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this framework. Consequently, it finds applications in many 
different engineering fields, such as aerospace, electrical, 
mechanical, robotics, process control, and biomedical, to 
name a few. Many classic books have been written on it in 
the past [see, e.g., Kirk (1970), Sage (1968), Bryson and Ho 
(1975)]. Some recent books have also appeared containing 
a few recently-developed algorithms and several challeng-
ing applications (Hager and Pardalos 2013; Hull 2013; Lon-
guski et al. 2014; Ben-Asher 2010).

The formulation and analysis of an optimal control prob-
lem can be viewed from two different angles, namely, (i) 
classical calculus of variations approach leading to two-
point boundary value problems (Kirk 1970), which is an 
indirect approach, and (ii) dynamic programming approach 
leading to the famous Hamilton-Jacobi-Bellman partial dif-
ferential equation (Sage 1968), which is a direct approach. 
Both of these approaches, however, suffer from the well-
known ‘curse of complexity’ (Ross 2015) and ‘curse of 
dimensionality’ (Bryson and Ho 1975) issues, respectively. 
Hence, unless the problem is fairly simple [e.g., the standard 
linear quadratic regulator theory (Naidu 2003)], an analytic 
closed-form solution is not possible in general. Because of 
this, several numerical methods have also been proposed 
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variety of problems, such as terminally constrained prob-
lems, regulator problems, tracking problems, and problems 
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in the literature to solve nonlinear optimal control prob-
lems, such as the shooting method (Morrison et al. 1962) 
and gradient method (Kirk 1970) for the indirect approach 
as well as computational procedures for dynamic program-
ming (Larson and Casti 1982) and more recently, reinforce-
ment learning (Yan et al. 2023). All of these, however, are 
still computationally intensive. Hence, these are unsuitable 
for online computation of the optimal control trajectory, 
which remains a key bottleneck for their usage in many real-
time decision-making problems.

Another popular approach for solving optimal control 
problems is the ‘transcription philosophy’ of direct optimi-
zation (Betts 2001). Here, an equivalent discrete static opti-
mization problem is first formulated using a pre-selected 
time grid, and the discretized problem is then solved using a 
suitable static optimization algorithm. It turns out that incor-
porating path inequality constraints on states and/or control 
is inevitable in many problems for ensuring operational 
safety, and obtaining a feasible control solution is easier in 
the transcription approach. Unfortunately, it also leads to 
a large-dimensional optimization problem and associated 
problems such as huge computational burden, making it 
hard to apply in its basic form for many practical problems. 
Nonetheless, this forms the basis for the hugely-popular 
model predictive control (MPC) (Wang 2009; Allgöwer and 
Zheng 2012), which largely enables a ‘sub-optimal’ con-
trol solution with a restricted prediction horizon and even 
more restricted control horizon (thereby limiting the prob-
lem dimension). It can be noted here that a large number of 
innovations, including convergence and optimality guaran-
tees, have been provided for both linear and nonlinear MPC 
problems under relevant assumptions (Chen and Allgöwer 
1998; Mayne et al. 2000; Zheng et al. 2022). Despite these 
innovations, it inherently suffers from the associated com-
putational burden, and, hence, has primarily been restricted 
to slow-varying systems (such as chemical and biomedical 
process control applications) and that too mainly for regula-
tor problems. In such problems, a coarse grid in time can be 
employed, restricting the dimension of static optimization. 
The larger time window also helps in computing the control 
in real time. Even though literature has appeared for eco-
nomic MPC (Rawlings et al. 2012), relaxing it from regula-
tor problems and fast MPC (Wang and Boyd 2010), these 
are still restricted mainly to slow-varying linear systems.

Many practically relevant problems, however, do not 
enjoy the above advantage. For example, problems in aero-
space, mobile robotics, etc. are usually governed by com-
plex nonlinear system dynamics. Moreover, they exhibit 
fast-changing system dynamics and are often required to 
meet stringent performance requirements (e.g., zero miss 
distance and a desired impact angle in missile guidance). 
For such challenging problems, the available ‘fast MPC’ 
algorithms are often found to be inadequate, in the sense 

that they are not sufficiently fast to be applied for such prob-
lems. Keeping such applications in mind, however, inno-
vative optimal control solution approaches have appeared 
in the aerospace literature over the last decades, such as 
pseudo-spectral optimal control (Fahroo and Ross 2002; 
Gong et al. 2008), adaptive critic technique (Balakrishnan 
and Biega 1996).

One such powerful and innovative approach is the Model 
Predictive Static Programming (MPSP) (Padhi and Kothari 
2009; Halbe et al. 2014). In its original form, the MPSP 
technique solves a class of nonlinear fixed final time optimal 
control problems, where the goal is to minimize the control 
effort while ensuring that the output vector satisfies a set of 
hard constraints at the final time tf . Owing to fundamental 
key innovations such as conversion to a low-dimensional 
static optimization problem only in control variables and 
recursive computation of the sensitivity matrices that form 
the core of this algorithm, the MPSP technique has been 
found to be computationally very efficient. Over the last 
decade, the original version of MPSP has been extended to 
include variability in the final time or state (Maity et al. 2016; 
Ghazaei Ardakani et al. 2019), tracking problems (Kumar et 
al. 2018) and impulsive nature of the control action (Sakode 
and Padhi 2014). Inspired by the pseudo-spectral philoso-
phy, the quasi-spectral MPSP (Mondal and Padhi 2018) has 
also been proposed to further reduce computational time. 
The MPSP technique has also been applied to a host of chal-
lenging problems such as missile guidance (Dwivedi et al. 
2011; Oza and Padhi 2012), re-entry guidance (Halbe et al. 
2014), mobile robotics (Kumar et al. 2018; Prakash et al. 
2022), lunar soft-landing (Sachan and Padhi 2019), chemi-
cal process control (le Roux et al. 2014). A recent and com-
prehensive survey of MPSP and its variants can be found in 
Padhi et al. (2024).

Despite its utility and several extensions, the MPSP tech-
nique suffers from three important restrictions, which limit 
its application domain. These are: (i) its applicability is lim-
ited to optimizing cost functions that are necessarily func-
tions of only the control variables, (ii) its inability to handle 
general path inequality constraints, e.g., due to obstacles, 
and (iii) even though numerical results have always been 
promising, a systematic proof of convergence has never 
been established. These limitations obviously restrict the 
class of problems to which the MPSP method can be used. 
The main aim of this paper is to overcome these limita-
tions and thereby present a comprehensive approach, called 
comprehensive MPSP (C-MPSP). Specifically, we present 
an algorithm that can handle general path inequality con-
straints and encompasses general nonlinear optimal control 
problems. Moreover, we provide the first rigorous conver-
gence analysis, which in turn allows one to apply C-MPSP 
to various problems with confidence.
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It must be mentioned here that the problem of handling 
path constraints under the MPSP framework has gained 
attention recently. Two papers recently appeared almost 
simultaneously (Kumar et al. 2018; Hong et al. 2019). How-
ever, in Kumar et al. (2018), the tracking-oriented MPSP is 
confined only to tracking problems. Moreover, no conver-
gence analysis has been carried out. In Hong et al. (2019), 
the problem formulation has been confined to quadratic cost 
functions with linear and/or quadratic path constraints, fol-
lowed by solving it using an interior point algorithm. In con-
trast, this paper does not restrict the problem formulation to 
any such specialized domains. Instead, it attempts to solve 
generic nonlinear optimal control problems by a successive 
quadratic approximation of the cost function and successive 
linearization of the nonlinear constraints. In other words, the 
successive convexification of the problem makes C-MPSP 
very generic and therefore applicable to a wide variety of 
problems. Moreover, it is better to follow a ‘sequential qua-
dratic programming’ approach (which is followed here) 
instead of an interior-point approach in Hong et al. (2019). 
This is because the quadratic programming approach does 
not bring in the additional difficult-to-satisfy requirement 
that the initial guess must satisfy the imposed constraints. In 
addition, the systematic convergence analysis done in this 
paper guarantees that the approach will succeed to find the 
optimal solution as long as (i) the problem admits a feasible 
solution and (ii) the initial guess is sufficiently close to the 
optimal solution. These are, in general, mild assumptions 
required for almost all convergence proofs associated with 
computational algorithms. Note that for the unconstrained 
case (i.e., with no path constraint), like other MPSP algo-
rithms, the entire iterative process in the C-MPSP too can be 
carried out in closed form without resorting to any numeri-
cal optimization solver.

To demonstrate the utility and applicability of the 
approach, a differential two-wheeled mobile robot problem 
has been solved using the proposed comprehensive MPSP 
approach. The algorithm is successful in quickly finding a 
collision-free path from an initial position to the destination 
within the curved road boundaries. Details of this problem 
and the numerical results are included in Sect. 5. The next 
section (Sect. 2), develops the C-MPSP algorithm to solve 
the optimal control problem both without and with the path 
constraints on the input and the state.

Comprehensive MPSP: Mathematical Details

A generic optimal control problem in discrete time can be 
formulated as follows:

System dynamics : Xk+1 = Fk (Xk, Uk) ,  (1)

Output equation : Yk = hk (Xk, Uk) , (2)

Cost function : J =

N∑

k=0

Lk (Xk, Uk), (3)

Trajectory constraints at kth time step :

g0k (Xk, Uk) ≤ 0,

g1k (Xk, Uk) ≤ 0,
...

g
lk
k (Xk, Uk) ≤ 0,

 (4)

Terminal output constraint : YN = Y ∗
N,  (5)

Initial state : X0 = X(t0), (6)

where Xk ∈ �n , Uk ∈ �r , Yk ∈ �m  are the state, control 
and output vectors respectively at kth  time step. Here, X0 
is the initial state at the initial time t0. The function Lk(·) 
in the cost function J is assumed to be a real-valued and 
smooth scalar function of the state and control (in general, it 
can be nonlinear). Without loss of generality, it is assumed 
to be a minimization problem; hence, the range of Lk(·) is 

assumed to be non-negative. Further, 
[
g0k, g1k, . . . , g

lk
k

]T
 

are (lk + 1) constraints on the state Xk  and control Uk  at 
the kth   time step. It can be mentioned here that if one for-
mulates an optimal control problem in continuous time, the 
problem can suitably be discretized first to proceed further.

To solve the optimal control problem contained in 
Eqs. (1)–(6), a new optimal control solution approach 
named as C-MPSP is presented in this paper. As mentioned 
in Sect. 1, C-MPSP is an iterative algorithm and requires 
an initial guess of control history to start the iterations. The 
state dynamics (1) with the initial state (6) is used to predict 
the entire state trajectory using a guess control history. Then, 
the state dynamics, output equation, trajectory constraints, 
and cost function are linearized along the predicted trajec-
tory to form a quadratic programming problem. Details of 
this approach are provided in the following subsections.

C-MPSP Algorithm

The proposed C-MPSP algorithm quickly and provably 
improves the control solution iteratively towards the opti-
mal solution starting from a reasonably good guess. The 
necessary steps are elaborated below.

First, developing the C-MPSP algorithm requires a refor-
mulation of the problem in (1)–(6). First, the state, con-
trol and output at the kth  time step during ith  iteration are 
denoted by Xi

k ∈ �n , Ui
k ∈ �r  and Y i

k ∈ �m , respectively. 
Here, the superscript i denotes the iteration index. As one 
moves from the ith  iteration to the (i + 1)th  iteration, a 
new set of updated state, control, and output histories are 
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i.e., Xi+1
k  and Ui+1

k  respectively, should reduce the cost. 
Hence the notation Ji  on the left-hand side.

Path Constraints

Similarly, the path constraints in (4) at kth  time step, 
k = 1, . . . , (N − 1) can be written as

g0k
(
Xi+1

k , Ui+1
k

)
≤0,

g1k
(
Xi+1

k , Ui+1
k

)
≤0,

...

g
lk
k

(
Xi+1

k , Ui+1
k

)
≤0.

 (13)

Once again, note that these constraints are imposed on the 
updated states and control to ensure that the converged 
states’ history and control history satisfy the constraints 
imposed on the state and control vector given by (13).

State and Output Error Computation

To obtain the state deviation with respect to control, the 
state vector at time step k   and iteration (i + 1) (i.e., Xi+1

k ) 
is expressed by a Taylor series expansion up to first order 
terms as

Xi+1
k =Fk−1

(
Xi+1

k−1, U
i+1
k−1

)
,

=Xi
k +

[
∂Fk−1

∂Xk−1

]T

(Xi
k−1,U

i
k−1)

∆Xi
k−1

+

[
∂Fk−1

∂Uk−1

]T

(Xi
k−1,U

i
k−1)

∆Ui
k−1 + HOT,

 (14)

where ∆Xi
k  is the deviation in the state and ∆Ui

k  is the 
deviation in the control input at time step k during itera-
tion i. Moreover, the partial derivatives are defined such that [
∂Fk−1
∂Uk−1

]
∈ �r×n ; similar definitions are followed in the rest 

of the paper. Under the assumption of small input deviations 
(∆Ui

k → dUi
k ) and small state deviations (∆Xi

k → dXi
k),  

the higher order terms (HOT) in (14) can be neglected. 
Then, from the definition in (7), (14) can be written as

dXi
k =

[
∂Fk−1

∂Xk−1

]T

(Xi
k−1,U

i
k−1)

dXi
k−1+

[
∂Fk−1

∂Uk−1

]T

(Xi
k−1,U

i
k−1)

dUi
k−1.  (15)

Further, the deviation in the state at the (k − 1)th  time step 
(that is, dXi

k−1) can be expanded in terms of dXi
k−2 and 

dUi
k−2; and so on. This expansion continues until the state 

deviation of the initial condition (i.e., dXi
0 ). Eventually, one 

can write

dXi
k =

[
Ak

]i
dXi

0 +
[
Bk

0

]i
dUi

0 + · · · +
[
Bk

k−1

]i
dUi

k−1, (16)

generated. The difference of the state, control, and output 
variables between two consecutive iterations i and (i + 1) at 
the kth  time step are as defined as follows

Xi+1
k �Xi

k + ∆Xi
k,

Ui+1
k �Ui

k + ∆Ui
k,

Y i+1
k �Y i

k +∆Y i
k .

 (7)

Next, the problem is rewritten as follows.

State Dynamics

The state dynamics and output equation, including the itera-
tion index, can now be written as

Xi
k+1 =Fk

(
Xi

k, U
i
k

)
,  (8)

Y i
k =hk

(
Xi

k, U
i
k

)
. (9)

Terminal Constraint

The objective of the algorithm during ith  iteration is to 
determine a suitable control history Ui+1

k , k = 0, 1, . . . , N, 
so that the output at the final time step at the end of ith  itera-
tion equals the desired final output Y ∗

N . In other words, in 
iteration i, we seek a solution for iteration i + 1  such that 
Y i+1
N = Y ∗

N . This equality condition can be written differ-
ently using (7), as

∆Y i
N + Y i

N − Y ∗
N =0. (10)

Under small error approximation (∆Y i
N → dY i

N ) the control 
constraint (10) can be written as below

dY i
N + ∆Y ∗

N =0,  (11)

where ∆Y ∗
N � Y i

N − Y ∗
N . This equation represents the equal-

ity constraint imposed at the final time step of the proposed 
reformulation.

Cost Function

Similarly, including the iteration index, the cost function in 
(3) can be written as

Ji =

N∑

k=0

Lk(X
i+1
k , Ui+1

k ).  (12)

Note that the state and control histories in the ith  iteration 
are updated in such a way that the updated state and control, 
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[
Φk
k

]i
= In×n,

[
Φk
j

]i
=

[
Φk
j+1

]i
[
∂Fj

∂Xj

]T

(Xi
j ,U

i
j)
,

[
Bk

j

]i
=

[
Φk
j+1

]i
[
∂Fj

∂Uj

]T

(Xi
j ,U

i
j)
,

[
Sk
j

]i
=

[
∂hk
∂Xk

]T

(Xi
k ,U

i
k)

[
Bk

j

]i
,






∀j < k

[
Sk
j

]i
=

[
∂hk
∂Uk

]T

(Xi
k ,U

i
k)
, j = k

[
Bk

j

]i
= [0]n×m, ∀j ≥ k[

Sk
j

]i
= [0]p×m, ∀j > k

 (23)

where 
[
Φk
j

]i  is the sensitivity matrix of the state at the kth  
time step with respect to change in state at the jth  time step.

Control Computation in the Unconstrained Case

In this case, following the principle of unconstrained opti-
mization, from (12), (11) and (22), the augmented cost func-
tion is constructed as

J̃ i =
N∑

k=0

Li+1
k +

(
λi
)T




N∑

j=0

[
SN
j

]i
dUi

j + ∆Y ∗i
N



 ,  (24)

where λi ∈ �m  is the Lagrange multiplier and 
Li+1
k � Lk(X

i+1
k , Ui+1

k ) ≥ 0, ∀Xk, Uk . Next, the necessary 
conditions for optimality can be written as

∂J̃ i

∂λ
= 0,  (25)

∂J̃ i

∂
(
dUi

j

) = 0, ∀j ≤ N  (26)

It is straightforward to see that (25) leads to

N∑

j=0

[
SN
j

]i
dUi

j + ∆Y ∗i
N =0.  (27)

However, to simplify (26), one can notice that

∂J̃ i

∂
(
dUi

j

) =

N∑

k=0

∂Lk

(
Xi+1

k , Ui+1
k

)

∂
(
dUi

j

) +
([

SN
j

]i)T

λi.  (28)

The next step is to obtain simplified expressions cor-
responding to each term in the right hand side of (28). 
The first term involves evaluation of partial derivative of 
function Lk(X

i+1
k , Ui+1

k )  with respect to dUi
j . But Lk(·) is 

a generic function of both the state and control, and its 

 
where 

[
Ak

]i ∈ �n×n  is the sensitivity of state at the kth  
time step (i.e. Xk ) during the ith  iteration due to the devia-
tion in initial state X0. Also, 

[
Bk

j

]i ∈ �n×r  is the sensitivity 
matrix of the state at the kth  time step due to the change in 
the control input at the jth  time step during the ith  iteration.

[
Ak

]i
=

[
∂Fk−1

∂Xk−1

]T

(Xi
k−1,U

i
k−1)

· · ·
[
∂F0

∂X0

]T

(Xi
0,U

i
0)
, (17)

[
Bk

j

]i
=

[
∂Fk−1

∂Xk−1

]T

(Xi
k−1,U

i
k−1)

· · ·
[
∂Fj+1

∂Xj+1

]T

(Xi
j+1,U

i
j+1)

[
∂Fj

∂Uj

]T

(Xi
j ,U

i
j)
. (18)

However, since it is assumed that the initial condition is 
known, there is no error in the initial state (i.e., dXi

0 = 0). 
Hence, the state deviation at the kth  step reduces to

dXi
k =

k−1∑

j=0

[
Bk

j

]i
dUi

j.  (19)

Thus, (19) gives the state sensitivity at the kth  time step due 
to changes in control input at all time steps prior to it. Next, 
the expression for the output deviation at the kth  time step 
at the iteration can be written as

dY i
k =

[
∂hk
∂Xk

]T

(Xi
k ,U

i
k)
dXi

k +

[
∂hk
∂Uk

]T

(Xi
k ,U

i
k)
dUi

k.  (20)

Substituting the expression for dXi
k  from (19) in the expres-

sion of dY i
k  from (20) gives

dY i
k =

[
∂hk
∂Xk

]T

(Xi
k,U

i
k)

k−1∑

j=0

[
Bk

j

]i
dUi

j +

[
∂hk
∂Uk

]T

(Xi
k ,U

i
k)
dUi

k,

=

k∑

j=0

[
Sk
j

]i
dUi

j,

 (21)

where 
[
Sk
j

]i ∈ �m×r , appropriately defined for j < k  and 
j = k , is the sensitivity matrix of the output at kth  time step 
due to the changes in the control input prior to time k.

Note that (21) is also valid for the output deviation at the 
final time step, which can be written as

dY i
N =

N∑

j=0

[
SN
j

]i
dUi

j. (22)

Since input changes at future time steps do not change the 
state vector at the current time step, 

[
Bk

j

]i  is set to zero for 
all j ≥ k, ∀i . Next, to reduce the computational require-
ments of the algorithm, 

[
Bk

j

]i  is recursively computed as
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∂Lk

(
Xi+1

k , Ui+1
k

)

∂
(
dUi

j

) =

[
∂
(
dXi

k

)

∂
(
dUi

j

)
]
[
∂Xk

Lk

]i
k

+

[
∂
(
dUi

k

)

∂
(
dUi

j

)
]
[
∂Uk

Lk

]i
k

+
1

2

[
∂
(
dXi

k

)

∂
(
dUi

j

)
]
[
∂XkUk

Lk

]i
k
dUi

k

+
1

2

[
∂
(
dUi

k

)

∂
(
dUi

j

)
] ([

∂XkUk
Lk

]i
k

)T

dXi
k

+
1

2

[
∂
(
dXi

k

)

∂
(
dUi

j

)
]
[
∂2
Xk
Lk

]i
k
dXi

k

+
1

2

[
∂
(
dXi

k

)

∂
(
dUi

j

)
]([

∂2
Xk
Lk

]i
k

)T

dXi
k

+
1

2

[
∂
(
dUi

k

)

∂
(
dUi

j

)
]
[
∂UkXk

Lk

]i
k
dXi

k

+
1

2

[
∂
(
dXi

k

)

∂
(
dUi

j

)
]([

∂UkXk
Lk

]i
k

)T

dUi
k

+
1

2

[
∂
(
dUi

k

)

∂
(
dUi

j

)
]
[
∂2
Uk
Lk

]i
k
dUi

k

+
1

2

[
∂
(
dUi

k

)

∂
(
dUi

j

)
] ([

∂2
Uk
Lk

]i
k

)T

dUi
k.

 (30)

It is apparent that ∂(dX
i
k)

∂(dU i
j)

 is the sensitivity of the state at the 

kth  time step due to change in control at the jth  time step. 

Hence, from (19), this is nothing but 
([

Bk
j

]i)T
. Moreover, 

this can also be obtained by taking the partial derivative of 
both sides of (19) with respect to dUi

j . On the other hand, 
∂(dU i

k)
∂(dU i

j)
 is the change in control input at the kth  time step 

due to change in control at the jth  time step, but control 
inputs at every time instant are decision variables and are 
is independent of the control input at any other time step. 
Hence, this derivative can be represented by a Kronecker 
delta function δjk . Using this definition of partial deriva-
tives, (30) can be written as

∂Lk

(
Xi+1

k , Ui+1
k

)

∂
(
dUi

j

) =
([

Bk
j

]i)T [
∂Xk

Lk

]i
k
+ δjk

[
∂Uk

Lk

]i
k

+
1

2
δjk

{[
∂UkXk

Lk

]i
k
+
([

∂XkUk
Lk

]i
k

)T
} k−1∑

l=0

[
Bk

l

]i
dUi

l

+
1

2

([
Bk

j

]i)T
{[

∂2
Xk
Lk

]i
k
+
([

∂2
Xk
Lk

]i
k

)T
} k−1∑

l=0

[
Bk

l

]i
dUi

l

+
1

2

([
Bk

j

]i)T
{[

∂XkUk
Lk

]i
k
+
([

∂UkXk
Lk

]i
k

)T
}
dUi

k

+
1

2
δjk

{[
∂2
Uk
Lk

]i
k
+
([

∂2
Uk
Lk

]i
k

)T
}
dUi

k.

 (31)

The first term of (28) is the summation of partial derivatives 
of Lk(·) with respect to control deviation dUi

j . Using the 
summation operator on both sides of (31) gives

partial derivative cannot directly be written in explicit 
form. At this point, a simplification is introduced for 
evaluation of the partial derivative of Lk(·) with respect 
to dUi

j . First, the function Lk(X
i+1
k , Ui+1

k )  is expanded 
about the point (Xk, Uk) using a Taylor series expan-
sion. Then, the partial derivative of Lk(X

i+1
k , Ui+1

k )  with 
respect to dUi

j  is evaluated by differentiating the Taylor 
series expansion with respect to dUi

j .
The Taylor series expansion of Lk(·), up to the second 

order term, reads as

Lk

(
Xi+1

k , Ui+1
k

)
=Lk

(
Xi

k, U
i
k

)
+
([

∂Xk
Lk

]i
k

)T

dXi
k

+
([

∂Uk
Lk

]i
k

)T

dUi
k

+
1

2

(
dXi

k

)T [
∂XkUk

Lk

]i
k
dUi

k

+
1

2

(
dUi

k

)T [
∂UkXk

Lk

]i
k
dXi

k

+
1

2

(
dXi

k

)T [
∂2
Xk
Lk

]i
k
dXi

k

+
1

2

(
dUi

k

)T [
∂2
Uk
Lk

]i
k
dUi

k,

 (29)

where 
[
∂Xk

Lk

]i
k
�

[
∂Lk
∂Xk

]

(Xi
k ,U

i
k)

, 
[
∂Uk

Lk

]i
k
�

[
∂Lk
∂Uk

]

(Xi
k ,U

i
k),

, 
[
∂2
Xk
Lk

]i
k
�

[
∂2Lk

∂X2
k

]

(Xi
k,U

i
k)

, 
[
∂2
Uk
Lk

]i
k
�

[
∂2Lk

∂U2
k

]

(Xi
k ,U

i
k),

, 
[
∂XkUk

Lk

]i
k
�

[
∂2Lk
∂XkUk

]

(Xi
k ,U

i
k)

,  and 
[
∂UkXk

Lk

]i
k
�

[
∂2Lk
∂UkXk

]

(Xi
k ,U

i
k)

.

Equation (29) comprises several terms, some of which 
are purely dependent on state Xi

k  and control Ui
k , while 

some are dependent on dXi
k  (deviation in the state) and 

dUi
k  (deviation in control). But Xi

k  and Ui
k  are the state 

history and control history, respectively, at kth  time step 
and are constant quantities during the iteration process. 
Hence, the terms solely dependent on Xi

k  and Ui
k  are 

constants in (29), while dXi
k  and dUi

k  are variables and 
have to be handled accordingly. The partial derivative of 
Lk

(
Xi+1

k , Ui+1
k

)
 with respect to dUi

j  can thus be written 
as
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AUλ �





aUλ0

aUλ1...
aUλN



 , AλU = AT
Uλ,  (37)

δUi =





dUi
0

dUi
1...

dUi
N



 , bU =





bU0

bU1...
bUN



 , bλ = ∆Y ∗i
N , (38)

aUUjl
� 1

2
δjl

{[
∂2
Ul
Ll

]i
l
+
([

∂2
Ul
Ll

]i
l

)T
}

+
1

2

N∑

k=0

([
Bk

j

]i)T
{[

∂2
Xk
Lk

]i
k
+
([

∂2
Xk
Lk

]i
k

)T
}[

Bk
l

]i
+

1

2

([
Bl

j

]i)T
{[

∂XlUl
Ll

]i
l
+
([

∂UlXl
Ll

]i
l

)T
}

+
1

2

{([
∂XjUj

Lj

]i
j

)T

+
[
∂UjXj

Lj

]i
j

}[
Bj

l

]i
,

 (39)

aUλj �
([

SN
j

]i)T

, (40)

bUj
�

N∑

l=0

{([
Bl

j

]i)T [
∂Xl

Ll

]i
l
+ δjl

[
∂Ul

Ll

]i
l

}
,  (41)

bλ � ∆Y ∗
N.  (42)

Solving (35) gives the optimal control deviations and 
Lagrange multiplier (λ) during the ith  iteration. The addi-
tion of these optimal control deviations to the previous con-
trol history gives the updated control history, namely,

Ui+1
j =Ui

j + dUi
j , ∀ j ∈ {0, 1, . . . , N}.  (43)

In this manner, the control input is updated from the control 
history in an iteration cycle.

Control Computation in the Constrained Case

In general, the constraints can be written as in (13), con-
taining lk  inequality constraints in terms of the state and 
control vector at the kth  time step. Now, the state and con-
trol histories need to be updated in such a manner that they 
satisfy the applicable constraints. The constrained nonlinear 
optimal control problem contained in (8), (11), (12) and (13) 
can be solved efficiently using algorithms for solving the 
approximate quadratic programming problem with linear 
constraints; such that the solution converges to the solution 
of the original problem.

The first step is to convert the nonlinear cost function 
into an approximate quadratic cost using the Taylor series 

N∑

k=0

∂Lk

(
Xi+1

k , Ui+1
k

)

∂
(
dUi

j

) =

N∑

k=0

([
Bk

j

]i)T [
∂Xk

Lk

]i
k
+
[
∂Uj

Lj

]i
j

+
1

2

{[
∂UjXj

Lj

]i
j
+
([

∂XjUj
Lj

]i
j

)T
} j−1∑

l=0

[
Bj

l

]i
dUi

l

+
1

2

N∑

k=0

([
Bk

j

]i)T {[
∂2
Xk
Lk

]i
k
+

([
∂2
Xk
Lk

]i
k

)T
} k−1∑

l=0

[
Bk

l

]i
dUi

l

+
1

2

N∑

k=0

([
Bk

j

]i)T
{[

∂XkUk
Lk

]i
k
+
([

∂UkXk
Lk

]i
k

)T
}
dUi

k

+
1

2

{[
∂2
Uj
Lj

]i
j
+

([
∂2
Uj
Lj

]i
j

)T
}
dUi

j .

 (32)

Using the fact that 
[
Bk

l

]i
= 0 ∀l ≥ k , it can be written 

that 
∑k−1

l=0

[
Bk

l

]i
dUi

l =
∑N

l=0

[
Bk

l

]i
dUi

l . This is used for 
the algebraic simplification of the third term in (32) to 
obtain the following:

N∑

k=0

([
Bk

j

]i)T
{[

∂2
Xk
Lk

]i
k
+
([

∂2
Xk
Lk

]i
k

)T
} k−1∑

l=0

[
Bk

l

]i
dUi

l

=
N∑

l=0

N∑

k=0

([
Bk

j

]i)T
{[

∂2
Xk
Lk

]i
k
+
([

∂2
Xk
Lk

]i
k

)T
}[

Bk
l

]i
dUi

l .

 (33)

Using (33), (32) can be simplified as

N∑

k=0

∂Lk

(
Xi+1

k , Ui+1
k

)

∂
(
dUi

j

) =

N∑

k=0

([
Bk

j

]i)T [
∂Xk

Lk

]i
k
+
[
∂Uj

Lj

]i
j

+
1

2

{[
∂UjXj

Lj

]i
j
+
([

∂XjUj
Lj

]i
j

)T
} j−1∑

l=0

[
Bj

l

]i
dUi

l

+
1

2

N∑

l=0

N∑

k=max(l+1,j+1)

([
Bk

j

]i)T {[
∂2
Xk
Lk

]i
k

+
([

∂2
Xk
Lk

]i
k

)T
}[

Bk
l

]i
dUi

l +
1

2

N∑

k=0

([
Bk

j

]i)T {[
∂XkUk

Lk

]i
k

+
([

∂UkXk
Lk

]i
k

)T
}
dUi

k +
1

2

{[
∂2
Uj
Lj

]i
j
+

([
∂2
Uj
Lj

]i
j

)T
}
dUi

j.

 (34)

Using (34) in (28) and equating it to zero leads to the second 
necessary condition of optimality, the detailed expression of 
which is omitted here for brevity.

Next, one can observe here that the optimality conditions 
(26) and (27) are essentially linear equations, and hence, can 
be written in compact form as
[
AUU AUλ

AλU Aλλ

] [
δUi

λi

]
+

[
bU
bλ

]
=0,  (35)

where δUi �
[ (

dUi
0

)T
. . .

(
dUi

N

)T ]T
, Aλλ = 0 , and 

other variables are defined as

AUU �





aUU00
aUU01

· · · aUU0N

aUU10
aUU11

· · · aUU1N... ... . . . ...
aUUN0

aUUN1
· · · aUUNN



 ,  (36)
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Li
UX �




[∂U0X0L0]

i
0 · · · 0

... . . . ...
0 · · ·

[
∂UNXN

LN

]i
N



 ,  (51)

Li
XU �




[∂X0U0L0]

i
0 · · · 0

... . . . ...
0 · · ·

[
∂XNUN

LN

]i
N



 .  (52)

The equality constraint at the final time step (11) can be sim-
plified by using the expression for the output deviation at 
the final time step (i.e., dY i

N ) from (22), resulting in

k∑

j=0

[
Sk
j

]i
dUi

j +∆Y ∗i
N =0.  (53)

Using the notation of δUi  from (46) and defining a new final 
output sensitivity matrix, the control constraint in (53) can 
be written as

[
SN

]i
δUi +∆Y ∗i

N =0, (54)

where the output sensitivity matrix at the final time step is 
defined as

[
SN

]i �
[ ([

SN
0

]i)T

· · ·
([

SN
N

]i)T
]T

. (55)

Next, the nonlinear path constraints in (13) are simplified 
to linearized constraints on the state and control deviations 
using a Taylor series approximation and are written as

[
∂g

lk
k

∂Xk

]T

(Xi
k ,U

i
k)

k−1∑

j=0

[
Bk

j

]i
dUi

j

+

[
∂g

lk
k

∂Uk

]T

(Xi
k ,U

i
k)

dUi
k ≤ −g

lk
k

(
Xi

k, U
i
k

)
.

 (56)

Equation (56) can be written in the compact form as

Bi
CδU

i ≤ gi  (57)

where the elements of Bi
C =

[
biCkj

]
 and gi  are defined as

biCkj
�





[
∂g0k
∂Xk

]T
(Xi

k,U
i
k)

[
Bk

j

]i
+ δjk

[
∂g0k
∂Uk

]T
(Xi

k ,U
i
k)...[

∂g
lk
k

∂Xk

]T

(Xi
k,U

i
k)

[
Bk

j

]i
+ δjk

[
∂g

lk
k

∂Uk

]T

(Xi
k ,U

i
k)




, (58)

approximation as in (29), which can be simplified using (19) 
as

Lk

(
Xi+1

k , Ui+1
k

)
=Lk

(
Xi

k, U
i
k

)
+
([

∂Xk
Lk

]i
k

)T
k−1∑

j=0

[
Bk

j

]i
dUi

j

+
([

∂Uk
Lk

]i
k

)T

dUi
k

+
1

2




k−1∑

j=0

[
Bk

j

]i
dUi

j




T

[
∂XkUk

Lk

]i
k
dUi

k

+
1

2

(
dUi

k

)T [
∂UkXk

Lk

]i
k

k−1∑

j=0

[
Bk

j

]i
dUi

j

+
1

2




k−1∑

j=0

[
Bk

j

]i
dUi

j




T

[
∂2
Xk
Lk

]i
k

k−1∑

l=0

[
Bk

l

]i
dUi

l

+
1

2

(
dUi

k

)T [
∂2
Uk
Lk

]i
k
dUi

k.

 (44)

Using (44), and carrying out the necessary algebra, the cost 
function (12) can be written in a quadratic form as

Ji =
1

2

(
δUi

)T
{(

[B]i
)T (

Li
XX

)
[B]i

+
(
[B]i

)T (
Li
XU

)
+
(
Li
UX

)
[B]i +

(
Li
UU

)}
δUi

+
((

Li
X

)T
[B]i +

(
Li
U

)T)
δUi +

N∑

k=0

Lk

(
Xi

k, U
i
k

)
,

 (45)

where

δUi �





dUi
0

dUi
1...

dUi
N



 ,
([

Bk
]i)T

�





([
Bk

0

]i)T

([
Bk

1

]i)T

...([
Bk

N

]i)T




,  (46)

[B]i �





[
B0

]i
...[

BN
]i



 =





[
B0

0

]i · · ·
[
B0

N

]i
... . . . ...[

BN
0

]i · · ·
[
BN

N

]i



 , (47)

Li
X �




[∂X0L0]

i
0...[

∂XN
LN

]i
N



 , Li
U �




[∂U0L0]

i
0...[

∂UN
LN

]i
N



 ,  (48)

Li
XX �





[
∂2
X0
L0

]i
0
· · · 0

... . . . ...

0 · · ·
[
∂2
XN

LN

]i
N



 ,  (49)

Li
UU �





[
∂2
U0
L0

]i
0
· · · 0

... . . . ...

0 · · ·
[
∂2
UN

LN

]i
N



 , (50)
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convergence is said to be Q-linear if there exists a constant 
0 < r < 1 such that

lim
i→∞

∥∥Ui+1 − U∗
∥∥

‖Ui − U∗‖ < r.  (60)

To present the existing results, we consider a general nonlin-
ear program (NLP) defined below.

min
U∈�q

J(U) subject to YN(U) = Y ∗
N, and g(U) ≤ 0,  (61)

where the functions J : �q → � , YN : �q → �p , 
g : �q → �l . Using a vector of slack variables Z ∈ �l  to 
handle the nonpositive constraint on g(U), we arrive at

min
U∈�q ,Z∈�l

J(U) subject to YN(U) = Y ∗
N,

g(U) + Z = 0, and Z ≥ 0.
 (62)

Suppose that the NLP is solved using a general iterative pro-
cedure based on its extended Lagrange function (Boggs and 
Tolle 2000), defined as

L(U, Z, λ, ρ) = J(U) + YN(U)Tλ + [g(U) + Z]T ρ ∈ �,  (63)

where λ ∈ �p  and ρ ∈ �l  are the Lagrange multipliers 
corresponding to the two constraints in (62). In every itera-
tion, the algorithm updates the variables of optimization U 
and Z as well as the Lagrange multipliers λ  and ρ . Let 
the estimate of variables U, Z, λ, and ρ  in the ith iteration 
be denoted as given Ui, Zi, λi,  and ρi , respectively. In the 
(i + 1)th iteration, the variables are updated as follows:




Ui+1

Zi+1

λi+1

ρi+1



 =





Ui

Zi

λi

ρi



 + αidi,  (64)

where αi ∈ �  is a scalar and di ∈ �q+2l+p  denotes the 
direction in which current estimates deviate from the esti-
mates in the previous iteration. Let (U∗, Z∗)  be a feasible 
solution of the NLP and (λ∗, ρ∗) be the corresponding 
optimal Lagrange multiplier vectors. The convergence 
result establishes conditions under which the iterates 
converge to a feasible solution. To state the result, the 
following definitions are needed:

 ● Perturbation vectors wi  and pi , for i = 1, 2, . . .:

gi �




−g0k

(
Xi

k, U
i
k

)
...

−g
lk
k

(
Xi

k, U
i
k

)



 .  (59)

Equations (45), (54) and (57) form a quadratic program-
ming (QP) problem, which it can be solved using stan-
dard QP solvers to obtain the control update vector δUi . 
In the present paper, Hildreth’s quadratic programming 
algorithm (Luenberger 1969; Wismer and Chattergy 1978) 
has been used to solve the posed QP problem because it is 
known to be computationally efficient (Wang 2009). Hence, 
it is suitable for real-time applications.

Convergence Analysis of C-MPSP

Only the general form of the algorithm, i.e., the constrained 
case discussed in Sect. 2.4 is considered here as the uncon-
strained case is a special case of the the constrained case. 
An existing convergence result related to a general iterative 
algorithm is first presented. The C-MPSP algorithm is then 
related to this result to establish its convergence behavior. 
It is shown that the sequence of iterations leads to a locally 
optimal solution if the initial iterate is sufficiently close to 
that solution.

1Moreover, an analysis of the convergence rate is also 
carried out, which leads to the conclusion that the iteration 
process goes to the optimal solution rapidly in a sense as 
specified below.

Existing Convergence Result for a General Algorithm

The result in this section shows Q-linear convergence of a 
general iterative algorithm, which is defined as follows.

Definition 1 (Q-linear convergence (Nocedal and Wright 

2006)) Let 
{
Ui

}
i∈N be a sequence converging to U∗ . The 

1 The requirement that the initial guess be close to the optimal solu-
tion is typical of theoretical guarantees for any iterative algorithm. In 
our observation from a number of simulations under various initial 
conditions and control history guesses, we found that the algorithm 
is relatively insensitive to it, which means it converges to the desired 
solution even if the initial guess was far off. The reader is referred to 
the simulation results section for more details. We also note that, if one 
uses an interior point method (which has fast convergence properties) 
in the optimization process, the requirement is to start with a ‘feasible’ 
solution satisfying all constraints. However, in practice, this is a dif-
ficult task. To avoid this problem, one can start with sequential qua-
dratic programming, which does not require initialization at a feasible 
point. Once all the constraints are satisfied, thus making the solution 
feasible, one can switch over to the interior point method to speed up 
the process.
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b. There exist constants η1 and η2 such that 

∥∥∇2J
(
Ui+1

)
−∇2Li

∥∥ ≤ η2σ
i +

(
1 + η1σ

i
) ∥∥∇2J

(
Ui

)
−∇2Li

∥∥ ,  (67)

 where σi = O
(∥∥wi+1

∥∥+
∥∥wi

∥∥).
Then, there exists ε > 0 such that if 

∥∥w0
∥∥ < ε , and ∥∥∇2J

(
U0

)
−∇2L∗

∥∥ < ε , the sequence 
{
wi
}
i∈N converges 

to 0, and 
{
(Ui, Zi)

}
i∈N converges Q-linearly to (U∗, Z∗) . 

Here, ∇2L∗  is the Hessian of the extended Lagrangian L  in 
(63) with respect to U, evaluated at (U∗, Z∗, λ∗, ρ∗).
Next, the above theorem is applied to the C-MPSP algo-
rithm proposed in this paper. To this end, first, the algorithm 
needs to be rewritten slightly differently, as explained in the 
following subsection.

Matrix Notation

This section reformulates the C-MPSP algorithm as the iter-
ative algorithm described in Theorem 1. From (1) and (2), 
it is clear that

YN = hN(XN, UN) = hN (FN−1(XN−1, UN−1), UN)

= hN (FN−1 (. . . F1(X0, U0), . . . , UN−1) , UN)
 (68)

Since it is assumed that the knowledge of the initial state 
X0 as well as the system dynamics is available, YN  is a 
function of the control history {Uk}Nk=0 alone. Let the set of 
unknowns be denoted by U:

U �
[
UT
0 UT

1 . . . UT
N

]T ∈ �q  (69)

where q � (N + 1)m . Then, YN : �q → �p  is a function of 
U. Similarly, it can also be shown that the cost function J is 
a function of U alone.

Next, a new function g : �q → �l  with l =
∑N

k=0 lk  is 
defined to denote the inequality constraints associated with 
the problem as defined in (13). Thus, the constraints can 
be denoted as g(U) ≤ 0, where (

∑k−1
i=0 li + j)th entry of g 

is gjk , for j = 0, 1, . . . , lk  and k = 1, 2, . . . , N − 1 . Follow-
ing the above notation, the problem of finding the optimal 
control inputs as an optimization problem that solves for the 
unknown vector U is now rewritten. For doing this, Ui  is 
defined as the iterate values (set of control inputs) computed 
in the ith  iteration of the C-MPSP algorithm:

Ui �
[
UiT
0 UiT

1 . . . UiT
N

]T ∈ �q.  (70)

Then, from (7), one gets the following:

δUi = Ui+1 − Ui, (71)

wi �





Ui − U∗

Zi − Z∗

λi − λ∗

ρi − ρ∗



 ∈ �q+2l+p,  (65)

pi �





∇2J(Ui) 0 ∇YN(U
i) ∇g(Ui)

∇YN(U
i)T 0 0 0

∇g(Ui)T I 0 0
0 Di

ρ 0 Di
Z



 di

+





∇J(Ui)

YN(U
i)

g(Ui) + Zi

Di
ρZ

i



 ∈ �q+21+p

 (66)

where Di
ρ ∈ �l×l  and Di

Z ∈ �l×l  are diagonal matrices 
with ρi  and Zi  along the diagonal, respectively.

 ● A � {j : gj(U∗) = 0} , the set of active inequality con-

straints where gj(U∗) ∈ �  is the jth component of 
g(U∗) .

 ● G(U∗) �
[
∇YN(U

∗) ∇gA(U
∗)
]
∈ �q × �p+|A| , a ma-

trix whose columns are the gradients of the equality and 
active inequality (gj = 0) constraints at U∗ .

 ● ∇2Li  are the Hessian of the extended Lagrangian L  in 

(63) with respect to U, evaluated at (Ui, Zi, λi, ρi).
The stage is now set to state the convergence result for the 
above iterative algorithm, which is as follows:

Theorem 1 (Boggs and Tolle (2000), Theorem 4.1) Suppose 
that the following conditions hold: 

C1 All of the functions in the NLP have Lipschitz continu-
ous second derivatives.

C2 The feasible solution satisfies 

a. For j ∈ A , ρ∗j > 0.
b. The matrix G(U∗) has full column rank.
c. For all y ∈ �q  such that y �= 0 and G(U∗)Ty = 0, 

yT∇2L∗y > 0.

C3 limi→∞αi = 1.
C4 The perturbation pi  satisfies 

∥∥pi
∥∥ = o

(∥∥wi
∥∥ +

∥∥di
∥∥).

C5 The sequence 
{
∇2J

(
Ui

)}
i∈N satisfies 

a. For each i, the matrix ∇2J
(
Ui

)
 satisfies the 

condition: y �= 0 and G(Ui)Ty = 0 implies 
yT∇2J

(
Ui

)
y > 0.
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Further, using (23), (58) and (59), it is clear that (54) and 
(57) are equivalent to

g(Ui) +∇g(Ui)T
(
Ui+1 − Ui

)
≤ 0 (81)

YN(U
i)− Y ∗

N +∇YN(U
i)T

(
Ui+1 − Ui

)
= 0.  (82)

Finally, a slack variable Z ∈ �l  is introduced to rewrite 
(81) as

g(Ui) +∇g(Ui)T
(
Ui+1 − Ui

)
+ Z = 0, Z ≥ 0  (83)

Thus, the optimization problem in (73) is obtained which is 
equivalent to the optimization problem described by (45), 
(54) and (57). Hence, the proof is complete. �
With this, the convergence result for the proposed C-MPSP 
algorithm can be stated, which is discussed next.

Convergence of C-MPSP

To prove the convergence, the definitions introduced in 
Sect. 3.1 are used. It is also assumed that the quadratic sub-
problem solved by the C-MPSP algorithm in each iteration 
is solved exactly. Further, to connect the C-MPSP algorithm 
to Theorem 2, the following is defined:

di = δUi =





Ui+1 − Ui

Zi+1 − Zi

λi+1 − λi

ρi+1 − ρi



 , and let αi = 1 (84)

Thus, the algorithm update given in (71) is equivalent to 
algorithm update (64) given in Sect. 3.1. Therefore, the fol-
lowing result holds for every iteration:

Lemma 2 Suppose that (73) is solved exactly in every itera-
tion. The feasible solution (Ui, Zi) is such that a regular 
point for the constraints, i.e., the matrix whose columns 
are the gradients of the equality and active inequality con-
straints of (73) at Ui,  has full column rank. Then, (Ui, Zi) 

satisfies pi = 0 for some vector (λi ∈ �q, ρ∗ ∈ �l) , where 

pi  is defined in (66).

Proof It is known that a feasible solution to an optimization 
problem always satisfies the first-order necessary condition 
for optimality, i.e., the derivative of the Lagrange function 
vanishes at the solution. Hence, there exists a sequence {
λi ∈ �q, ρ∗ ∈ �l

}
i∈N such that the following holds:

∆Y i
N = YN(U

i+1)− YN(U
i) (72)

The algorithm’s convergence can be established by charac-
terizing the convergence of the sequence 

{
Ui

}
i∈N. So, the 

first step towards proving the convergence is to rewrite the 
C-MPSP algorithm in terms of U as given by the follow-
ing lemma. Here, for brevity, the operations ∂

∂U
 and ∂2

∂U2  are 
denoted by ∇  and ∇2, respectively.

Lemma 1 The quadratic subproblem solved by the C-MPSP 
algorithm in the ith iteration, which is described by (45), 
(54) and (57), can be written as follows:

min
U∈�q,Z∈�l

1

2

(
U − Ui

)T ∇2J(Ui)
(
U − Ui

)

+∇J(Ui)T
(
U − Ui

)
+ J(Ui)

subject to
Z + g(Ui) +∇g(Ui)T

(
U − Ui

)
= 0,

Y ∗i
N +∇YN(U

i)T
(
U − Ui

)
= 0, and Z ≥ 0.

 (73)

Proof From (18) and (46), 
[
Bk

]i
= ∇Xk(U

i). Therefore,

(
[B]i

)T (
Li
XX

)
[B]i =

N∑

k=1

([
Bk

]i)T [
∂2
Xk
Lk

]i
k

[
Bk

]i

=

N∑

k=1

(
∇Xk(U

i)
)T [

∂2
Xk
Lk

]i
k
∇Xk(U

i)

 (74)

where (74) follows from (47) and (49). Similarly, from (48), 
(50)-(52), one can show that

(
Li
X

)T
[B]i = ∂Xk

Lk

∣∣
Xk=Xi

k ,Uk=U i
k
 (75)

(
Li
U

)T
= ∂Uk

Lk  (76)

(
[B]i

)T

Li
XU =

N∑

k=1

∇Xk(U
i)
(
∂XkUk

Lk

)
 (77)

Li
UX [B]i =

N∑

k=1

(
∂UkXk

Lk

)
∇Xk(U

i)  (78)

Li
UU =

N∑

k=1

(
∂2
Uk
Lk

)
 (79)

Substituting (74)–(79) in (45), and using (3), it can be 
deduced that (45) is equivalent to

Ji =
1

2

(
Ui+1 − Ui

)T ∇2J(Ui)
(
Ui+1 − Ui

)

+∇J(Ui)T
(
Ui+1 − Ui

)
+ J(Ui)

 (80)
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implies that 
∥∥pi

∥∥ = 0 and thus, Condition C4 holds. Fur-
ther,  Condition C5a holds due to (iii) of Theorem 2. Finally, 
Condition C5b also holds since
∥∥∇2J

(
Ui+1

)
−∇2Li

∥∥
≤

∥∥∇2J
(
Ui+1

)
−∇2J

(
Ui

)∥∥ +
∥∥∇2J

(
Ui

)
−∇2Li

∥∥
≤ τ

∥∥Ui+1 − Ui
∥∥ +

∥∥∇2J
(
Ui

)
−∇2Li

∥∥
 (89)

where τ  is the Lipschitz constant of ∇2J  as assumed in (i). 
Hence, the proof is complete. �
An important implication of the above result is as follows. 
Q-linear convergence with rate of convergence r (as given 
in Definition 1) implies that there exists a constant γ > 0 
and i∗ ∈ N such that for all i > i∗ ,

lim
i→∞

∥∥Ui − U∗∥∥ ≤ γri.  (90)

Thus, Theorem 2 shows that to achieve convergence 
within an error ζ , (i.e., 

∥∥Ui+1 − U∗
∥∥ ≤ ζ ), our algorithm 

requires at most log ε/γlog r  iterations. In other words, the error ∥∥Ui+1 − U∗
∥∥  decreases exponentially in the number of iter-

ations ensuring a faster convergence. Our numerical experi-
ments also corroborate these observations (see Sect. 5.6). 
The next section, Sec. 4, summarizes the C-MPSP algorithm 
and its implementation steps.

Implementation steps of C-MPSP

The procedure to implement the C-MPSP is as follows: 

1. Start the iterations with a guess control history U0
k ,  

∀k = 0, 1, . . . , N ; and set the iteration index to zero 
(i = 0). Set all the tuning parameters of the cost func-

tion Lk, ∀k = 0, 1, . . .N  to convenient values.
2. Use the known initial condition X0 and the control 

input 
{
Ui
0, U

i
1, . . . , U

i
N−1

}
 to propagate the system 

dynamics (8) and obtain the predicted state trajectory 
Xi

k , ∀k = 0, 1, . . . , N , and the output at the final time 

step Y i
N . Use the desired output at the final time step Y ∗

N  
to calculate ∆Y ∗

N = Y i
N − Y ∗

N .
3. Terminate the algorithm if i ≥ 1  and the output error is 

smaller than the user-defined tolerance values (εY , εU), 

i.e., ‖ ∆Y ∗
N‖2/‖ Y ∗

N‖2 < εY  and the control history has 

converged, i.e., 
N∑
k=0

‖ Ui
k − Ui−1

k ‖2
/ N∑

k=0

‖ Ui−1
k ‖2 < εU . 

0 =
∂

∂U

{
1

2

(
U − Ui

)T ∇2J(Ui)
(
U − Ui

)

+∇J(Ui)T
(
U − Ui

)
+ J(Ui)

+
[
Z + g(Ui) +∇g(Ui)T

(
U − Ui

)]T (
ρi+1 − ρi

)

+
[
Y ∗i
N +∇YN(U

i)T
(
Ui+1 − Ui

)]T (
λi+1 − λi

)}

U=U i+1

= ∇2J(Ui)
(
Ui+1 − Ui

)

+∇J(Ui) +∇YN(U
i)
(
λi+1 − λi

)
+∇g(Ui)

(
ρi+1 − ρi

)

 (85)

Note that the Lagrange multipliers are λi+1 − λi ∈ �q  and 
ρi+1 − ρi ∈ �l . Similarly, due to the constraint Z ≥ 0 , the 
first-order optimality also guarantees the following Boggs 
and Tolle (2000):

Di
ρZ

i+1 +Di
Z

(
ρi+1 − ρi

)
= 0 (86)

Further, since the solution is feasible, it satisfies

Y ∗i
N +∇YN(U

i)T
(
Ui+1 − Ui

)
= 0 (87)

Zi+1 + g(Ui) +∇g(Ui)T
(
Ui+1 − Ui

)
= 0 (88)

Substituting (85), (86), (87) and (88) into the definition of 
pi  in (66), the desired result is obtained. �
Using the above lemmas, the following result gives the 
desired convergence result for the C-MPSP algorithm.
Theorem 2 Suppose that the assumptions of Lemma 2 hold, 
and the following conditions are satisfied: 

(i) The functions J, YN  and g have Lipschitz continuous 
second derivatives.

(ii) The Hessian ∇2J  of function J is positive definite for 
all values of U.

(iii) The feasible solution satisfies the following: 

(a) For j ∈ A,  ρ∗j > 0.

(b) The matrix G(U∗) has full column rank.
(c) For all y ∈ �q  such that y �= 0 and G(U∗)Ty = 0, 

yT∇2L∗y > 0.

Then, there exists an ε > 0 such that if 
∥∥w0

∥∥ < ε  and ∥∥∇2J
(
U0

)
−∇2L∗

∥∥ < ε,  the sequence 
{
(Ui)

}
i∈N con-

verges Q-linearly to U∗ . Here, ∇2L∗  is the Hessian of the 
extended Lagrangian L  in (63) with respect to U, evaluated 
at (U∗, Z∗, λ∗, ρ∗).

Proof Lemma 1 shows that the C-MPSP algorithm can be 
rewritten such that Theorem 1 holds. Thus, to prove the 
result, it suffices to show that Conditions C1 to C5 of Theo-
rem 1 are satisfied by the C-MPSP algorithm, which is veri-
fied next.

Conditions C1 and C2 are satisfied since they are equiva-
lent to Conditions (i) and (ii) of Theorem 2, respectively. 
Next, Condition C3 holds because of (84). Also, Lemma 2 
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A Demonstrative Example

The performance of the proposed C-MPSP algorithm is dem-
onstrated by solving a guidance problem for a two-wheeled 
differential drive mobile robot. The robot must pass through 
a pre-specified desired final position at a given final time, 
without violating the constraints on state and control inputs 
on the way.

Plant Model and Output Equation

The kinematic model of a two-wheel differential drive 
mobile robot, as shown in Fig. 1, can be written as



ẋ

ẏ

φ̇



 =





(ωr+ωl
2

)
r cosφ(

ωr+ωl
2

)
r sinφ(ωr−ωl

2L

)
r



 , (91)

where x and y are positions of the centre of the mobile 
robot in the fixed frame of reference XIOIYI , φ  is the ori-
entation angle of the vehicle with respect to the x-axis of 
the fixed frame of reference, ωr  is the angular velocity of 
the right wheel, and ωl  is the angular velocity of the left 
wheel. Also, r is the wheel radius and L is the wheel hinge’s 
distance from the mobile robot’s center. The selected val-
ues of the mobile robot parameters are r = 35mm and L = 
55mm. From (91), the state and control vectors are defined 
as X � [x y φ]T  and U � [ωr ωl]

T . It is required that, start-
ing from a feasible point (x0, y0) at t= 0s, where x0 = 0 
and y0 ∈ (−11,−9), the robot needs to pass through the 
desired point (x∗f , y∗f) = (10, 0) at the desired final time 
tf  = 10s. Defining the output vector at kth  time step as 
Yk = hk(Xk, Uk) � [x(tk) y(tk)]

T = [xk yk]
T  and at the final 

time step N as Y ∗
N � [x∗f y∗f ]

T , it is required that YN = Y ∗
N .

Path Constraint

Without loss of generality, the path’s shape is considered to 
be an annular space between arcs of two concentric circles. 
Accordingly, the constraint on the states at kth  time step due 
to the path can be written as

r2i ≤(xk − xcp)
2 + (yk − ycp)

2 ≤ r20 , (92)

for k = 0, 1, . . . , N , where (xcp, ycp)  is the center of the 
circle making the annular path, ri  is the radius of the inner 
circle, and ro  is the radius of the outer circle of the path. In 
the present simulation, the values of the parameters of the 
annular path are (xcp, ycp) = (0, 0), ri  = 9m and ro  = 11m. 
All these constraints can be seen in Fig. 2.

If these conditions are met for i ≥ 1 , then use Ui
k  as the 

suboptimal control history. Otherwise continue through 
Steps 4 to 7.

4. Using Xi
k  and Ui

k  (for all k = 0, 1, . . . , N ), calculate 
the sensitivity matrices given by (23), the Jacobian 

matrices [∂hN/∂XN ](Xi
N ,U i

N), [∂hN/∂UN ](Xi
N ,U i

N)
,  

[∂Gk/∂Xk](Xi
k), and the Hessian matrix 

[
∂2Gk/∂X

2
k

]
(Xi

k) .

5. Using sensitivity and Jacobian matrices in Step 4, com-
pute matrices AUU, AUλ, AλU, Aλλ  using Eqs. (36)–
(37). Thus, we have the coefficient matrix of the linear 
system of equations in (35). The vectors bU , and bλ  of 
the linear system (35) are obtained using (38).

6. Solve the linear system of equation obtained in Step 
5 (using (35)) to obtain the optimal control deviations 
dUi

k , ∀k = 0, 1, . . .N .
7. Compute the updated control Ui+1

k  using (43). Increase 
the iteration index i and return to Step 2.

It may be noted that Rk, ∀k = 0, 1, . . . , N  is the control 
weightage matrix and it has to be given by the designer; 
otherwise a default value of Rk = Ir×r  can be used. This 
remains a constant during the iteration process, hence the 
superscript i has not used on matrix Rk .

The guidance algorithm has to run at each time step to 
obtain the converged optimal solution. For the very first 
time, the guess history is generated using any of the avail-
able methods (the guess control history can be chosen 
arbitrarily). Thereafter, the guess history is obtained from 
the previous time step’s converged history. In this manner, 
the proposed MPSP based guidance algorithm eventually 
becomes independent of the initial guess.

Fig. 1 Differential wheel drive two-wheel mobile robot
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Ji =
1

2

N∑

k=0

qk
(
ri+1
k − rp

)2
+

1

2

N∑

k=0

(Ui+1
k − Ui

k)
TRk(U

i+1
k − Ui

k), (95)

where ri+1
k =

√(
xi+1
k − xcp

)2
+
(
yi+1
k − ycp

)2 is the dis-
tance of the mobile robot from the center of the circle of the 
annular path and rp = 1

2(ri + ro) is the radius of the middle 
of the path. A tuning parameter qk  is included in the cost 
function with the usual implication, i.e., a higher qk  ensures 
that the mobile robot stays in the middle of the path, while 
a lower qk  gives the mobile robot more freedom to move 
farther from the middle of the path. In the simulation, qk  
is set to 15. The weighting matrix on the control vector is 
Rk = I2.

Simulation Results

Three cases are considered in the increasing order of com-
plexity: (i) Case 1: path constraint without obstacles, (ii) 
Case 2: path constraint with obstacles, and (iii) Case 3: 
path and control input constraints. In Case 1, the trajectory 
constraints as given in (4) are obtained from (92). For Case 
2, the trajectory constraints are obtained from (92) and (93), 
and similarly, for Case 3, they are obtained from (92), (93) 
and (94). Note that all these three cases are subject to same 
system dynamics in (91) and employ the same cost function 
given by (95). The initial state of the mobile robot is taken 
as x(0) = 0m, y(0) = −9.25m, and  φ(0) = 0◦ .

To compute a meaningful guess history of control to start 
the C-MPSP algorithm, it is assumed that the mobile robot 
passes on the central line of the circular annular space with 
known turn radius rp  = 10m, with a known constant veloc-
ity v =

(ωr+ωl
2

)
r,  and the path is obstacle-free. Under these 

assumptions, it can easily be shown that φ̇ = v/rp . Hence, 
assuming constant v and φ̇ , the required constant values of 
the ωr  and ωl  can be computed from the system dynamics 
(91), which are denoted as ωg

r  and ωg
l  to avoid confusion. 

Assuming v = 1.5708m/s (computed with the aim of travel-
ing the quarter-circle distance in 10s), it turns out that ωg

r  = 
45.13rad/s and ωg

l  = 44.63rad/s, which serve as the initial 
guess control histories at t = 0s, and these are used to initial-
ize the algorithm. Beyond the first iteration, the guess con-
trol histories are obtained from the updated control history 
during the previous iteration.

Figure 2 shows the trajectories for the three cases. First, 
one can observe that in all three cases, the mobile robot can 
pass the desired final position. In all three cases, the robot 
can also move toward the center of the path from its initial 
condition, as expected. It then follows the reference trajec-
tory for the rest of the duration for Case 1, when there is no 
obstacle present on the path. In the presence of the obsta-
cles, i.e., for Cases 2 and 3, the robot reshapes its trajectory 
to avoid the obstacles on the path, thereby satisfying the 

Modeling of Obstacles

Without loss of generality, static circular obstacles of vary-
ing radii are considered on the path. These lead to additional 
constraints on the states, which can be written as

(xk − xci)
2 + (yk − yci)

2 ≥r2oi , (93)

where (xci, yci) is the center of the ith  obstacle, roi  is the 
radius of the ith  obstacle. In the simulation, two obstacles 
are considered, and the values of the parameters of these 
obstacles are chosen as (xc1, yc1) = (8,−6), r1 = 0.7m and 
(xc2, yc2) = (10,−2), r2 = 0.5m. These obstacles are shown 
in Fig. 2.

Control Input Constraints

To make the simulation more realistic, constraints on the 
control input are also considered as

|ωrk| ≤ ωmax and |ωlk| ≤ ωmax ,  (94)

where ωrk  and ωlk  are the wheel rotation rate of the right 
and left wheels at kth  time step, and ωmax  is the maximum 
allowed wheel rotation rate (set to 51rad/s here).

Cost Function

With the motivation that the robot remains in the middle of 
the designated path as much as possible, and the updated 
control history does not drift away from the existing value, 
the cost function at the ith  iteration is constructed as

Fig. 2 Mobile robot trajectory for three different cases
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mobile robot reaches the reference trajectory, and a constant 
wheel rotation rate is required to maintain it along rest of 
the reference trajectory. The wheel rotation rates for Case 2 
reach the maximum rate of 52.7rad/s for the right wheel and 
50.4rad/s for the left wheel. However, in Case 3, the wheel 
rotation rate is limited to 45rad/s. It can be seen that the 
right wheel rotation rate is nearly fully saturated all the time 
(except for 8− 10s). In contrast, the left wheel gets into sat-
uration two times, first during the initial phase, and second 
when it encounters the first obstacle. It is worth mentioning 
here that the control commands are computed at every 0.2 s 
interval following the zero-order hold philosophy.

Algorithm Convergence

The algorithm’s convergence is illustrated here to validate 
Sect. 2. First, it is required to see whether the conditions 
of Sect. 2 hold good in this case, which is done as follows:

 ● From the definition of the output variable, as well as 
(94) and (95), it is obvious that the functions J, YN,  and 
g satisfy Condition (i).

 ● Since ∇2J = Rk,  Rk  has been chosen to be positive 
definite to ensure that Condition (ii) holds, which is 
compatible with the control minimization requirement.

 ● From experiments, it is observed that none of the in-
equality constraints in (94) holds with equality (i.e., 
gj(U

∗) �= 0, ∀j ) and therefore, A  is an empty set. Con-

sequently, G(U∗) = ∇hN(U
∗) =

([
SN

]
U∗
)T ∈ �2×2, 

where SN  is the final output sensitivity matrix. Since 
U∗  is unknown, G(·) is evaluated at the value to which 
the algorithm iterates converge and it is observed that its 
rank 2 (i.e., full row rank). Thus,  Conditions (iii)(a) and 

(iii)(b) are satisfied. Finally, since rank {G(U∗)} = 2, 

there exists no vector y such that G(U∗)T y = 0. There-

fore, Condition (iii) also holds, thereby ensuring Q-lin-
ear convergence, i.e. exponential convergence of control 
history with number of iterations.

Pictorially, the Q-linear convergence behavior of the algo-
rithm for five perturbed guess control histories in the con-
straint-free case is shown in Fig. 5, where U∗  is the final 
converged solution. The different (ωg

r , ω
g
l ) used here are 

(30, 29.5),  (35, 34.5),  (40, 39.5),  (43, 42.5),  (45, 44.5) 
respectively (all in rad/s). One can see that each of it shows 
exponential convergence as expected. Figure 5 also shows 
that a crude initial guess (with higher ||∆YN || ) may take a 
couple of more iterations to converge and vice versa, which 

imposed path constraint. It can be observed that the trajec-
tory for Case 2 returns to the middle of the path more often 
and more quickly as compared to Case 3. This is due to the 
imposed control constraint, which restricts the turning rate 
of the robot in Case 3.

From the first two sub-plots of Fig. 3, it can be seen that 
mobile robot reaches the desired final position at the stipu-
lated time interval of 10sec with very low error. This is due 
to the fact that the final position constraints in both the coor-
dinated have been taken as hard constraints. It can also be 
seen in this figure that the mobile robot does not reach the 
final position with same φ  for all cases. This is due to the 
presence of the second obstacle on the path for Case 2 and 
Case 3, and the destination happens to be too close to it.

Figure 4 shows the wheel rotation rates. It can be seen 
that wheel rotation rates of the right and left wheels for Case 
1 are nearly constant after 2s; this is because by this time, the 

Fig. 4 Wheel rotation rate of mobile robot

 

Fig. 3 Mobile robot position and vehicle orientation
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Algorithm Convergence with Different Initial Guess Control 
Histories

Generally, a good initial guess control history close to the 
optimal solution is required to provide theoretical guaran-
tees of convergence for any iterative algorithm of optimal 
control problems. However, in practice, it is not critical to 
initialize the guess control history very accurately. More-
over, the algorithm’s initialisation is highly problem-depen-
dent and a general rule cannot be given for initialization. In 
this section, the convergence of the C-MPSP algorithm for 
different initial guess control histories is included. For this, 
four different initial guess controls have been given to the 
algorithm, these guess control histories are summarised in 
Table 1.

It can be seen that in all the cases the algorithm converges 
and achieves its objectives as shown in Fig. 6. Moreover, it 
can be seen in Fig. 6 that the final trajectory of the mobile 
robot is very different in all four cases. This can be explained 
from Fig. 7, where wheel rotation rates for all four cases 
are different. The C-MPSP algorithm has been implemented 
in an iteration unfolding manner (meaning, that maximum 
number of iterations has been limited to two in each time 
step). This makes the evolution of the trajectory dependent 
on the initial guess control; the same has been observed in 
Fig. 7. Where, it is easy to see that, even though the mobile 
robot meets all the constraints along the trajectory and the 
end point constraints; the trajectories with different initial 
guess control (as given in Table 1) end up in totally different 
trajectories.

is intuitive. To address this and minimize the risk of non-
convergence, it is always recommended to start with a good 
initial control guess history wherever possible.

Table 1 Initial guess control history for convergence analysis
Sl. Guess control Colour

ωr  
(rad/s)

ωl  
(rad/s)

1. 45 44.5 Shown in “black colour” in Figs. 6 and 7
2. 45 45 Shown in “blue colour” in Figs. 6 and 7
3. 18 15 Shown in “magenta colour” in Figs. 6 

and 7
4. 44.5 44.5 Shown in “green colour” in Figs. 6 and 7

Fig. 7 Mobile robot wheel rotation rates corresponding to guess con-
trol given in Table 1

 

Fig. 6 Mobile robot trajectories corresponding to guess control given 
in Table 1

 

Fig. 5 Simulation convergence for Case-1
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In this simulation, three cases have been considered as 
given in Table 2. It can be seen in Fig. 8 that the mobile 
robot can meet all the desired objectives and reach the 
required final point while satisfying all the path constraints. 
Moreover, the trajectory followed for each case is again dif-
ferent even though the initial guess control is the same for 
all three cases. This is because the entire trajectory evolu-
tion is strongly associated with the initial states of the sys-
tem (Fig. 9).

Algorithm Convergence with More Number of Obstacles

One of the aspects of algorithm convergence is the introduc-
tion of more path constraints. In the present simulation, this 
has been achieved by increasing the number of obstacles in 
the feasible path of the mobile robot. The simulation results 
in this section has been divided in two sets; the first set 
(Simulation results set-1) shows the results with fewer (upto 
2) obstacles, while the second set (Simulation results set-2) 
shows the results with more obstacles (3, 4 and 5). More-
over, the obstacles in Simulation results set-1 are sparsely 
placed, while the obstacles in Simulation results set-2 are 
placed to densely pack the entire path. The segregation of 
simulation results has been done to keep the simulation 
results more legible. 

Algorithm Convergence for Different Initial States

The convergence of the C-MPSP algorithm not only depends 
on the initial guess control history but is strongly dependent 
on the state trajectory. However, the entire state trajectory 
depends on the initial guess control and the initial states of 
the system. Because of this reason, the convergence analysis 
is not complete unless variations in the initial states are also 
included. Table 2 considers the cases where initial state and 
initial guess control have been summarised for simulation.

Table 2 Convergence analysis table for different initial conditions
Sl Initial condition Guess control Colour

x (m) y (m) φ  (deg) ωr  (rad/s) ωl  (rad/s)
1 0 9.25 60 36 36 Shown in “black colour” in Figs. 8 and 9
2 0 9.25 0 36 36 Shown in “blue colour” in Figs. 6 and 7
3 0 9.25 – 60 36 36 Shown in “green colour” in Figs. 6 and 7

Fig. 10 Mobile robot trajectory with ‘zero obstacles’ (shown in black 
colour), ‘one obstacle’ (shown in red colour), and ‘three obstacles’ 
(shown in green colour) (color figure online)

 

Fig. 9 Mobile robot wheel rotation rates corresponding to cases given 
in Table 2

 

Fig. 8 Mobile robot trajectories corresponding to cases given in Table 2
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and it is shown as green dotted straight lines in Fig. 13. 
Moreover, the trajectory of the mobile robot corresponding 
to initial guess control is also shown as a dotted straight 
line in Fig. 12. It can be seen in Fig. 12, that when the num-
ber of obstacles are more, and they are closely spaced; the 
C-MPSP algorithm gives an admissible trajectory (satis-
fying all the constraints). Moreover,  when the obstacles 
are up to three, and they are spaced sparsely; the C-MPSP 
gives an intuitive trajectory. However, for the condition of 
densely packed  obstacles (five obstacle case); most part of 
the trajectory merges with the boundary of the path. The 
reason for this is that the feasible domain is now pretty nar-
row, and hence the performance of the C-MPSP algorithm 
started deteriorating.

Computational Efficiency

An important feature of the C-MPSP algorithm is its com-
putational efficiency. This is because of several good fea-
tures of the MPSP such as converting the optimal control 
problem to a static optimization problem with recursive 
computation of sensitivity matrices [see (23)], which makes 
the algorithm computationally very efficient. This has been 
observed in the simulations, where, with a ∆t  = 0.2s the 
run-time of the algorithm is about 0.15s on Matlab-2018a in 
windows-7 professional (64-bit) environment with Intel(R) 
Core(TM) i3-3220 CPU@3.30GHz and RAM of 4.00 GB. 
With a dedicated processor and code written in a low-level 
language (such as embedded C), the computational time is 
expected to be significantly lower. Thus, one can use the 
C-MPSP algorithm to efficiently solve complex optimal 
control problems online without difficulty.

Simulation results set-1: Figure 10  shows the trajectory 
of the mobile robot when the number of obstacles is ‘zero’ 
(trajectory plots in black colour), ‘one’ (trajectory plots in 
red colour), and ‘two’ (trajectory plots in green colour). The 
initial guess control history for these three cases is same, 
and it is shown as a dotted green colour straight line in Fig. 
11. Moreover, the mobile robot trajectory corresponding to 
the initial guess control is a straight line, and it is shown as 
dotted green straight line in Fig. 10. 

Simulation results set-2: Figure 12 shows the trajectory 
of the mobile robot when the number of obstacles is ‘three’ 
(trajectory plots in blue colour), ‘four’ (trajectory plots in 
magenta  colour), and ‘five’ (trajectory plots in cyan colour). 
The initial guess control is same for all these three cases, 

Fig. 13 Mobile robot wheel rotation rate with ‘three obstacles’ (shown 
in blue colour), ‘four obstacle’ (shown in magenta colour), and ‘five 
obstacles’ (shown in cyan colour) (color figure online)

 

Fig. 12 Mobile robot trajectory with ‘three obstacles’ (shown in blue 
colour), ‘four obstacle’ (shown in magenta colour), and ‘five obstacles’ 
(shown in cyan colour) (color figure online)

 

Fig. 11 Mobile robot wheel rotation rate with ‘zero obstacles’ (shown 
in black colour), ‘one obstacle’ (shown in red colour), and ‘three obsta-
cles’ (shown in green colour) (color figure online)
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Conclusion

In this paper, a new optimal control law named Compre-
hensive Model Predictive Static Programming (C-MPSP) 
has been proposed. This optimal control law solves a con-
strained optimal control problem efficiently by converting 
it to a quadratic programming problem by successive lin-
earization of the state dynamics along the predicted state 
trajectory. The Q-linear convergence of the algorithm to a 
local optimum was rigorously established. The algorithm 
has been implemented on a differentially driven two-wheel 
mobile robot. It has been shown using numerical results that 
it can achieve the terminal objective in the presence of state 
and control constraints.
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