
ORIGINAL ARTICLE

Transactions of the Indian National Academy of Engineering
https://doi.org/10.1007/s41403-024-00502-6

this framework. Consequently, it finds applications in many
different engineering fields, such as aerospace, electrical,
mechanical, robotics, process control, and biomedical, to
name a few. Many classic books have been written on it in
the past [see, e.g., Kirk (1970), Sage (1968), Bryson and Ho
(1975)]. Some recent books have also appeared containing
a few recently-developed algorithms and several challeng-
ing applications (Hager and Pardalos 2013; Hull 2013; Lon-
guski et al. 2014; Ben-Asher 2010).

The formulation and analysis of an optimal control prob-
lem can be viewed from two different angles, namely, (i)
classical calculus of variations approach leading to two-
point boundary value problems (Kirk 1970), which is an
indirect approach, and (ii) dynamic programming approach
leading to the famous Hamilton-Jacobi-Bellman partial dif-
ferential equation (Sage 1968), which is a direct approach.
Both of these approaches, however, suffer from the well-
known ‘curse of complexity’ (Ross 2015) and ‘curse of
dimensionality’ (Bryson and Ho 1975) issues, respectively.
Hence, unless the problem is fairly simple [e.g., the standard
linear quadratic regulator theory (Naidu 2003)], an analytic
closed-form solution is not possible in general. Because of
this, several numerical methods have also been proposed

Introduction

Optimal control theory is a robust framework to formulate
and solve various challenging control synthesis problems. It
can not only cater to various constraints, such as isoperimet-
ric constraints over a time window, non-holonomic system
dynamics constraint and additional path constraints in both
state and control at each time instant, but also optimize a
meaningful performance index in the process. Hence a large
variety of problems, such as terminally constrained prob-
lems, regulator problems, tracking problems, and problems
with or without path constraints, can be formulated within

 Radhakant Padhi
padhi@iisc.ac.in

1 Defence R&D Organisation, Hyderabad, India
2 Signal Processing Systems Group, Delft University of

Technology, Delft, Netherlands
3 ECE Department, Indian Institute of Science, Bengaluru,

India
4 AE Department, Indian Institute of Science, Bengaluru, India

Abstract
A computationally efficient state feedback optimal control synthesis approach, named Comprehensive Model Predictive
Static Programming (C-MPSP), is presented in this paper. Using C-MPSP, one can not only handle nonlinear systems but
also optimize generic cost functions and impose the necessary path and terminal constraints. It can be applied to various
problems, such as terminally constrained problems, regulator problems, tracking problems, and problems with or without
path constraints. A rigorous convergence analysis is presented, which, under some mild conditions, proves that the entire
iterative process is guaranteed to converge within a limited number of iterations. In addition, C-MPSP is computationally
very efficient owing to several key features associated with the MPSP philosophy. Because of this, the C-MPSP algorithm
can be applied to synthesize state feedback optimal controllers in real-time for many practical problems. Owing to its
simplicity, the algorithm can be coded easily. The applicability and efficiency of the algorithm are illustrated by applying
it to optimally guide a two-wheeled differentially-driven mobile robot on a curved road to reach its destination in the
presence of state constraints (road boundaries and obstacles) and control constraints.

Keywords Optimal control · Fast optimal control · Model Predictive Static Programming · MPSP · Fast MPC · Mobile
robots

Received: 10 October 2023 / Accepted: 8 October 2024
© Indian National Academy of Engineering 2024

Comprehensive MPSP for Fast Optimal Control: Algorithm
Development and Convergence Analysis

Prem Kumar1 · Geethu Joseph2 · Chandra R. Murthy3 · Radhakant Padhi4

1 3

http://orcid.org/0000-0003-2406-4917
http://crossmark.crossref.org/dialog/?doi=10.1007/s41403-024-00502-6&domain=pdf&date_stamp=2024-12-11

Transactions of the Indian National Academy of Engineering

in the literature to solve nonlinear optimal control prob-
lems, such as the shooting method (Morrison et al. 1962)
and gradient method (Kirk 1970) for the indirect approach
as well as computational procedures for dynamic program-
ming (Larson and Casti 1982) and more recently, reinforce-
ment learning (Yan et al. 2023). All of these, however, are
still computationally intensive. Hence, these are unsuitable
for online computation of the optimal control trajectory,
which remains a key bottleneck for their usage in many real-
time decision-making problems.

Another popular approach for solving optimal control
problems is the ‘transcription philosophy’ of direct optimi-
zation (Betts 2001). Here, an equivalent discrete static opti-
mization problem is first formulated using a pre-selected
time grid, and the discretized problem is then solved using a
suitable static optimization algorithm. It turns out that incor-
porating path inequality constraints on states and/or control
is inevitable in many problems for ensuring operational
safety, and obtaining a feasible control solution is easier in
the transcription approach. Unfortunately, it also leads to
a large-dimensional optimization problem and associated
problems such as huge computational burden, making it
hard to apply in its basic form for many practical problems.
Nonetheless, this forms the basis for the hugely-popular
model predictive control (MPC) (Wang 2009; Allgöwer and
Zheng 2012), which largely enables a ‘sub-optimal’ con-
trol solution with a restricted prediction horizon and even
more restricted control horizon (thereby limiting the prob-
lem dimension). It can be noted here that a large number of
innovations, including convergence and optimality guaran-
tees, have been provided for both linear and nonlinear MPC
problems under relevant assumptions (Chen and Allgöwer
1998; Mayne et al. 2000; Zheng et al. 2022). Despite these
innovations, it inherently suffers from the associated com-
putational burden, and, hence, has primarily been restricted
to slow-varying systems (such as chemical and biomedical
process control applications) and that too mainly for regula-
tor problems. In such problems, a coarse grid in time can be
employed, restricting the dimension of static optimization.
The larger time window also helps in computing the control
in real time. Even though literature has appeared for eco-
nomic MPC (Rawlings et al. 2012), relaxing it from regula-
tor problems and fast MPC (Wang and Boyd 2010), these
are still restricted mainly to slow-varying linear systems.

Many practically relevant problems, however, do not
enjoy the above advantage. For example, problems in aero-
space, mobile robotics, etc. are usually governed by com-
plex nonlinear system dynamics. Moreover, they exhibit
fast-changing system dynamics and are often required to
meet stringent performance requirements (e.g., zero miss
distance and a desired impact angle in missile guidance).
For such challenging problems, the available ‘fast MPC’
algorithms are often found to be inadequate, in the sense

that they are not sufficiently fast to be applied for such prob-
lems. Keeping such applications in mind, however, inno-
vative optimal control solution approaches have appeared
in the aerospace literature over the last decades, such as
pseudo-spectral optimal control (Fahroo and Ross 2002;
Gong et al. 2008), adaptive critic technique (Balakrishnan
and Biega 1996).

One such powerful and innovative approach is the Model
Predictive Static Programming (MPSP) (Padhi and Kothari
2009; Halbe et al. 2014). In its original form, the MPSP
technique solves a class of nonlinear fixed final time optimal
control problems, where the goal is to minimize the control
effort while ensuring that the output vector satisfies a set of
hard constraints at the final time tf . Owing to fundamental
key innovations such as conversion to a low-dimensional
static optimization problem only in control variables and
recursive computation of the sensitivity matrices that form
the core of this algorithm, the MPSP technique has been
found to be computationally very efficient. Over the last
decade, the original version of MPSP has been extended to
include variability in the final time or state (Maity et al. 2016;
Ghazaei Ardakani et al. 2019), tracking problems (Kumar et
al. 2018) and impulsive nature of the control action (Sakode
and Padhi 2014). Inspired by the pseudo-spectral philoso-
phy, the quasi-spectral MPSP (Mondal and Padhi 2018) has
also been proposed to further reduce computational time.
The MPSP technique has also been applied to a host of chal-
lenging problems such as missile guidance (Dwivedi et al.
2011; Oza and Padhi 2012), re-entry guidance (Halbe et al.
2014), mobile robotics (Kumar et al. 2018; Prakash et al.
2022), lunar soft-landing (Sachan and Padhi 2019), chemi-
cal process control (le Roux et al. 2014). A recent and com-
prehensive survey of MPSP and its variants can be found in
Padhi et al. (2024).

Despite its utility and several extensions, the MPSP tech-
nique suffers from three important restrictions, which limit
its application domain. These are: (i) its applicability is lim-
ited to optimizing cost functions that are necessarily func-
tions of only the control variables, (ii) its inability to handle
general path inequality constraints, e.g., due to obstacles,
and (iii) even though numerical results have always been
promising, a systematic proof of convergence has never
been established. These limitations obviously restrict the
class of problems to which the MPSP method can be used.
The main aim of this paper is to overcome these limita-
tions and thereby present a comprehensive approach, called
comprehensive MPSP (C-MPSP). Specifically, we present
an algorithm that can handle general path inequality con-
straints and encompasses general nonlinear optimal control
problems. Moreover, we provide the first rigorous conver-
gence analysis, which in turn allows one to apply C-MPSP
to various problems with confidence.

1 3

Transactions of the Indian National Academy of Engineering

It must be mentioned here that the problem of handling
path constraints under the MPSP framework has gained
attention recently. Two papers recently appeared almost
simultaneously (Kumar et al. 2018; Hong et al. 2019). How-
ever, in Kumar et al. (2018), the tracking-oriented MPSP is
confined only to tracking problems. Moreover, no conver-
gence analysis has been carried out. In Hong et al. (2019),
the problem formulation has been confined to quadratic cost
functions with linear and/or quadratic path constraints, fol-
lowed by solving it using an interior point algorithm. In con-
trast, this paper does not restrict the problem formulation to
any such specialized domains. Instead, it attempts to solve
generic nonlinear optimal control problems by a successive
quadratic approximation of the cost function and successive
linearization of the nonlinear constraints. In other words, the
successive convexification of the problem makes C-MPSP
very generic and therefore applicable to a wide variety of
problems. Moreover, it is better to follow a ‘sequential qua-
dratic programming’ approach (which is followed here)
instead of an interior-point approach in Hong et al. (2019).
This is because the quadratic programming approach does
not bring in the additional difficult-to-satisfy requirement
that the initial guess must satisfy the imposed constraints. In
addition, the systematic convergence analysis done in this
paper guarantees that the approach will succeed to find the
optimal solution as long as (i) the problem admits a feasible
solution and (ii) the initial guess is sufficiently close to the
optimal solution. These are, in general, mild assumptions
required for almost all convergence proofs associated with
computational algorithms. Note that for the unconstrained
case (i.e., with no path constraint), like other MPSP algo-
rithms, the entire iterative process in the C-MPSP too can be
carried out in closed form without resorting to any numeri-
cal optimization solver.

To demonstrate the utility and applicability of the
approach, a differential two-wheeled mobile robot problem
has been solved using the proposed comprehensive MPSP
approach. The algorithm is successful in quickly finding a
collision-free path from an initial position to the destination
within the curved road boundaries. Details of this problem
and the numerical results are included in Sect. 5. The next
section (Sect. 2), develops the C-MPSP algorithm to solve
the optimal control problem both without and with the path
constraints on the input and the state.

Comprehensive MPSP: Mathematical Details

A generic optimal control problem in discrete time can be
formulated as follows:

System dynamics : Xk+1 = Fk (Xk, Uk) , (1)

Output equation : Yk = hk (Xk, Uk) , (2)

Cost function : J =

N∑

k=0

Lk (Xk, Uk), (3)

Trajectory constraints at kth time step :

g0k (Xk, Uk) ≤ 0,

g1k (Xk, Uk) ≤ 0,
...

g
lk
k (Xk, Uk) ≤ 0,

 (4)

Terminal output constraint : YN = Y ∗
N, (5)

Initial state : X0 = X(t0), (6)

where Xk ∈ �n , Uk ∈ �r , Yk ∈ �m are the state, control
and output vectors respectively at kth time step. Here, X0
is the initial state at the initial time t0. The function Lk(·)
in the cost function J is assumed to be a real-valued and
smooth scalar function of the state and control (in general, it
can be nonlinear). Without loss of generality, it is assumed
to be a minimization problem; hence, the range of Lk(·) is

assumed to be non-negative. Further,
[
g0k, g1k, . . . , g

lk
k

]T

are (lk + 1) constraints on the state Xk and control Uk at
the kth time step. It can be mentioned here that if one for-
mulates an optimal control problem in continuous time, the
problem can suitably be discretized first to proceed further.

To solve the optimal control problem contained in
Eqs. (1)–(6), a new optimal control solution approach
named as C-MPSP is presented in this paper. As mentioned
in Sect. 1, C-MPSP is an iterative algorithm and requires
an initial guess of control history to start the iterations. The
state dynamics (1) with the initial state (6) is used to predict
the entire state trajectory using a guess control history. Then,
the state dynamics, output equation, trajectory constraints,
and cost function are linearized along the predicted trajec-
tory to form a quadratic programming problem. Details of
this approach are provided in the following subsections.

C-MPSP Algorithm

The proposed C-MPSP algorithm quickly and provably
improves the control solution iteratively towards the opti-
mal solution starting from a reasonably good guess. The
necessary steps are elaborated below.

First, developing the C-MPSP algorithm requires a refor-
mulation of the problem in (1)–(6). First, the state, con-
trol and output at the kth time step during ith iteration are
denoted by Xi

k ∈ �n , Ui
k ∈ �r and Y i

k ∈ �m , respectively.
Here, the superscript i denotes the iteration index. As one
moves from the ith iteration to the (i + 1)th iteration, a
new set of updated state, control, and output histories are

1 3

Transactions of the Indian National Academy of Engineering

i.e., Xi+1
k and Ui+1

k respectively, should reduce the cost.
Hence the notation Ji on the left-hand side.

Path Constraints

Similarly, the path constraints in (4) at kth time step,
k = 1, . . . , (N − 1) can be written as

g0k
(
Xi+1

k , Ui+1
k

)
≤0,

g1k
(
Xi+1

k , Ui+1
k

)
≤0,

...

g
lk
k

(
Xi+1

k , Ui+1
k

)
≤0.

 (13)

Once again, note that these constraints are imposed on the
updated states and control to ensure that the converged
states’ history and control history satisfy the constraints
imposed on the state and control vector given by (13).

State and Output Error Computation

To obtain the state deviation with respect to control, the
state vector at time step k and iteration (i + 1) (i.e., Xi+1

k)
is expressed by a Taylor series expansion up to first order
terms as

Xi+1
k =Fk−1

(
Xi+1

k−1, U
i+1
k−1

)
,

=Xi
k +

[
∂Fk−1

∂Xk−1

]T

(Xi
k−1,U

i
k−1)

∆Xi
k−1

+

[
∂Fk−1

∂Uk−1

]T

(Xi
k−1,U

i
k−1)

∆Ui
k−1 + HOT,

 (14)

where ∆Xi
k is the deviation in the state and ∆Ui

k is the
deviation in the control input at time step k during itera-
tion i. Moreover, the partial derivatives are defined such that [
∂Fk−1
∂Uk−1

]
∈ �r×n ; similar definitions are followed in the rest

of the paper. Under the assumption of small input deviations
(∆Ui

k → dUi
k) and small state deviations (∆Xi

k → dXi
k),

the higher order terms (HOT) in (14) can be neglected.
Then, from the definition in (7), (14) can be written as

dXi
k =

[
∂Fk−1

∂Xk−1

]T

(Xi
k−1,U

i
k−1)

dXi
k−1+

[
∂Fk−1

∂Uk−1

]T

(Xi
k−1,U

i
k−1)

dUi
k−1. (15)

Further, the deviation in the state at the (k − 1)th time step
(that is, dXi

k−1) can be expanded in terms of dXi
k−2 and

dUi
k−2; and so on. This expansion continues until the state

deviation of the initial condition (i.e., dXi
0). Eventually, one

can write

dXi
k =

[
Ak

]i
dXi

0 +
[
Bk

0

]i
dUi

0 + · · · +
[
Bk

k−1

]i
dUi

k−1, (16)

generated. The difference of the state, control, and output
variables between two consecutive iterations i and (i + 1) at
the kth time step are as defined as follows

Xi+1
k �Xi

k + ∆Xi
k,

Ui+1
k �Ui

k + ∆Ui
k,

Y i+1
k �Y i

k +∆Y i
k .

 (7)

Next, the problem is rewritten as follows.

State Dynamics

The state dynamics and output equation, including the itera-
tion index, can now be written as

Xi
k+1 =Fk

(
Xi

k, U
i
k

)
, (8)

Y i
k =hk

(
Xi

k, U
i
k

)
. (9)

Terminal Constraint

The objective of the algorithm during ith iteration is to
determine a suitable control history Ui+1

k , k = 0, 1, . . . , N,
so that the output at the final time step at the end of ith itera-
tion equals the desired final output Y ∗

N . In other words, in
iteration i, we seek a solution for iteration i + 1 such that
Y i+1
N = Y ∗

N . This equality condition can be written differ-
ently using (7), as

∆Y i
N + Y i

N − Y ∗
N =0. (10)

Under small error approximation (∆Y i
N → dY i

N) the control
constraint (10) can be written as below

dY i
N + ∆Y ∗

N =0, (11)

where ∆Y ∗
N � Y i

N − Y ∗
N . This equation represents the equal-

ity constraint imposed at the final time step of the proposed
reformulation.

Cost Function

Similarly, including the iteration index, the cost function in
(3) can be written as

Ji =

N∑

k=0

Lk(X
i+1
k , Ui+1

k). (12)

Note that the state and control histories in the ith iteration
are updated in such a way that the updated state and control,

1 3

Transactions of the Indian National Academy of Engineering

[
Φk
k

]i
= In×n,

[
Φk
j

]i
=

[
Φk
j+1

]i
[
∂Fj

∂Xj

]T

(Xi
j ,U

i
j)
,

[
Bk

j

]i
=

[
Φk
j+1

]i
[
∂Fj

∂Uj

]T

(Xi
j ,U

i
j)
,

[
Sk
j

]i
=

[
∂hk
∂Xk

]T

(Xi
k ,U

i
k)

[
Bk

j

]i
,

∀j < k

[
Sk
j

]i
=

[
∂hk
∂Uk

]T

(Xi
k ,U

i
k)
, j = k

[
Bk

j

]i
= [0]n×m, ∀j ≥ k[

Sk
j

]i
= [0]p×m, ∀j > k

 (23)

where
[
Φk
j

]i is the sensitivity matrix of the state at the kth
time step with respect to change in state at the jth time step.

Control Computation in the Unconstrained Case

In this case, following the principle of unconstrained opti-
mization, from (12), (11) and (22), the augmented cost func-
tion is constructed as

J̃ i =
N∑

k=0

Li+1
k +

(
λi
)T

N∑

j=0

[
SN
j

]i
dUi

j + ∆Y ∗i
N

 , (24)

where λi ∈ �m is the Lagrange multiplier and
Li+1
k � Lk(X

i+1
k , Ui+1

k) ≥ 0, ∀Xk, Uk . Next, the necessary
conditions for optimality can be written as

∂J̃ i

∂λ
= 0, (25)

∂J̃ i

∂
(
dUi

j

) = 0, ∀j ≤ N (26)

It is straightforward to see that (25) leads to

N∑

j=0

[
SN
j

]i
dUi

j + ∆Y ∗i
N =0. (27)

However, to simplify (26), one can notice that

∂J̃ i

∂
(
dUi

j

) =

N∑

k=0

∂Lk

(
Xi+1

k , Ui+1
k

)

∂
(
dUi

j

) +
([

SN
j

]i)T

λi. (28)

The next step is to obtain simplified expressions cor-
responding to each term in the right hand side of (28).
The first term involves evaluation of partial derivative of
function Lk(X

i+1
k , Ui+1

k) with respect to dUi
j . But Lk(·) is

a generic function of both the state and control, and its

where

[
Ak

]i ∈ �n×n is the sensitivity of state at the kth
time step (i.e. Xk) during the ith iteration due to the devia-
tion in initial state X0. Also,

[
Bk

j

]i ∈ �n×r is the sensitivity
matrix of the state at the kth time step due to the change in
the control input at the jth time step during the ith iteration.

[
Ak

]i
=

[
∂Fk−1

∂Xk−1

]T

(Xi
k−1,U

i
k−1)

· · ·
[
∂F0

∂X0

]T

(Xi
0,U

i
0)
, (17)

[
Bk

j

]i
=

[
∂Fk−1

∂Xk−1

]T

(Xi
k−1,U

i
k−1)

· · ·
[
∂Fj+1

∂Xj+1

]T

(Xi
j+1,U

i
j+1)

[
∂Fj

∂Uj

]T

(Xi
j ,U

i
j)
. (18)

However, since it is assumed that the initial condition is
known, there is no error in the initial state (i.e., dXi

0 = 0).
Hence, the state deviation at the kth step reduces to

dXi
k =

k−1∑

j=0

[
Bk

j

]i
dUi

j. (19)

Thus, (19) gives the state sensitivity at the kth time step due
to changes in control input at all time steps prior to it. Next,
the expression for the output deviation at the kth time step
at the iteration can be written as

dY i
k =

[
∂hk
∂Xk

]T

(Xi
k ,U

i
k)
dXi

k +

[
∂hk
∂Uk

]T

(Xi
k ,U

i
k)
dUi

k. (20)

Substituting the expression for dXi
k from (19) in the expres-

sion of dY i
k from (20) gives

dY i
k =

[
∂hk
∂Xk

]T

(Xi
k,U

i
k)

k−1∑

j=0

[
Bk

j

]i
dUi

j +

[
∂hk
∂Uk

]T

(Xi
k ,U

i
k)
dUi

k,

=

k∑

j=0

[
Sk
j

]i
dUi

j,

 (21)

where
[
Sk
j

]i ∈ �m×r , appropriately defined for j < k and
j = k , is the sensitivity matrix of the output at kth time step
due to the changes in the control input prior to time k.

Note that (21) is also valid for the output deviation at the
final time step, which can be written as

dY i
N =

N∑

j=0

[
SN
j

]i
dUi

j. (22)

Since input changes at future time steps do not change the
state vector at the current time step,

[
Bk

j

]i is set to zero for
all j ≥ k, ∀i . Next, to reduce the computational require-
ments of the algorithm,

[
Bk

j

]i is recursively computed as

1 3

Transactions of the Indian National Academy of Engineering

∂Lk

(
Xi+1

k , Ui+1
k

)

∂
(
dUi

j

) =

[
∂
(
dXi

k

)

∂
(
dUi

j

)
]
[
∂Xk

Lk

]i
k

+

[
∂
(
dUi

k

)

∂
(
dUi

j

)
]
[
∂Uk

Lk

]i
k

+
1

2

[
∂
(
dXi

k

)

∂
(
dUi

j

)
]
[
∂XkUk

Lk

]i
k
dUi

k

+
1

2

[
∂
(
dUi

k

)

∂
(
dUi

j

)
] ([

∂XkUk
Lk

]i
k

)T

dXi
k

+
1

2

[
∂
(
dXi

k

)

∂
(
dUi

j

)
]
[
∂2
Xk
Lk

]i
k
dXi

k

+
1

2

[
∂
(
dXi

k

)

∂
(
dUi

j

)
]([

∂2
Xk
Lk

]i
k

)T

dXi
k

+
1

2

[
∂
(
dUi

k

)

∂
(
dUi

j

)
]
[
∂UkXk

Lk

]i
k
dXi

k

+
1

2

[
∂
(
dXi

k

)

∂
(
dUi

j

)
]([

∂UkXk
Lk

]i
k

)T

dUi
k

+
1

2

[
∂
(
dUi

k

)

∂
(
dUi

j

)
]
[
∂2
Uk
Lk

]i
k
dUi

k

+
1

2

[
∂
(
dUi

k

)

∂
(
dUi

j

)
] ([

∂2
Uk
Lk

]i
k

)T

dUi
k.

 (30)

It is apparent that ∂(dX
i
k)

∂(dU i
j)

 is the sensitivity of the state at the

kth time step due to change in control at the jth time step.

Hence, from (19), this is nothing but
([

Bk
j

]i)T
. Moreover,

this can also be obtained by taking the partial derivative of
both sides of (19) with respect to dUi

j . On the other hand,
∂(dU i

k)
∂(dU i

j)
 is the change in control input at the kth time step

due to change in control at the jth time step, but control
inputs at every time instant are decision variables and are
is independent of the control input at any other time step.
Hence, this derivative can be represented by a Kronecker
delta function δjk . Using this definition of partial deriva-
tives, (30) can be written as

∂Lk

(
Xi+1

k , Ui+1
k

)

∂
(
dUi

j

) =
([

Bk
j

]i)T [
∂Xk

Lk

]i
k
+ δjk

[
∂Uk

Lk

]i
k

+
1

2
δjk

{[
∂UkXk

Lk

]i
k
+
([

∂XkUk
Lk

]i
k

)T
} k−1∑

l=0

[
Bk

l

]i
dUi

l

+
1

2

([
Bk

j

]i)T
{[

∂2
Xk
Lk

]i
k
+
([

∂2
Xk
Lk

]i
k

)T
} k−1∑

l=0

[
Bk

l

]i
dUi

l

+
1

2

([
Bk

j

]i)T
{[

∂XkUk
Lk

]i
k
+
([

∂UkXk
Lk

]i
k

)T
}
dUi

k

+
1

2
δjk

{[
∂2
Uk
Lk

]i
k
+
([

∂2
Uk
Lk

]i
k

)T
}
dUi

k.

 (31)

The first term of (28) is the summation of partial derivatives
of Lk(·) with respect to control deviation dUi

j . Using the
summation operator on both sides of (31) gives

partial derivative cannot directly be written in explicit
form. At this point, a simplification is introduced for
evaluation of the partial derivative of Lk(·) with respect
to dUi

j . First, the function Lk(X
i+1
k , Ui+1

k) is expanded
about the point (Xk, Uk) using a Taylor series expan-
sion. Then, the partial derivative of Lk(X

i+1
k , Ui+1

k) with
respect to dUi

j is evaluated by differentiating the Taylor
series expansion with respect to dUi

j .
The Taylor series expansion of Lk(·), up to the second

order term, reads as

Lk

(
Xi+1

k , Ui+1
k

)
=Lk

(
Xi

k, U
i
k

)
+
([

∂Xk
Lk

]i
k

)T

dXi
k

+
([

∂Uk
Lk

]i
k

)T

dUi
k

+
1

2

(
dXi

k

)T [
∂XkUk

Lk

]i
k
dUi

k

+
1

2

(
dUi

k

)T [
∂UkXk

Lk

]i
k
dXi

k

+
1

2

(
dXi

k

)T [
∂2
Xk
Lk

]i
k
dXi

k

+
1

2

(
dUi

k

)T [
∂2
Uk
Lk

]i
k
dUi

k,

 (29)

where
[
∂Xk

Lk

]i
k
�

[
∂Lk
∂Xk

]

(Xi
k ,U

i
k)

,
[
∂Uk

Lk

]i
k
�

[
∂Lk
∂Uk

]

(Xi
k ,U

i
k),

,
[
∂2
Xk
Lk

]i
k
�

[
∂2Lk

∂X2
k

]

(Xi
k,U

i
k)

,
[
∂2
Uk
Lk

]i
k
�

[
∂2Lk

∂U2
k

]

(Xi
k ,U

i
k),

,
[
∂XkUk

Lk

]i
k
�

[
∂2Lk
∂XkUk

]

(Xi
k ,U

i
k)

, and
[
∂UkXk

Lk

]i
k
�

[
∂2Lk
∂UkXk

]

(Xi
k ,U

i
k)

.

Equation (29) comprises several terms, some of which
are purely dependent on state Xi

k and control Ui
k , while

some are dependent on dXi
k (deviation in the state) and

dUi
k (deviation in control). But Xi

k and Ui
k are the state

history and control history, respectively, at kth time step
and are constant quantities during the iteration process.
Hence, the terms solely dependent on Xi

k and Ui
k are

constants in (29), while dXi
k and dUi

k are variables and
have to be handled accordingly. The partial derivative of
Lk

(
Xi+1

k , Ui+1
k

)
 with respect to dUi

j can thus be written
as

1 3

Transactions of the Indian National Academy of Engineering

AUλ �

aUλ0

aUλ1...
aUλN

 , AλU = AT
Uλ, (37)

δUi =

dUi
0

dUi
1...

dUi
N

 , bU =

bU0

bU1...
bUN

 , bλ = ∆Y ∗i
N , (38)

aUUjl
� 1

2
δjl

{[
∂2
Ul
Ll

]i
l
+
([

∂2
Ul
Ll

]i
l

)T
}

+
1

2

N∑

k=0

([
Bk

j

]i)T
{[

∂2
Xk
Lk

]i
k
+
([

∂2
Xk
Lk

]i
k

)T
}[

Bk
l

]i
+

1

2

([
Bl

j

]i)T
{[

∂XlUl
Ll

]i
l
+
([

∂UlXl
Ll

]i
l

)T
}

+
1

2

{([
∂XjUj

Lj

]i
j

)T

+
[
∂UjXj

Lj

]i
j

}[
Bj

l

]i
,

 (39)

aUλj �
([

SN
j

]i)T

, (40)

bUj
�

N∑

l=0

{([
Bl

j

]i)T [
∂Xl

Ll

]i
l
+ δjl

[
∂Ul

Ll

]i
l

}
, (41)

bλ � ∆Y ∗
N. (42)

Solving (35) gives the optimal control deviations and
Lagrange multiplier (λ) during the ith iteration. The addi-
tion of these optimal control deviations to the previous con-
trol history gives the updated control history, namely,

Ui+1
j =Ui

j + dUi
j , ∀ j ∈ {0, 1, . . . , N}. (43)

In this manner, the control input is updated from the control
history in an iteration cycle.

Control Computation in the Constrained Case

In general, the constraints can be written as in (13), con-
taining lk inequality constraints in terms of the state and
control vector at the kth time step. Now, the state and con-
trol histories need to be updated in such a manner that they
satisfy the applicable constraints. The constrained nonlinear
optimal control problem contained in (8), (11), (12) and (13)
can be solved efficiently using algorithms for solving the
approximate quadratic programming problem with linear
constraints; such that the solution converges to the solution
of the original problem.

The first step is to convert the nonlinear cost function
into an approximate quadratic cost using the Taylor series

N∑

k=0

∂Lk

(
Xi+1

k , Ui+1
k

)

∂
(
dUi

j

) =

N∑

k=0

([
Bk

j

]i)T [
∂Xk

Lk

]i
k
+
[
∂Uj

Lj

]i
j

+
1

2

{[
∂UjXj

Lj

]i
j
+
([

∂XjUj
Lj

]i
j

)T
} j−1∑

l=0

[
Bj

l

]i
dUi

l

+
1

2

N∑

k=0

([
Bk

j

]i)T {[
∂2
Xk
Lk

]i
k
+

([
∂2
Xk
Lk

]i
k

)T
} k−1∑

l=0

[
Bk

l

]i
dUi

l

+
1

2

N∑

k=0

([
Bk

j

]i)T
{[

∂XkUk
Lk

]i
k
+
([

∂UkXk
Lk

]i
k

)T
}
dUi

k

+
1

2

{[
∂2
Uj
Lj

]i
j
+

([
∂2
Uj
Lj

]i
j

)T
}
dUi

j .

 (32)

Using the fact that
[
Bk

l

]i
= 0 ∀l ≥ k , it can be written

that
∑k−1

l=0

[
Bk

l

]i
dUi

l =
∑N

l=0

[
Bk

l

]i
dUi

l . This is used for
the algebraic simplification of the third term in (32) to
obtain the following:

N∑

k=0

([
Bk

j

]i)T
{[

∂2
Xk
Lk

]i
k
+
([

∂2
Xk
Lk

]i
k

)T
} k−1∑

l=0

[
Bk

l

]i
dUi

l

=
N∑

l=0

N∑

k=0

([
Bk

j

]i)T
{[

∂2
Xk
Lk

]i
k
+
([

∂2
Xk
Lk

]i
k

)T
}[

Bk
l

]i
dUi

l .

 (33)

Using (33), (32) can be simplified as

N∑

k=0

∂Lk

(
Xi+1

k , Ui+1
k

)

∂
(
dUi

j

) =

N∑

k=0

([
Bk

j

]i)T [
∂Xk

Lk

]i
k
+
[
∂Uj

Lj

]i
j

+
1

2

{[
∂UjXj

Lj

]i
j
+
([

∂XjUj
Lj

]i
j

)T
} j−1∑

l=0

[
Bj

l

]i
dUi

l

+
1

2

N∑

l=0

N∑

k=max(l+1,j+1)

([
Bk

j

]i)T {[
∂2
Xk
Lk

]i
k

+
([

∂2
Xk
Lk

]i
k

)T
}[

Bk
l

]i
dUi

l +
1

2

N∑

k=0

([
Bk

j

]i)T {[
∂XkUk

Lk

]i
k

+
([

∂UkXk
Lk

]i
k

)T
}
dUi

k +
1

2

{[
∂2
Uj
Lj

]i
j
+

([
∂2
Uj
Lj

]i
j

)T
}
dUi

j.

 (34)

Using (34) in (28) and equating it to zero leads to the second
necessary condition of optimality, the detailed expression of
which is omitted here for brevity.

Next, one can observe here that the optimality conditions
(26) and (27) are essentially linear equations, and hence, can
be written in compact form as
[
AUU AUλ

AλU Aλλ

] [
δUi

λi

]
+

[
bU
bλ

]
=0, (35)

where δUi �
[(

dUi
0

)T
. . .

(
dUi

N

)T]T
, Aλλ = 0 , and

other variables are defined as

AUU �

aUU00
aUU01

· · · aUU0N

aUU10
aUU11

· · · aUU1N...
aUUN0

aUUN1
· · · aUUNN

 , (36)

1 3

Transactions of the Indian National Academy of Engineering

Li
UX �

[∂U0X0L0]

i
0 · · · 0

...
0 · · ·

[
∂UNXN

LN

]i
N

 , (51)

Li
XU �

[∂X0U0L0]

i
0 · · · 0

...
0 · · ·

[
∂XNUN

LN

]i
N

 . (52)

The equality constraint at the final time step (11) can be sim-
plified by using the expression for the output deviation at
the final time step (i.e., dY i

N) from (22), resulting in

k∑

j=0

[
Sk
j

]i
dUi

j +∆Y ∗i
N =0. (53)

Using the notation of δUi from (46) and defining a new final
output sensitivity matrix, the control constraint in (53) can
be written as

[
SN

]i
δUi +∆Y ∗i

N =0, (54)

where the output sensitivity matrix at the final time step is
defined as

[
SN

]i �
[([

SN
0

]i)T

· · ·
([

SN
N

]i)T
]T

. (55)

Next, the nonlinear path constraints in (13) are simplified
to linearized constraints on the state and control deviations
using a Taylor series approximation and are written as

[
∂g

lk
k

∂Xk

]T

(Xi
k ,U

i
k)

k−1∑

j=0

[
Bk

j

]i
dUi

j

+

[
∂g

lk
k

∂Uk

]T

(Xi
k ,U

i
k)

dUi
k ≤ −g

lk
k

(
Xi

k, U
i
k

)
.

 (56)

Equation (56) can be written in the compact form as

Bi
CδU

i ≤ gi (57)

where the elements of Bi
C =

[
biCkj

]
 and gi are defined as

biCkj
�

[
∂g0k
∂Xk

]T
(Xi

k,U
i
k)

[
Bk

j

]i
+ δjk

[
∂g0k
∂Uk

]T
(Xi

k ,U
i
k)...[

∂g
lk
k

∂Xk

]T

(Xi
k,U

i
k)

[
Bk

j

]i
+ δjk

[
∂g

lk
k

∂Uk

]T

(Xi
k ,U

i
k)

, (58)

approximation as in (29), which can be simplified using (19)
as

Lk

(
Xi+1

k , Ui+1
k

)
=Lk

(
Xi

k, U
i
k

)
+
([

∂Xk
Lk

]i
k

)T
k−1∑

j=0

[
Bk

j

]i
dUi

j

+
([

∂Uk
Lk

]i
k

)T

dUi
k

+
1

2

k−1∑

j=0

[
Bk

j

]i
dUi

j

T

[
∂XkUk

Lk

]i
k
dUi

k

+
1

2

(
dUi

k

)T [
∂UkXk

Lk

]i
k

k−1∑

j=0

[
Bk

j

]i
dUi

j

+
1

2

k−1∑

j=0

[
Bk

j

]i
dUi

j

T

[
∂2
Xk
Lk

]i
k

k−1∑

l=0

[
Bk

l

]i
dUi

l

+
1

2

(
dUi

k

)T [
∂2
Uk
Lk

]i
k
dUi

k.

 (44)

Using (44), and carrying out the necessary algebra, the cost
function (12) can be written in a quadratic form as

Ji =
1

2

(
δUi

)T
{(

[B]i
)T (

Li
XX

)
[B]i

+
(
[B]i

)T (
Li
XU

)
+
(
Li
UX

)
[B]i +

(
Li
UU

)}
δUi

+
((

Li
X

)T
[B]i +

(
Li
U

)T)
δUi +

N∑

k=0

Lk

(
Xi

k, U
i
k

)
,

 (45)

where

δUi �

dUi
0

dUi
1...

dUi
N

 ,
([

Bk
]i)T

�

([
Bk

0

]i)T

([
Bk

1

]i)T

...([
Bk

N

]i)T

, (46)

[B]i �

[
B0

]i
...[

BN
]i

 =

[
B0

0

]i · · ·
[
B0

N

]i
...[

BN
0

]i · · ·
[
BN

N

]i

 , (47)

Li
X �

[∂X0L0]

i
0...[

∂XN
LN

]i
N

 , Li
U �

[∂U0L0]

i
0...[

∂UN
LN

]i
N

 , (48)

Li
XX �

[
∂2
X0
L0

]i
0
· · · 0

...

0 · · ·
[
∂2
XN

LN

]i
N

 , (49)

Li
UU �

[
∂2
U0
L0

]i
0
· · · 0

...

0 · · ·
[
∂2
UN

LN

]i
N

 , (50)

1 3

Transactions of the Indian National Academy of Engineering

convergence is said to be Q-linear if there exists a constant
0 < r < 1 such that

lim
i→∞

∥∥Ui+1 − U∗
∥∥

‖Ui − U∗‖ < r. (60)

To present the existing results, we consider a general nonlin-
ear program (NLP) defined below.

min
U∈�q

J(U) subject to YN(U) = Y ∗
N, and g(U) ≤ 0, (61)

where the functions J : �q → � , YN : �q → �p ,
g : �q → �l . Using a vector of slack variables Z ∈ �l to
handle the nonpositive constraint on g(U), we arrive at

min
U∈�q ,Z∈�l

J(U) subject to YN(U) = Y ∗
N,

g(U) + Z = 0, and Z ≥ 0.
 (62)

Suppose that the NLP is solved using a general iterative pro-
cedure based on its extended Lagrange function (Boggs and
Tolle 2000), defined as

L(U, Z, λ, ρ) = J(U) + YN(U)Tλ + [g(U) + Z]T ρ ∈ �, (63)

where λ ∈ �p and ρ ∈ �l are the Lagrange multipliers
corresponding to the two constraints in (62). In every itera-
tion, the algorithm updates the variables of optimization U
and Z as well as the Lagrange multipliers λ and ρ . Let
the estimate of variables U, Z, λ, and ρ in the ith iteration
be denoted as given Ui, Zi, λi, and ρi , respectively. In the
(i + 1)th iteration, the variables are updated as follows:

Ui+1

Zi+1

λi+1

ρi+1

 =

Ui

Zi

λi

ρi

 + αidi, (64)

where αi ∈ � is a scalar and di ∈ �q+2l+p denotes the
direction in which current estimates deviate from the esti-
mates in the previous iteration. Let (U∗, Z∗) be a feasible
solution of the NLP and (λ∗, ρ∗) be the corresponding
optimal Lagrange multiplier vectors. The convergence
result establishes conditions under which the iterates
converge to a feasible solution. To state the result, the
following definitions are needed:

 ● Perturbation vectors wi and pi , for i = 1, 2, . . .:

gi �

−g0k

(
Xi

k, U
i
k

)
...

−g
lk
k

(
Xi

k, U
i
k

)

 . (59)

Equations (45), (54) and (57) form a quadratic program-
ming (QP) problem, which it can be solved using stan-
dard QP solvers to obtain the control update vector δUi .
In the present paper, Hildreth’s quadratic programming
algorithm (Luenberger 1969; Wismer and Chattergy 1978)
has been used to solve the posed QP problem because it is
known to be computationally efficient (Wang 2009). Hence,
it is suitable for real-time applications.

Convergence Analysis of C-MPSP

Only the general form of the algorithm, i.e., the constrained
case discussed in Sect. 2.4 is considered here as the uncon-
strained case is a special case of the the constrained case.
An existing convergence result related to a general iterative
algorithm is first presented. The C-MPSP algorithm is then
related to this result to establish its convergence behavior.
It is shown that the sequence of iterations leads to a locally
optimal solution if the initial iterate is sufficiently close to
that solution.

1Moreover, an analysis of the convergence rate is also
carried out, which leads to the conclusion that the iteration
process goes to the optimal solution rapidly in a sense as
specified below.

Existing Convergence Result for a General Algorithm

The result in this section shows Q-linear convergence of a
general iterative algorithm, which is defined as follows.

Definition 1 (Q-linear convergence (Nocedal and Wright

2006)) Let
{
Ui

}
i∈N be a sequence converging to U∗ . The

1 The requirement that the initial guess be close to the optimal solu-
tion is typical of theoretical guarantees for any iterative algorithm. In
our observation from a number of simulations under various initial
conditions and control history guesses, we found that the algorithm
is relatively insensitive to it, which means it converges to the desired
solution even if the initial guess was far off. The reader is referred to
the simulation results section for more details. We also note that, if one
uses an interior point method (which has fast convergence properties)
in the optimization process, the requirement is to start with a ‘feasible’
solution satisfying all constraints. However, in practice, this is a dif-
ficult task. To avoid this problem, one can start with sequential qua-
dratic programming, which does not require initialization at a feasible
point. Once all the constraints are satisfied, thus making the solution
feasible, one can switch over to the interior point method to speed up
the process.

1 3

Transactions of the Indian National Academy of Engineering

b. There exist constants η1 and η2 such that

∥∥∇2J
(
Ui+1

)
−∇2Li

∥∥ ≤ η2σ
i +

(
1 + η1σ

i
) ∥∥∇2J

(
Ui

)
−∇2Li

∥∥ , (67)

 where σi = O
(∥∥wi+1

∥∥+
∥∥wi

∥∥).
Then, there exists ε > 0 such that if

∥∥w0
∥∥ < ε , and ∥∥∇2J

(
U0

)
−∇2L∗

∥∥ < ε , the sequence
{
wi
}
i∈N converges

to 0, and
{
(Ui, Zi)

}
i∈N converges Q-linearly to (U∗, Z∗) .

Here, ∇2L∗ is the Hessian of the extended Lagrangian L in
(63) with respect to U, evaluated at (U∗, Z∗, λ∗, ρ∗).
Next, the above theorem is applied to the C-MPSP algo-
rithm proposed in this paper. To this end, first, the algorithm
needs to be rewritten slightly differently, as explained in the
following subsection.

Matrix Notation

This section reformulates the C-MPSP algorithm as the iter-
ative algorithm described in Theorem 1. From (1) and (2),
it is clear that

YN = hN(XN, UN) = hN (FN−1(XN−1, UN−1), UN)

= hN (FN−1 (. . . F1(X0, U0), . . . , UN−1) , UN)
 (68)

Since it is assumed that the knowledge of the initial state
X0 as well as the system dynamics is available, YN is a
function of the control history {Uk}Nk=0 alone. Let the set of
unknowns be denoted by U:

U �
[
UT
0 UT

1 . . . UT
N

]T ∈ �q (69)

where q � (N + 1)m . Then, YN : �q → �p is a function of
U. Similarly, it can also be shown that the cost function J is
a function of U alone.

Next, a new function g : �q → �l with l =
∑N

k=0 lk is
defined to denote the inequality constraints associated with
the problem as defined in (13). Thus, the constraints can
be denoted as g(U) ≤ 0, where (

∑k−1
i=0 li + j)th entry of g

is gjk , for j = 0, 1, . . . , lk and k = 1, 2, . . . , N − 1 . Follow-
ing the above notation, the problem of finding the optimal
control inputs as an optimization problem that solves for the
unknown vector U is now rewritten. For doing this, Ui is
defined as the iterate values (set of control inputs) computed
in the ith iteration of the C-MPSP algorithm:

Ui �
[
UiT
0 UiT

1 . . . UiT
N

]T ∈ �q. (70)

Then, from (7), one gets the following:

δUi = Ui+1 − Ui, (71)

wi �

Ui − U∗

Zi − Z∗

λi − λ∗

ρi − ρ∗

 ∈ �q+2l+p, (65)

pi �

∇2J(Ui) 0 ∇YN(U
i) ∇g(Ui)

∇YN(U
i)T 0 0 0

∇g(Ui)T I 0 0
0 Di

ρ 0 Di
Z

 di

+

∇J(Ui)

YN(U
i)

g(Ui) + Zi

Di
ρZ

i

 ∈ �q+21+p

 (66)

where Di
ρ ∈ �l×l and Di

Z ∈ �l×l are diagonal matrices
with ρi and Zi along the diagonal, respectively.

 ● A � {j : gj(U∗) = 0} , the set of active inequality con-

straints where gj(U∗) ∈ � is the jth component of
g(U∗) .

 ● G(U∗) �
[
∇YN(U

∗) ∇gA(U
∗)
]
∈ �q × �p+|A| , a ma-

trix whose columns are the gradients of the equality and
active inequality (gj = 0) constraints at U∗ .

 ● ∇2Li are the Hessian of the extended Lagrangian L in

(63) with respect to U, evaluated at (Ui, Zi, λi, ρi).
The stage is now set to state the convergence result for the
above iterative algorithm, which is as follows:

Theorem 1 (Boggs and Tolle (2000), Theorem 4.1) Suppose
that the following conditions hold:

C1 All of the functions in the NLP have Lipschitz continu-
ous second derivatives.

C2 The feasible solution satisfies

a. For j ∈ A , ρ∗j > 0.
b. The matrix G(U∗) has full column rank.
c. For all y ∈ �q such that y �= 0 and G(U∗)Ty = 0,

yT∇2L∗y > 0.

C3 limi→∞αi = 1.
C4 The perturbation pi satisfies

∥∥pi
∥∥ = o

(∥∥wi
∥∥ +

∥∥di
∥∥).

C5 The sequence
{
∇2J

(
Ui

)}
i∈N satisfies

a. For each i, the matrix ∇2J
(
Ui

)
 satisfies the

condition: y �= 0 and G(Ui)Ty = 0 implies
yT∇2J

(
Ui

)
y > 0.

1 3

Transactions of the Indian National Academy of Engineering

Further, using (23), (58) and (59), it is clear that (54) and
(57) are equivalent to

g(Ui) +∇g(Ui)T
(
Ui+1 − Ui

)
≤ 0 (81)

YN(U
i)− Y ∗

N +∇YN(U
i)T

(
Ui+1 − Ui

)
= 0. (82)

Finally, a slack variable Z ∈ �l is introduced to rewrite
(81) as

g(Ui) +∇g(Ui)T
(
Ui+1 − Ui

)
+ Z = 0, Z ≥ 0 (83)

Thus, the optimization problem in (73) is obtained which is
equivalent to the optimization problem described by (45),
(54) and (57). Hence, the proof is complete. �
With this, the convergence result for the proposed C-MPSP
algorithm can be stated, which is discussed next.

Convergence of C-MPSP

To prove the convergence, the definitions introduced in
Sect. 3.1 are used. It is also assumed that the quadratic sub-
problem solved by the C-MPSP algorithm in each iteration
is solved exactly. Further, to connect the C-MPSP algorithm
to Theorem 2, the following is defined:

di = δUi =

Ui+1 − Ui

Zi+1 − Zi

λi+1 − λi

ρi+1 − ρi

 , and let αi = 1 (84)

Thus, the algorithm update given in (71) is equivalent to
algorithm update (64) given in Sect. 3.1. Therefore, the fol-
lowing result holds for every iteration:

Lemma 2 Suppose that (73) is solved exactly in every itera-
tion. The feasible solution (Ui, Zi) is such that a regular
point for the constraints, i.e., the matrix whose columns
are the gradients of the equality and active inequality con-
straints of (73) at Ui, has full column rank. Then, (Ui, Zi)

satisfies pi = 0 for some vector (λi ∈ �q, ρ∗ ∈ �l) , where

pi is defined in (66).

Proof It is known that a feasible solution to an optimization
problem always satisfies the first-order necessary condition
for optimality, i.e., the derivative of the Lagrange function
vanishes at the solution. Hence, there exists a sequence {
λi ∈ �q, ρ∗ ∈ �l

}
i∈N such that the following holds:

∆Y i
N = YN(U

i+1)− YN(U
i) (72)

The algorithm’s convergence can be established by charac-
terizing the convergence of the sequence

{
Ui

}
i∈N. So, the

first step towards proving the convergence is to rewrite the
C-MPSP algorithm in terms of U as given by the follow-
ing lemma. Here, for brevity, the operations ∂

∂U
 and ∂2

∂U2 are
denoted by ∇ and ∇2, respectively.

Lemma 1 The quadratic subproblem solved by the C-MPSP
algorithm in the ith iteration, which is described by (45),
(54) and (57), can be written as follows:

min
U∈�q,Z∈�l

1

2

(
U − Ui

)T ∇2J(Ui)
(
U − Ui

)

+∇J(Ui)T
(
U − Ui

)
+ J(Ui)

subject to
Z + g(Ui) +∇g(Ui)T

(
U − Ui

)
= 0,

Y ∗i
N +∇YN(U

i)T
(
U − Ui

)
= 0, and Z ≥ 0.

 (73)

Proof From (18) and (46),
[
Bk

]i
= ∇Xk(U

i). Therefore,

(
[B]i

)T (
Li
XX

)
[B]i =

N∑

k=1

([
Bk

]i)T [
∂2
Xk
Lk

]i
k

[
Bk

]i

=

N∑

k=1

(
∇Xk(U

i)
)T [

∂2
Xk
Lk

]i
k
∇Xk(U

i)

 (74)

where (74) follows from (47) and (49). Similarly, from (48),
(50)-(52), one can show that

(
Li
X

)T
[B]i = ∂Xk

Lk

∣∣
Xk=Xi

k ,Uk=U i
k
 (75)

(
Li
U

)T
= ∂Uk

Lk (76)

(
[B]i

)T

Li
XU =

N∑

k=1

∇Xk(U
i)
(
∂XkUk

Lk

)
 (77)

Li
UX [B]i =

N∑

k=1

(
∂UkXk

Lk

)
∇Xk(U

i) (78)

Li
UU =

N∑

k=1

(
∂2
Uk
Lk

)
 (79)

Substituting (74)–(79) in (45), and using (3), it can be
deduced that (45) is equivalent to

Ji =
1

2

(
Ui+1 − Ui

)T ∇2J(Ui)
(
Ui+1 − Ui

)

+∇J(Ui)T
(
Ui+1 − Ui

)
+ J(Ui)

 (80)

1 3

Transactions of the Indian National Academy of Engineering

implies that
∥∥pi

∥∥ = 0 and thus, Condition C4 holds. Fur-
ther, Condition C5a holds due to (iii) of Theorem 2. Finally,
Condition C5b also holds since
∥∥∇2J

(
Ui+1

)
−∇2Li

∥∥
≤

∥∥∇2J
(
Ui+1

)
−∇2J

(
Ui

)∥∥ +
∥∥∇2J

(
Ui

)
−∇2Li

∥∥
≤ τ

∥∥Ui+1 − Ui
∥∥ +

∥∥∇2J
(
Ui

)
−∇2Li

∥∥
 (89)

where τ is the Lipschitz constant of ∇2J as assumed in (i).
Hence, the proof is complete. �
An important implication of the above result is as follows.
Q-linear convergence with rate of convergence r (as given
in Definition 1) implies that there exists a constant γ > 0
and i∗ ∈ N such that for all i > i∗ ,

lim
i→∞

∥∥Ui − U∗∥∥ ≤ γri. (90)

Thus, Theorem 2 shows that to achieve convergence
within an error ζ , (i.e.,

∥∥Ui+1 − U∗
∥∥ ≤ ζ), our algorithm

requires at most log ε/γlog r iterations. In other words, the error ∥∥Ui+1 − U∗
∥∥ decreases exponentially in the number of iter-

ations ensuring a faster convergence. Our numerical experi-
ments also corroborate these observations (see Sect. 5.6).
The next section, Sec. 4, summarizes the C-MPSP algorithm
and its implementation steps.

Implementation steps of C-MPSP

The procedure to implement the C-MPSP is as follows:

1. Start the iterations with a guess control history U0
k ,

∀k = 0, 1, . . . , N ; and set the iteration index to zero
(i = 0). Set all the tuning parameters of the cost func-

tion Lk, ∀k = 0, 1, . . .N to convenient values.
2. Use the known initial condition X0 and the control

input
{
Ui
0, U

i
1, . . . , U

i
N−1

}
 to propagate the system

dynamics (8) and obtain the predicted state trajectory
Xi

k , ∀k = 0, 1, . . . , N , and the output at the final time

step Y i
N . Use the desired output at the final time step Y ∗

N
to calculate ∆Y ∗

N = Y i
N − Y ∗

N .
3. Terminate the algorithm if i ≥ 1 and the output error is

smaller than the user-defined tolerance values (εY , εU),

i.e., ‖ ∆Y ∗
N‖2/‖ Y ∗

N‖2 < εY and the control history has

converged, i.e.,
N∑
k=0

‖ Ui
k − Ui−1

k ‖2
/ N∑

k=0

‖ Ui−1
k ‖2 < εU .

0 =
∂

∂U

{
1

2

(
U − Ui

)T ∇2J(Ui)
(
U − Ui

)

+∇J(Ui)T
(
U − Ui

)
+ J(Ui)

+
[
Z + g(Ui) +∇g(Ui)T

(
U − Ui

)]T (
ρi+1 − ρi

)

+
[
Y ∗i
N +∇YN(U

i)T
(
Ui+1 − Ui

)]T (
λi+1 − λi

)}

U=U i+1

= ∇2J(Ui)
(
Ui+1 − Ui

)

+∇J(Ui) +∇YN(U
i)
(
λi+1 − λi

)
+∇g(Ui)

(
ρi+1 − ρi

)

 (85)

Note that the Lagrange multipliers are λi+1 − λi ∈ �q and
ρi+1 − ρi ∈ �l . Similarly, due to the constraint Z ≥ 0 , the
first-order optimality also guarantees the following Boggs
and Tolle (2000):

Di
ρZ

i+1 +Di
Z

(
ρi+1 − ρi

)
= 0 (86)

Further, since the solution is feasible, it satisfies

Y ∗i
N +∇YN(U

i)T
(
Ui+1 − Ui

)
= 0 (87)

Zi+1 + g(Ui) +∇g(Ui)T
(
Ui+1 − Ui

)
= 0 (88)

Substituting (85), (86), (87) and (88) into the definition of
pi in (66), the desired result is obtained. �
Using the above lemmas, the following result gives the
desired convergence result for the C-MPSP algorithm.
Theorem 2 Suppose that the assumptions of Lemma 2 hold,
and the following conditions are satisfied:

(i) The functions J, YN and g have Lipschitz continuous
second derivatives.

(ii) The Hessian ∇2J of function J is positive definite for
all values of U.

(iii) The feasible solution satisfies the following:

(a) For j ∈ A, ρ∗j > 0.

(b) The matrix G(U∗) has full column rank.
(c) For all y ∈ �q such that y �= 0 and G(U∗)Ty = 0,

yT∇2L∗y > 0.

Then, there exists an ε > 0 such that if
∥∥w0

∥∥ < ε and ∥∥∇2J
(
U0

)
−∇2L∗

∥∥ < ε, the sequence
{
(Ui)

}
i∈N con-

verges Q-linearly to U∗ . Here, ∇2L∗ is the Hessian of the
extended Lagrangian L in (63) with respect to U, evaluated
at (U∗, Z∗, λ∗, ρ∗).

Proof Lemma 1 shows that the C-MPSP algorithm can be
rewritten such that Theorem 1 holds. Thus, to prove the
result, it suffices to show that Conditions C1 to C5 of Theo-
rem 1 are satisfied by the C-MPSP algorithm, which is veri-
fied next.

Conditions C1 and C2 are satisfied since they are equiva-
lent to Conditions (i) and (ii) of Theorem 2, respectively.
Next, Condition C3 holds because of (84). Also, Lemma 2

1 3

Transactions of the Indian National Academy of Engineering

A Demonstrative Example

The performance of the proposed C-MPSP algorithm is dem-
onstrated by solving a guidance problem for a two-wheeled
differential drive mobile robot. The robot must pass through
a pre-specified desired final position at a given final time,
without violating the constraints on state and control inputs
on the way.

Plant Model and Output Equation

The kinematic model of a two-wheel differential drive
mobile robot, as shown in Fig. 1, can be written as

ẋ

ẏ

φ̇

 =

(ωr+ωl
2

)
r cosφ(

ωr+ωl
2

)
r sinφ(ωr−ωl

2L

)
r

 , (91)

where x and y are positions of the centre of the mobile
robot in the fixed frame of reference XIOIYI , φ is the ori-
entation angle of the vehicle with respect to the x-axis of
the fixed frame of reference, ωr is the angular velocity of
the right wheel, and ωl is the angular velocity of the left
wheel. Also, r is the wheel radius and L is the wheel hinge’s
distance from the mobile robot’s center. The selected val-
ues of the mobile robot parameters are r = 35mm and L =
55mm. From (91), the state and control vectors are defined
as X � [x y φ]T and U � [ωr ωl]

T . It is required that, start-
ing from a feasible point (x0, y0) at t= 0s, where x0 = 0
and y0 ∈ (−11,−9), the robot needs to pass through the
desired point (x∗f , y∗f) = (10, 0) at the desired final time
tf = 10s. Defining the output vector at kth time step as
Yk = hk(Xk, Uk) � [x(tk) y(tk)]

T = [xk yk]
T and at the final

time step N as Y ∗
N � [x∗f y∗f]

T , it is required that YN = Y ∗
N .

Path Constraint

Without loss of generality, the path’s shape is considered to
be an annular space between arcs of two concentric circles.
Accordingly, the constraint on the states at kth time step due
to the path can be written as

r2i ≤(xk − xcp)
2 + (yk − ycp)

2 ≤ r20 , (92)

for k = 0, 1, . . . , N , where (xcp, ycp) is the center of the
circle making the annular path, ri is the radius of the inner
circle, and ro is the radius of the outer circle of the path. In
the present simulation, the values of the parameters of the
annular path are (xcp, ycp) = (0, 0), ri = 9m and ro = 11m.
All these constraints can be seen in Fig. 2.

If these conditions are met for i ≥ 1 , then use Ui
k as the

suboptimal control history. Otherwise continue through
Steps 4 to 7.

4. Using Xi
k and Ui

k (for all k = 0, 1, . . . , N), calculate
the sensitivity matrices given by (23), the Jacobian

matrices [∂hN/∂XN](Xi
N ,U i

N), [∂hN/∂UN](Xi
N ,U i

N)
,

[∂Gk/∂Xk](Xi
k), and the Hessian matrix

[
∂2Gk/∂X

2
k

]
(Xi

k) .

5. Using sensitivity and Jacobian matrices in Step 4, com-
pute matrices AUU, AUλ, AλU, Aλλ using Eqs. (36)–
(37). Thus, we have the coefficient matrix of the linear
system of equations in (35). The vectors bU , and bλ of
the linear system (35) are obtained using (38).

6. Solve the linear system of equation obtained in Step
5 (using (35)) to obtain the optimal control deviations
dUi

k , ∀k = 0, 1, . . .N .
7. Compute the updated control Ui+1

k using (43). Increase
the iteration index i and return to Step 2.

It may be noted that Rk, ∀k = 0, 1, . . . , N is the control
weightage matrix and it has to be given by the designer;
otherwise a default value of Rk = Ir×r can be used. This
remains a constant during the iteration process, hence the
superscript i has not used on matrix Rk .

The guidance algorithm has to run at each time step to
obtain the converged optimal solution. For the very first
time, the guess history is generated using any of the avail-
able methods (the guess control history can be chosen
arbitrarily). Thereafter, the guess history is obtained from
the previous time step’s converged history. In this manner,
the proposed MPSP based guidance algorithm eventually
becomes independent of the initial guess.

Fig. 1 Differential wheel drive two-wheel mobile robot

1 3

Transactions of the Indian National Academy of Engineering

Ji =
1

2

N∑

k=0

qk
(
ri+1
k − rp

)2
+

1

2

N∑

k=0

(Ui+1
k − Ui

k)
TRk(U

i+1
k − Ui

k), (95)

where ri+1
k =

√(
xi+1
k − xcp

)2
+
(
yi+1
k − ycp

)2 is the dis-
tance of the mobile robot from the center of the circle of the
annular path and rp = 1

2(ri + ro) is the radius of the middle
of the path. A tuning parameter qk is included in the cost
function with the usual implication, i.e., a higher qk ensures
that the mobile robot stays in the middle of the path, while
a lower qk gives the mobile robot more freedom to move
farther from the middle of the path. In the simulation, qk
is set to 15. The weighting matrix on the control vector is
Rk = I2.

Simulation Results

Three cases are considered in the increasing order of com-
plexity: (i) Case 1: path constraint without obstacles, (ii)
Case 2: path constraint with obstacles, and (iii) Case 3:
path and control input constraints. In Case 1, the trajectory
constraints as given in (4) are obtained from (92). For Case
2, the trajectory constraints are obtained from (92) and (93),
and similarly, for Case 3, they are obtained from (92), (93)
and (94). Note that all these three cases are subject to same
system dynamics in (91) and employ the same cost function
given by (95). The initial state of the mobile robot is taken
as x(0) = 0m, y(0) = −9.25m, and φ(0) = 0◦ .

To compute a meaningful guess history of control to start
the C-MPSP algorithm, it is assumed that the mobile robot
passes on the central line of the circular annular space with
known turn radius rp = 10m, with a known constant veloc-
ity v =

(ωr+ωl
2

)
r, and the path is obstacle-free. Under these

assumptions, it can easily be shown that φ̇ = v/rp . Hence,
assuming constant v and φ̇ , the required constant values of
the ωr and ωl can be computed from the system dynamics
(91), which are denoted as ωg

r and ωg
l to avoid confusion.

Assuming v = 1.5708m/s (computed with the aim of travel-
ing the quarter-circle distance in 10s), it turns out that ωg

r =
45.13rad/s and ωg

l = 44.63rad/s, which serve as the initial
guess control histories at t = 0s, and these are used to initial-
ize the algorithm. Beyond the first iteration, the guess con-
trol histories are obtained from the updated control history
during the previous iteration.

Figure 2 shows the trajectories for the three cases. First,
one can observe that in all three cases, the mobile robot can
pass the desired final position. In all three cases, the robot
can also move toward the center of the path from its initial
condition, as expected. It then follows the reference trajec-
tory for the rest of the duration for Case 1, when there is no
obstacle present on the path. In the presence of the obsta-
cles, i.e., for Cases 2 and 3, the robot reshapes its trajectory
to avoid the obstacles on the path, thereby satisfying the

Modeling of Obstacles

Without loss of generality, static circular obstacles of vary-
ing radii are considered on the path. These lead to additional
constraints on the states, which can be written as

(xk − xci)
2 + (yk − yci)

2 ≥r2oi , (93)

where (xci, yci) is the center of the ith obstacle, roi is the
radius of the ith obstacle. In the simulation, two obstacles
are considered, and the values of the parameters of these
obstacles are chosen as (xc1, yc1) = (8,−6), r1 = 0.7m and
(xc2, yc2) = (10,−2), r2 = 0.5m. These obstacles are shown
in Fig. 2.

Control Input Constraints

To make the simulation more realistic, constraints on the
control input are also considered as

|ωrk| ≤ ωmax and |ωlk| ≤ ωmax , (94)

where ωrk and ωlk are the wheel rotation rate of the right
and left wheels at kth time step, and ωmax is the maximum
allowed wheel rotation rate (set to 51rad/s here).

Cost Function

With the motivation that the robot remains in the middle of
the designated path as much as possible, and the updated
control history does not drift away from the existing value,
the cost function at the ith iteration is constructed as

Fig. 2 Mobile robot trajectory for three different cases

1 3

Transactions of the Indian National Academy of Engineering

mobile robot reaches the reference trajectory, and a constant
wheel rotation rate is required to maintain it along rest of
the reference trajectory. The wheel rotation rates for Case 2
reach the maximum rate of 52.7rad/s for the right wheel and
50.4rad/s for the left wheel. However, in Case 3, the wheel
rotation rate is limited to 45rad/s. It can be seen that the
right wheel rotation rate is nearly fully saturated all the time
(except for 8− 10s). In contrast, the left wheel gets into sat-
uration two times, first during the initial phase, and second
when it encounters the first obstacle. It is worth mentioning
here that the control commands are computed at every 0.2 s
interval following the zero-order hold philosophy.

Algorithm Convergence

The algorithm’s convergence is illustrated here to validate
Sect. 2. First, it is required to see whether the conditions
of Sect. 2 hold good in this case, which is done as follows:

 ● From the definition of the output variable, as well as
(94) and (95), it is obvious that the functions J, YN, and
g satisfy Condition (i).

 ● Since ∇2J = Rk, Rk has been chosen to be positive
definite to ensure that Condition (ii) holds, which is
compatible with the control minimization requirement.

 ● From experiments, it is observed that none of the in-
equality constraints in (94) holds with equality (i.e.,
gj(U

∗) �= 0, ∀j) and therefore, A is an empty set. Con-

sequently, G(U∗) = ∇hN(U
∗) =

([
SN

]
U∗
)T ∈ �2×2,

where SN is the final output sensitivity matrix. Since
U∗ is unknown, G(·) is evaluated at the value to which
the algorithm iterates converge and it is observed that its
rank 2 (i.e., full row rank). Thus, Conditions (iii)(a) and

(iii)(b) are satisfied. Finally, since rank {G(U∗)} = 2,

there exists no vector y such that G(U∗)T y = 0. There-

fore, Condition (iii) also holds, thereby ensuring Q-lin-
ear convergence, i.e. exponential convergence of control
history with number of iterations.

Pictorially, the Q-linear convergence behavior of the algo-
rithm for five perturbed guess control histories in the con-
straint-free case is shown in Fig. 5, where U∗ is the final
converged solution. The different (ωg

r , ω
g
l) used here are

(30, 29.5), (35, 34.5), (40, 39.5), (43, 42.5), (45, 44.5)
respectively (all in rad/s). One can see that each of it shows
exponential convergence as expected. Figure 5 also shows
that a crude initial guess (with higher ||∆YN ||) may take a
couple of more iterations to converge and vice versa, which

imposed path constraint. It can be observed that the trajec-
tory for Case 2 returns to the middle of the path more often
and more quickly as compared to Case 3. This is due to the
imposed control constraint, which restricts the turning rate
of the robot in Case 3.

From the first two sub-plots of Fig. 3, it can be seen that
mobile robot reaches the desired final position at the stipu-
lated time interval of 10sec with very low error. This is due
to the fact that the final position constraints in both the coor-
dinated have been taken as hard constraints. It can also be
seen in this figure that the mobile robot does not reach the
final position with same φ for all cases. This is due to the
presence of the second obstacle on the path for Case 2 and
Case 3, and the destination happens to be too close to it.

Figure 4 shows the wheel rotation rates. It can be seen
that wheel rotation rates of the right and left wheels for Case
1 are nearly constant after 2s; this is because by this time, the

Fig. 4 Wheel rotation rate of mobile robot

Fig. 3 Mobile robot position and vehicle orientation

1 3

Transactions of the Indian National Academy of Engineering

Algorithm Convergence with Different Initial Guess Control
Histories

Generally, a good initial guess control history close to the
optimal solution is required to provide theoretical guaran-
tees of convergence for any iterative algorithm of optimal
control problems. However, in practice, it is not critical to
initialize the guess control history very accurately. More-
over, the algorithm’s initialisation is highly problem-depen-
dent and a general rule cannot be given for initialization. In
this section, the convergence of the C-MPSP algorithm for
different initial guess control histories is included. For this,
four different initial guess controls have been given to the
algorithm, these guess control histories are summarised in
Table 1.

It can be seen that in all the cases the algorithm converges
and achieves its objectives as shown in Fig. 6. Moreover, it
can be seen in Fig. 6 that the final trajectory of the mobile
robot is very different in all four cases. This can be explained
from Fig. 7, where wheel rotation rates for all four cases
are different. The C-MPSP algorithm has been implemented
in an iteration unfolding manner (meaning, that maximum
number of iterations has been limited to two in each time
step). This makes the evolution of the trajectory dependent
on the initial guess control; the same has been observed in
Fig. 7. Where, it is easy to see that, even though the mobile
robot meets all the constraints along the trajectory and the
end point constraints; the trajectories with different initial
guess control (as given in Table 1) end up in totally different
trajectories.

is intuitive. To address this and minimize the risk of non-
convergence, it is always recommended to start with a good
initial control guess history wherever possible.

Table 1 Initial guess control history for convergence analysis
Sl. Guess control Colour

ωr
(rad/s)

ωl
(rad/s)

1. 45 44.5 Shown in “black colour” in Figs. 6 and 7
2. 45 45 Shown in “blue colour” in Figs. 6 and 7
3. 18 15 Shown in “magenta colour” in Figs. 6

and 7
4. 44.5 44.5 Shown in “green colour” in Figs. 6 and 7

Fig. 7 Mobile robot wheel rotation rates corresponding to guess con-
trol given in Table 1

Fig. 6 Mobile robot trajectories corresponding to guess control given
in Table 1

Fig. 5 Simulation convergence for Case-1

1 3

Transactions of the Indian National Academy of Engineering

In this simulation, three cases have been considered as
given in Table 2. It can be seen in Fig. 8 that the mobile
robot can meet all the desired objectives and reach the
required final point while satisfying all the path constraints.
Moreover, the trajectory followed for each case is again dif-
ferent even though the initial guess control is the same for
all three cases. This is because the entire trajectory evolu-
tion is strongly associated with the initial states of the sys-
tem (Fig. 9).

Algorithm Convergence with More Number of Obstacles

One of the aspects of algorithm convergence is the introduc-
tion of more path constraints. In the present simulation, this
has been achieved by increasing the number of obstacles in
the feasible path of the mobile robot. The simulation results
in this section has been divided in two sets; the first set
(Simulation results set-1) shows the results with fewer (upto
2) obstacles, while the second set (Simulation results set-2)
shows the results with more obstacles (3, 4 and 5). More-
over, the obstacles in Simulation results set-1 are sparsely
placed, while the obstacles in Simulation results set-2 are
placed to densely pack the entire path. The segregation of
simulation results has been done to keep the simulation
results more legible.

Algorithm Convergence for Different Initial States

The convergence of the C-MPSP algorithm not only depends
on the initial guess control history but is strongly dependent
on the state trajectory. However, the entire state trajectory
depends on the initial guess control and the initial states of
the system. Because of this reason, the convergence analysis
is not complete unless variations in the initial states are also
included. Table 2 considers the cases where initial state and
initial guess control have been summarised for simulation.

Table 2 Convergence analysis table for different initial conditions
Sl Initial condition Guess control Colour

x (m) y (m) φ (deg) ωr (rad/s) ωl (rad/s)
1 0 9.25 60 36 36 Shown in “black colour” in Figs. 8 and 9
2 0 9.25 0 36 36 Shown in “blue colour” in Figs. 6 and 7
3 0 9.25 – 60 36 36 Shown in “green colour” in Figs. 6 and 7

Fig. 10 Mobile robot trajectory with ‘zero obstacles’ (shown in black
colour), ‘one obstacle’ (shown in red colour), and ‘three obstacles’
(shown in green colour) (color figure online)

Fig. 9 Mobile robot wheel rotation rates corresponding to cases given
in Table 2

Fig. 8 Mobile robot trajectories corresponding to cases given in Table 2

1 3

Transactions of the Indian National Academy of Engineering

and it is shown as green dotted straight lines in Fig. 13.
Moreover, the trajectory of the mobile robot corresponding
to initial guess control is also shown as a dotted straight
line in Fig. 12. It can be seen in Fig. 12, that when the num-
ber of obstacles are more, and they are closely spaced; the
C-MPSP algorithm gives an admissible trajectory (satis-
fying all the constraints). Moreover, when the obstacles
are up to three, and they are spaced sparsely; the C-MPSP
gives an intuitive trajectory. However, for the condition of
densely packed obstacles (five obstacle case); most part of
the trajectory merges with the boundary of the path. The
reason for this is that the feasible domain is now pretty nar-
row, and hence the performance of the C-MPSP algorithm
started deteriorating.

Computational Efficiency

An important feature of the C-MPSP algorithm is its com-
putational efficiency. This is because of several good fea-
tures of the MPSP such as converting the optimal control
problem to a static optimization problem with recursive
computation of sensitivity matrices [see (23)], which makes
the algorithm computationally very efficient. This has been
observed in the simulations, where, with a ∆t = 0.2s the
run-time of the algorithm is about 0.15s on Matlab-2018a in
windows-7 professional (64-bit) environment with Intel(R)
Core(TM) i3-3220 CPU@3.30GHz and RAM of 4.00 GB.
With a dedicated processor and code written in a low-level
language (such as embedded C), the computational time is
expected to be significantly lower. Thus, one can use the
C-MPSP algorithm to efficiently solve complex optimal
control problems online without difficulty.

Simulation results set-1: Figure 10 shows the trajectory
of the mobile robot when the number of obstacles is ‘zero’
(trajectory plots in black colour), ‘one’ (trajectory plots in
red colour), and ‘two’ (trajectory plots in green colour). The
initial guess control history for these three cases is same,
and it is shown as a dotted green colour straight line in Fig.
11. Moreover, the mobile robot trajectory corresponding to
the initial guess control is a straight line, and it is shown as
dotted green straight line in Fig. 10.

Simulation results set-2: Figure 12 shows the trajectory
of the mobile robot when the number of obstacles is ‘three’
(trajectory plots in blue colour), ‘four’ (trajectory plots in
magenta colour), and ‘five’ (trajectory plots in cyan colour).
The initial guess control is same for all these three cases,

Fig. 13 Mobile robot wheel rotation rate with ‘three obstacles’ (shown
in blue colour), ‘four obstacle’ (shown in magenta colour), and ‘five
obstacles’ (shown in cyan colour) (color figure online)

Fig. 12 Mobile robot trajectory with ‘three obstacles’ (shown in blue
colour), ‘four obstacle’ (shown in magenta colour), and ‘five obstacles’
(shown in cyan colour) (color figure online)

Fig. 11 Mobile robot wheel rotation rate with ‘zero obstacles’ (shown
in black colour), ‘one obstacle’ (shown in red colour), and ‘three obsta-
cles’ (shown in green colour) (color figure online)

1 3

Transactions of the Indian National Academy of Engineering

Hager WW, Pardalos PM (2013) Optimal control: theory, algorithms,
and applications, vol 15. Springer, New York

Halbe O, Raja RG, Padhi R (2014) Robust reentry guidance of a reus-
able launch vehicle using model predictive static programming.
J Guid Control Dyn 37(1):134–148. h t t p s : / / d o i . o r g / 1 0 . 2 5 1 4 / 1 . 6
1 6 1 5

Hong H, Maity A, Holzapfel F, Tang S (2019) Model predictive con-
vex programming for constrained vehicle guidance. IEEE Trans
Aerosp Electron Syst 55(5):2487–2500. h t t p s : / / d o i . o r g / 1 0 . 1 1 0 9 / T
A E S . 2 0 1 8 . 2 8 9 0 3 7 5

Hull DG (2013) Optimal control theory for applications. Springer,
New York

Kirk DE (1970) Optimal control theory: an introduction. Prentice Hall,
Englewood Cliffs, pp 329–413 (Chap. 6)

Kumar P, Anoohya BB, Padhi R (2018) Model predictive static pro-
gramming for optimal command tracking: a fast model predic-
tive control paradigm. ASME J Dyn Syst Measure Control
141(2):021014–02101412. https:/ /doi.or g/10.11 15/1. 4041356

Larson RE, Casti JL (1982) Principles of dynamic programming:
advanced theory and applications. Control and systems theory.
M. Dekker, New York

Longuski JM, Guzmán JJ, Prussing JE (2014) Optimal control with
aerospace applications. Springer, New York

Luenberger DG (1969) Optimization by vector space methods. Wiley,
New York

Maity A, Padhi R, Mallaram S, Rao GM, Manickavasagam M (2016)
A robust and high precision optimal explicit guidance scheme for
solid motor propelled launch vehicles with thrust and drag uncer-
tainty. Int J Syst Sci 47(13):3078–3097. h t t p s : / / d o i . o r g / 1 0 . 1 0 8 0 / 0
0 2 0 7 7 2 1 . 2 0 1 5 . 1 0 8 8 1 0 0

Mayne DQ, Rawlings JB, Rao CV, Scokaert POM (2000) Constrained
model predictive control: stability and optimality. Automatica
36(6):789–814. https:/ /doi.or g/10.10 16/S0 005-1098(99)00214-9

Mondal S, Padhi R (2018) Angle-constrained terminal guidance using
quasi-spectral model predictive static programming. J Guid Con-
trol Dyn 41(3):783–791. https:/ /doi.or g/10.25 14/1. G002893

Morrison DD, Riley JD, Zancanaro JF (1962) Multiple shooting
method for two-point boundary value problems. Commun ACM
5(12):613–614. https:/ /doi.or g/10.11 45/35 5580.369128

Naidu DS (2003) Optimal control systems. CRC Press, Florida, pp
101–187 (Chap. 3 and 4)

Nocedal J, Wright S (2006) Numerical optimization. Springer, New
York

Oza HB, Padhi R (2012) Impact-angle-constrained suboptimal model
predictive static programming guidance of air-to-ground missiles.
J Guid Control Dyn 35(1):153–164. h t t p s : / / d o i . o r g / 1 0 . 2 5 1 4 / 1 . 5 3
6 4 7

Padhi R, Kothari M (2009) Model predictive static programming:
a computationally efficient technique for suboptimal control
design. Int J Innov Comput Inf Control 5(2):399–411

Padhi R, Banerjee A, Mathavaraj S, Srianish V (2024) Computational
guidance using model predictive static programming for chal-
lenging space missions: an introductory tutorial with example
scenarios. IEEE Control Syst Mag 44(2):55–80. h t t p s : / / d o i . o r g /
1 0 . 1 1 0 9 / M C S . 2 0 2 4 . 3 3 5 8 6 2 4

Prakash R, Behera L, Mohan S, Jagannathan S (2022) Dual-loop opti-
mal control of a robot manipulator and its application in ware-
house automation. IEEE Trans Autom Sci Eng 19(1):262–279.
https:/ /doi.or g/10.11 09/TA SE.2020.3027394

Rawlings JB, Angeli D, Bates CN (2012) Fundamentals of economic
model predictive control. In: 2012 IEEE 51st IEEE Conference
on Decision and Control (CDC), pp 3851–3861

Ross IM (2015) A primer on Pontryagin’s principle in optimal control,
2nd edn. Collegiate Publishers, San Francisco

Roux JD, Padhi R, Craig IK, (2014) Optimal control of grinding
mill circuit using model predictive static programming: a new

Conclusion

In this paper, a new optimal control law named Compre-
hensive Model Predictive Static Programming (C-MPSP)
has been proposed. This optimal control law solves a con-
strained optimal control problem efficiently by converting
it to a quadratic programming problem by successive lin-
earization of the state dynamics along the predicted state
trajectory. The Q-linear convergence of the algorithm to a
local optimum was rigorously established. The algorithm
has been implemented on a differentially driven two-wheel
mobile robot. It has been shown using numerical results that
it can achieve the terminal objective in the presence of state
and control constraints.

Funding No funds, grants, or other supports were received for con-
ducting this study.

Declarations

Conflict of interest There is no Conflict of interest.

References

Allgöwer F, Zheng A (2012) Nonlinear model predictive control. Prog-
ress in systems and control theory. Birkhäuser, Basel

Balakrishnan SN, Biega V (1996) Adaptive-critic based neural net-
works for aircraft optimal control. J Guid Control Dyn 19(4):893–
898. https:/ /doi.or g/10.25 14/3. 21715

Ben-Asher JZ (2010) Optimal control theory with aerospace applica-
tions. American Institute of Aeronautics and Astronautics, Reston

Betts JT (2001) Practical Methods for Optimal Control Using Nonlin-
ear Programming. Advances in design and control, pp 61–125.
Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA. Chap. 3 and 4

Boggs PT, Tolle JW (2000) Sequential quadratic programming
for large-scale nonlinear optimization. J Comput Appl Math
124(1–2):123–137

Bryson JAE, Ho Y-C (1975) Applied optimal control: optimization,
estimation and control. Hemisphere Publishing Corporation, New
York, pp 128–211 (Chap. 4 and 6)

Chen H, Allgöwer F (1998) A quasi-infinite horizon nonlinear model
predictive control scheme with guaranteed stability. Automatica
34(10):1205–1217. h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / S 0 0 0 5 - 1 0 9 8 (9 8) 0 0 0 7
3 - 9

Dwivedi PN, Bhattacharya A, Padhi R (2011) Suboptimal midcourse
guidance of interceptors for high-speed targets with alignment
angle constraint. J Guid Control Dyn 34(3):860–877. h t t p s : / / d o
i . o r g / 1 0 . 2 5 1 4 / 1 . 5 0 8 2 1

Fahroo F, Ross IM (2002) Direct trajectory optimization by a cheby-
shev pseudospectral method. J Guid Control Dyn 25(1):160–166.
https:/ /doi.or g/10.25 14/2. 4862

Ghazaei Ardakani MM, Olofsson B, Robertsson A, Johansson R
(2019) Model predictive control for real-time point-to-point tra-
jectory generation. IEEE Trans Autom Sci Eng 16(2):972–983.
https:/ /doi.or g/10.11 09/TA SE.2018.2882764

Gong Q, Fahroo F, Ross IM (2008) Spectral algorithm for pseudospec-
tral methods in optimal control. J Guid Control Dyn 31(3):460–
471. https:/ /doi.or g/10.25 14/1. 32908

1 3

https://doi.org/10.2514/1.61615
https://doi.org/10.2514/1.61615
https://doi.org/10.1109/TAES.2018.2890375
https://doi.org/10.1109/TAES.2018.2890375
https://doi.org/10.1115/1.4041356
https://doi.org/10.1080/00207721.2015.1088100
https://doi.org/10.1080/00207721.2015.1088100
https://doi.org/10.1016/S0005-1098(99)00214-9
https://doi.org/10.2514/1.G002893
https://doi.org/10.1145/355580.369128
https://doi.org/10.2514/1.53647
https://doi.org/10.2514/1.53647
https://doi.org/10.1109/MCS.2024.3358624
https://doi.org/10.1109/MCS.2024.3358624
https://doi.org/10.1109/TASE.2020.3027394
https://doi.org/10.2514/3.21715
https://doi.org/10.1016/S0005-1098(98)00073-9
https://doi.org/10.1016/S0005-1098(98)00073-9
https://doi.org/10.2514/1.50821
https://doi.org/10.2514/1.50821
https://doi.org/10.2514/2.4862
https://doi.org/10.1109/TASE.2018.2882764
https://doi.org/10.2514/1.32908

Transactions of the Indian National Academy of Engineering

Yan Z, Kreidieh AR, Vinitsky E, Bayen AM, Wu C (2023) Unified
automatic control of vehicular systems with reinforcement learn-
ing. IEEE Trans Autom Sci Eng 20(2):789–804. h t t p s : / / d o i . o r g / 1
0 . 1 1 0 9 / T A S E . 2 0 2 2 . 3 1 6 8 6 2 1

Zheng Y, Li Q, Li S (2022) Stability guaranteed model predictive con-
trol with adaptive lyapunov constraint. IEEE Trans Autom Sci
Eng. https: //d oi. or g/10 .110 9/TA SE.2022.3222182

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

nonlinear mpc paradigm. J Process Control 24(12):29–40. h t t p s
: / / d o i . o r g / 1 0 . 1 0 1 6 / j . j p r o c o n t . 2 0 1 4 . 1 0 . 0 0 7

Sachan K, Padhi R (2019) Waypoint constrained multi-phase optimal
guidance of spacecraft for soft lunar landing. Unmanned Syst
07(02):83–104. https:/ /doi.or g/10.11 42/S2 30138501950002X

Sage AP (1968) Optimum systems control. Networks series. Prentice-
Hall, Englewood Cliffs

Sakode CM, Padhi R (2014) Computationally efficient suboptimal
control design for impulsive systems based on model predictive
static programming. IFAC Proc 47(1):41–46. h t t p s : / / d o i . o r g / 1 0 .
3 1 8 2 / 2 0 1 4 0 3 1 3 - 3 - I N - 3 0 2 4 . 0 0 1 7 2 . 3rd International Conference
on Advances in Control and Optimization of Dynamical Systems
(2014))

Wang L (2009) Model predictive control system design and implemen-
tation using MATLAB®. Springer, London

Wang Y, Boyd S (2010) Fast model predictive control using online
optimization. IEEE Trans Control Syst Technol 18(2):267–278

Wismer DA, Chattergy R (1978) Introduction to nonlinear optimiza-
tion: a problem solving approach, vol 1. North Holland, New
York

1 3

https://doi.org/10.1109/TASE.2022.3168621
https://doi.org/10.1109/TASE.2022.3168621
https://doi.org/10.1109/TASE.2022.3222182
https://doi.org/10.1016/j.jprocont.2014.10.007
https://doi.org/10.1016/j.jprocont.2014.10.007
https://doi.org/10.1142/S230138501950002X
https://doi.org/10.3182/20140313-3-IN-3024.00172
https://doi.org/10.3182/20140313-3-IN-3024.00172

	Comprehensive MPSP for Fast Optimal Control: Algorithm Development and Convergence Analysis
	Abstract
	Introduction
	Comprehensive MPSP: Mathematical Details
	C-MPSP Algorithm
	State Dynamics
	Terminal Constraint
	Cost Function
	Path Constraints

	State and Output Error Computation
	Control Computation in the Unconstrained Case
	Control Computation in the Constrained Case
	Convergence Analysis of C-MPSP
	Existing Convergence Result for a General Algorithm
	Matrix Notation
	Convergence of C-MPSP

	Implementation steps of C-MPSP
	A Demonstrative Example
	Plant Model and Output Equation
	Path Constraint
	Modeling of Obstacles
	Control Input Constraints

