentation
that transmitter1 does not send any artificial noise. However, the derivation
holds even when transmitter1 sends artificial noise.

Consider the following

I(W2;y
N
1 ) = I(Wp2,Wcp2;y

N
1 ),

= I(Wp2;y
N
1 ) + I(Wcp2;y

N
1 |Wp2). (37)

Note thatH(Wcp2|yN
1 ,Wp2) = H(Wcp2) because the code-

word carrying the cooperative private message is completely
canceled at receiver1 and the cooperative private message is
chosen independent of the non-cooperative private messageat
transmitter2. Hence, lim

N→∞
I(Wcp2;y

N
1 |Wp2) = 0. Now, it

is required to show that strong secrecy condition is satisfied
for the non-cooperative private message of transmitter2 at
receiver1. First, consider the following:

I(Wp2;y
N
1 ) ≤ I(Wp2;y

N
1 ,xN

p1)
(a)
= I(Wp2;y

N
1 |xN

p1),

(b)
= I(Wp2;y

′N
1 ), (38)

where (a) is obtained using the fact thatWp2 is independent
of xN

p1 and (b) is obtained using the fact thatxN
p1 andxN

p2 are
chosen independent of each other during code construction
andy′N

1 , hcx
N
p2 + zN1 .

It is not difficult to see that transmitter2 forms a hypo-
thetical Gaussian wiretap channel with receiver2 (legitimate
user) and receiver1 (eavesdropper) with outputsyN

2 andy′N
1 ,

respectively. Using the result in [39, Corollary2], one can
ensure thatI(Wp2;y

′N
1 ) → 0 asN → ∞ provided

R′
p2 = I(xp2;y

′
1) + ǫn = I(xp2;y1|xp1) + ǫn. (39)

Note that, although Corollary2 in [39] is stated for the
memoryless wiretap channel with additive cost function, the
result is applicable in the Gaussian case also, as the approach
can be directly generalized from the discrete case to the
continuous case [40, Chapter6].
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B. Proof of Corollary 1

The first term in (13) is evaluated as follows

R1 ≤ 0.5 log

(

1 +
h2
dPp1

1 + h2
dPa1 + h2

cPp2

)

(40)

where the power allocations are as mentioned in the statement
of the theorem. The second term in (13) is simplified as follows

R2 ≤ 0.5 log(1 + h2
dPp2 + h4

dPcp2)−R′
p2, (41)

whereR′
p2 = 0.5 log

(

1 +
h2

cPp2

1+h2

d
Pa1

)

.
The last term in (13) is simplified as follows

R2 ≤ 0.5 log(1 + h2
dPp2) + min

{
CG, 0.5 log(1 + h4

dPcp2)
}

−R′
p2. (42)

Taking convex closure of (40) and the minimum of (41) and
(42) over different values ofθi, βi and λi, the achievable
secrecy rate in (14) is obtained. The parametersθi, βi andλi

are defined in the statement of the Corollary. This completes
the proof.

C. Proof of Theorem 7

It is easy to see that the rate of transmitter1 is upper
bounded by0.5 log(1 + SNR). Hence, it is required to prove
the upper bounds on the rate of transmitter2 and the sum
rate. Using Fano’s inequality, the rate of transmitter2 is upper
bounded as follows

NR2 ≤ I(W2;y
N
2 ) +NǫN ,

≤ I(W2;y
N
2 ,yN

1 ) +NǫN ,

= I(W2;y
N
1 ) + I(W2;y

N
2 |yN

1 ) +NǫN ,

(a)

≤ h(yN
2 |yN

1 )− h(yN
2 |yN

1 ,W2) +NǫN ,

or R2

(b)

≤ max
0≤|ρ|≤1

0.5 log

(

1 + SNR−

(ρSNR+
√

SNR· INR)2

1 + SNR+ INR + 2ρ
√

SNR· INR

)

, (43)

where (a) is obtained using the secrecy constraint at the
receiver1; (b) is obtained using the approach used in [7],
[41].

In the following, the sum rate is upper bounded using Fano’s
inequality, secrecy constraint at receiver1 and chain rule of
mutual information.

N [R1 +R2]

≤ I(W1;y
N
1 ) + I(W2;y

N
2 )− I(W2;y

N
1 ) +NǫN ,

= I(W1;y
N
1 ) + I(W2;y

N
2 )− I(W2;y

N
1 , sN2 )

+ I(W2; s
N
2 |yN

1 ) +NǫN , wheresN2 , hcx
N
2 + zN1 .

(44)

The main novelty in the proof lies in bounding these mutual
information terms. To upper bound the sum rate further, con-
sider the first two terms of (44), where the cooperative signal

vN
21 is provided as side-information to both the receivers.

I(W1;y
N
1 ) + I(W2; s

N
2 |yN

1 )

(a)

≤ I(W1;y
N
1 |vN

21) + I(W2;v
N
21|yN

1 ) + I(W2; s
N
2 |yN

1 ,vN
21),

≤ I(W1,x
N
1 ;yN

1 |vN
21) + I(W2;v

N
21|yN

1 ) + I(W2; s
N
2 |yN

1 ,vN
21),

(b)
= I(xN

1 ;yN
1 |vN

21) + I(W2;v
N
21|yN

1 ) + I(W2; s
N
2 |yN

1 ,vN
21),

= I(xN
1 ;yN

1 |vN
21) +H(vN

21|yN
1 )−H(vN

21|yN
1 ,W2)

+ h(sN2 |yN
1 ,vN

21)− h(sN2 |yN
1 ,vN

21,W2),

(c)

≤ I(xN
1 ;yN

1 |vN
21) +H(vN

21) + h(sN2 ,yN
1 |vN

21)− h(yN
1 |vN

21)

− h(sN2 |yN
1 ,vN

21,W2),

= I(xN
1 ;yN

1 |vN
21) +H(vN

21) + h(sN2 |vN
21) + h(yN

1 |sN2 ,vN
21)

− h(yN
1 |vN

21)− h(sN2 |yN
1 ,vN

21,W2),

(45)

where (a) is obtained using the chain rule for mutual in-
formation and the fact thatv21 is not a function ofW1;
(b) is obtained using the Markov chain relation:W1 →
(v21,x1) → y1, which can shown using the signal flow
graph (SFG) approach in [42]; (c) follows because removing
conditioning cannot decrease entropy andh(sN2 ,yN

1 |vN
21) =

h(yN
1 |vN

21) + h(sN2 |yN
1 ,vN

21).
Note that the bounding these differential entropy terms in

above is difficult as it involves continuous and discrete random
variables. To overcome this problem, using relation in (3),it
can be shown thath(sN2 |vN

21) = h(sN2 |vN
21,x

N
1 ). This also

implies thath(sN2 |vN
21,x

N
1 ) = h(yN

1 |vN
21,x

N
1 ). This is one of

the key steps in the derivation as it leads to cancelation of
I(xN

1 ;yN
1 |vN

21) as shown below.

I(W1;y
N
1 ) + I(W2; s

N
2 |yN

1 )

≤ I(xN
1 ;yN

1 |vN
21) +H(vN

21) + h(sN2 |vN
21,x

N
1 )

+ h(yN
1 |sN2 ,vN

21)− h(yN
1 |vN

21)− h(sN2 |yN
1 ,vN

21,W2),

= I(xN
1 ;yN

1 |vN
21) +H(vN

21) + h(yN
1 |vN

21,x
N
1 )

+ h(yN
1 |sN2 ,vN

21)− h(yN
1 |vN

21)− h(sN2 |yN
1 ,vN

21,W2),

(a)

≤ I(xN
1 ;yN

1 |vN
21) +NCG − I(xN

1 ;yN
1 |vN

21)

+ h(yN
1 |sN2 ,vN

21)− h(sN2 |yN
1 ,vN

21,W2,x
N
2 ),

(b)
= NCG + h(yN

1 |sN2 ,vN
21)− h(sN2 |yN

1 ,vN
21,x

N
2 ),

= NCG + h(yN
1 |sN2 ,vN

21)− h(sN2 ,yN
1 |vN

21,x
N
2 )

+ h(yN
1 |vN

21,x
N
2 ),

= h(yN
1 |sN2 ,vN

21)− h(sN2 |xN
2 ,vN

21)− h(yN
1 |sN2 ,xN

2 ,vN
21)

+ h(yN
1 |xN

2 ,vN
21) +NCG,

(c)

≤ h(sN1 )− h(zN1 ) +NCG, wheresN1 , hdx
N
1 + zN1 ,

(46)

where (a) is obtained using the fact that conditioning cannot
increase the differential entropy andH(vN

21) ≤ NCG; (b)
is obtained using the fact thatI(W2; s

N
2 |yN

1 ,vN
21,x

N
2 ) = 0,

which can again be shown with the help of an SFG [42];
and (c) is obtained by noticing that first and third term cancel
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with each other using the relation in (3) and using the fact
that conditioning cannot increase the differential entropy.

Now, consider the bounding of the remaining two terms in
(44). As it involves the difference of two mutual information
terms, it is not straightforward to upper bound these terms.
In the weak/moderate interference regime, the channel from
transmitter2 to receiver1 is weaker than the channel from
transmitter2 to receiver1. Hence,x2, y2 and s2 satisfy the
following Markov chain:x2 → y2 → s2 and this channel can
be viewed as the following degraded broadcast channel (BC).
Using the result in [30], [43], following bound is obtained.

I(W2;y
N
2 )− I(W2;y

N
1 , sN2 )

= I(W2;y
N
2 )− I(W2; s

N
2 )− I(W2,y

N
1 |sN2 ),

≤ I(W2;y
N
2 )− I(W2; s

N
2 ),

≤ N [I(x2;y2)− I(x2; s2)], (47)

Finally, using (46) and (47), (44) becomes

R1 +R2 ≤ log(1 + SNR)− 0.5 log(1 + INR) + CG, (48)

where the above equation is obtained using the fact that for a
given power constraint, the Gaussian distribution maximizes
the differential entropy. This completes the proof.

D. Proof of Theorem 8

As mentioned earlier, rate of transmitter1 is upper bounded
by 0.5 log(1 +SNR). Hence, it is required to prove the upper
bounds on the rate of transmitter2 and the sum rate. Using
the steps used to obtain outer bound on the rate of user2 in
the proof of Theorem 7, the following bound is obtained

NR2 ≤ max
0≤|ρ|≤1

0.5 log

(

1 + SNR

− (ρSNR+
√

SNR· INR)2

1 + SNR+ INR + 2ρ
√

SNR· INR

)

, (49)

The derivation of the outer bound on the sum rate goes
as follows. First, an outer bound on the rate of user1 is
obtained. Then, an outer bound on the rate of user2 is derived.
Adding these two outer bounds leads to cancelation of negative
differential entropy terms, which in turn allows one to obtain
a single letter characterization of the sum rate outer bound.

In the following, an outer bound on the rate of user1 is
obtained by providingyN

2 as side-information to receiver1.

NR1 ≤ I(W1;y
N
1 ,yN

2 ) +NǫN ,

(a)
= I(W1;y

N
1 |yN

2 ) +NǫN ,

(b)

≤ h(yN
1 |yN

2 )− h(sN1 |yN
2 ,W1,x

N
2 ,vN

21) +NǫN ,

wheresN1 , hdx
N
1 + zN1

(c)

≤ h(yN
1 |yN

2 )− h(s̃N1 |yN
2 ,W1,x

N
2 ,vN

21) +NǫN ,

wheres̃N1 , hdx
N
1 + z̃N1 ,

(d)
= h(yN

1 |yN
2 )− h(s̃N1 |W1,v

N
21) +NǫN , (50)

where (a) is obtained using the fact thatyN
2 is independent

of W1; (b) is obtained using the fact that conditioning cannot

increase the differential entropy; (c) is obtained using the fact
that the secrecy capacity region of the Z-IC with confidential
messages is invariant under any joint channel noise distribu-
tion P (zN1 , zN2 ) that leads to the same marginal distributions
P (zN1 ) and P (zN2 ) [44]. Although this invariance property
is stated for the Gaussian IC in [44], it holds for the Z-IC
with limited-rate transmitter cooperation also. The need for
replacingzN1 with z̃N1 will become clear later in the proof.
Finally, (d) is obtained using the relation in (3).

Next, to bound the rate of user2, starting from Fano’s
inequality, one proceeds as follows. The genie provides
(yN

1 ,W1) as side-information to receiver2 and the rate of
user2 is further upper bounded as follows

NR2 ≤ I(W2;y
N
1 ,W1) + I(W2;y

N
2 |yN

1 ,W1) +NǫN .

(51)

Consider the first term in (51)

I(W2;y
N
1 ,W1)

(a)

≤ NǫN +H(W1|yN
1 )−H(W1|yN

1 ,W2),

(b)

≤ NǫN , (52)

where (a) is obtained using the secrecy constraint at receiver1,
i.e.,I(W2;y

N
1 ) ≤ NǫN and (b) is obtained from the reliability

condition for messageW1, i.e., H(W1|yN
1 ) ≤ NδN and

dropping the negative entropy term. In above, for notational
simplicity, δN is absorbed intoǫN . Using (52), (51) reduces
to

NR2 ≤ I(W2;y
N
2 ,vN

21|yN
1 ,W1) +NǫN ,

= I(W2;v
N
21|yN

1 ,W1) + I(W2;y
N
2 |vN

21,y
N
1 ,W1)

+NǫN . (53)

To bound the rate of user2 further, s̃N1 is included in the
second mutual information term. In the following, it can
be noticed that working with̃sN1 instead of sN1 leads to
−h(z̃N1 ) instead of0. Thus, replacing the noise insN1 with
an independent noise leads to a tighter outer bound. Hence,
the outer bound onR2 becomes

R2

≤ H(vN
21|yN

1 ,W1)−H(vN
21|yN

1 ,W1,W2)

+ I(W2;y
N
2 , s̃N1 |vN

21,y
N
1 ,W1) +NǫN ,

(a)

≤ H(vN
21) + I(W2; s̃

N
1 |vN

21,y
N
1 ,W1)

+ I(W2;y
N
2 |vN

21,y
N
1 ,W1, s̃

N
1 ) +NǫN ,

(b)

≤ H(vN
21)+h(s̃N1 |vN

21,W1)−h(s̃N1 |vN
21,y

N
1 ,W1,W2,x

N
1 ,xN

2 )

+ h(yN
2 |yN

1 , s̃N1 )− h(yN
2 |vN

21,y
N
1 ,W1, s̃

N
1 ,W2,x

N
2 ) +NǫN ,

= H(vN
21) + h(s̃N1 |vN

21,W1)− h(z̃N1 ) + h(yN
2 |yN

1 , s̃N1 )

− h(zN2 ) +NǫN , (54)

where (a) and (b) are obtained using the fact that removing
(or adding) conditioning cannot decrease (or cannot increase)
the differential entropy.
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Adding (50) and (54), the following is obtained

R1 +R2

≤ H(v21) + h(y1|y2) + h(y2|y1, s̃1)− h(z̃1)− h(z2),

≤ max
0≤|ρ|≤1

CG + 0.5 log

[

1 + SNR+ INR + 2ρ
√

SNR· INR

− (ρSNR+
√

SNR· INR)2

1 + SNR

]

+ 0.5 logΣy2|s, (55)

whereΣy2|s is as defined in the statement of the theorem. The
above equationis obtained using the approach used in [7],
[41]. The individual terms in the above equations are obtained
as follows

h(y1|y2) = 0.5 log 2πeΣy1|y2
, (56)

where

Σy1|y2
= E[y2

1]−
E[y1y2]

2

E[y2
2]

,

= 1 + SNR+ INR + 2ρ
√

SNR· INR

− (ρSNR+
√

SNR· INR)2

1 + SNR
. (57)

The termΣy2|s is obtained as follows

Σy2|s = E[y2
2]− E[y2s

T ]E[ssT ]−1E[sy2],

wheres , [s̃1 y1]
T ,

= 1 + SNR− Σy2,sΣ
−1
s,sΣ

T
y2,s

. (58)

In the above equation, the termsΣy2,s andΣs,s are as defined
in the statement of the theorem. This completes the proof.

E. Proof of Theorem 9

Using Corollary 1 and the power allocation in (28), the
lower bound on the sum rate reduces to

R1 +R2

≤ 0.5 log

(

1 +
P

4

)

+min

{

0.5 log

(

1 +
1

2h2
c

+
P

2

)

,

0.5 log

(

1 +
1

h2
c

)

+min {CG, 0.5 log (1

+
1

2

(

P − 1

h2
c

))}}

− 0.5 log 2,

= 0.5 logSNR+min

{

0.5 logSNR, 0.5 log
SNR
INR

+min {CG, 0.5 logSNR}}+O(1),

or dsum(κ, γ) = min{2, 2− κ+min (1, γ)}. (59)

Hence, the achievable sum GDOF becomes

dsum(κ, γ) = min {2, 2− κ+ γ} . (60)

To establish the GDOF optimality of the proposed scheme,
consider the following outer bounds on the sum rate. As
the individual rates of each user is upper bounded by
0.5 log (1 + SNR), a trivial outer bound on the sum rate is:
R1 + R2 ≤ log (1 + SNR). Hence, the outer bound on the
secure sum GDOF becomesdsum(κ, γ) ≤ 2.

Next, consider the outer bound on the sum rate in Theorem 6

R1 +R2

≤ 0.5 log(1 + SNR+ INR + 2
√

SNR· INR)

+ 0.5 log

(

1 +
SNR

1 + INR

)

+ CG,

≤ 0.5 log (1 + 3SNR+ INR) + 0.5 log (1 + SNR+ INR)

− 0.5 log (1 + INR) + CG,

= logSNR− 0.5 log INR + CG +O(1),

or dsum(κ, γ) ≤ 2− κ+ γ. (61)

Next, starting from the sum rate bound in Theorem 7 and
using a similar procedure as the above, it can be shown that
dsum(κ, γ) ≤ 2 − κ+ γ. Hence, although (unlike Theorem 6)
Theorem 7 was derived accounting for the secrecy constraint,
both the theorems lead to the same outer bound on the GDOF:

dsum(κ, γ) ≤ min {2, 2− κ+ γ} . (62)

It can be verified that the outer bound in (62) coincides with
the achievable GDOF in (60). Hence, the proposed scheme is
GDOF optimal, and this completes the proof.

F. Proof of Theorem 10

Using Corollary 1 and the power allocation in (28), the
lower bound on the sum rate reduces to

R1 +R2

≥ 0.5 log

(

1 +
Pp1

1 + h2
cPp2

)

+ min







0.5 log(1 + Pp2 + Pcp2)
︸ ︷︷ ︸

I1

,

0.5 log(1 + Pp2) + min{CG, 0.5 log(1 + Pcp2)}
︸ ︷︷ ︸

I2







− 0.5 log(1 + h2
cPp2). (63)

To bound the gap, consider the following exhaustive cases:
1) When I1 ≤ I2: In this case, (63) reduces to

R1 +R2

≥ 0.5 log

(

1 +
P

4

)

+ 0.5 log

(

1 +
1

2h2
c

+
P

2

)

− 0.5 log 2,

(64)

> 0.5 log(1 + SNR) + 0.5 log(1 + SNR)− 2. (65)

A trivial outer bound on the sum rate isR1 + R2 < log(1 +
SNR). Hence, comparing this outer bound on the sum rate
with (65), the gap is at most2 bits/s/Hz.

2) When I1 > I2 and 0.5 log(1+Pcp2) > CG: In this case,
the lower bound on the sum rate in (63) reduces to

R1 +R2 ≥ 0.5 log

(

1 +
SNR
4

)

+ 0.5 log

(

1 +
SNR
INR

)

+ CG

− 0.5 log(1 + h2
cPp2),

> 0.5 log(1 + SNR) + 0.5 log

(

1 +
SNR
INR

)

+ CG

− 1.5. (66)
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To calculate the gap, the following outer bound on the sum
rate in Theorem 7 is used.

R1 +R2 ≤ log (1 + SNR)− 0.5 log (1 + INR) + CG. (67)

Subtracting (66) from the sum rate outer bound in (67), it can
be seen that the gap is at most2 bits/s/Hz.

3) When I1 > I2 and 0.5 log(1+Pcp2) ≤ CG: In this case,
the lower bound on the sum rate reduces to (64), for which
the gap is shown to be at most2 bits/s/Hz.

Hence, the sum rate capacity of the Z-IC with unidirec-
tional transmitter cooperation and the secrecy constraints at
the receivers is within2 bits/s/Hz of the outer bound. This
completes the proof.
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