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Abstract

This survey paper examines recent advancements in low-resolution signal processing, emphasiz-
ing quantized compressed sensing. Rising costs and power demands of high-sampling-rate data
acquisition drive the interest in quantized signal processing, particularly in wireless communica-
tion systems and Internet of Things sensor networks, as 6G aims to integrate sensing and com-
munication within cost-effective hardware. Motivated by this urgency, this paper covers novel
signal processing algorithms designed to address practical challenges arising from quantization
and modulo operations, as well as their impact on system performance. We begin by introducing
the framework of one-bit compressed sensing and discuss relevant theories and algorithms. We
explore the application of quantized compressed sensing algorithms to sensor networks, radar,
cognitive radio, and wireless channel estimation. We highlight how generic methods can be tai-
lored to an application using specific examples from wireless channel estimation. Additionally,
we review other low-resolution techniques beyond one-bit compressed sensing along with their
applications. We also provide a brief overview of the emerging concept of unlimited sampling.
While this paper does not aim to be exhaustive, it selectively highlights results to inspire readers
to appreciate the diverse algorithmic tools (convex optimization, greedy methods, and Bayesian
approaches) and sampling techniques (task-based quantization and unlimited sampling).

Keywords: One-bit compressed sensing, sparsity, low-bit quantization, wireless channel
estimation, massive MIMO, reconfigurable intelligent surfaces, task-based quantization,
variational Bayesian, sparse Bayesian learning, maximum likelihood, Cramér-Rao bound, target
localization and tracking, unlimited sensing, modulo ADC

1. Introduction

Quantization of signals is a critical aspect of modern digital signal processing applications,
including sensing, communication, and inference. Ideally, measurements should have high reso-
lution, but implementing such analog-to-digital converters (ADCs) in practical systems presents
Preprint submitted to Elsevier March 28, 2025



significant challenges. These devices often become bottlenecks due to their power consumption,
size, and manufacturing costs, which increase exponentially with the number of bits [} [2, 3].
This complexity has sparked a growing interest in quantized signal processing, particularly for
applications such as 6G wireless communication and sensing systems [4} 5]].

In 6G applications, high sampling rates pose significant challenges. For instance, millimeter-
wave (mmWave) multiple-input and multiple-output (MIMO) technology demands large band-
widths, requiring increased sampling rates for ADCs. However, manufacturing high-resolution
(e.g., over 8 bits) and fast ADCs is expensive and power-hungry. Similarly, in applications
like spectral sensing and cognitive radio networks, which also require high sampling rates, the
cumulative costs and power consumption of the high-resolution fast ADCs can be prohibitive
and impractical. Furthermore, these applications involve edge intelligence that demands low-
power hardware and signal processing capabilities. One immediate solution to these challenges
is to employ low-resolution ADCs, which offers robustness, memory efficiency, and simplic-
ity in hardware implementation, particularly in sensor design. However, coarse quantization
in ADCs can undermine the performance of traditional signal processing techniques that assume
high-resolution quantization and often require customized algorithms to achieve adequate system
performance. Motivated by these challenges, this paper studies low-resolution signal processing
techniques, particularly the low-rate signal acquisition method of compressed sensing (CS), with
an emphasis on their applications in wireless communication and sensing.

CS is a signal acquisition technique that requires fewer samples than the Nyquist rate [6} [7,
8L 19, [10]]. It exploits the sparsity or compressibility of natural signals, such as images, audio
signals, and communication signals, which can be expressed using a few nonzero coeflicients in
a suitable basis. For example, images are sparse in a Fourier or wavelet basis [6]. Without loss of
generality, in the rest of the paper, we assume that the coefficient vector is sparse in the standard
canonical basis unless otherwise specified. The sparsity of a coefficient vector is measured using
the €y-norm, which counts the number of nonzero entries,

llxllo = I{i : x[i] # O} 6]

A vector x € R” is said to be sparse if ||x||p < n and s-sparse if ||x||o = s < n. The compressive
sensing measurements y are acquired by projecting the sparse vector onto a set of basis vectors,
called a dictionary matrix or measurement matrix A € R™". Here, A has fewer rows than
columns m < n, leading to compression. Thus, the CS problem is

argmin |lx|jp s.t. y = Ax. 2)

xeR”

Since the above problem is NP-hard, the sparse signal x is estimated from y using various al-
gorithmic approaches, including convex relaxation, greedy algorithms, and Bayesian methods.
The quality of the reconstruction depends on the signal’s sparsity (or compressibility), the recon-
struction algorithm used, and the properties of the measurement matrix. One of the celebrated
results in CS is that randomly generated dictionaries are likely to be incoherent with any fixed
sparsity basis, making them ideal for CS in terms of the measurements m required for successful
recovery of an s-sparse n-length x. For more details on CS theory and algorithms, see [[L1} [12].
CS achieved via random projections at the sampling stage is valuable in several resource-
constrained systems. However, in many applications like Internet of Things (IoT), which operate
under severe resource limitations, further compression and quantization of compressed measure-
ments may be necessary. Implementing coarse quantization can significantly reduce bandwidth
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requirements and computational costs at local nodes, making it desirable in highly resource-
scarce environments. Low-bit quantization results in information loss, making it challenging for
the traditional CS methods to perform effectively. Early works on CS assume that quantization
error is negligible, treating it as a noisy CS problem. This approach implicitly assumes high-
resolution quantizers, which are often unrealistic or inefficient. Moreover, it yields pessimistic
reconstruction error estimates that cannot exceed the noise floor, particularly the quantization
error. To address the challenges posed by coarse quantization, the field of quantized CS has
advanced significantly, showing that tailored algorithms can substantially improve performance
over traditional methods [13] to solve the quantized CS problem,

argmin |lx|lp s.t. y = Qp(Ax), 3)

xeR”

where Qp represents B-bit quantization. These efficient schemes have demonstrated that quan-
tized CS-based systems can significantly enhance processing speeds for large volumes of sparse
data while simultaneously lowering communication costs and simplifying hardware implemen-
tation. Quantized CS has recently found widespread use in a range of applications, including
wireless sensor networks [[14} 15116} [17], cognitive radio [18} 19} 120, 21} [22] 23], wireless com-
munication [24, 25} 26l [277]], radar [28] 29,130} 1311132} [33]], image processing [34,135]], and medical
technologies [36} 137, 136]. This paper consolidates various results from the literature, focusing
on applying low-bit quantized CS in wireless communication and sensing.

This survey is not exhaustive and aims to strike a balance between theoretical rigor and practi-
cal insights. The key results and solution strategies presented in this paper are as follows. We start
by discussing one-bit compressed sensing (1bCS), the most widely studied form of quantized CS.
One-bit quantization is especially attractive for hardware implementations and has demonstrated
resilience to nonlinear distortions, as well as dynamic range limitations. Section [2| presents the
general framework of 1bCS, detailing the conditions on the measurement matrix required for the
successful recovery of sparse vectors. Notably, the results demonstrate that the minimal num-
ber of measurements required scales linearly with the sparsity level and logarithmically with
the size of the sparse vector. Additionally, this section explores extensions and connections to
efficient machine learning frameworks. While Section [2| emphasizes the underlying theoretical
principles, Section [3|of the paper shifts to practical applications in wireless communications and
sensing. We cover applications across various domains such as IoT, wireless sensor networks,
radar, cognitive radio, and wireless channel estimation. Section E] also delves into the specific
application of MIMO channel estimation, showing how quantized CS algorithms can be adapted
to enhance performance. For example, quantized CS algorithms used for channel estimation can
be integrated with data decoding or can be combined with task-based quantizers that optimize
the quantizer based on the estimation task. In Section[d] we examine alternative low-resolution
signal processing techniques beyond CS. This section introduces non-sparse techniques in IoT,
wireless sensor networks, and radar with an emphasis on localization and tracking algorithms
that use low-bit quantization in conjunction with maximum likelihood (ML) approaches. It also
covers low-resolution techniques in cognitive radio networks and wireless channel estimation.
We also present the unlimited sensing framework (USF), a new paradigm designed to address
saturation issues in digital acquisition systems. The paper concludes by highlighting several
avenues for future research. The roadmap of the paper is given in Figure|[T}
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Notation

Notation is usually introduced when it first appears. Boldface small letters denote vectors,
and boldface capital letters denote matrices. The symbols a[i], A;, and A[i, j] represent the ith
entry of vector a, the ith column of matrix A, and the entry on the ith row and jth column of
matrix A, respectively. The operator Qp represents B-bit quantization.

We denote the all-one vector of length a as 1, and the all-zero vector as 0. The symbol 1{-}
represents the indicator function, which takes the value one if the condition in the argument is
true and zero otherwise. The sets of M x N real and complex matrices are represented by RM*V
and CM*N respectively. The symbol I denotes the identity matrix. Also, Z represents the set of
integers.

We use || - |lp and || - || to denote the £y norm and the £, norm, respectively. For any signal
a € R”, let supp(a) £ (i €{1,2,...,n} ]| ali] # 0} denote the support of a. The symbols OS
()7, (), (O, tr(-), and | - | are the matrix operations of inverse, transpose, conjugate, conjugate
transpose, trace, and determinant respectively. Also, ®, ¢, and © represent the Kronecker, Khatri-
Rao, and Hadamard products respectively. The operator diag(-) returns a (block) diagonal matrix
with the argument along the diagonal.

We use N(a, A) and CN(a, A) to denote the real and complex Gaussian distributions respec-
tively, with mean a and covariance A. Also, Re(-) and Im(-) denote the real and imaginary parts,
respectively.

2. Quantized Compressed Sensing: Theory and General Algorithmic Approaches

As discussed in Section[I] quantized CS seeks to recover a sparse vector from its quantized
linear measurements. While increasing the bit-depth reduces the quantization error, the im-
provement in reconstruction accuracy saturates beyond 3-5 bits per measurement. The findings
in [[13] suggest that dithering can enhance low-bit quantization performance and that the optimal
bit-depth depends on the task; lower bit-depths are sufficient for classification, while full recon-
struction requires higher bit-depths. For scalar quantization, the primary focus of this survey,
[38] presents a trade-off between bit-depth and measurement rate. They recommend using fewer
bits with more measurements in low-signal-to-noise ratio (SNR) settings and higher bit-depth
with fewer measurements in high-SNR conditions. Notably, among low-bit-depth methods, the
most extreme form, 1bCS, has gained significant attention due to its superior performance guar-
antees across a wide range of scenarios. The popularity of 1bCS also arises from its simple and
cost-effective quantizer, as well as the reduced bit requirements for storage and transmission. In
this section, we present results on the performance of sparse signal reconstruction and parameter
estimation using noisy one-bit measurements, highlighting the theoretical foundations.

1bCS acquires 1-bit measurements of the form,

y = Qi(Ax) £ sign(Ax) € {-1, 1}", 4)

where the sign(-ﬂ function is applied coordinate-wise to the linear measurements Ax € R™ for
a chosen measurement matrix A € R™". Since the prescribed quantization function is invariant
under positive scaling of the signal x, the magnitude information of the signal is lost. Hence,
without loss of generality, we assume that x lies on the unit sphere, and the recovery algorithms
usually focus on obtaining an estimate X on the unit sphere.

For any a € R, sign(a) = 1 if a > 0, and sign(a) = -1 if a < 0.
5



The main goal in 1bCS is to accurately recover the underlying s-sparse signal x € R” given
m (< n) well-chosen 1-bit measurements such that the recovered vector X satisfies a given error
bound €, i.e., ||[x — X|]| < e. To address noise during signal acquisition and post-quantization
errors, we adopt a generalized measurement model,

y £ posign(Ax +w) € (-1,1}", 5)

where w € R” is the additive noise, usually considered to be independent and identically dis-
tributed (iid) Gaussian entries with a fixed variance of o2, and n € {—1, 1} is the bit-flip noise
with bounded number of negative entries applied coordinate-wise to the quantized output.

2.1. Measurement Bounds and Algorithms

In recent decades, the impressive recovery guarantees achievable even under extreme quan-
tization have spurred extensive research into 1bCS. These results have led to the develop-
ment of efficient recovery algorithms that require an optimal number of measurements and
remain robust to noise. Some of the key approaches in 1bCS include convex program-based
methods [39, 40, 41]], greedy or iterative methods, including binary iterative hard threshold-
ing (BIHT) [42,/43/4411435]], Bayesian techniques [46}47,148.149,150,151]], generative model-based
methods [52} 134} 1531154, 155, 156]]. For a comprehensive review, we direct readers to an excellent
survey on this topic [57]. The following sections present recent advancements and new directions
beyond this survey, emphasizing their provable recovery guarantees.

One of the early works established that any e-approximate recovery algorithm for an s-sparse
signal x requires at least Q(slog § + £ — 5%/2) measurements [42]]. This bound is subsequently
refined in [72] to Q(slog % +£). Following this result, research has focused on designing efficient
and theoretically robust recovery algorithms that achieve this improved measurement bound.
In pursuit of provable recovery guarantees, a class of consistent reconstruction algorithms is
developed in the 1bCS literature that finds a unit-norm vector X with minimal sparsity that aligns
with the measurement outcomes [42]. Specifically, the underlying optimization problem for
recovery can be defined as follows:

min [|X|p s.t. sign(AX¥) =y and |X||=1. (6)

This work also demonstrates that random Gaussian measurement matrices, where each entry of
A is chosen independently from a standard Gaussian distribution with m = O(Z log %) rows,
can achieve an e-approximate solution to (6). Similar results are also known to hold with sub-
Gaussian [[73]] and partial circulant matrices [[74].

To ensure robustness against noise, both in the form of random additive noise before quan-
tization and bounded bit-flip errors after quantization, it has been shown that m = O (E—i log f)
Gaussian measurements are sufficient to achieve a uniform embedding of s-sparse unit vectors
onto the vertices of the Boolean hypercube {—1, 1} [42]. The uniform embedding property im-
plies that the pairwise ¢, distances (equivalent to spherical or angular distances) between any
two s-sparse unit vectors are approximately preserved when mapped to {—1, 1}"". Therefore, the
original distances on the unit sphere can be estimated by Hamming distances in the Boolean
hypercube, allowing a stable recovery of sparse vectors using a small number of measurements.
This approach extends beyond s-sparse vectors; uniform tessellation results have also been gen-
eralized to arbitrary subsets of the unit sphere. These generalizations involve using measurement
matrices with entries drawn from Gaussian, sub-Gaussian, and heavy-tailed distributions, allow-
ing for flexibility in applications, though they often require affine measurements [[75, 76 [77].
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Approach Key algorithms

¢1-norm based program[58},139]
Sparse logistic regression [40]
Penalized ¢;-norm [59]

Weighted £;-norm [60]

Smoothly clipped absolute deviation,
minimax concave penalty [61} 62]
Schur-concave functions [63]
k-support norm [64]

Pinball loss minimization [[65]]
{>-constrained least squares [41]

¢, -total variation norm [66]

Matched sign pursuit [44]]

Greedy or iterative methods Gradient support pursuit [43]]
BIHT[42 67

Adaptive outlier pursuit [45]]
Normalized BIHT and variants[67]]
Message passing algorithm [68]]
Bayesian techniques Approximate message passing [46, 147, 48]
Sparse Bayesian learning [51} 50]
Rectified linear unit (ReLU) with dithering [69]
Extension of BIHT [52]

Non-convex optimization (34} [70]
Diffusion models (score-based) [[71]]

Optimization-based methods

Generative model-based methods

Table 1: Summary of sparse recovery methods in Section

While the above-mentioned results establish the theoretical guarantees for signal recovery,
they do not resolve the algorithmic challenge of provable and efficient recovery. To tackle the
intractability of (6) due to the £, minimization objective and the unit norm constraint, several
works have focused on solving a relaxed version of this problem [39, |40} 44, 58|, 78 [65)]. An
early approach uses a greedy algorithm called matched sign pursuit, which combines the princi-
ple of consistent reconstruction with compressive sampling matching pursuit from the standard
CS literature [44]. Using a similar approach, 1bCS algorithm robust to random noise added
pre-quantization is also devised [43]]. An alternative approach uses convex relaxation that refor-
mulates the problem as a linear program, yielding an efficient e-approximate recovery algorithm
that requires m = O(5 log® *) Gaussian measurements [39],

min [|#]; st sign(A%)=y and [JA%| = m. 7)

To address adversarial bit-flip errors occurring after quantization, a variant of (7) has been de-
veloped,
min —y"A% st [I®li<s and (& <1, ®)

that ensures reliable recovery using m = O(E% log %) Gaussian measurements [40]. This ap-
proach seeks to find a signal X within the convex hull of all s-sparse unit vectors that maximizes
consistency between y and sign(Ax).



Further, various regularization techniques enhanced the convex programming approach by
promoting sparsity and improving model robustness. Penalized £;-norm methods [59] leads to
an efficient algorithm with a closed-form solution:

min -y AX + w|®|; st %L <1, 9)

where w is the weight parameter. The weighted £;-norm techniques [60] extend this approach
to a weighted £;-norm formulation and derive analytical solutions under specific weights. Non-
convex penalties, such as the smoothly clipped absolute deviation and minimax concave penalty,
further enforce sparsity [61} 62]. One example is [61]

. n N w . N
min —y" A% + Anon—convex (%) + 5||x||§ st 12l <1, (10)

where hpon—convex represents the minimax concave penalty, and w > 0 controls the smoothness.
Further extensions to other non-convex penalties with analytical solutions are explored in [62].
Another non-convex penalty is normalized £; Shannon entropy function, a Schur-concave mea-
sure of concentration, which achieves sparse solutions at its minima [63]]. This nonconvex prob-
lem is reformulated as weighted £;-norm subproblems, solved iteratively using a generalized
fixed-point continuation algorithm. Moreover, other regularization include k-support norm, pin-
ball loss minimization [63]], £>-constrained least squares [41l], £;-total variation norm [66]. The
k-support norm-based method demonstrates that the new estimator admits a closed-form solution,
eliminating the need for optimization. The paper also establishes its consistency and provides
recovery guarantees for both Gaussian and sub-Gaussian random measurements. The alternative
approach based on pinball loss minimization is a convex approach, solved using dual-coordinate
ascent algorithms. The £,-constrained least squares approach in [41] recovers solutions with
higher sparsity levels and the resulting optimization problem is solved using weighed primal and
dual active set algorithm. Recently, an ¢;-total variation method for 1bCS estimates signals that
are both element and gradient sparse, providing a closed-form solution and an adaptive dither
vector quantization scheme [66].

Although these methods achieve efficient recovery with a near-optimal number of measure-
ments, their dependence on the error parameter € is not optimal [39, 40]]. To address this issue,
an alternative approach based on projected gradient descent, specifically designed for 1bCS is
introduced [42]. This algorithm, called BIHT, is the 1bCS version of the iterative hard thresh-
olding algorithm [79]]. Starting with a random point £° on the unit sphere, every iteration of the
BIHT algorithm takes a small step in the negative (sub)gradient direction, followed by projec-
tion onto the set of s-sparse vectors through thresholding. This algorithm has shown excellent
empirical performance and is detailed in Algorithm |1} where the function Threshold(-) retains
the s largest-magnitude entries and sets the remaining entries to zero. Later, adaptive outlier
pursuit extends BIHT to handle noisy measurement, and it reduces to BIHT when measurements
are noiseless [45]. In this algorithm, every iteration estimates the sparse signal like BIHT but
excludes potentially corrupted measurements, and then updates the list of likely corrupted mea-
surements.

It has been shown that the BIHT algorithm converges within an € radius of the true signal in
justone step given m = O(5 log n) Gaussian measurements [13,/42]. A later study shows that this
estimate remains close to the true signal and does not diverge in subsequent iterations [80]. The
first formal convergence result for BIHT is based on a modified version, known as the normalized
BIHT algorithm [67]]. This algorithm, in every iteration, normalizes the projected vector to obtain
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Algorithm 1 BIHT Algorithm

Initialize £° to have unit norm
fortr=1,2,...,Ldo
® e 27 LrAT(y —sign(AR))
%" « Threshold(¥").
end for

oL
Return 2.
1]

a unit norm vector. This approach achieves convergence within an € ball of the true signal with
m > max{(slog %)10, 2448 %(s log f)7/ 2} measurements. While its dependence on € is optimal, the
constant factors and the dependence on s are quite far from optimal. In a sequence of recent
groundbreaking works, convergence and robustness of the normalized BIHT variant is proven
using an optimal O(:logn) Gaussian measurements [81} [82]]. The convergence proof relies
on a finer property of measurement matrices known as the restricted approximate invertibility
condition, ensuring that the sign measurements behave similarly to scaled linear measurements.
The core of the convergence proof involves demonstrating that Gaussian matrices with an optimal
number of rows satisfy this condition with high probability [81].

Another algorithmic approach that offers a promising alternative is Bayesian inference meth-
ods, especially under the assumption of Gaussian-distributed measurement matrices and noise-
less outputs. In a Bayesian framework, the goal is to maximize the posterior distribution given
the observed value p(x|y). When the true signal distribution is known, the Bayesian inference is
theoretically optimal [68]]; however, it often suffers from high computational complexity. To han-
dle the computational difficulty of exact Bayesian inference, generalized approximate message
passing algorithms have been developed, building on belief propagation techniques assuming
a hierarchical prior structure on the signal x such as the Gaussian-inverse Gamma prior that
promotes sparsity [49,|46l. For signals corrupted by Gaussian noise, variational inference tech-
niques, like variational message passing [48] with a two-layer hierarchical prior, are adopted to
encourage the sparsity of the signal. Alternatively, [47] provides a robust approach by modeling
quantization noise explicitly and optimizing the posterior distribution of the signal via variational
expectation maximization. Another approach uses Bussgang-like decomposition using which
the 1bCS problem can be approximated as a standard linear model and use the standard sparse
Bayesian learning (SBL) algorithm for sparse vector recovery [51]]. Further, [50] uses the SBL
framework where the correlation matrix is approximated using the arcsin law. These innovations
collectively enable Bayesian methods to effectively address signal recovery challenges, even in
cases complicated by quantization and noise. However, the sample complexity of Bayesian al-
gorithms is largely unknown. Table2]summarizes the known measurement bounds together with
the bounds of generative models discussed in Section[2.2.2]

While the above-described techniques have mostly focused on the sparse signal recovery
problem, they have also extended the 1bCS framework to address a broader range of learning
problems, which we discuss next.

2.2. Connections to Broader Learning Problems

Recent works have expanded the 1bCS framework to accommodate other low-dimensional
structures and learning problems. We discuss a new two-stage algorithmic paradigm for signal
recovery in Section explore extensions for recovering non-sparse signals generated by
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Approach

| Measurement Complexity |

Remarks and References

Lower Bounds

Q(slogg + i - 577

Early result [42]]

Q(slog * + 2)

Improved bound [[72]

Upper Bounds
0] (e% log2 %) {1-optimization (noiseless) [39]]
o o (E% log n) Sparse logistic regression [40, (73] [74]
Optimization s Penalized ;-norm [39]
0 (?2 log n) Nonconvex penalty [61]]
0 (e%) Nonconvex penalty (strong signals) [61]
' BIHT (noiseless) [42
BIHT 0(z logn) Norma(lized BIH)T[ [8{, &7]
0(% logn logz(%)) ReLU network with dithering [83]]
Generative models | O(3 log(r/€)) Generic generative model [52)54]]

0% (P + 1)

Optimization-based [34]

Table 2: A comparison of sample complexities m of 1bCS algorithms to recover an s-sparse vector in RY within an error
of € (for generative models, r is the radius of latent space and « is the number of layers).

a deep neural network in Section [2.2.2] and examine various extensions of 1bCS for efficient
machine learning in Section[2.2.3]and Section[2.2.4]

2.2.1. Support Recovery

The two-stage algorithmic paradigm has recently been investigated for the recovery of sparse
signals from a small number of one-bit measurements. In these algorithms, the first stage focuses
on recovering the approximate support set of the sparse signal, which is limited to a size of at
most O(s). In the second stage, the algorithm employs additional O (—é log %) Gaussian measure-
ments to approximately recover the magnitudes of the nonzero entries of the sparse vector, based
on the identified support. It is important to note that while the algorithm operates in two stages,
the entire measurement matrix is designed in advance and is not adaptively modified during the
measurement process. The required number of measurements for these algorithms is largely
determined by the first stage, which is discussed next.

For any signal x € R”, let supp(x) £ (i e(1,2,...,n}| x[i] # 0} denote the support of x. The
goal of the support recovery problem is to identify supp(x) using a minimal number of one-bit
measurements. For this problem, one approach uses techniques derived from the heavy-hitters
streaming algorithm to obtain a sign-sketch that accurately recovers the support of a fixed signal x
using O(slogn) measurements with high probability [84]]. The result also holds in the presence
of pre-quantization noise and for compressible signals. However, these techniques necessitate
modifications to the measurement matrix for each new signal, which is impractical.

In contrast, a universal measurement matrix for 1bCS is a single set of measurements that can
be applied to all sparse signals. Universal support recovery is initially explored using techniques
from coding theory and group testing, establishing sufficient conditions for exact support recov-
ery [83]]. Later advancements refine these conditions to achieve improved bounds for both exact
and approximate support recovery [[72, 186 [87, |88]. These results all build upon the union-free
property of the measurement matrices, which plays a key role in support recovery.
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Definition 1 (Robust union free family (RUFF)). A binary matrix E € {0, 1}"™" is said to be
(d, s, a)-robust union free if each column of E has weight exactly equal to d, and for every set
of s + 1 columns of E indexed by {iy, i1,...,is} C{1,2,...,n}, there exist at least (1 — a)d rows
indexed by T~ C {1,2,...,m} such that Eliy, j] = 1, and Eli;, j1 =0 forall land j € T.

A RUFF measurement matrix ensures that each support set of size at most s generates a
unique outcome signature. Existence of (d, s, @)-RUFFs with m = O(;—z2 logn) rows, and d =
0(§ log n) is known using random constructions [89, |90].

The use of RUFF properties in measurement matrices, particularly with @ = 1 enables exact
recovery of non-negative sparse vectors [72]]. Further, they show the resilience of the algorithm
to (% — a)d adversarial bit-flips when using RUFF with @ < 1. To handle all s-sparse signals, an
expander-based measurement matrix construction with m = O(s? log n) rows is also introduced
in this work. The same recovery algorithm is later shown in [[72]] to work for all s-sparse signals

using RUFF with @ = % thereby establishing an upper bound of m = O(s* log n). Furthermore,
2 logn

the authors also show a lower bound of m = Q(s Tog ~) measurements for exact support recovery
by establishing that (d, s — 1, 1) RUFF property is necessary.

Furthermore, to reduce the dependence of O(s?) for the approximate recovery problem us-
ing a two-stage algorithm, several works have investigated the approximate support recovery
problem [86 87, [88]]. In particular, it is shown that o((s*?* + é)log %) measurements from a
generalization of RUFFs (called list-RUFF) are sufficient if one needs to recover a small superset
of the true support of size O(s), and O(% log ) measurements are sufficient if the algorithm is
allowed to return support with es errors (both false positives and false negatives) [88]]. This work
also establishes a nearly matching lower bound of m = Q(3(log i)" log £-) for approximate
support recovery.

In a non-universal setting, exact support recovery achieves a tight bound of m = ®(slogn)

measurements [91] whereas e-approximate support recovery needs m = ©(: logn) measure-

ments [87] for signals with a bounded dynamic range, % Additionally, when the sup-

port of the signal is restricted to certain small groups of indices, only O(slogn) measurements
are necessary [92].

2.2.2. Generative Priors

The study of 1bCS has been extended to recovering structured signals that go beyond the
standard sparsity assumption. An early approach inspired by the success of deep generative
models is to explore the recovery of signals within the range of a A-Lipschitz continuous gen-
erative model [93]. Formally, let x be a signal in the range of G : B3(r) — R”, where G
is a generative model that is A-Lipschitz, and 83(r) denotes an ¢, ball of radius r > 0 cen-
tered at zero in R®. We note that x-layer deep neural networks with ReLU, Hyperbolic tangent,
or sigmoid activation functions are known to be A = n®®-Lipschitz continuous. Recovering
such signals can use a gradient descent approach in the latent space that aims to minimize an
empirical recovery error function. This approach needs roughly m = O( log(Ar)) random
Gaussian measurements for e-approximate signal recovery, and relies on a stronger variant of
the restricted eigenvalue condition which is satisfied by random Gaussian matrices. Several
follow-up works have provided better algorithmic guarantees and established tight information-
theoretic lower bounds on the number of measurements necessary for accurate recovery. See
[94] for a survey on related results. Several works built upon this approach achieve results
comparable to classical sparsity-based methods while requiring significantly fewer measure-
ments [95} 18311961153, 1521154, 70,197, 71} 155, 198 56].
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Generalizing the recovery conditions for sparse signals discussed earlier [42]], recent work ex-
tends the results to provide an information-theoretic characterization for the recovery of signals
with generative priors[34} 52]]. The authors of [52]] establish an upper bound, demonstrating that
O(: log ’E\—{) independent Gaussian measurements are sufficient with high probability to distin-
guish any two signals that are € separated. The lower bounds indicate that at least O(z +s log(Ar))
measurements are necessary for e-approximate recovery of the signal. Furthermore, a modified
BIHT algorithm archives excellent empirical performance, where the hard threshold function is
replaced by a projection operation onto the range of the generative model. However, the mea-
surement bound in [52]] is generic and not directly connected to BIHT version. Concurrently,
[34] introduces an optimization-based algorithm combined with the generative model, which
achieves a similar measurement complexity.

Provable recovery algorithms with an almost optimal number of measurements are first intro-
duced for ReLU-based generative models without an offset [83]]. In particular, the authors design
an empirical risk minimization algorithm that recovers bounded target vectors produced by the
model from O( logn logz(i)) quantized noisy sub-exponential measurements with a uniform
dither. The analysis relies on the piecewise linearity of ReLU networks that allows for a more
efficient tessellation of the range space using affine hyperplanes. The authors also establish an
information-theoretic lower bound that matches the achievability up to €' factor for shallow
networks. Subsequent works have extended the provable recovery algorithms to signals gener-
ated using A-Lipshitz generative models with O(E‘i2 log Ar) measurements [34, 53| 154, |55, 56].
Notably, a least absolute shrinkage and selection operator (LASSO)-based approach for non-
uniform recovery is first introduced [33]], which is later extended to obtain uniform recovery guar-
antees [50]. This approach circumvents the need for Gaussian measurements by using structured
partial Gaussian circulant matrices for recovery. Additionally, a one-shot projection algorithm
for non-uniform recovery of generative signals is developed, utilizing an almost optimal number
of Gaussian measurements [S5]]. These results also hold for more general single-index measure-
ment models with minimal assumptions on the quantization function. Another study investigates
a diffusion-based generative model, which shows promise but is limited by the large training
dataset and high computational cost, leading to latency issues, especially on edge devices [71].
The study also lacks theoretical analyses of reconstruction performance and measurement re-
quirements. Finally, since generative models generally require a large volume of training data,
algorithms based on untrained deep neural networks are also available in the 1bCS literature [[70].

2.2.3. Compressive Learning With One-bit Measurements

In many practical applications, such as in IoT, exact reconstruction of signals is not nec-
essary. Instead, the focus is on computing some function of the original signal rather than re-
covering it. This approach allows for a substantial reduction in implementation complexity by
inferring information directly from compressed measurements without the need for reconstruc-
tion. This area of research, known as compressive learning, has recently gained significant atten-
tion [99] [100]. One of the first studies in this direction estimates the £, norm of a s-sparse signal
x with 7> < ||x|[> < R? using only 0(1:—24) affine measurements [101]. Random linear projections
onto low-dimensional subspaces, which are well-studied in the context of CS and dimension-
ality reduction, are known to preserve certain properties of high-dimensional datasets, such as
pairwise Euclidean distances between data points. Consequently, compressed datasets - often
referred to as sketches - retain sufficient information that many compressive learning algorithms
utilize to achieve efficient signal classification and clustering [[102] [103] [104] [105]]. Numerous
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studies have also extended these techniques to develop effective learning algorithms from one-bit
quantized sketches.

In one-bit quantized learning, the goal is to infer properties of signals (that are not necessarily
sparse) using a few one-bit measurements given by (@). Geometrically, each one-bit measure-
ment depicts the side of the chosen hyperplane in which the data point (signal) lies. This binary
embedding preserves pairwise angular distances between data points, making it useful for devel-
oping efficient learning algorithms. One technique is to train an algorithm using a few labeled
and one-bit quantized data points, enabling efficient classification of newly acquired signals. The
algorithm computes a “score function” based on binary measurements during the training phase
and classifies new data by maximizing a class probability function. A separate but related line of
work provides an upper bound on the misclassification error when the signals follow a Gaussian
mixture model [106]. This work designs an accurate correlation estimator using a few one-bit
sign measurements that are utilized by the classification algorithm. Fundamental performance
limits are investigated, extending analogous works in the compressive sensing setting to the one-
bit quantized setting. Further, extending the analogous works of [105] in CS setting to the one-bit
quantized setting, techniques are designed to estimate the Chernoff and KL divergence distances
between the probability density functions (PDFs) of measurements based on their membership in
different classes [[107]. It is noted that the misclassification error, bounded using these distance
measures, decreases exponentially with an increasing number of measurements.

Another important area of study focuses on clustering, which aims to extract patterns from a
set of unlabeled data points. Compressive clustering algorithms seek to provide efficient cluster-
ing solutions using compressed datasets without the need for reconstruction [104]. However, the
one-bit quantized variant of clustering is less explored. The existing research investigates this
problem by estimating data distribution through random sampling of its characteristic function at
randomly drawn frequencies [108]] and its extension also demonstrate differential privacy [109].

2.2.4. Mixture of Sparse Linear Classifiers

The signal recovery in the 1bCS model is equivalent to learning a sparse linear classifier in
the active query model. Here, each designed measurement can be considered as querying the
classifier for its label, and the goal is to recover the linear classifier using a minimal number of
such queries. The mixture of sparse linear classifiers generalizes this problem to simultaneously
recover L sparse signals using a minimal number of queries. In such a model, the output of a
query (or measurement) is derived stochastically from one of the signals at random.

Let X = {x; ...,x.} € R” be the set of sparse signals with ||x;||o < s, and the outcome with
respect to a query (or measurement) vector @ € R” is derived as:

y; = sign({a, x;)), xj~p X, (11)

for some fixed distribution D (usually taken to be uniform) over the set of unknown signals X.
Mixtures of simple machine learning models, such as mixtures of distributions [110] and regres-
sion [[111]], have been extensively studied over decades to address heterogeneous data in areas
like machine translation [112]], health [113]], medicine [114], and object recognition [[L15], etc.
Mixtures of classifiers, in particular, are well-suited for modeling categorical data prevalent in
these applications. The mixture of linear classifiers has been studied rigorously in the literature,
providing algorithms for approximating the subspace spanned by component classifiers and for
making predictions based on feature and label inputs [[116].
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In the active query model, some researchers have looked at the approximate recovery of L
signals that are s-sparse within the mixture model [117]. The authors provide a two-stage non-
adaptive algorithm that first recovers the support of all the signals using combinatorial matrices
related to RUFFs (see Section[2.2.T]for details) and then approximately recovers the non-zero en-
tries of each s-sparse signal using additional Gaussian queries. Note that similar to the two-stage
recovery algorithms discussed in Section the queries are completely non-adaptive, while
the recovery algorithm proceeds in two stages. The algorithm uses m = O(e™' L3542 log? n)
measurements for e-approximate recovery under the assumption that each signal contains one
unique identifying feature. Other approaches forego this assumption and provide recovery with
m = O(L*(Ls)"°2" log® n) and O(L>s(s)" log® n) measurements, respectively, and are also toler-
ant to noise in the query outputs [118l [119]. One method uses tensor decomposition based on
queries [118]], while another provides both single-stage and two-stage algorithms [119]. How-
ever, these sample complexities remain distant from a basic counting-based lower bound of
Q(sLl():;%) and require runtime exponential in L and s. Moreover, in a different model, where
queries cannot be designed but samples are drawn from a fixed distribution, approximate recov-
ery can be achieved with as few as ow’ log(le"g Ln)) samples [120].

In addition to signal reconstruction and learning from a single measurement vector, 1bCS
has also been extended to the recovery of multiple sparse vectors and adapted to accommodate
various sparsity structures, incorporating both centralized and decentralized algorithms. These
advancements are particularly significant for distributed sensor networks (DSNs). The following
section explores this topic further.

2.3. Centralized and Decentralized Multi-Agent Algorithms

1bCS has emerged as a promising approach for handling high-dimensional sparse signals in
DSNs to reduce communication and extend network lifetime in power-constrained sensor net-
works monitoring various phenomena. In this section, we discuss some algorithms for quantized
CS, motivated by resource-constrained DSNs.

One immediate application of quantized CS in DSNs is compressive data acquisition. When
merging quantized CS and data acquisition from distributed sensing nodes, one needs to design
processing at the compression side as well as at the reconstruction side, under communication
constraints. On the compression side, the practical design of compression schemes via random
projections depends on how the sparsity is exploited. On the reconstruction side, suitably ex-
tended quantized CS techniques for single and multiple measurement vector models to account
for communication-related aspects are used. The quantized CS-based data acquisition problem
can be formulated as a sparse signal reconstruction problem that may exploit temporal, spatial,
and spatiotemporal sparsity. Here, we only briefly discuss the temporal sparsity case, and for
other cases, the reader may refer to [121]].

2.3.1. Temporal Sparsity-Aware Algorithms

Consider a DSN shown in Figure 2] where L sensor nodes observe the phenomenon of inter-
est. The time samples collected at the ith node are represented by the vector x; € R”. These time
samples are assumed to be sparse in a suitable orthonormal basis. CS is applied to compress tem-
poral sparse data in that only a small number of random projections are obtained via y; = A;x;
at the ith node fori = 1,..., L, where A; € R™" with m < n is the measurement matrix used
at the ith node. This compression via random projections is carried out independently at each
node. The goal is to reconstruct [x, ..., X, ] based on their 1-bit quantized compressed versions

14



Sensor 1

x-‘-(Proj A1 *yt:A1xj-
C 4

Sensor 2

x -
i{Proj AIJ Y2=AdXy -

Pol.

Sensor L
XL

..LProj ALJ Yo=AX

Figure 2: Acquisition of compressed measurements of observations with temporal sparsity (from [121]), where Pol refers
to the phenomenon of interest. These measurements are quantized to address communication constraints.

z; = Q,(y;) communicated through the network where the reconstruction techniques depend on
the specific communication architecture, centralized or decentralized, used to combine z;’s. For
the sake of simplicity, only noiseless cases are considered in this section.

Using matrix notation, we consider recovering X = [x,...,x,] jointly based on quantized
observations Z = Q(Y) with Y = [y,,...,y,]. The multiple measurement vector model can be
represented in matrix form with the same projection matrix, such that A; = A fori=1,...,L,

Z =Q,(Y) =Q(AX). (12)

One may also consider the more general case with different projection matrices at the individual
nodes, the observation matrix at the fusion center can then be expressed as

Z=Q(Y)=Q([A1x;...ArxL]). (13)

When considering the simultaneous sparse approximation framework, X needs to be recon-
structed when Y and A (with the same projection matrix) or Ay,..., Ay (with different matri-
ces) are given. Joint estimation of X can leverage joint or structured sparsity common in sensor
networks [122]].

A widely used sparsity model is the joint sparsity model [122]. In this model, the sparse
signals observed at multiple nodes, x;’s, have the same but unknown sparsity pattern with respect
to the same basis. However, the corresponding amplitudes can be different in general. The joint
sparsity model with the same measurement matrix as in (I2)) is commonly termed as the multiple
measurement vector model [[123][124]]. While developing algorithms and evaluating performance
with the joint sparsity model, several measures have been defined. To represent the number of
nonzero elements of X, we can use || - ||;ow—o Norm where

I X|kowo = {i € {1,...,n} : Aj s.t.XTi, j] # 0}. (14)

The natural approach to solve for sparse X from Z in (T2)) is to solve the following optimization
problem
min [|Xlhow—o st Z =Qi(AX). (15)

Centralized Algorithms
This setting assumes that the nodes transmit their compressed measurements to a central
fusion center with single-hop communication, and the fusion center solves the problem in (I5).
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One approach to solving the problem is to use the ML decoder developed for sparsity pattern
recovery [125]. The minimum number of one-bit compressive measurements that should be
obtained per node to perform sparsity pattern recovery with a vanishing probability of error
is determined via the ML approach. The results in [125]] establish that mL = Q(Csslog(f))
measurements are necessary for the noiseless setting, where Cj is a function of the sparsity level.
Interestingly, the bound is on mL, implying that only a single measurement (rm = 1) from some
sparse vectors is enough to reliably recover the joint sparsity pattern if L is large enough. The
implementation of the ML decoder becomes intractable as the signal dimension and the number
of sensors increase. Yet, the performance bounds obtained through the ML algorithm serve as a
benchmark for comparing suboptimal, computationally tractable algorithms.

Since the ML decoder is not computationally feasible, tractable algorithms for sparsity pat-
tern recovery in a centralized setting are proposed in the literature [125]. In one algorithm, an
optimization problem is formulated that minimizes the ML function and the /; ., quasi-norm of
a matrix and uses the iterative shrinkage-thresholding algorithm. Specifically, it solves

arg;nin SL(AX) + A Xlrow-0 (16)

where fy is the negative log-likelihood function (without imposing the sparsity constraint), A
is the penalty parameter, and || - [l;ow—o is defined in (T4). Since optimizing || - [|sow—o is hard, one
often solves it by using the mixed norm approach. The relaxed convex problem is

arg;nin ALAX) + A X} o, (17)

where || X1 o = X7, max<j<z X[i, j]is the the £  quasi-norm of a matrix. Here, both fyn.(AX)
and 1| X ||l1.co are convex functions and can be solved using the standard convex solvers, such
as the iterative shrinkage-thresholding algorithms.

The other algorithm extends the BIHT algorithm to the multiple measurement vector model
available at the fusion center. Similar to BIHT discussed earlier in Section [2} in each iteration,
the gradient of the cost function is evaluated using the previous iterate, and a step proportional to
the gradient norm is taken in the negative direction to minimize the cost function. This process
continues until a stopping criterion is met, with the final iteration providing the estimated support.

While centralized solutions discussed above are attractive in terms of performance, their
power consumption due to direct communication with the fusion center may be high. So, they
may not be practical in large or resource-constrained networks and we explore decentralized
approaches for sparsity recovery.

Decentralized Algorithms

In a decentralized setting, all the nodes in the network send their one-bit quantized measure-
ment vectors to their one-hop neighbors. To define the notion of neighborhood, the decentralized
network is modeled as an undirected graph, where the vertices represent the sensor nodes and the
communication links correspond to the edges of the graph. Consequently, a node i can send its
measurements to another node only if there is an edge connecting the ith node to the other node.

Two decentralized algorithms have been proposed in the literature, each featuring distinct
stages that strategically embed the fusion of measurement information and decisions among
nodes [125]. These collaborations among the nodes can be structured into two distinct stages,
namely the information fusion stage and the index fusion stage. During the information fusion
stage, each node estimates the support set using any centralized algorithm, convex relaxation-
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or BIHT-based methods described earlier. Because each node only has access to measurements
from its neighbors, the problem size is smaller than that of fusion center-based recovery. In the
index fusion stage, the nodes send their estimates to all other nodes in the network, which then
arrive at the final support estimate using simple fusion methods, such as the majority fusion rule,
which counts the s-most frequently occurring indices among the estimates. These algorithms
assume the prior knowledge of the sparsity level of the signal. If the sparsity levels of signals
are not known in advance, they need to be estimated using methods proposed in the literature. A
comparison of the performance of these proposed decentralized algorithms with those of central-
ized ones and their real-valued counterparts shows excellent performance, demonstrating their
value in resource-constrained environments.

2.3.2. Distributed Inference

DSNs are also employed in various inference problems. In such applications, 1bCS tech-
niques can again be used as a means of data compression where the goal is to solve an inference
problem and not signal reconstruction. In inference problems such as detection [126} [127, [128],
classification [91} 106} 61]], and parameter estimation [[129, 130} [131]], it is sufficient to construct
a reliable decision statistic based on compressed data without recovering the original signal.
Beyond the standard 1bCS framework, this requires the investigation of different metrics for
performance analysis and quantification of the amount of information preserved under compres-
sion to obtain a reliable inference decision. In this section, we briefly discuss the compressive
detection problem with one-bit measurements. For discussion on classification and parameter
estimation problems, see [121]].

Event or object detection is an important task performed by DSNs [132]. In order to solve
a detection problem efficiently in a multi-sensor setup, one needs to process the signals at the
sensing nodes that maximally contribute to the overall decision-making prior to the transmission
of its processed information to the fusion center. In order to minimize the amount of information
to be transmitted, we may employ quantized CS. When the number of active events is much
less than the number of all possible events (rare events), the event detection problem can be
formulated as a sparse recovery problem. Consider the scenario shown in Figure [3] where there
are n sources scattered over a region out of which s are active simultaneously. The scenario can
arise in various applications such as radar surveillance [134] and cognitive radios [135]. The
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quantized measurement vector at m active sensors has the following form
7= Qi(Ax +w), (18)
where x is a sparse vector with x[i] € 0, 1. The (i, j)th element of A is given by
Ali, j1 = r P (19)

where r; ; denotes the distance from the ith sensor to the jth source, @ is the propagation loss
factor and h; ; is the fading coefficient of the channel between the ith sensor and the jth source.
In this framework, the sparse event monitoring problem reduces to estimating the sparse vector
x from (I8) when the elements of A are as given in (T9). Here, A is not a user-defined random
matrix satisfying restricted isometric properties as the standard CS framework desires. Rather,
the randomness arises due to the random locations and fading coefficients.

The problem of distributed detection of sparse stochastic signals can be framed as a binary
hypothesis testing problem as

Ho : z=Qi(w), (20)
H:z2=Qi(Ax +w). 21

The study in [126] has introduced a one-bit detector using the Generalized Likelihood Ratio Test
for distributed detection of sparse deterministic signals, which requires full signal reconstruc-
tion. Meanwhile, [127] presents a one-bit detector based on the Locally Most Powerful Test
for distributed detection of sparse stochastic signals, where sparse signals are modeled using a
Bernoulli-Gaussian distribution. This work avoids the need for full signal reconstruction, making
it more efficient. The approach in [128] improved this distributed detector by quantizing the like-
lihood ratios to generate the one-bit data instead of directly quantizing the analog observations.

This concludes our discussion on generalized quantized CS algorithms. So far, we have
examined the theory and algorithms for 1bCS, exploring various approaches. Over the last
decade, quantized CS has gained traction across various fields, including medical imaging, ma-
chine learning, computer science, and statistics. These general theories and algorithms can be
further refined and adapted for specific applications, with additional enhancements through the
integration of application-specific tasks. The next section focuses on the customized quantized
CS approaches for wireless communication and sensing applications.

3. Quantized CS Algorithms for Wireless Communication and Sensing

In wireless sensing, quantized CS is commonly used, with 1bCS standing out for its simplic-
ity, cost-effectiveness, low resource requirements, and robustness to certain linear and nonlin-
ear distortions, such as saturation errors. This section explores its diverse applications in both
wireless communication and sensing, highlighting key advancements, methodologies, and their
impact on system performance and efficiency.

3.1. Generic Quantized CS Algorithms

Quantized CS is widely used in wireless sensor networks, cognitive radio, radar, and di-
rection of arrival estimation, to address bandwidth constraints, energy efficiency, and reliable
sensing under limited resources. Its ability to operate with low-resolution measurements while
maintaining useful signal recovery makes it particularly valuable in these applications. Below,
we review the relevant literature, summarized in Table [3] that focuses on adapting the general

framework of quantized CS algorithms across these domains.
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Domain Methods
¢,-normed based [136,[16]
IoT/Sensor Networks Log-sum penalty function-based [15]
Blind BIHT [14]
Sparse logistic regression [[137,[138]]
Radar Imaging BIHT variants [30, [139][140]
Bayesian method [28]]

Norm optimization [141, 142} [143]]
BIHT variants [144}|145]]
Bayesian methods [146) [147]]
Norm minimization [23]]
BIHT variants [[18} 148} [149]
Norm optimization [[150, [151]]
Wireless Channel Estimation Approximate message passing [[152 {153} 25]

SBL [154} 155 1156]
BIHT variants [157, 158 (159, [26]]
Bayesian methods [24]]

Radar Direction Finding

Cognitive Radio Networks

Feedback-based Channel Estimation

Table 3: Summary of different 1bCS algorithms discussed in Section applied to wireless communication and sensing
applications

3.1.1. IoT and Wireless Sensor Networks

IoT and wireless sensor networks consist of small, low-power sensors that monitor the envi-
ronment, periodically collecting data and transmitting it to the fusion center via shared wireless
channels. Since sparsity is a common feature of many signals (temperature, humidity, illumina-
tion, etc.) monitored by the sensors, CS frameworks are widely used in wireless sensor networks.
Given the limited computational and energy resources of sensor nodes, 1bCS is particularly suit-
able as it enables accurate signal reconstruction while minimizing storage costs and hardware
complexity.

One of the earliest works to apply 1bCS for data gathering in sensor networks appears in
[14]. This work adapts BIHT to estimate the sparsity level of unknown data by analyzing the
variance among solutions of the BIHT algorithm at different sparsity levels and selecting the best
one. This modified version, called blind BIHT, improves compression efficiency and reduces
communication costs. In [15]], 1bCS is utilized for source localization in wireless sensor net-
works, by introducing a Gaussian entropy (log-sum penalty function)-based method for sparse
signal recovery. A memory-efficient 1bCS algorithm using a circulant random bipolar mea-
surement matrix is proposed in [136]], to demonstrate that 1bCS can lead to less data traffic in
sensor networks. Additionally, [[16] examines 1bCS in noisy wireless sensor networks affected
by channel-induced bit-flipping errors. To mitigate these errors, an amplitude-aided signal recon-
struction scheme is proposed, improving accuracy in low-SNR conditions or when the number
of sensors is limited.

Another important aspect of using quantized CS in wireless sensor networks is analyzing
how efficiently sparse signals are represented, particularly from an information-theoretic per-
spective. This involves determining whether quantized CS measurements provide an effective
representation and how to optimize the quantizers themselves. Early works in quantized CS, such
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as [160, [152, [161], optimize scalar quantizers for CS reconstruction, while quantization-aware
decoding algorithms for fixed encoders are proposed in [162]. Although these methods improve
performance over quantization-unaware versions, they are suboptimal for minimizing the mean
squared error in signal reconstruction. The issues include optimizing only the encoder or decoder,
using scalar quantization instead of vector quantization, and minimizing measurement quantiza-
tion distortion, which does not always minimize reconstruction distortion due to non-linearities.
To address this, joint optimization of vector quantization-based encoder-decoder pairs is pro-
posed in [163} [164], aiming to minimize the mean squared error in quantized CS. However,
these methods are computationally expensive, hindering practical implementation. Furthermore,
the early results in [[165] and further analysis in [166] explore lossy CS, while additional work
on distortion-rate bounds and remote compression appear in [167, [168]]. Further, [169] analyzes
the rate-distortion performance of quantized CS measurements in wireless sensor networks using
three reconstruction methods: €;-norm minimization, A*OMP, and LASSO. This study presents
an incremental transmission scheme that refines sensor measurements at the fusion center on
demand, reducing energy consumption and achieving rate-distortion performance close to the
optimum. Later, [170] studies the rate-distortion performance of various single-sensor quan-
tized CS schemes for compressing sparse signals using noisy quantized measurements. They
propose three practical methods: compress-and-estimate, estimate-and-compress, and support-
estimation-and-compress. Further, [[171] presents practical symbol-by-symbol quantizer-based
methods for different compression strategies, assessing the compression limit of quantized CS
through an analytical lower bound and numerical approximation. Using high-resolution func-
tional scalar quantization, they show noticeable improvements in operational distortion-rate per-
formance.

3.1.2. Radar Systems

In synthetic aperture radar systems, low-bit encoding is used to reduce transmission costs
through quantized CS. Early research on one-bit radar imaging with conventional methods, such
as matched filtering [[172, [173]], shows that one-bit quantization can lead to ghost targets due to
the loss of magnitude information from fixed threshold ADCs. Since targets with strong scat-
tering coefficients are sparsely distributed, 1bCS methods provide an alternative for improved
one-bit radar imaging by leveraging the sparse representation of radar echoes without increasing
hardware complexity. These methods either compensate for information loss caused by quan-
tization through random and adaptive quantization thresholds [[174, [129] or leverage additional
information during the imaging process [28]]. For example, a maximum a posteriori approach
in [28]] effectively suppresses ghost targets and artifacts. In [30], an enhanced one-bit radar
imaging algorithm based on the BIHT framework exploits two-level block sparsity to account
for clustering and joint sparsity patterns. However, this method’s performance is often degraded
by noise in the data sampling and transmission process. To address this, robust 1bCS algorithms
based on BIHT are developed to handle sign flip errors effectively [139]. These algorithms intro-
duce an adaptive quantization level, iteratively updated with the imaging result using a relaxed
quantization consistency condition to reduce noise and improve reconstruction quality. Addi-
tionally, an adversarial sample-based BIHT method [140] uses adversarial samples to train and
adapt quantization level parameters, ensuring quantization consistency. However, for large-scale
one-bit imaging, these approaches are time-consuming, and so, sparse logistic regression-based
one-bit synthetic aperture radar imaging is introduced [[137]]. This approach combines efficient
sparse logistic regression-solving techniques with CS imaging constraints to achieve good results
with low run time and excellent convergence. More recently, this framework has been enhanced
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by utilizing two-level structured sparsity [[138] that encourages clustered sparsity patterns and
suppresses high-intensity artifacts and clutter caused by sign flips.

Direction estimation is another key problem that leverages quantized CS. The sparse vec-
tor recovery-based direction of arrival estimators, such as fixed-point continuation [58}[141]] and
BIHT, perform well even with limited snapshots. BIHT has been extended to complex-valued
and multi-snapshot cases, leading to the complex-valued BIHT algorithm [144]. Another work
exploits the generalized linear model inference problem and extends the generalized SBL algo-
rithm for multiple snapshots, achieving better estimation accuracy than BIHT by exploiting the
joint sparsity of the real and imaginary components [[146]. More recently, deep learning-inspired
algorithms like the deep unfolded version of fixed point continuation [[142] have been proposed
for one-bit direction-of-arrival estimation. These approaches are categorized as on-grid methods
since they determine the direction by searching within predefined grid points. However, they suf-
fer from errors when the actual direction of arrival falls between grid points (off-grid), necessitat-
ing denser grids, which increase computational complexity and reduce stability. To address this,
off-grid DOA estimation techniques have been developed. One approach enhances the complex
BIHT algorithm with gradient descent for signal estimation and bases-updating and backtracking
strategies to enhance off-grid estimation accuracy and convergence [145]. Other approaches in-
clude atomic norm minimization using the alternating direction method of multipliers [143]], and
an off-grid iterative Bayesian algorithm within the block successive upper-bound minimization
framework [147]].

3.1.3. Cognitive Radio Networks

Cognitive radio networks consist of wireless users equipped with sensing capabilities to im-
prove the efficiency of spectrum utilization. It enhances spectrum efficiency by allowing sec-
ondary users to transmit on unused portions of the spectrum. However, the secondary users
must vacate the spectrum when the primary user reoccupies it. The key feature of cognitive
radios is spectrum sensing, which enables them to accurately determine the availability of spec-
trum [[175,[176]. In many applications, wideband channels must be monitored, requiring high-
speed sampling. However, traditional spectrum sensing methods typically rely on high-precision
quantization for optimal performance, which leads to significant energy consumption, motivating
low-resolution (particularly one-bit) spectrum sensing.

Several studies have demonstrated that quantized CS can reduce spectrum sensing costs [23].
For example, [23] examines the tradeoff between computation cost and compression perfor-
mance, highlighting the communication cost savings of 1bCS in spectrum sensing for networked
systems. It also proposes a block reconstruction algorithm that leverages the block sparsity of
the signals. Further, to tackle the high sampling rate challenges in cognitive radio devices, a
modulated wideband converter is typically used to sample sparse multiband signals. Using the
1bCS framework, [18] proposes an alternative sub-Nyquist sampling system using comparators
for efficient space utilization and low bit-budget, demonstrating its advantages over modulated
wideband converter (especially at low input SNR).

The framework has also been extended to distributed collaborative spectrum sensing, where
secondary users share their measurements and make a common decision [149] [148]]. These ap-
proaches leverage joint sparsity and spatial diversity through average consensus, guiding local
signal reconstruction with the weighted BIHT algorithm [[149]. Here, local reconstruction and
fusion alternate until reliable spectrum detection is achieved. Additionally, sub-Nyquist sam-
pling at the output of wide receive front-end filters, combined with group testing concepts, has
been explored for wideband spectrum sensing [177]. In this context, the combinatorial group
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testing problem parallels 1bCS, with the unknown sparse spectrum occupancy and measurement
matrix approximated as a binary vector and matrix, respectively. Further, in wideband spectrum
sensing scenarios where multi-user cooperation is infeasible and prior sparsity information is
unavailable, non-cooperative spectrum sensing is needed. In this context, [178]] uses a multicoset
sampling framework to achieve sub-Nyquist sampling without requiring sparsity knowledge and
introduces a subspace-aided 1bCS algorithm for spectrum support estimation without signal re-
construction.

3.1.4. Wireless Channel Estimation

In wireless communications, massive MIMO is a key enabling technology to meet the in-
creasing demand for data rate and energy efficiency [[179, [180]. However, the advantages of
massive MIMO come at the cost of increased power consumption and hardware complexity due
to the large number of radio frequency (RF) chains, high precision ADCs, etc. In particular, the
power consumption of ADCs grows exponentially with the number of quantization bits per sam-
ple [1811[182][183]]. Also, full precision ADCs require correspondingly high rate data processing
at the receiver. This has spurred interest in employing low-resolution ADCs in the base sta-
tion (BS) of a massive MIMO system [15, 151 [184} 185/ [186]]. In such systems, quantized CS has
paved the way for innovative applications that capitalize on signal sparsity, such as interference
cancellation, angle-of-arrival estimation, channel estimation, and symbol detection.

An example of a quantized sparse estimation problem in wireless communication is channel
estimation, which is arguably the most extensively studied application in the field. Channel esti-
mation with low-resolution ADCs explores the sparse representation of the wireless channel in ei-
ther the delay domain or angular domain. One algorithmic technique involves approximating the
nonlinear quantization effects of one-bit ADCs into a linear form using the Bussgang decompo-
sition, enabling linear minimum mean squared error (MMSE) channel estimation [25} (150, 151].
Another approach is the generalized approximate message passing algorithm, initially developed
in CS to handle quantized measurements [152]], which has been adapted for channel estima-
tion [153]]. Additionally, some studies have explored the SBL framework for channel estima-
tion [154] and time-varying channel tracking [[155| [156].

Furthermore, in frequency division duplex massive MIMO systems, channel reciprocity is
unavailable due to the uncorrelated uplink and downlink spectral bands. Therefore, the downlink
channel state information (CSI) is fed back to the BS through the uplink channel [187]]. While
initial codebook-based methods reduce feedback overhead, 1bCS approaches have enhanced CSI
accuracy by exploiting channel sparsity and user correlation. Notable methods include complex
1-bit Bayesian CS [24] and BIHT-based distributed 1bCS, where received symbols are quantized
to one bit per dimension [157]]. The method in [[157] is enhanced using partial amplitude informa-
tion with algorithms such as quantized partially joint orthogonal matching pursuit and quantized
partially joint iterative hard thresholding [158]. It is further extended to off-grid channel es-
timation in [159]. To save uplink bandwidth, a 1-bit CS-based CSI feedback method assisted
by superimposed coding is proposed. In this method, downlink CSI is superimposed on uplink
user data sequences and fed back to the BS. The 1bCS channel estimation algorithms at the
BS with superimposed coding include BIHT-based recovery [26] and deep learning enhance-
ments [188, [189]].

3.2. Application-tailored Quantized CS Algorithms

While several studies have explored quantized CS for wireless sensing and communication
applications, most of them are limited to 1bCS. This is not surprising, as the general theory
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of quantized CS has often gravitated toward one-bit quantization. A notable exception is wire-
less channel estimation, where low-resolution CS techniques, beyond one-bit quantization, are
also widely explored. Many of these studies do not employ generalized algorithms for quan-
tized CS, as the unique characteristics of each context demand more tailored approaches. In
the following, we investigate two distinct flavors of MIMO channel estimation problems with
low-resolution (more than one-bit) ADCs. Section delves into the integrated challenges
of channel estimation and data decoding in multi-user MIMO-orthogonal frequency-division
multiplexing (OFDM) systems, while Section [3.2.2] focuses on channel estimation for reconfig-
urable intelligent surfaces (RIS)-aided MIMO systems in narrowband scenarios. Each problem
presents its own formulation, motivating the need for specialized algorithms that address the
domain-specific needs of the underlying application. The aim of this section is not to provide
a comprehensive survey on quantized CS algorithms in wireless communication but to illustrate
how generalized theories and approaches can be enhanced through the use of tailored algorithms,
optimizing performance based on the particular requirements of each application.

3.2.1. Example 1: Channel Estimation and Soft Symbol Decoding

In this subsection, we present an iterative delay domain sparse channel estimation and soft
symbol decoding algorithm for a massive MIMO-OFDM system with low-resolution ADCs.
Three challenges arise in using low-resolution ADCs in multi-user MIMO-OFDM systems: de-
graded performance of traditional detectors due to non-linearities of coarse quantization [190],
the need for long pilot sequences for accurate channel estimation reducing spectral efficiency
as pilot signals are also quantized [182, (191} [151], and the requirement for bit log likelihood
ratio (LLR)s for channel decoders, necessitating the computation of posterior beliefs of data
symbols (also known as soft symbols) based on the quantized observations. We exploit the spar-
sity of the channels in their time-domain representation to obtain the posterior distributions of
the channels. We also present a quantized variational Bayesian (QVB) soft symbol decoding pro-
cedure that uses the estimated channels to obtain the posterior beliefs of the data symbols. We
iterate between channel estimation and soft-symbol detection to further refine the channel and
soft-symbol estimates.

Description of the Massive MIMO-OFDM System and Problem Statements

We consider the uplink of a single cell massive MIMO-OFDM system with M antennas at the
BS and K single antenna user equipments (UEs), where M > K. Each UE encodes its information
bits and maps them to constellation symbols. The symbols are then mounted onto subcarriers and
OFDM modulated using an inverse discrete Fourier transform (DFT). The OFDM modulated
data symbols are parallel-to-serial converted, a cyclic prefix is added, RF up-converted to the
passband, and transmitted over a frequency-selective wireless channel to the BS. At the BS, the
received RF signal is down-converted to baseband, sampled, and quantized using B-bit ADCs to
obtain the received complex baseband signal.

Each UE transmits 7, pilot OFDM symbols followed by 74 data OFDM symbols. We assume
that the coherence interval of the channel is at least 7, + 7¢ OFDM symbols. We denote the
number of subcarriers by N,. After some algebra, it can be shown that the received time-domain
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pilot OFDM symbols Z® € C*¥ can be expressed as [T92I[

A5 @ YHXP (1) (Ix ® ¥i.)

Z® — H+wW?P 2 pPH 4+ W(p), (22)

(1% ® Wy )XP (1) (Ix ® Wy, )

where ® denote the Kronecker product, ®® € C» >k W is the DFT matrix, Wy, , and the n
column truncated DFT matrix. Also, H = [hy, ..., hy] € CK>M ig a row-sparse channel matrix
in the time domain with the channel between each user and each receive antenna represented as
an n-tap, s-sparse complex vector, X (f) = diag(X(lp (5),.. ., Xﬁ?)(t)) € CKNXKNe ' with Xf{p)(t) is
a diagonal matrix with the pilots loaded on the subcarriers as its entries, and W is the additive
white Gaussian noise matrix. The channel matrix H has Kn rows, with each set of n consecutive
rows representing the n potential delay taps per user. Only s taps have nonzero coefficients,
making H row-sparse, which we exploit in the channel estimation procedure.

The received signal is quantized using a uniform quantizer with intervals £&” = (=B/2 + A
for/ = 1,...,B — 1, and quantization levels at (¢ + £&/D)/2. The dynamic range is set using
the expected signal power Pg, with £© = —2.5/Pg/2 and &® = 2.5 4/Px/2. The values outside
this range are clipped to +(B — 1)A/2. The received pilots are quantized using B-bit ADCs as

Yy® = QB(Z(p)) - QB((I)(P)H + W(p)) € CToNXM (23)

Our first goal to estimate H given Y® and ®® in (23). After estimating H, our goal is to decode
the data symbols in the data transmission phase.

In the data transmission phase, we can vectorize and stack the signal received over the M
receive antennas and 7y OFDM data symbols to obtain the frequency-domain received data sym-
bols Z@ e CMNexTa a5

T H freq
(1x ¥y H I
(1x ® PYHH,™ _
zO=|"" 0 T x99+ ) L x4 1o)| + WO = DXO WO, (24)
1z @ ¥ HH,
where D € CMNXKNe i5 the measurement matrix for data detection, Hfffq € CKNXKN: i a diag-
onal matrix containing the frequency-domain representation of the channel between the K users
and the n,th receive antenna, X @ ¢ CKNexTa ig the transmit data matrix, and W@ is the additive
white Gaussian noise matrix during the data phase. Now, we quantize the received signal (24)
using the B-bit ADCs to obtain

YO = QuZ9) = Qg ( DX@ 4 W(d))_ (25)

Our goal in this part is to decode the data symbols X@ given Y@ and D. Once we estimate the
posterior posterior distribution of XY, we will perform data-aided channel estimation to refine
the channel estimates, as described next.

2The interested reader is referred to [192] for complete details on the material presented in this subsection. Further
results on variational Bayesian channel estimation and data detection can be found in [193/[194}[195/1196L[1971[198L[199].
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Recall that the unquantized received pilot signal can be expressed as Z® = ®PH + WP,
Similar to the pilot reception phase, if we consider the decoded data as known virtual pilot
symbols, then we can write the received data signal as

290 = A @Y (X)) (Ix ® ¥y.) H + W), (26)
where £ = {tp + 1,..., 7 + 7a) with (X9 (1)) € CKN*KN given by
(xO0) = diag((X"®).....(XP®)). 27

Here, <X§€d)(t)> = diag( <x,(€d)(t)>) € CNxNe with <x§€d)(t)> being the posterior means of the de-
coded data symbols of the kth user during the 1th OFDM symbol. We stack Z® and Z‘9(7) to
obtain an expression for the unquantized received signal over one coherence interval as

70 P
29, +1)| | AF @ W) (X, + D) Uk © ¥y.)

7= H+W=®H+W, (28)

29 + 1] |aF @ W) (XV(r, + 7)) (I © ¥.)

where ® € C™*TNxKn jg the augmented measurement matrix and W € CTHtToNXM g the
additive white Gaussian noise matrix. The B-bit quantized received signal is given by

Y = Qp(Z) = Qp(®H + W) € CrotToNexM (29)

Our goal is to estimate H given Y and ®. Once we estimate H, we use it to obtain D as in (23),
which in turn is used to refine the posterior beliefs of the D-quadrature amplitude modulated data
symbols in the following data decoding iteration.

In the next three subsections, we present a QVB-based solution to the above channel estima-
tion and data detection problem.

Quantized Variational Bayesian Algorithm

To develop the algorithm, we first derive the channel estimation and soft symbol decoding
algorithms, and then combine them into an iterative algorithm for joint channel estimation and
soft symbol decoding.

Quantized Variational Bayesian Channel Estimation. Our goal is to infer the posterior distri-
butions of the channels and the LLRs of the data symbols, given the quantized pilot and data
observations. We adopt a probabilistic graphical model for this statistical inference, but exact
posterior computation is intractable due to high-dimensional integrals over the channels and data
symbols. So, we use approximate inference techniques, replacing the exact posterior distribu-
tion with a tractable distribution close to the original. An excellent introduction to variational
Bayesian inference can be found in [200].

In order to exploit the lag-domain sparsity in the channel, as in [50], we use a two-stage
hierarchical prior on H, i.e., Vi, h; ~ CN(h;;0, P*I), where the precision matrix P is diagonal
and contains the hyperparameters @ = [a[1],...,a[Kn]]" as its diagonal elements. Further, we
impose a Gamma hyperprior on @. This results in a Student’s 7-distributed prior on h;, which
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is known to promote sparse channel estimates [201]. We express the logarithm of the joint
probability distribution of the observations and latent variables as

Inp(Y?,Z® H,a;®",02,a,b)
=Inp(YP|ZP) + In p(ZP | H; ®P,52) + In p(H|P) + In p(a;a,b), (30)

where the prior distributions of H and « are given by

Kn a

M
p(H|P) l—l lT hHPh) and p(a;a,b) = 1_[ b
=1

a-1 _
| | F(a)a[k] exp (=balk]), (31)

and I'(+) is the Gamma function. We set a and b to small values (say, 10~*) such that the hy-
perprior p(a;a, b) is non-informative. We approximate the posterior distribution of the latent
variables as the factorized distribution:

p(ZP, H,a|Y?; ®P 07, a,b) ~ gu(H)qz(ZP)ga(@), (32)

M M Kn
=[[an®d [ |2 [ | doatetkd,  (33)
i=1 i=1 k=1
(p) (P

where we define Z® £ [z, ..., 2, ). Next, we express the conditional probability distributions
of the observations and latent variables that are needed to compute the posterior distributions
under the factorized structure as

M
p(y(P) | Z(p)) A n I (zl('P) c (Z?O), ZEUP))) ’ (34)
i=1
M

pZ? | H; 0P, 02) = [ |

(o2 )Tole eXp (__”z(p) ‘D(p)hiﬂz) , (35)
-1 W

(lo) (up)

where II(-) is the indicator function, z; and z; ~ are the lower and upper quantization thresholds
corresponding to the ith column of Y(p), respectively. The posterior distributions of the latent
variables are computed by finding the expectations of the logarithm of the joint distribution (30)
with respect to the latent variables, and are provided in closed form in the following.

The posterior distribution gy (H) is complex normal with the covariance matrix of each of its
columns and mean given by

1 B 1
Ty = (—chﬁ’)“q)(f’) + (P)) and  (H) = —Zp@" (20, (36)
gy, Ty
respectively. Here, (P) = diag({a)), and <Z(p)> and (a) are the posterior means of gz(Z®) and
go(@), respectively. The posterior distribution gz (Z ™) is truncated complex normal with mean

f Z(IO)—(D“”<H) _ f Z(Up),q;(p)([])
<Z(p)> _ (I)(p) <H> + ﬂ ol V2 o/ V2
\/E F ZO0)_ P () _F Zﬁ,h))—(D(p)<H) ’
o/ V2 o/ V2
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where Z© and Z“P are the lower and upper quantization levels corresponding to the observation
Y™, respectively, and (H) is the posterior mean of gg(H). Also, f(-) and F(-) are the PDF and
cumulative distribution function of a standard normal random variable, respectively, computed
element-wise on the real and imaginary parts of the argument. The division operation in
is also performed element-wise. Finally, the posterior distribution gu(@[k]) follows a Gamma
distribution with mean, shape and rate parameters given by

a+M ~ T S 12
(alk]) = b+ S GHIK ) ar=a+M, and by=b+ ;<|H[k, i17). (38)

Quantized Variational Bayesian Soft Symbol Decoding. Next, we develop a QVB algorithm
for soft symbol decoding in MIMO-OFDM systems using the model in (25). We consider the
unquantized received data signal as a latent variable and express the logarithm of the joint prob-
ability distribution of the observations and the latent variables as

In p(¥Y®, 29, XD, 07) = np(¥|Z?¥) + In p (2V1XV, D, o)) + In p(X V). (39)

We factorize the posterior distribution of Z@ and X@ as

Tp+7d KN,

p (Z(‘”, X9y p, 0_ qz Z(d) l_[ l_[ ‘bm xg) (40)
1=ty +1 k=1
where Z@ = [z (Td)“ ey z(Td)m] and x,(::) is the kth component of x@(r). We write the conditional
probability distributions in (39) as follows:
p(Y(d) | Z(d)) — ]I(Z(d) c (Z(IO)’ Z(UP))) , 1)
Tp+Td 1 )
@) y@d. p 52— Dy — Py D
p(Z91X9 D, o?) = ]_[ (o2 exp( = |z @) - Dx (r)t12), (42)

t=1p+1

where Z(9, Z" are the entry-wise lower and upper quantization intervals of the real and imag-
inary components of Y@,

The posteriors, in this case, are given as follows. The posterior gy, (xk . ) follows a Boltzmann
distribution with the probability mass function

(92 2) = exp (fu(£)) | )
Yo exp (fuld)

fori=1,...,D,where k € {1,...,KN.},t € {r, + 1,...,7p + 74}, D = {{3,...,{p} is the signal
constellation set of cardinality D, and

fid) = - (||Dk|l ¢ - 2Re[ D} ({29 - Zuk V| +np() = 0. (44)
k’:tk

where Re(-) and (-)* denote the real part and complex conjugate operators, respectively, Dy is
the kth column of D, <z(d)(t)> and <x,(<dt)> are the posterior means of g, (z¥(r)) and gy, (x(d))
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respectively. We compute the mean and mean square value of gy, (x4x) as

()= > 0q5,@, and  (IKPP) = " 1P 4., . (45)

LeD LeD
Also, the posterior distribution gz (Z (d)) is truncated complex normal, with mean

Z“")—D(X(d)) Z("p)—D(X(d))
Uwf Tl V2 -f T2

\/E ZW-Dpx 9y Z00_px@y\’
F( o/ V2 F o/ V2

(46)

where Z1© and Z“P are defined in {#T), <X (d)> contains the posterior means of g, (x\") Vk, 7 as
its entries.

The QVB algorithm starts by randomly initializing the latent variables. It iteratively com-
putes the posterior distributions of data symbols in {@3)), which in turn yields the bit LLRs. Next,
we describe the data-aided channel estimation procedure.

Iterative Quantized Variational Bayesian Channel Estimation and Soft Symbol Decoding. Here,
we merge the channel estimation and soft symbol decoding into an iterative algorithm. We utilize
the data-aided channel estimation system model to refine the channel estimates in an iterative
fashion. We first compute an initial channel estimate using the pilot symbols. Then, we utilize
the posterior means of the decoded data symbols to form a new measurement matrix @ that is
input to the channel estimation block. Following a procedure similar to that described for channel
estimation, we obtain the posterior statistics of the latent variables as shown below:

-1
Ty = (quwcp + <P>) (H) = L 3,0%2), @7)
o o2
a+ M
(alk]) = ————, k=1,...,Kn, (48)
b+ 3 (il "

ZO-oH)\ [ Z2“P-®H)
Ty f( 0’w/\/§ ) f( ffw/ﬁ )
\/E Z(UP)—(I)(H) _ Z“‘J)—(D(H) ’
F ( o/ V2 F Tl V2

(Z) = ® (H) +

(49)

where Z1® and Z“P are the lower and upper quantization thresholds corresponding to Y. We
repeat this process of channel estimation and data decoding for a fixed number of iterations.
Finally, we use the posterior distribution of the transmit symbols to obtain the bit LLRs, which are
deinterleaved and input to the channel decoder. The pseudocode for the iterative QVB channel
estimation and soft symbol decoding explained above can be found in [[192].

Numerical Evaluation

In this subsection, we show the coded bit error rate (BER) performance of the iterative QVB
channel estimation and soft symbol decoding algorithm described above. The data bits are gener-
ated iid uniformly distributed from the unit-energy 4-quadrature amplitude modulation constella-
tion distribution. At each UE, the data bits are encoded with an LDPC channel code as per 3GPP
5G New Radio specifications [202]. We use the parity check matrix from LDPC base graph 0
with a lifting size Z. set to 8 and set index 0, which results in 176 message bits and 544 coded bits
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Figure 4: Coded BER as a function of SNR (dB), with M = 32, K = 8, N, = 256, n = 32, s = 8, 74 = 10. The left
plot shows the performance for three values of the number of quantization bits. The right plot shows the performance of
conventional OFDM processing (curves labeled “UQOFDM” and “QOFDM”) [203]], the QVB algorithm where curves
labeled “EstCSIR” use the estimated channel while those labeled “PerfCSIR” assume perfect channel estimates.

per block. The coded bits are interleaved by a random interleaver known to both the UE and the
BS, mapped to the constellation, OFDM modulated, and transmitted over frequency-selective
wireless channels. We define the SNR as 1/02. We set the maximum number of iterations
for QVB channel estimation and data detection algorithms to 25, and the total number of outer
iterations to four.

The left plot in Figure[dshows the coded BER of the QVB algorithm with the ADC resolution
set to {1,2, 3} bits. The system bandwidth is set to 2 GHz, so the sampling period T’; is 0.5 ns.
We set the cyclic prefix length to the maximum delay spread of n = 32 symbols. The number of
nonzero taps s is set to 8, with the corresponding delays generated uniformly at random between
0 and (n — 2)T. The channel gains of the nonzero taps are iid complex normal with zero mean
and unit variance. The figure shows that the performance dramatically improves as the number of
quantization bits is increased. While not shown in the plot, the improvement in further increasing
the number of quantization bits is marginal.

The right plot in Figure ] compares the coded BER performance of the QVB algorithm with
that of the MMSE channel estimator and soft-detector [203]]. For the quantized MMSE receiver,
we compute the DFT after the quantization and perform the equalization. An advantage of the
QVB algorithm is that it can recover the channel with only one pilot OFDM symbol. However,
for a fair comparison, we set 7, = 8 because the conventional OFDM receiver cannot estimate
the channel in an underdetermined setting. We see that, at a BER of 10~#, the QVB algorithm (la-
beled “QVB 7, = 8, EstCSIR”) outperforms the conventional OFDM receiver with unquantized
observations and channels estimated using 7, = 8 pilot OFDM symbols by around 13 dB. In fact,
it even outperforms the conventional OFDM receiver with unquantized observations and perfect
CSIR by 2.5 dB, underscoring the importance of directly inferring the posterior distributions of
the data symbols.

To summarize, this section presented a flexible variational Bayesian algorithm for pilot-based
channel estimation and soft symbol decoding, achieving superior performance by leveraging
channel sparsity in the lag/delay domain, even with minimal pilot symbols and coarsely quan-
tized samples. We next look at RIS-aided channel estimation with quantized measurements.

3.2.2. Example 2: Reconfigurable Intelligent Surface-aided Channel Estimation
5G New Radio serves the demand for high data rate use cases by using the mmWave band in
the 30-300 GHz range, typically known as FR2 [204]. However, the severe path loss experienced
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in the mmWave band significantly limits the coverage compared to the lower bands. To compen-
sate for the severe path loss, RIS is recently proposed in [205]], an array of metamaterial-based
passive reflecting elements capable of adjusting the amplitude and phase of the impinging sig-
nal as intended. The RIS is attractive due to the low power consumption resulting from a large
number of passive reflecting elements.

To further lower the power consumption of RIS-aided mmWave massive MIMO systems,
some RF components can be replaced with energy-efficient components. For example, the BS
can be equipped with a large number of low-resolution ADCs that coarsely quantize the received
signal [206]. In case the RIS is equipped with a small number of active sensors capable of
receiving the impinging signal unlike the passive reflecting elements, the RF chains of the active
sensors can be equipped with low-resolution ADCs as well. The motivation for deploying a
small number of active sensors at the RIS is to observe and estimate the UE-RIS and RIS-BS
links separately [207} 208]].

For the RIS to generate a favorable propagation condition by aligning the reflection amplitude
and phase shift with the channel, accurate CSI is necessary. The distinct feature of RIS channel
estimation is that the channel is composed of the UE-RIS link of size NK and RIS-BS link of size
MN, which in turn form a UE-RIS-BS link of size MNK where M, N, and K are the numbers of
the BS antennas, RIS elements, and single-antenna users, respectively. Since the size of the UE-
RIS-BS link is proportional to M and N, the channel estimation overhead is typically large, which
necessitates an efficient yet accurate channel estimator. RIS channel estimation becomes more
challenging when RIS-aided mmWave massive MIMO systems are equipped with low-resolution
ADCs, which coarsely quantize the received signal.

To accurately estimate the channel of RIS-aided mmWave massive MIMO systems in the
presence of low-resolution ADCs, the prior knowledge of the channel sparsity in the mmWave
band should be exploited. Furthermore, the cascaded channel structure composed of the UE-RIS
and RIS-BS links should also be taken into account, which calls for a quantized CS approach
designed explicitly for quantized RIS mmWave channel estimation. Since there are various sce-
narios on where to deploy low-resolution ADCs, the quantized RIS mmWave channel estimation
problem yields many challenging yet exciting topics.

This section addresses two related quantized RIS-aided mmWave channel estimation prob-
lems: one using fixed low-resolution ADCs and the other utilizing a task-based quantizer. We
begin by discussing the quantized RIS mmWave channel estimation problem where the RIS is
equipped with a small number of low-resolution ADC-based active sensors [209].

Quantized Reconfigurable Intelligent Surface-aided Channel Estimation

Consider the uplink of an RIS-aided mmWave massive MIMO system with an M-antenna BS
and K single-antenna users as depicted in Figure[5] The RIS is equipped with N elements, which
are partitioned into N, passive reflecting elements and N, = N — N, < N active sensors. The
passive reflecting elements are dedicated to reflecting the impinging signal as intended to gener-
ate a favorable propagation condition [210, 211} 212]]. Meanwhile, the active sensors are capable
of receiving the impinging signal, which is forwarded to the BS for channel estimation. Since
deploying high-resolution ADCs at the RIS is not practical due to the high power consumption,
the active sensors are implemented by connecting the RIS elements to N, RF chains with B-bit
ADC:s that coarsely quantize the received signal [207]].

In essence, our goal is to estimate the UE-RIS and RIS-BS links separately based on the
received signal at the BS and additional information acquired from the low-resolution ADC-
based active sensors at the RIS. Then, the BS can avoid estimating the UE-RIS-BS link of
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Figure 5: The uplink of an RIS-aided mmWave massive MIMO system with low-resolution ADC-based active sensors.

size MNK and only estimate the UE-RIS link of size NK in the subsequent coherence blocks
because the RIS-BS link remains constant across multiple coherence blocks in practice [213]. As
a result, the channel estimation overhead is reduced by estimating the UE-RIS and RIS-BS links
separately in the first coherence block and replacing UE-RIS-BS link estimation with UE-RIS
link estimation in the subsequent blocks. Here, we focus on the first coherence block, where all
the links are unknown. In addition, we assume that the UE-BS link is blocked.

As a preliminary to formulating the system model, let Q € {0, 1} and Q° = 1y, — Q
denote the index matrices of the active sensors and passive reflecting elements that constitute
the RIS over the channel estimation phase of length T. For example, the N, rows of Q that
correspond to the active sensors are all-one vectors, while the N, remaining rows that correspond
to the passive reflecting elements are all-zero vectors.

Then, the received signal ¥ € CM*T at the BS over the channel estimation phase of length
Tis

Y=G

QCQVGFX]+WB, (50)
————
=S

where © is the Hadamard product, F € CY*X and G € CM*N are UE-RIS and RIS-BS links.
Meanwhile, V € CN*T is the passive reflection matrix with the reflection amplitude |V[i, j]| < 1
and phase shift ZV[i, j]1 € [0.27), X € CK*T is the reference signal, and Wg € CY*T is the
Gaussian noise with iid CN(0, 0'123) elements. Likewise, the quantized received signal Z € CN<T
at the active sensors forwarded to the BS is

Z = QpU) = Qp(Q 0 FX + Wy), on

where U € CM*7 is the unquantized received signal at the active sensors, while Wg € C¥*7 is
the Gaussian noise with iid CN(0, O'ZR) elements. The B-bit quantizer Qp(+) is applied to the real
and imaginary parts elementwise as

Re(Z™[i, j1) < Re(UTi, j1) < Re(Z“P[i, j])
Im(Z"[4, j]) < Im(U[i, j]) < Im(Z“P[i, /1),
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where Z09 ¢ CVT and Z™P € CM*T are the lower and upper thresholds associated with Z.
In other words, the real and imaginary parts of Z, Z!®, and Z“P correspond to one of the 28
quantization thresholds. Before moving on, note that the N, rows of Z that correspond to the
passive reflecting elements are dummy variables that have no meaningful information due to the
Nj, all-zero rows of €2.

To take the channel sparsity in the mmWave band into account, the virtual channel represen-
tation is adopted, which transforms the dense channel {F, G} into the sparse channel {F, G} by
[214]

F=ARF, and G = AgGAY, (53)

where Ag € CM*M: and Ag € CV*M: are the overcomplete dictionaries that satisfy M, > M and
Ng > N. In practice, the overcomplete dictionaries are selected based on the array geometry of
the BS and RIS. Finally, applying the virtual channel representation to (30) and (51)) gives

Y = ABGAE(S OARFX)+Wp, and Z =Qp(Q0 ArFX + Wpg). (54)

Our goal is to estimate sparse {F, G} from {Y, Z}, which can be interpreted as a combination of
low-rank matrix factorization [215] and low-rank matrix completion [216]] problems. Here, the
high-level idea of the SBL approach is introduced for tackling the problem, which is a Bayesian
approach to the quantized CS problem. The interested readers are referred to [209] for a deep
dive into SBL-based channel estimation for RIS-aided mmWave massive MIMO systems with
low-resolution ADC-based active sensors.

In the SBL approach [201}, 217} 218}, 219], the goal is to perform approximate posterior in-
ference on {F, G} so that the posterior mean of {F, G} can be computed, which is the MMSE es-
timate. To capture the interaction between {F, G, U, Y, Z}, all the variables are treated as random
variables that constitute a hierarchical Bayesian model as illustrated in Figure[6] The conditional
distributions of {Y, U, Z} that define the hierarchical Bayesian model are

p(vec(Y)|F, G) = CN(vec(Y)lvec(AgGAR(S © AR FX)), o3 1), (55)
p(vec(U)|F) = CN(vec(U)|vec(Q2 © ARFX), O'ZRI), (56)
p(vec(Z)|U) = I(Re(Z") < Re(U) < Re(Z“P)) x IImM(Z") < Im(U) < Im(Z“P)), (57)

which are obtained from the measurement model defined in (52) and (34). Here, CN(x|u, C) is
the PDF of a complex Gaussian random vector x with mean u and covariance C. The prior dis-
tributions of {F, G} are assumed to be the Student’s-¢ distributions, which are sparsity-promoting
prior distributions that make approximate posterior inference tractable [220]. Then, approximate
posterior inference is carried out by finding the posterior distributions of {F, G} that maximize
the negative variational free energy based on the conditional distributions of {Y, U, Z} defined in
(33)-(57) and prior distributions of {F, G}. After obtaining the posterior distributions, computing
the MMSE estimates of {F, G} is straightforward.

The SBL approach is approximate posterior inference in the sense that 1) the prior distribu-
tions of {F, G} are assumed to be the Student’s-¢ distributions, 2) posterior distributions of {F, G}
are assumed to be independent, which is known as the mean-field approximation, and 3) the pos-
terior distributions of {F, G} that maximize the negative variational free energy are found in an
alternating fashion instead of jointly. These are the key assumptions that make the negative vari-
ational free energy maximization problem tractable at the expense of attaining a local maximum
of the negative variational free energy.
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p(G) p(Y|F,G)

p(F) p(UIF) p(Z|U)

Figure 6: The Bayesian network of a hierarchical Bayesian model where {Y, Z} is the measurement and {F, G, U} is the
hidden variable. The arrows represent the conditional dependence between two random variables.
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Figure 7: Normalized mean squared errors (NMSEs) of all the links as a function of the number of active sensors N,.

To demonstrate that the UE-RIS and RIS-BS links can be estimated separately by deploying
low-resolution ADC-based active sensors at the RIS, a simulation result is provided in Figure[7]
The simulation setup is such that there are M = 16 antennas at the BS, N = 8 X § elements at the
RIS with N, active sensors quantized by B = 4-bit ADCs, and K = 4 users in the 28 GHz band,
while the length of the channel estimation phase is T = 400 symbols. The system parameters are
configured as specified in the Dense Urban-eMBB scenario in ITU-R M.2412-0 [221].

In Figure[7] the NMSE of the UE-RIS link decreases as N, increases, which is not as surpris-
ing. In contrast, the NMSE of the RIS-BS link increases, unlike the UE-RIS link. The reason for
such a phenomenon is that the RIS-BS link can only be observed through the reflected signal.
Therefore, more active sensors mean less passive reflecting elements or equivalently less RIS-BS
link measurements. In addition, another interesting point is that the NMSE of the UE-RIS-BS
link composed of the UE-RIS and RIS-BS links is lower-bounded by the worst NMSE of the
UE-RIS and RIS-BS links. The figure clearly shows that it is possible to obtain sufficiently low
NMSE results with not-so-large N,, making the SBL-based channel estimation for RIS-aided
mmWave massive MIMO systems highly practical.

Up to this point, we have discussed the quantized channel estimation problem with a fixed
quantizer. Next, we delve into task-based quantization, where the quantizer is custom-designed
to extract the information relevant to the specific task at hand.
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Task-based Quantized Reconfigurable Intelligent Surface-aided Channel Estimation

Task-based quantization [222] 223, 224 225| [226]], allows for jointly designing a quantizer
with hybrid analog and digital architectures to minimize task recovery errors. The key idea of this
approach is to extract lower-dimensional information from the signals in the analog domain based
on a specific system task, which can dramatically reduce the overall number of bits required,
thereby minimizing memory requirements and power consumption. Now, we discuss how the
task-based quantization approach can be applied to channel estimation in RIS-aided mmWave
massive MIMO systems, specifically for estimating the cascaded UE-RIS-BS link channel [227]].
Note that, although the dimension of the cascaded channel would be large, using the task-based
quantization approach, it is feasible to project the received signals onto a lower-dimensional
space whose size can be determined by the number of propagation paths. By leveraging the
sparse nature of mmWave channels, which have a limited number of propagation paths, this
dimensionality can be significantly reduced.

In the case of cascaded channel estimation, deploying active sensors at the RIS is not neces-
sary. Therefore, we consider the system shown in Figure E] without active sensors, i.e., N = N,
and S = V, while we consider finite-resolution ADCs at the BS in this case. In the consid-
ered setup, the total number of time slots 7" for the channel estimation phase is divided into T
blocks, with each block consisting of T time slots. Within each block, the RIS configurations re-
main unchanged, and all UEs transmit repeated orthogonal pilot sequences, e.g., DFT sequences,
throughout the T blocks. Let y[f, u] = y[(t — 1)T + u] be the uplink received signal at the BS in
the uth time slot of the rth block. The measurement matrix at the BS, obtained by stacking the
received signals during T time slots of the #th block, is given by

K
Y[l = [ylt 1,y 711 = | Gdiag(S)f, VPx® + Wylr], (58)

k=1
where x(k)T = [xlt, 10, , xe[£,7T]] € C7 is the pilot sequence from the kth UE satisfying
lx[2, ulll> = 1, Py is UE transmit power, and Wy [t] = [ng[t, 1], -+ ,np[t,7]] € CM*7 is the Gaus-

sian noise. Right multiplying %x(k)* by (38) and collecting these signals over T blocks leads to
w_ 1 0 0 Frdiae( F ®)
YO = [y YT = VPGdiag(f)S + W, (59)

where W® = L[Wg[11x®", ... Wp[T]x®"] € CM*Ts. Using the identity vec(JKL) = (L' ®
J)vec(K), we can vectorize Y® in (59) as

= +-T A
vec(Y®) = Pu(ST ® I)vec(G o f,) + vec(W®) = §®c® 4 o0 2 y©, (60)
(BWy™]s Scalar k1
quantizer -
B ()
! Analog Digital . (k MNx1
(k MT,x1 g (k)
Y )Gu combining processing c’eC
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(BWyW]g,| Scalar Lxe
quantizer b
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Figure 8: An illustration of the hardware-limited task-based quantization system to estimate the vectorized cascaded
channel ¢®.
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Figure 9: NMSE comparison of UE-RIS-BS link channels as a function of number of quantization bits Bt.

where o denotes the Khatri-Rao product, S® = \P(ST®I) is the training matrix, ¢® = vec(G o
f:) is the vectorized cascaded channel for the kth UE, and n® = vec(W®).

Here, our goal is to design a channel estimator for ¢ from y® using task-based quantization
with identical scalar ADCs, referred to as hardware-limited task-based quantization [222]]. The
considered channel estimator is depicted in Figure [8} where y® is first projected onto a lower-
dimensional space C%*! satisfying G, < MT; using an analog combining matrix B® e CO>MTs,
Subsequently, the real and imaginary parts of each element in B®¥y® are quantized using By-
bit identical scalar ADCs, denoted as Qp,(-), with the support ;. Denoting the output of the
scalar ADCs as 7% = [mh1, - ,ﬂ'k’Gk]T e CO<1 ¢® is reconstructed by a digital processing
matrix D® e CMN*Cr | with its estimate given by ¢® = D®z® The objective in this system
is to design BY, D®, and y; to minimize the mean square error distortion between ¢® and its
quantized estimate, leading to the following optimization problem:

. N (@ - . ~ A
min  E[[lc® - PP = E[I1e® - e®)?] + min B [1e® - a®?]. (61)

B(k),D(k) Vi (k),D(k) i

where (a) follows from the orthogonality principle denoting é% = E[¢®|y®] as the MMSE
estimate of ¢® from y®, and ¢%® is the quantized representation. Since explicitly deriving ¢® is
challenging, we approximate ¢*) as the linear MMSE estimate, which can be derived in a closed-
form expression as in [227]]. Based on this approximation, B®, D®_ and y; for the problem in
(61)) can be derived according to Lemma 1 and Theorem 1 from [222].

The NMSE performance according to the overall number of quantization bits available at the
BS By is depicted in Figure@]with M =16, N =8x8 K =4,and Ty, = 5 withT = K in
the 28 GHz band. The digital-only approach, which is task-ignorant, applies the linear MMSE
estimator to quantized observations in the digital domain with the fixed ADC resolution |_22[;7TT I It
is observed that the channel estimator using hardware-limited task-based quantization effectively
approaches the linear MMSE estimate achievable without quantization with a small number of
bits compared to the digital-only approach, suggesting that incorporating system tasks in the
analog domain can significantly enhance the system performance.
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4. Other Low-Resolution Signal Processing Techniques

The previous sections discussed the capabilities and accomplishments of low-resolution CS,
addressing scenarios from the extreme case of one-bit resolution to multi-bit quantization. Low-
bit quantization is a broad field that extends beyond CS techniques, and not all low-resolution
signal processing methods are based on CS principles. So, we turn our attention to two other
low-resolution signal processing techniques. First, we explore low-bit quantization algorithms
(without necessarily leveraging sparsity) in the context of localization and tracking applications.
Next, we examine the emerging paradigm of unlimited sampling, which aims to address the
saturation challenges commonly encountered in digital signal acquisition.

4.1. Signal Recovery with Low-Bit Quantization

Non-sparse signal recovery with low-bit quantization is a broad and diverse field with ap-
plications across a broad range of applications. Several studies have examined this problem
from a classical statistical perspective, with the ML-based recovery being a key approach for
non-sparse signal recovery from quantized measurements [228, 229} [230]. An example area of
interest is the recovery of the frequency and phase of temporal and spatial sinusoidal signals
using only 1-bit information with fixed quantization thresholds, which is thoroughly explored
in [231} 232]]. Also, the recovery of general signals with high-dimensional parameters based
on sign comparison information is examined [233| 234]. A more recent study has looked at
an efficient signal estimation and threshold design algorithm for recovering signals from 1-bit
noisy measurements, handling both time-varying and fixed signals under various noise condi-
tions [235} 236} [237]]. The deep learning-aided models using techniques like deep unfolding
and architectures like multi-layer perceptron and long short-term memory are also explored and
shown near-optimal performance compared to traditional methods [96) 238]].

Extensive surveys on low-bit quantization in various areas, including image processing [239,
240, 241]], audio processing and language models [242| 243| 244]], model quantization in deep
neural networks [245) |246], are available in the literature. However, the resulting algorithms
differ significantly and do not share obvious commonalities. Given the breadth of this field and
the need to adapt techniques to specific structures, we focus on some concrete applications in
wireless communication and sensing areas, reviewing some of the state-of-the-art algorithms.

4.1.1. IoT, Wireless Sensor Networks, and Radar

Parameter estimation algorithms based on low-resolution data in wireless sensor networks
and radar is a well-studied topic. While parameter estimation benefits from more signal sam-
ples and sensors [247], they also increase power, storage, and transmission bandwidth require-
ments [248]]. Low-resolution quantization reduces processing costs by using fewer bits per sam-
ple, lowering data volume [249, 250, 251]. We review target localization and tracking algo-
rithms, though this framework easily extends to parameter estimation and parameter tracking,
respectively.

Parameter Estimation: Target Localization

Target localization determines a target’s position using signals from multiple sensors con-
nected to a fusion center via wireless channels, each collecting signal from the target source.
Low-bit quantization in target localization is categorized into two-step localization [250} 251}
252|,253]] and direct localization [254} 1255/,256/ 257 258]]. In two-step localization, sensors first
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Figure 10: Target localization architecture using low-bit quantized measurements.

estimate measurement parameters such as time of arrival or received signal strength and trans-
mit these estimates to a fusion center, which then solves geometric equations to determine the
target’s location. Low-bit quantization reduces bandwidth by compressing these parameters be-
fore transmission. In contrast, direct localization bypasses measurement association, estimating
the target’s location directly from the quantized received signals from the target. By leveraging
the constraint that all signals originate from the same target, it offers higher accuracy and ro-
bustness under low SNR conditions. The key difference lies in estimator construction: two-step
localization uses only measurement parameters, while direct localization processes full signals.
Consequently, two-step localization is more computationally efficient at the fusion center. Fig-
ure [T0]summarizes low-bit quantized localization methods.

We now present a generalized low-bit localization formulation. Consider joint localization
with m sensors that are connected to a common fusion center through wireless communication
channels. Each sensor observes n samples of the signal from the target sourceﬂ We define
Z = Z + W € C™" as the observed sample matrix, where Z represents noise-free measurements
and W is an iid noise matrix with elements in its ith row drawn from CN(O, O'iz). The B-bit
quantized observed sample matrix ¥ € C"™" isﬂ

Vi if €O, j] < Re(Z[i, j]) < €1, j]
Re(Y[i, j]) = Qp(Re(Z[i, j)) =1 - (62)
vy if €5V, j1 < Re(ZLi, j) < D[, jl,
where B = log, L. We can quantize the imaginary part of the signal similarly, replacing Re(-) with
Im(-). The terms f(l)[i, jlforl=0,...,L are the quantization thresholds and {Vl, I=1,.. .,l_,}
denotes the output binary code words with length B.

Assuming the real and imaginary parts of the elements in Y are independent, the probability
mass function of the low-bit quantized data Y[, j] can be expressed as

p(Y[i, jD = pRe(Y[i, j1)) p Am(Y[i, j1)) (63)

L
= [ [ Re(¥i, j1) = VI EED=0p (m(YLi, j1) = V) mED, (64
=1

3In direct localization, n denotes discrete baseband signal samples, while in two-step localization, it represents mea-
surement parameters (e.g., time of arrival, signal strength) and is typically n = 1, requiring less communication band-
width.

“4In two-step localization, quantization applies to real-valued scalars. For direct localization, which involves phase
information, real and imaginary parts are quantized separately. Thus, the two-step quantizer is a special case of the direct
localization quantizer.
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Since Z is typically assumed to follow a Gaussian distribution [254} 255} 256]], we have

(l_l) . 1 4 o - (l) . o A -
D Re(Y[i ) = Vi = F[ Y2E 1L Re(Z[z,m))_F(«/i(f i) - Re(Z1i. /1)

(%] g

), (65)

where the term F (-) is the complementary cumulative distribution function of the standard nor-
mal distribution. Similar results can be derived for the probability p (Im(Y[i, j]) = V;) by replac-
ing the term Re(Y[i, j]) with Im(YT[i, j]). Invoking the independence between observed samples,
the ML estimate of the unknown target location 6 is

Oy, = arg max In p(Y) = arg max In l]_[ l_[ p (Re(Y[i, j1)) p Am(Y[i, j]))} : (66)

i=1 j=1

The estimator that maps observations to the location differs for two-step or direct localization
based on sensor capabilities and observation types, such as time of arrival [251} 252] or received
signal strength [250} 253]]. They represent localization as the intersection of localization lines
or surfaces in the location state space corresponding to the observation information and the re-
sulting optimization problem is solved via methods, such as semidefinite programming [251],
majorization-minimization [257], and exhaustive search [254,[255]].

The position estimator in (66)) depends on quantization thresholds, which significantly impact
performance due to information loss. Based on threshold generation, quantizers are classified as
uniform (evenly spaced thresholds) or non-uniform (designed based on specific criteria). Non-
uniform quantization generally outperforms uniform quantization by minimizing quantization
distortion, often modeled as Gaussian noise. A well-known example is the Lloyd-Max quan-
tizer [259], which jointly designs thresholds and outputs. This approach has been explored in
two-step localization methods [260]. Another approach optimizes quantization based on perfor-
mance metrics. For target localization, given the likelihood function in (66)), quantization aims
to maximize localization accuracy. The Cramér-Rao lower bound (CRLB), a lower bound on
estimation accuracy, is closely tied to quantization thresholds [250} 254, [255]]. Thus, an effective
strategy is to select thresholds that minimize the CRLB or maximize Fisher information,

£=argmin tr{Cq} s.t. —oo<&'[i,j1<&i,jl<...<& i, j]<+oo,Vi, V]
3
£=[e010,.. 0 mnl, .. €5Vt n), . £V mnl], (67)

where Cy is the CRLB of the localization performance of the system and the estimate E of
& represents the optimized quantization thresholds. Saturated quantization is commonly as-
sumed in the literature [254, 255, 261], meaning these extreme thresholds are not optimized
with &, j] = —co and &[i, j] = +co. The problem in is a high-dimensional optimization
problem, typically solved using particle swarm optimization [254} 255]] or heuristic optimization
methods [250, [251]).

We next show a numerical example to demonstrate the localization performance gap between
low-bit and full-precision quantization. We consider a target at (—1, —0.5) km that emits linear
frequency-modulated signals, detected by four receivers at (—1.5, —1.5) km, (-0.75, —1.75) km,
(0.75,—-1.75) km, and (1.5, —1.5) km. The source signal has a 1 MHz bandwidth and a 40 MHz
sampling rate. Taking direct localization as an example, Figure [TT] shows a comparison of the
CRLB for low-bit target localization algorithms with different quantization bits and full-precision
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Figure 11: Comparison of low-bit localization performance under different quantization bit depths, where the unquan-
tized CRLB is used as a benchmark.

quantization. We see that 3-bit quantization nearly matches full-precision performance, a trend
also observed in two-step localization. This highlights the benefits of low-bit quantization in
maintaining accuracy while reducing communication overhead. However, a detailed quantitative
analysis of performance loss across different quantization levels remains unexplored. The low-
bit position estimator in (66) is formulated for the localization problem, but it extends to other
settings. For example, incorporating transmission uncertainty in ¥ enables channel-aware local-
ization for imperfect channels [251] 253 254]. Additionally, performance analysis in (67) can
go beyond quantization thresholds. By varying quantization bit depths across sensors, (67) trans-
forms into a bit allocation optimization problem [262, 263]. Overall, these methods establish a
foundational framework for low-bit parameter estimation, adaptable to more complex scenarios.

Parameter Monitoring: Target Tracking

In multi-sensor data fusion problems in wireless sensor networks, low-bit parameter tracking
is a significant area of research. We explore this area, focusing on multi-sensor target tracking
scenarios. Mathematically, target tracking can be viewed as a nonlinear Bayesian state filtering
problem. Consider n sensors collaboratively tracking one target. At a given discrete time k =
0,1,2,..., the state of the target x; and the measurement z; of each sensori = 1,2,...,nis given
by the tracking kernel functions [264],

x; = f(x)_1,m) and zf{ =K (xk,wf{). (68)

Here, the target state x; is updated as a first-order Markov process with the state transition func-
tion f(xy-1, n;) and process noise n;. The measurement zf{ at the ith sensor is obtained from the
target state x; through function /', contaminated by the measurement noise w;.

To estimate x; over time, target tracking implements a Bayesian estimation framework con-
sisting of predict and update processes given by [2635]]

P (Xilz14-1) = fp(xk|xk—1)p(xk—1|zlzk—1)dxk—1, (69)
p (1) = p(zklxk)p(xkkl:k—l). (70)
P (Zelzik-1)

The state estimate is characterized by the posterior PDF p(x4|z;, 22, - . -, Zx). During the update
process indicated in (70), the likelihood function p(zi|x;) updates the a prior PDF given by
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p(xk|z1, 22,5 - - -, Zk—1), yielding the posterior PDF. Assuming the measurements are conditionally
independent, the likelihood function becomes the product of local likelihoods

n

plxo = [ | p(eilx), (71)

i=1

where the local likelihood p(zj(lxk) corresponds to the PDF of the measurements from the ith
sensor indicated in (68). To implement the update process in a sensor network, local sensors
send their measurements z}; fori=1,2,...,nto afusion node to establish the global likelihood.
The primary difference between low-bit tracking and traditional approaches lies in the type of
measurement data transmitted to the fusion node and the subsequent filtering and fusion pro-
cesses. Traditional multi-sensor target tracking assumes analog measurements are transmitted
over ideal channels, achieving “what you send is what you get.” However, practical limitations,
such as limited communication bandwidth and bit errors, necessitate bit quantization in low-bit
target tracking.

In low-bit tracking, measurements from each sensor zfc are quantized into discrete bit data.
Consider a log, L bit quantizer, characterized by [261]]

0 l((O),i<Q(z;'€)< I({l),i
mp=1 : (72)

7 L-1),i ] L),i
Lo co(s) <

where Q(zfc) is a quantization function converting the measurement into a scalar, and we define
fj'{ = ,io)’i, ,ﬂl)”', e ,({L)”']T as the data quantizer. Channel fading and noise may introduce bit
errors, resulting in transmitted measurements 7/, = C(m,). These quantized measurements 7,
(i = 1,2,...,n) are used to reconstruct the quantized measurement-based likelihood functions
p(}hfclxk, f};) to replace p(zj{lxk) for state filtering and data fusion.

Figure[I2]illustrates the low-bit target tracking framework, where the key design components
are likelihood function and filter design. The likelihood function is influenced by the statistics of
quantized measurements, the quantization process, and CSI, and these nonlinear effects compli-
cate the filter design. Currently, most research focuses on single-time state estimation problems
like target detection and localization [266} 267, 268 269, [270]. For tracking, some work has
established a likelihood function for one-bit tracking under a simple binary symmetric channel
model [271], extending it to generalized asymmetric channels and multi-bit quantization scenar-
ios [272]]. For filter design, particle filters are commonly used due to the nonlinear effects of
bit quantization. Another approach uses a channel-aware particle filter algorithm [272], offer-
ing improved accuracy but increased complexity. Further, some researchers explore fitting the
Gaussian error function as a closed-form to accelerate the process [273].

Performance metrics are essential for evaluating and guiding tracking system design [274]
2735]. The work in [272] provided the posterior CRLB for low-bit tracking, showing that the
tracking performance depends on the number of bits and quantizer thresholds. This insight
has led to research optimizing quantization bits and thresholds [273} 276} 277]. For example,
Figure [[3a] shows that threshold optimization significantly improves the tracking accuracy for
one-bit tracking compared to fixed quantizer thresholds. Figure [[3b]illustrates that increasing
the number of bits allows low-bit tracking to approach ideal non-quantized tracking results.

40



1
Z,
X Target L3
}V observation
(@) . .
é Sensor 1 » Quantizer design
Target
N N
V4
xk\ ob::;rv%\et?on ,—k Quantization
Sensor N

Fusion center

=1 =N
{mk""’mA } State > %
— i | filtering St akte
Fading and noisy T estimate
wireless channel k+1 trail?ier:‘gt

State
prediction

Prior information

T T T
MSE-fixed threshold
—+— PCRLB-fixed threshold
=+~ RMSE-optimized threshold
—6— PCRLB-optimized threshold
- - - - PCRLB-benchmark

*- RMSE-4 bit quantizer design —&—PCRLB-2 bit quantizer design
—+—PCRLB-4 bit quantizer design -+~ RMSE-1 bit quantizer design

- RMSE-3 bit quantizer design —+—PCRLB-1 bit quantizer design
—%—PCRLB-3 bit quantizer design - - - - PCRLB-benchmark

©- RMSE-2 bit quantizer design

Position estimate error

30 35
Frame number

25

Frames

(a) Comparision of fixed threshold strategy and the dynamic quan- (b) Dynamic quantizer design with varying quantization bits (From
tizer design (From Fig. 4 of [273])). Fig. 9 of [273])).

Figure 13: Comparison of position RMSEs and posterior CRLBs

4.1.2. Cognitive Radio Networks

Spectrum sensing in cognitive radar networks has been explored through various non-sparse
approaches. One such method is an autocorrelation-based wideband sensing technique, where a
single-bit quantizer is employed to preserve spectrum occupancy, as shown in [278, 279]]. Ex-
tending this idea, one-bit quantizers are used in [280] to reduce the power consumption of a fast
Fourier transform-based wideband sensing approach, where the power spectral density is esti-
mated using DFT. This approach is further extended to multi-antenna cognitive radio receivers
and hard-decision cooperative sensing, where local hard decisions are shared with a fusion cen-
ter [2811, [282]. The framework is also adapted for uncoordinated environments, supporting both
synchronous and asynchronous networks [283], 284].

Furthermore, the above methods assume prior knowledge of parameters such as noise power,
channel characteristics, or signal properties, which may not always be practical. To address
this, one-bit spectrum sensing in the absence of prior information, also known as blind spectrum
sensing, has been explored. Designing detectors under this constraint often requires numerical
techniques, such as the generalized likelihood ratio test [266]. However, numerical methods
increase computational time and complexity, undermining the goal of simple and efficient spec-
trum sensing [285]]. To overcome this, some algorithms rely on the arcsine-based method for
reconstructing the covariance matrix, which links the autocorrelation function of an unquantized
stationary signal to its quantized counterpart through a nonlinear, invertible arcsine function.
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This approach led to a closed-form one-bit eigenvalue moment ratio detector proposed in [286].
It is shown that this detector suffers a 3 dB performance loss compared to its infinite-bit counter-
part, though the degradation reduces to 2 dB at low SNR. Another study introduced a detector for
one-bit observations based on Rao’s test, leveraging circularity to enhance performance [287],
leading to the second-order eigenvalue moment ratio of the one-bit complex-valued sample co-
variance matrix. However, these techniques are vulnerable to model inaccuracies and may fail
in analytically intractable noise scenarios. More recently, a data-driven approach has been pro-
posed, utilizing Gustafson—Kessel fuzzy c-means clustering for detecting primary user signals
in white and correlated noise. This method identifies quantization-invariant features to form
decision vectors, which are then clustered to estimate model parameters and classify channel
occupancy.

4.1.3. Wireless Channel Estimation

Wireless channel estimation from low-resolution measurements predates CS and evolves sig-
nificantly from early pilot-based methods to more advanced techniques such as adaptive quan-
tization and joint estimation. Initially, pilot-based channel estimation focuses on ML-based
expectation-maximization approaches, explored using both parametric and non-parametric meth-
ods [2881[289]]. A simpler least squares channel estimation method is also studied in [[182,[290],
providing an alternative to more complex approaches. Additionally, channel estimation using
the maximum a posteriori approach is investigated in [291, 292]. Other models, such as one-bit
channel estimation with an unknown threshold, are considered in [293]], highlighting the chal-
lenges associated with threshold uncertainty. On the theoretical front, the CRLB for channel
estimation in one-bit quantized MIMO systems is examined in [294]].

While many of these methods primarily focus on point-to-point communication, it is possible
to extend these algorithms to distributed reception or multi-user scenarios. In distributed settings,
channel estimation algorithms achieve near-optimal performance with relatively simple receiver
operations as the training length increases, even without assuming sparsity [295]]. However, these
estimators often rely on ML algorithms or high-complexity iterative methods. To overcome these
challenges, the ML estimators are extended to near-ML estimators in [296], providing lower
complexity while offering theoretical guarantees for performance.

For one-bit massive MIMO systems, obtaining reliable CSI typically requires a long training
sequence [182]]. To address this issue, a Bayes-optimal joint channel and data estimation scheme
is introduced in [297], where the estimated data symbols assist in channel estimation. This
scheme shows performance comparable to that with perfect CSI, but the computational com-
plexity of the joint technique remains too high to be practical for commercial systems. To reduce
complexity, low-complexity estimators that model quantization noise as independent noise are
proposed in [298], significantly lowering the computational burden. Later, more generalized
models of quantization noise are incorporated into the Bussgang linear MMSE estimator, which
reduces the complexity of ML-based methods but is initially limited to Gaussian-distributed
channels in OFDM systems [151]. The generalized Bussgang linear MMSE estimator is fur-
ther explored in [299]], and the equivalence between Bussgang linear MMSE and optimal MMSE
channel estimators for noisy and noiseless single input multiple output systems is established
in [300]. In [301], these results extend to optimal MMSE estimation for Rayleigh fading MIMO
channels with additive white Gaussian noise, with the findings also applicable to multi-user up-
link systems.

A key challenge in low-resolution channel estimation is the design of an optimal quantizer.
Many of the above studies assume a fixed or typically zero quantization threshold, which, while
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convenient, may not be optimal for all scenarios [182] [297]]. To address this, [302] develops an
optimal design for quantization thresholds, introducing two schemes: an adaptive quantization
scheme that adjusts thresholds dynamically based on the channel characteristics, and a random
quantization scheme that generates thresholds using statistical knowledge of the channel. Both of
these schemes result in a significant performance improvement compared to fixed quantization,
while also reducing training overhead and maintaining high estimation accuracy.

In summary, non-sparse signal recovery with low-bit quantization spans diverse applications
in wireless communication and sensing, using approaches from classical statistical methods and
ML estimation to deep learning models and optimal quantizer design.

So far, we have focused on quantization error, which arises when real-valued measurements
are mapped to a finite set of digital bit strings. In practice, low-resolution ADC also lead to
saturation error when measurements exceed the quantizer’s range, causing clipping. While
1bCS is unaffected by saturation errorﬂ all other low-bit quantization methods are vulnerable
to it. Scaling down signals to prevent saturation increases quantization noise, degrading sig-
nal quality. Although some work addresses CS and low-bit signal recovery under saturation,
existing architectures face a trade-off between dynamic range and resolution due to a fixed bit
budget [303,1304]]. Recently, unlimited sensing has emerged as a promising alternative, which we
discuss next. While one-bit sampling is indifferent to dynamic range, unlimited sampling offers a
natural way to generate time-varying thresholds for ADCs to handle dynamic range limitations.

4.2. Unlimited Sensing: Pushing the Limits of Low-Resolution Acquisition

USF is a radically different approach to digital acquisition, recently introduced in [305} 306,
307, 1308]. The USF is based on a simple yet powerful observation that,

signals can be recovered from quantization noise.
The starting point of the USF is a novel representation of measurements defined by:
y=g-Qp(g) (Quantization Noise). (73)

Note that in conventional literature, digital representation of a discrete-time signal, say g € R,
is obtained by restricting its range; this is done by quantizing it via Qp(g) (e.g., (5I)), (23) and
(23))). In contrast to this strategy, the USF advocates quantization of y. As we shall see, this ap-
proach addresses and overcomes fundamental limitations present in conventional digital sensing
methods.

We begin our discussion with some context. Conventional approaches assume that the signal
being quantized is ideal or that the ADC functions without imperfections. However, in practice,
a fundamental limitation of ADCs is their dynamic range[[181]], denoted by A, which represents
the maximum voltage range the ADC can record or handle. When the input signal exceeds this
threshold, the ADC saturates, leading to a permanent loss of information as the signal is clipped.
This has been a widely reported challenge in literature [309, 310} 311} [312} [313] [314]. In such
cases, even in the absence of noise, the resulting measurements are distorted, thereby compro-
mising the performance of recovery algorithms that rely on the assumption of ideal quantization.

5In multi-bit quantization, saturation errors occur due to a limited dynamic range. However, one-bit sampling remains
unaffected by these limitations since it records only the sign of the signal. Beyond the comparison bit, it does not capture
additional information, such as the distance between the signal value and the threshold.
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When designing ADCs, there is an inherent frade-off between dynamic range and digital
resolution within a given bit-budgelﬁ [181]]. Given the pervasive use of digital acquisition in
today’s world, this trade-off has significant implications. While it is possible to achieve both
high dynamic range (HDR) and high dynamic resolution (HDRes) by designing high-resolution
ADC:s, this approach is typically undesirable and unsustainable due to the exponential increase
in power consumption with the number of bits [181}315].

The HDR-HDRes trade-off in ADCs is frequently put to the test in various scenarios and
applications. For example, in the design of communication systems, co-located transmitter and
receiver setups in full-duplex systems experience severe self-interference, reaching up to 100
dB [316]. Similarly, balancing receiver saturation and power consumption in the RF chains of
massive MIMO systems imposes stringent design constraints. These challenges have driven the
development of low-resolution ADC-based solutions [317,15]. However, low-resolution ADCs in
massive MIMO systems face significant challenges in signal detection due to quantization noise
and the non-linearity introduced by low-resolution quantization, leading to sub-optimal system
performanccﬂ
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Figure 14: USF in a nutshell with an illustration and architecture

The innovative approach at the core of the USF, depicted in Figure[T4a] involves transforming

%This, in turn, controls the quantization noise floor. The higher the number of bits, the lower the quantization noise.

7 A common approach to mitigate these issues is to use low-order modulation schemes (e.g., binary phase shift keying)
to increase the inter-symbol distance in the constellation diagram, simplifying signal detection. However, when higher
symbol rates are required, higher-order modulations must be employed, which complicates signal detection and further
degrades system performance.
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HDR signals into a low dynamic range representation by intentionally folding them in the analog
domain (see Figure , prior to sampling or quantization. This process, similar to winding
a thread on a spool or twirling spaghetti on a fork, is accomplished using specialized hardware.
Mathematically, this amounts to injecting modulo non-linearity in the hardware. By folding the
signals before quantization, the USF effectively prevents clipping and saturation. In scenarios
with a fixed bit budget and HDR input, conventional signals may suffer from coarse quantization
or even clipping, but the folded samples in the USF maintain HDRes. However, these folded
signals require a decoding process to be unfolded, introducing a new class of inverse problems.
Depending on the folding non-linearity and the input signal characteristics (e.g., sparse, smooth,
bandlimited, or parametric), specific signal priors are employed to guide the unfolding process
in a mathematically principled manner.

Thus by leveraging a co-design of hardware (for folding) and algorithms (for unfolding), the
USF is able to recover HDR signals with HDRes. For a given bit budget, the USF’s ability to
achieve both HDR and HDRes simultaneously presents a promising low-power solution to dig-
ital signal representation challenges. Essentially, the folding non-linearity incorporated into the
hardware lowers the quantization noise floor, thereby improving the quality of the measurements.

The pipeline underlying the USF is shown in Figure The fundamental principles are
similar to the conventional setting of point-wise sampling except for the presence of non-linear
modulo mapping in the analog domain. A breakdown of the steps is as follows. We begin with
an input signal g to be sampled.

Using innovative folding hardware [308} [318]], the input function g is folded in the range
[—4, 4] via centered modulo non-linearity defined by,

. AR
%A.gHza(”ZfZH 2), (74)
where we define
gl £ g-lgl, withlgl=sup{peZlp<g} (75)

This results continuous-time folded signal (see Figure[14D)), z(t) = .#(g()). Note that one may
equivalently write z = g — Qr(g), for some A’ related to A, establishing the fact that modulo
representation is essentially the quantization noise in conventional digital representation.

The folded function z(¢) is sampled using impulse-train, &7 = > ez 0 (t — kT'), with sampling
rate 7 > 0 yielding uniform samples,

ylkl £ 2 (kT) = M (g(kT)), ke Z. (76)

as shown in Figure When considering the case of signal quantization with a budget of B
bits per sample, each modulo sample y[k] is rounded to the closest element in the set Cp, =
{1(2'2'—;?1)/1 |n € {0, LB 1}} The resulting quantized measurements are defined by,

yulk] = Q(y[K]). (77)

4.2.1. Recovery Guarantees and Methods

Since introducing the USF, various signal classes have been studied. Some notable examples
include, (a) bandlimited [305. 306! 308l 319} 320]] and bandpass [321] signals, (b) sparse signals
[32211323][324], (c) sinusoidal mixtures [325}1326], and (d) splines [327].

8 A live YouTube demonstration is available at https://youtu.be/prV40WlzHh4
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To maintain backward compatibility with the Shannon-Nyquist sampling theory, we begin
our discussion with bandlimited signal classes [328]]; the case of square-integrable functions,
compactly supported in the Fourier with maximum frequency . We denote such functions by
g € PWq (Paley-Wiener Space). For such functions, it is natural to ask: under what sampling
density conditions do modulo samples uniquely characterize a bandlimited function? The answer
to this question is that any sampling rate faster than critical sampling, i.e., 0 < 7' < n/Q allows
for a one-to-one mapping between a bandlimited function, g € PWg and modulo samples y[k] =
My (g (kT)). Without loss of generality, normalizing the bandwidth such that Q = & with the
critical sampling rate is 7 = 1 allows us to use oversampled representations. In that case, we
denote the sampling rate by T = 2=, & > 0, implying that 0 < T < 1. A formal statement of
the injectivity conditions is presented in [329]], and a subsequent alternative form of proof can be
found in [319]].

For any g € PWq, the unlimited sampling theorem proven in [305] 1306] provided the first
sampling criterion for recovery from modulo samples. The formal statement is as follows.

Theorem 2 (Unlimited Sampling Theorem [305} 1306]). Let g (¢) be a continuous-time function
with maximum frequency Q. Then, a sufficient condition for the recovery of g (t) from its modulo
samples (up to an additive constant) taken every T seconds apart is T < 1/(2Qe) where e is
Euler’s number.

The above theorem establishes a recovery principle similar to the Shannon-Nyqvist theorem.
Specifically, a constant factor of oversampling is sufficient for recovery, regardless of A. It is well
established that bandlimited signals cannot be recovered if the spectrum is aliased [328]]. How-
ever, counter-intuitively, even though modulo samples correspond to a non-bandlimited function,
ie., A (g) ¢ PWgq, which results in an aliased spectrum, a bounded time-bandwidth product
QT < (2¢)7! ensures the inversion of .#,(-).

Further, in the case of quantization, the modulo samples y[k] are affected by noise 1 of am-
plitude bounded by a some constant by > 0. That is,

VkeZ, y;lk] = QpOIkD) = ylkl +nlkl, 7kl < bo. (78)

In the presence of noise, it is possible that y,[k] ¢ [-A4, A]. However, for by below a certain fixed
threshold, the USF recovery method can provably reconstruct the noisy bandlimited samples y[k]
from the corresponding noisy modulo samples y,[k], albeit up to an unknown constant. In this
scenario, the noise present in the reconstructed samples matches the noise affecting the modulo
samples on an entry-wise basis, or, y [k] = y [k] + n[k] + 2p4 with p € Z.

Theorem 3 (Unlimited Sampling Theorem with Quantization). Let g (f) € PWgq and assume
that B, € 2A7Z is known with ||gllee < Bg. For the dynamic range, we work with the normalization
DR = B,/A. Let the noisy modulo samples be of the form ([I8)) with a noise bound given in terms
of the dynamic range as

A
Inlle < @-DR,  veZy>0. (79)

Then a sufficient condition for recovery of y [k] = y [k] + n[k] + 2pAd with p € Z is that
1
< .
2Qe
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Figure 15: Hardware experiments demonstrating the practical advantages of USF. (a) An input signal (sine wave) with
amplitude swing of 20.1925 V is folded within the range [-4, 2], 4 ~ 2.01 using the modulo ADC presented in [308].
HDR reconstruction is then performed using the algorithm (US-Alg) detailed in [306]. (b) Both signals are quantized
using the same number of bits. Reconstruction from modulo samples results in an improvement in the quantization
noise floor by approximately 13.7 dB, enhancing the digital precision of the system. This improvement translates to
better detection and reconstruction accuracy across various applications, including communication systems [330} 3311,
tomography 332, [333]] and radars [334].

The proofs of Theorems [2] and [3] are constructive and led to the reconstruction algorithm,
US-Alg, introduced in [306]. For further results on quantization and rate-distortion analysis in
the USF context, we refer to [320].

Recovery from folded samples can also be performed in the Fourier domain via the Fourier-
Prony method [308]]. Beyond the fime and frequency domain approaches, alternatives such as
Wavelet-based reconstruction [335]], reconstruction method with sampling slightly above the
Nyquist rate [319], optimization-based recovery [336] [337], have been considered in the liter-
ature.

Furthermore, the hardware experiment illustrated in Figure[T3]clearly demonstrates how USF
can simultaneously achieve HDR and HDRes capabilities. The USF strategy results in an im-
provement of the quantization noise floor (= 13.7 dB). This improvement allows for the imple-
mentation of low-resolution sensing approaches without compromising HDR signal features and
translates to better detection and reconstruction accuracy across various applications. Concrete
examples include communication systems [330}, [331]], tomography [332, and radars [334].

Given the pivotal role played by digital sensing pipelines, the simple yet powerful USF phi-
losophy of folding before sampling can be applied in various ways. Specifically, USF can be
combined with different signal models (e.g., sparse, smooth, parametric, and time-invariant)
or integrated with various architectures (e.g., compressive, one-bit, time-encoded, and multi-
channel sensing). In this context, we briefly discuss two variations that align with the theme of
this paper, namely, (i) low-resolution sensing and (ii) sparse priors.
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4.2.2. Low-resolution Sensing

As illustrated by the hardware example in Figure[I5]and the experiments considered in [330}
33111332] 333] 334], the USF naturally serves as a low-resolution sensing technique; for a fixed
bit-budget, it offers clear advantages over traditional samplers. When considering the extreme
case of 1-bit quantization, USF can be combined with existing approaches to prevent distortion
in such methods. We consider three different architectures for 1-bit sensing.

o Sigma-Delta of XA Quantization: Conventional XA converters take advantage of the fact
that oversampling with fewer bits is more cost-effective to implement in hardware. The
2A scheme operates on the principle of “noise shaping.” By oversampling the input signal
[338L1339], noise arising from the coarse quantization can be pushed to higher parts of the
Fourier spectrum, thus encoding the input bandlimited function with minimal distortion.
As in the conventional setting, if the input signal’s dynamic range significantly exceeds
a preset threshold, the XA quantizer saturates, leading to a breakdown of the pipeline.
However, by combining USF with XA, this limitation is overcome because the folded
signal remains within the sensing threshold. For further details, we refer to [340].

o Time-Encoding or Event-Driven Sampling: Time encoding [341] provides an alternative
to conventional uniform sampling by transforming continuous-time signals into streams of
trigger times, which form the basis of Event-Driven Sampling (EDS) models. Since one
only records the trigger time stamps, the resulting signal can be considered as a one-bit
stream of data. EDS offers significant advantages in reducing power consumption and en-
hancing time resolution, drawing inspiration from how biological nervous systems encode
information. However, if an analog signal surpasses a predefined dynamic range, EDS may
not produce the required distribution of trigger times, leading to recovery distortion due to
aliasing. This is the equivalent of “saturation” in conventional ADCs. As shown in [342],
by injecting modulo non-linearity prior to EDS, this pitfall can be avoided. Hardware
validation of USF inspired EDS indeed demonstrates the advantages of this approach.

e Sign-Based One-Bit: One of the simplest one-bit architectures records only the sign of the
measurement, but this approach can result in significant information loss. In their recent
work, unlimited one-bit sampling [343]], the authors introduce a one-bit architecture where
the input signal is first modulo folded and then converted into a one-bit stream. Instead
of using a fixed thresholcﬂ for comparison, the authors employ time-varying sampling
thresholds, leading to improved signal estimation.

4.2.3. Sparse Priors

Over the past two decades, the concept of sparsity and the application of sparse priors have
proven to be highly effective data models. Sparse priors play a vital role in efficiently capturing
key features and signatures within a signal. This naturally makes the interaction between USF
and sparse signal models very interesting, and it has been explored in various flavors.

o Compressive Sensing: CS with modulo measurements is first applied in HDR imaging sys-
tems, limited to noiseless modulo folding with two periods [344, [345]. Later, this model

9For instance, for the usual sign-based one-bit, the threshold is zero.
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has been expanded to general noisy modulo folding, introducing approximate message-
passing algorithms for Bernoulli-Gaussian distributed sparse signals with known param-
eters [346, 347]. The modulo-CS model is applied to line spectral estimation using a
two-stage recovery algorithm combining dynamic programming and orthogonal matching
pursuit [348]. Convex relaxation-based methods are also studied, developing a mixed in-
teger linear program for sparse signal recovery from modulo measurements [349]. Here,
the authors derive conditions on the minimum number of measurements necessary for the
unique recovery of sparse vectors. However, mixed integer programming is computation-
ally intensive to solve and becomes even more complicated with mixed integer quadratic
programming in the presence of noise. Therefore, [350] presents a variant of iterative hard
thresholding, which has linear complexity and is robust to noise.

Sparse Super-Resolution: Recovering spikes or Dirac-impulses from filtered measure-
ments is a classic problem in engineering [351), 1352]]. In this context, the interaction of
spikes with pulses leads to pulsating behavior, often resulting in signals with HDR fea-
tures. To address this, one can either allocate bits to capture the full dynamic range or
focus on recording measurements with high digital resolution, as the accuracy of spike
recovery depends on data quality [351}352]]. However, USF can effectively overcome this
trade-off. Both time-domain [322] and frequency-domain [323]] methods for sparse super-
resolution have been explored in this context. A hardware example based on time-of-flight
imaging, as detailed in [323]], offers a compelling demonstration of the practical benefits
of USF. Furthermore, by leveraging the sparsity of input signals, it is possible to design
recovery strategies that are independent of any sampling rate criteria [324]].

Fourier-Domain Sparsity: Estimating the parameters of a sparse mixture of sinusoids is
a well-known problem with numerous applications. This model corresponds to a sparse
signal in the Fourier domain. The earliest solution to this problem dates back to Prony’s
work [353], which laid the foundation for the field of spectral estimation [354]. Utiliz-
ing USF for the estimation of sinusoidal parameters offers significant benefits, as it can
detect both strong and weak components by enhancing digital resolution while preventing
clipping [325]]. For instance, in the case of radars, which follow a sinusoidal model, a
10 dB improvement in sensitivity has been demonstrated in real-world experiments [334].
Additionally, when combined with multi-channel measurements, USF enables the imple-
mentation of sub-Nyquist sampling schemes [326] without compromising dynamic range.

5. Concluding Remarks and Future Directions

In this paper, we explored low-resolution signal processing theory, algorithms, and applica-
tions in wireless communication and sensing. The first part was dedicated to 1bCS, where we
presented information-theoretic measurement bounds and various algorithmic tools, along with
extensions and connections to related areas such as mixture models and recovery methods. We
then discussed customized quantized CS algorithms for wireless communication systems. We
first introduced a simple and flexible QVB algorithm for channel estimation and soft symbol
decoding. This algorithm achieved accurate estimates using a minimal number of pilot symbols,
even from coarsely quantized samples. Additionally, we examined SBL algorithms for channel
estimation aided by RIS with fixed low-resolution ADCs as well as cascaded channel estimation
utilizing task-based quantizers. Our discussion also covered low-resolution signal processing
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techniques beyond CS. We analyzed an ML approach for target localization, showing that non-
uniform quantization improves performance. Using the CRLB, we found that low-bit quantiza-
tion reduces communication overhead while preserving localization accuracy. We also explored
the new concept of USF, which enabled ADCs to reset instead of saturating, producing modulo
samples and facilitating sub-Nyquist sampling without compromising dynamic range. Overall,
this paper consolidated various results spread out in the literature and emphasized algorithmic
tools and sampling strategies for low-resolution signal processing and applications.

This discussion opens up several exciting research possibilities in low-resolution signal pro-
cessing. We list a few possible directions here.

1.

Cross-pollination of ideas: Promising directions include combining algorithmic tools like
convex relaxation, QVB, and sparse Bayesian learning with sampling techniques such as
task-based, CRLB-optimized, and modulo quantization, as well as processing strategies
like centralized, decentralized, and distributed approaches. These could be applied to areas
like wireless channel estimation, distributed sensing, target localization, and tracking.
Limitations of traditional CS methods: Most quantized CS approaches rely on conven-
tional CS frameworks, which limits their ability to handle more complex signal structures
beyond sparsity. Furthermore, many algorithms primarily exploit sparsity, while other
forms of structured sparsity, such as block, hierarchical, and piecewise sparsity, remain
underexplored [355) 1356} [357]. Developing new algorithms that address these challenges
presents a significant opportunity for future research.

Theoretical gaps: Recent studies on 1bCS utilizing generative priors and deep unfolding
are generally agnostic to sparse structures, allowing them to accommodate various forms
of structure. However, they lack robust theoretical guarantees. Similarly, empirically ef-
fective and computationally simpler algorithms, such as those based on QVB and SBL,
also need to establish theoretical guarantees, which remains an open challenge. More-
over, the asymptotic and complexity analyses of these algorithms have not been effectively
translated into practical system design guidelines.

Channel-aware algorithms and federated learning: Research on quantization, driven
by bandwidth constraints in systems like IoT and wireless sensor networks, demands the
development of algorithms that can account for channel impairments that often degrade
performance. The development of channel-aware algorithms and decentralized schemes
for distributed sensing networks is a promising avenue. For example, task-based quanti-
zation could be integrated with distributed CS in wireless sensor networks. Additionally,
further exploration is required to create communication-efficient schemes for federated
learning with 1bCS in decentralized sensing networks.

. Extension to B-bit quantized measurements and mixed ADCs: While 1bCS is the

most extensively studied problem within the quantized CS framework, most 1bCS al-
gorithms are not easily extendable to higher-bit quantization. Thus, a significant gap
exists between 1bCS and B-bit quantized CS. Developing theory and algorithms for a
quantization-agnostic setting remains an open challenge. Another important area is CS
with a mixed-ADC architecture, combining high- and low-resolution ADCs to improve
system performance. However, a key challenge lies in determining the optimal ratio of
high- to low-resolution ADCs, considering that low-resolution ADCs perform better in
low SNR regions but struggle in high SNR scenarios. This architecture must balance en-
ergy efficiency, signal detection performance, and SNR conditions.
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6. Modulo ADC integration: The introduction of USF and modulo ADCs shows great

promise in handling the limited dynamic range of ADCs. However, the integration of
modulo ADCs with CS remains underdeveloped, with few algorithms effectively address-
ing noise handling and limited theoretical progress. The impact of finite-bit quantization
in modulo CS also presents a new research direction.

In summary, CS-aided low-resolution signal processing is a rapidly advancing field from the-
oretical, algorithmic, and practical standpoints, presenting numerous challenges and opening
intriguing avenues for future research.
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