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Abstract

The goal of group testing, also called pool testing, is to successfully identify a set of k
defectives from a population of n items using only m (< n) group tests. In each group test,
a subset of the n items is tested together as dictated by a pooling protocol. The outcome of
a group test is negative if and only if none of the defective items participate in that group
test; it is positive otherwise. When k � n, group testing can help signi�cantly reduce the
number of tests needed. A decoding algorithm then estimates the defective item set using
the group test outcomes and the knowledge of the pooling protocol.
From its �rst introduction by Dorfman in 1943, group testing has been adopted in vari-

ous applications like infectious disease detection, multiple-access protocols, cognitive radio,
and product testing, to name a few. The primary motivating factors for its widespread
success include improving the test reliability and reducing the testing cost. On the other
hand, the theoretical study involving the design of pooling protocols, development of de-
coding algorithms, deriving su�ciency (achievability), and converse bounds on the number
of tests under various scenarios can be found in a rich literature spanning over half a cen-
tury. Recently, group testing has gained a renewed interest in the eyes of both practitioners
and theorists alike due to the outbreak of COrona-VIrus Disease (Covid-19) pandemic.
In the �rst part of this thesis, we focus on deriving su�ciency bounds on the number of

tests for Boolean non-adaptive group testing algorithms, namely, Combinatorial Orthog-
onal Matching Pursuit (COMP) and De�nite Defectives (DD) with random pooling. The
term non-adaptive means that all the group tests are conducted in a single stage, possibly
in parallel. The term random pooling refers to the fact that the strategy used to determine
which item participates in which group test is determined by a probability distribution.
We view the group testing problem through the lens of a function learning problem and

formulate it in a probably approximately correct (PAC) analysis framework. This enables
us to characterize our su�ciency bounds by a con�dence parameter and an approximation

error tolerance parameter. In practical settings with �nite resources, one is often inter-
ested in ensuring that the probability of the error incurred by a function learned using
a �nite number of randomly drawn samples exceeding a threshold remains below a small
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Abstract iv

number, which we call the con�dence parameter. Also, approximate defective set recov-
ery is su�cient in many applications, wherein the number of errors that can be tolerated
is quanti�ed by the approximation error tolerance parameter. Our resulting su�ciency
bounds provide a �ner perspective of the random-pooling-based group testing algorithms
by separately accounting for the randomness in the pooling protocol and the defective set
identi�cation errors.
In the second part of this thesis, we focus on developing recovery algorithms for Covid-19

infected sample detection with pooled Reverse Transcriptase (quantitative) Polymerase
Chain Reaction (RT-qPCR) assay. The quantitative output from the RT-qPCR test is
called the cycle threshold (CT), a quantity inversely related to the amount of the viral
load in the sample. For a healthy sample, the CT returned is, in theory, in�nity. Ex-
isting recovery algorithms su�er from challenges related to the non-linear nature of the
RT-qPCR model, existence of in�nities in the feasible set of the optimization problem,
and are sensitive to the unknown PCR e�ciency factor, q. We develop two iterative
algorithms to address the above-mentioned gaps: 1) alternating direction method of mul-
tipliers CT (ADMM-CT) and 2) block coordinate descent CT (BCD-CT). At the heart of
these algorithms lie gradient descent (GD-CT) and iterative mirrored hard thresholding
(IMHT-CT) algorithms for individual sample CT estimation and a projected gradient de-
scent (PGD) method for estimating q. Lastly, we present empirical results demonstrating
the advantage of using quantitative measurements in non-adaptive pool testing in terms
of the testing rate and, hence, the cost on publicly available Covid-19 data on the number
of tests conducted and also compile the best rates achievable for a given prevalence rate.
In summary, we address these two aspects of group testing in this thesis: 1) theoretical

analysis of Boolean non-adaptive group testing algorithms and 2) developing recovery
algorithms to detect Covid-19 using pooled RT-qPCR. The key takeaways are as follows:

� Unlike the traditional PAC framework, our formulation allows for deriving bounds
under zero error or exact recovery scenario. Further, we can choose the data distribu-

tion from which the samples are drawn for function learning based on our knowledge
of the hypothesis space from which the target function is learned.

� Our bounds consider both the randomness in the test matrix and the approximation

error probability. This makes existing bounds a special case of our PAC bounds.
In addition, we characterize a lower bound on the cumulative distribution of the ap-

proximation errors. In deriving these bounds, we characterize the expected stopping
time and the tail probability for the subset coupon collector problem (SCCP).

� Pooled RT-qPCR based Covid-19 detection algorithms that jointly estimate both
individual sample CTs and q are robust to model uncertainties.
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� Finally, we collate best optimal designs given a prevalence rate to help the group
testing practitioners make the best use of the theoretical results available on group
testing.

We show the tightness of our bounds and benchmark the performances of our algorithms
with several existing comparable methods to validate the utility of our algorithms.
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ADMM Alternating Direction Method of Multipliers
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PGT Probabilistic Group Testing

RNA RiboNucleic Acid

RT-qPCR Reverse Transcriptase (quantitative) Polymerase Chain Reaction

SARS-CoV-2 Severe Acute Respiratory Syndrome related CoronaVirus 2

SBL Sparse Bayesian Learning

SCCP Subset Coupon Collector Problem
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SSS Smallest Satisfying Set

STS Steiner Triple System
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Notation

Vectors and matrices are denoted by boldface small and capital letters, respectively. Sets
are denoted by calligraphy letters. The rest of the notation is listed below.

Vectors

x = [x1, . . . , xn] : A vector x whose elements are x1, . . . , xn
xj : jth element of a vector x

0 : An all-zero vector
1 : An all-ones vector
‖x‖0 : l0 norm of a vector x

That is, the count of non-zero elements in x.
‖x‖1 : l1 norm of a vector x

‖x‖2 : l2 norm of a vector x

‖x‖∞ : l∞ norm of a vector x,
That is, the absolute value of the largest component of x.

Matrices

In : Identity matrix of dimension n× n
A = [a1, . . . , an] : A matrix A whose columns are a1, . . . , an
aij : (i, j)th entry of a matrix A

A−1 : Inverse of a matrix A

AT : Transpose of a matrix A

|||A|||2 : Spectral norm of a matrix A

‖A‖F : Frobenius norm of a matrix A

trace (A) : Trace of a matrix A

A < 0 : A matrix A is positive semi-de�nite.
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Probability

E [.] : Expectation of a random variable/vector
var (.) : Variance of a random variable/vector
N (µ, σ2) : Normal distribution with mean µ and variance σ2

Unif(a, b) : Uniform distribution in range [a, b]

B(p) : Bernoulli distribution with parameter, p ∈ [0, 1]

Bin(n, p) : Binomial distribution with parameters, n ∈ N and p ∈ [0, 1]

a.s. : Almost sure convergence
i.i.d. : Independent and identically distributed
x ∼ D : x is drawn from a distribution D

Bachmann-Landau

f(n) = O(g(n)) : f is bounded above by g asymptotically.
∃k > 0 ∃n0,∀n>n0 : |f(n)|≤kg(n) OR lim supn→∞

f(n)
g(n)

<∞.

f(n) = Θ(g(n)) : f is bounded above and below by g asymptotically.
∃k1 > 0 ∃k2 > 0 ∃n0,∀n > n0 : k1g(n) ≤ f(n) ≤ k2g(n).

f(n) = o(g(n)) : f is dominated by g asymptotically.
∀k > 0 ∃n0,∀n > n0 : |f(n)| < kg(n) OR limn→∞

f(n)
g(n)

= 0.

Set

|A| : Cardinality of the set A
A ∪ B : Union of the set A and B
A ∩ B : Intersection of the set A and B
A\B : Set di�erence: set of elements in A that are not in B
A′ : Complement of the set A
A ⊆ B : A is subset of B
A ⊇ B : A is superset of B
j ∈ X : j is an element of the set X
j /∈ X : j is not an element of the set X
∅ : Null set or empty set
[n] : A set {1, 2, . . . , n}



Notation xi

Field

N : Field of natural numbers
Z : Field of integers
Z+ : Field of positive integers
R : Field of real numbers
R+ : Field of positive real numbers

Miscellaneous

Rm×n : The set of real-valued m× n matrices
Rn×1 : The set of real-valued n× 1 vectors
Nm×n : The set of natural number-valued m× n matrices
Nn×1 : The set of natural number-valued n× 1 vectors
{0, 1}m×n : The set of binary-valued m× n matrices
{0, 1}n : The set of binary-valued n× 1 vectors
a ∼ b : a ∈ R is of same order as b ∈ R.
dxe : The smallest integer greater than or equal to the scalar x ∈ R
bxc : The greatest integer less than or equal to the scalar x ∈ R
logM(x) : Logarithm of x using the base M ∈ Z+

ln(x) : Natural Logarithm of x, i.e., logarithm of x to base e
a ∨ b : Logical OR-ing operation between a, b ∈ {0, 1}.(
n
k

)
: Number of ways to choose k items out of n items.

∇xf(x) : Gradient of f(x) w.r.t. x.
f ∗∗ : Convex Biconjugate of function f(x)

n! : Factorial of n ∈ Z+ with 0! , 1.



Thesis-Speci�c Notation

The following notations are common across chapters. Any notation used only in a speci�c
chapter is explicitly de�ned in the corresponding chapter.

n : Number of items in the population to be tested
m : Number of the group tests
mS : Su�cient number of the group tests
k : Number of defective items (� n)
A : Pooling or Test Matrix of size m× n
K : The defective item set
K̂ : Estimate of the defective item set
ε : The approximation error tolerance probability in PAC analysis
gε : Number of false positive (FP) errors that can be tolerated
dε : Number of false negative (FN) errors that can be tolerated
δ : The con�dence parameter in PAC analysis
σε : The standard deviation of the measurement noise in the pooled RT-qPCR
ε : The measurement noise vector in the pooled RT-qPCR

xii
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1 Introduction

Chapter Highlights

This chapter presents a brief overview of the group testing problem. Group testing deals with the

problem of detecting a set of defective items from a population by performing group tests. Each

group test is conducted on a pool or group containing a subset of items from the population.

The outcomes of the group tests are used along with the knowledge of how the items were

pooled to recover an estimate of the set of defective items. Within the purview of group testing,

several di�erent testing protocols, including how the tests are conducted, designing various pooling

strategies, algorithms to recover the defective set, analysis of the algorithms in terms of the

number of group tests required under various settings such as the recovery tolerance, the error

probability de�nition, relationship between the number of defective items and the population

size under test, to name a few, have been of interest in the literature. This thesis focuses on

non-adaptive group testing algorithms.

The �rst part of the thesis presents a probably approximately correct (PAC) learning-based re-

formulation of the group testing problem. The PAC-learning view of group testing enables us to

derive su�ciency bounds on the number of tests under both exact and approximate recovery con-

ditions at various con�dence levels. The proposed PAC bounds reduce to the su�ciency bounds

found in the literature under exact recovery conditions asymptotically. Further, an order-wise

analysis of the PAC bounds under both exact and approximate recovery scenarios is presented.

Experiments show a good agreement between the simulation results and our theoretical bounds.

The second part of the thesis presents novel algorithms for detecting Covid-19 using pooled

reverse Transcriptase (quantitative) polymerase chain reaction (RT-qPCR) testing. The for-

mulation of the group testing problem with the RT-qPCR model poses challenges related to

non-linearity and the introduction of in�nities in the feasible set of the optimization problem.

Convergence results for the proposed algorithms are discussed. The proposed algorithms converge

to a local optimum, and numerical simulations show the e�ectiveness of the proposed algorithms.

1
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1.1 Background

At the height of World War II, in 1943, the US Public Health Service and the Selective

Service System were engaged in a program to identify all the syphilitic men before induct-

ing prospective soldiers into the army [1]. The conventional process at the time was to

subject each prospective inductee to a Wassermann complement �xation test [2]. The test

was divided into two stages: 1) draw a blood sample from the personnel; 2) subject the

collected sample to a lab analysis to detect syphilitic antigen. The presence of an antigen

is a good indicator of the infection.

In order to overcome the scarcity of the reagents required for the test and thereby ensure

a su�cient supply of reagents to screen all the personnel, Prof. Robert Dorfman proposed

a procedure where the tests are conducted on the pooled blood samples in his report titled

�The detection of defective members of large populations� [1]. The idea of pool testing as

described by Dorfman starts by pooling a set of, say, �ve blood samples together and

subjecting it to a single Wassermann-type test. If there are no infected blood samples in a

pool, the test outcome will be negative for the presence of the antigen, and all individuals

participating in the test are declared healthy. On the other hand, a positive pool test

means that at least one infected sample is present in the pool. In the second stage, the

individual samples from the positive pools are tested again individually to identify the

infected samples.

In the context of the above-described testing procedure, Dorfman presented the answer

to the following two questions: 1) Does this testing protocol result in fewer chemical tests

for a population size n under the screening process compared to the individual testing?

2) What is the most e�cient size of the pool, where the term e�ciency refers to the most
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savings obtainable in the number of tests relative to the individual testing? The answer

to both questions is that the amount of savings in the number of tests and the optimal

pool size are a function of the prevalence rate of the disease. In particular, group testing

is optimal, and the bene�ts are higher, at a lower prevalence rate. Beyond a threshold

prevalence rate, individual testing is optimal, i.e., the best pool size is to use a single

sample per test.

Over the past 8 decades, group testing has been extensively studied, under di�erent

testing protocols, analyzing the necessary and su�cient number of tests, considering the

e�ects of dilution and pooling errors, to name a few. In the subsequent sections of this

chapter, we present a brief overview of group testing and describe the various applications,

bene�ts, and challenges of group testing, followed by the focus of this thesis.

1.2 A Brief Overview of Group Testing

In general, identifying a set of k defectives from a population of n items is an interesting

problem. A näive solution is to test the items individually, which requires n tests. This

approach is ine�cient if n is very large or there are constraints on time-to-test, cost budget,

or testing hardware and resource constraints.

An alternative is to pool items together and run m < n tests in parallel, with each

test pooling a subset of the items together. These are collectively called group testing

algorithms (or pool testing algorithms) and work as follows. The outcome of a group test

is negative if and only if none of the defective items participate in that group test; it is

positive otherwise. When k � n, which holds in many applications like identifying a rare

disease from a set of blood samples, testing a population for an infection in the early stage



Chapter 1. 4

of an epidemic, identifying defective industrial products in a high-yield production line,

etc., this approach can help signi�cantly reduce the number of tests needed.

Group testing methods can be categorized into adaptive and non-adaptive types [3]. In

adaptive group testing, the tests are performed in multiple stages wherein the pool/group

design in the current stage depends on the test outcomes from the previous stage. In con-

trast, in the non-adaptive method, all the required tests are performed in a single stage,

followed by the application of a suitable decoding algorithm [4�6] to recover the individ-

ual item status (i.e., defective or non-defective). A few important decoding algorithms

available in the literature include Combinatorial Orthogonal Matching Pursuit (COMP),1

De�nite Defectives (DD), Sequential COMP (SCOMP), Smallest Satisfying Set (SSS),

Linear Programming (LiPo) algorithm [7]. In non-adaptive group testing, the informa-

tion about which item(s) participate in which group test(s) is stored in a pooling/testing

matrix.

Group testing was �rst introduced by Dorfman in 1943 during world war II to test

US military personnel for Syphilis [1]. Dorfman style of testing is an adaptive group

testing method. Since then, multiple researchers have analyzed various theoretical aspects

pertaining to group testing, including intelligent ways to design the test matrix, pool size,

lower bound (also called the converse bound) on the number of tests required below which

no error-free decoding is possible and achievability bound (also called upper bound or the

1The COMP algorithm has been discussed in the literature under di�erent names. For example, the
authors in [6] analyze the COMP algorithm, but under di�erent names: Column Matching (CoMa) and
Combinatorial Basis Pursuit (CBP). The authors use a Bernoulli test design with CoMa and a near-
constant row-weight design with the CBP algorithm. However, CoMa and CBP are mathematically
equivalent. As stated by the authors, the naming convention in that work is motivated by the compressed
sensing literature. Further, separate names help to couple the test design with the decoding procedure
and the performance analysis. However, we follow the de�nition in [7], where the decoding procedure
dictates the algorithm's name, and the test design is decoupled from the decoding procedure.
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su�ciency bound) under various scenarios. An interested reader is referred to the recent

extensive survey by Aldridge et al. [7]. A discussion on the theoretical results that are

relevant to the thesis is presented in Section 2.1.1 and Section 2.1.2.

1.2.1 De�nitions

As mentioned above, group testing can be categorized into adaptive and non-adaptive

protocols. In this section, we summarize the commonly used terminologies related to

non-adaptive group testing, which is the focus of this thesis.

1. Group Test: A test which is conducted on a pool or group of items. Here, a test

can mean chemical analysis, electrical procedure, mechanical operation, or a series

of digital operations, to name a few, which helps detect the presence or absence of

speci�c characteristics of interest. Often, group testing refers to the act of performing

one or more group tests according to a given pooling protocol. Group testing could

also refer to a decoding algorithm, which is a way of mapping the outcome of several

group tests to the respective items/individuals (see below for the de�nition). The

speci�c meaning will be clear from the context.

2. Pooling Matrix: A binary matrix of size m × n, where n denotes the number of

items in the population and m(< n) denotes the number of group tests. The (i, j)th

element of the matrix takes a value of 1 or 0, and it indicates whether the jth item

participates in the ith group test or not, respectively. The pooling matrix is also

referred to as the test matrix. The term test design refers to the way the pooling

matrix is constructed. In this thesis, we focus on random pooling designs, where the

entries of the pooling matrix are chosen according to a probability distribution.
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Figure 1.1: A toy example illustrating the idea of non-adaptive group testing.

3. Item Vector: A binary vector of size n × 1 whose jth element takes the value 1

or 0, and indicates the defective or non-defective status of that item, respectively.

Equivalently, the information in the item vector can be represented by a defective

item set containing the indices of defective items.

4. (Test) Outcome Vector: A binary vector of size m × 1 whose ith element indicates

the outcome of the ith group test, and takes the value 1 or 0 depending on whether

the outcome is positive or negative, respectively.

5. Decoding Algorithm: A procedure that takes m group test outcomes along with the

pooling matrix as the inputs and outputs an estimate of the defective item set or an

estimate of the items' statuses.

The Figure 1.1 illustrates these concepts with a toy example containing n = 7 items and

m = 5 group tests. The item vector indicates that the 5th item is defective. In Figure 1.1,
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the pooling matrix is binary-valued. For example, the 3rd row indicates that the 2nd

and 4th items participate in the 3rd group test. The outcome vector has a single positive

group test (4th test). Finally, the decoding or recovery algorithm is shown as a block at

the top, which takes the outcome vector and the pooling matrix as an input and outputs

an estimate of the item vector.

1.3 Applications of Group Testing

A wide-variety of applications bene�t from group testing. We discuss some of these in

this section.

1.3.1 Random Access and Short Packet Communications

Some of the earliest works in [8�10] discuss the relationship between the group testing and

the problem of random multiple-access communications. In [11], the authors show that a

group testing-based protocol is superior to time-division multiple access (TDMA) for any

user-packet-generation probability, p, provided there is at least one user in the so-called

high power group. Thereafter, the group testing algorithm was extended to accommodate

a heterogeneous set of users with unequal user activity probabilities [12]. Further, the

authors in [13] extended the monotonicity theorem of group testing to a case where the

group test outcomes can take one of the K values and apply the results to the collision

resolution problem in a random multiple-access communication channel. In short, the

monotonicity theorem states that the expected number of group tests under an optimal

algorithm is non-decreasing in a parameter, p, which denotes the probability that an item,

independently, is defective.

The work in [14] establishes an equivalence between solving a random access problem
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using an irregular repeated slotted Advocates of Linux Open-source Hawaii Association

(ALOHA) and coded slotted ALOHA with the non-adaptive group testing problem. The

ID of the transmitting device is implicitly stored in the transmission patterns of the data

packets, thereby drawing an analogy with how a pooling matrix is constructed in non-

adaptive group testing. For a population size of n and with at most k devices active at

any given time, the protocol sequence length scales as Θ(k log n). A sequential screening

algorithm for activity detection in a massive random access channel with access delay

constraint is developed in [15]. In [16], the same authors propose a group testing-based

user activity detection algorithm under access delay and energy constraints such as those

seen in fast-fading random access channels. The energy constraints can be translated to

the maximum number of tests each item can participate in [17]. Also, non-adaptive group

testing has been used to detect, localize, and track multiple individuals on a �ber sensor

�oor web [18].

Recently, the COMP algorithm has been applied by the authors in [19] to resolve packet

collisions, thereby improving the success rate of the iterative interference cancellation

process in the context of coded slotted ALOHA protocol. Also, the authors in [20] show

that it is possible for a base station (BS) in a multiple-user multiple-input-multiple-output

(MU-MIMO) setup to jointly identify and decode ≤ K (out of N) non-cooperative self-

scheduling devices simultaneously aided by a group testing-based algorithm with vanishing

probability of error using O(K log(NM)) antennas at BS, where M denotes the number

of possible messages.

1.3.2 Cognitive Radios

The authors in [21] apply group testing algorithms to �nd a spectrum hole of a speci�ed
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bandwidth in a wideband channel. The sampling strategy exploits the sparsity in the

frequency-domain. In particular, the primary user's spectral occupancy is sparse. The

authors in [22] apply group testing to detect a group of active sub-carriers in a wavelet-

packet modulation-based multi-carrier channel. The authors show that the computational

complexity of the detection algorithm can be reduced by group testing compared to clas-

sical spectrum sensing techniques. A two-stage algorithm for wideband spectrum sensing

using poly-phase �lter banks is developed in [23].

1.3.3 Sensor Networks

The authors in [24] propose a group testing-based reactive trigger node identi�cation

algorithm for defending from reactive jamming attacks in wireless sensor networks (WSN)

across di�erent attack models. The authors in [25] extend the group testing algorithms to

a distributed setting and propose a solution to detect defective sensors in a sensor network.

Combinatorial group testing has been applied along with Kalman �ltering to detect faulty

sensors in a network when the occurrence of the faults is relatively rare [26].

A variation of group testing called generalized group testing has been applied to detect

status of the sensors and retrieve information in a WSN e�ciently, i.e., using a minimal

number of channel accesses [27,28] and to derive scheduling policies for sensors' adopting

cooperative transmissions under a correlated source model [29]. The authors in [30] apply

group testing with a Latin Square-based pooling matrix to detect invalid signatures in a

WSN.

1.3.4 Electrical and Electronic Device/Product Testing

One of the earliest work by Sobel and Groll discuss an application of group testing in
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product testing [31]. After that, the authors in [32] have applied group testing to detect

and locate shorts in electric circuits or groups of nets. More recently, group testing has

been applied to built-in self-test (BIST) diagnosis of digital logic systems to detect faulty

scan cells, faulty logic blocks, erroneous test vectors, etc., by the authors in [33]. Due to

the parallelism, the test results can be obtained faster in non-adaptive group testing. The

authors in [34] use this fact to improve the throughput of a genetic algorithm to perform

autonomous repair and refurbishment of re-programmable logic devices.

1.3.5 Compute, Storage and Distributed Systems

In distributed systems, the �les are replicated and stored across multiple physical devices

to meet the reliability and availability requirements. Under a system model where it is

guaranteed that ≤ k pages or partitions out of n partitions of a �le can di�er across

the copies, the authors in [35] apply group testing algorithms to e�ciently detect the

pages/partitions which are di�erent. A suitable checksum is assumed to be available per

page (or partition, as applicable) for the comparison.

The authors in [36] use pooling matrix designs from group testing to detect collusion

attacks where a malicious or illegal distributor of watermarked digital content attempts

to delete or modify the embedded �ngerprint used to decode the primary buyer. Tracing

algorithms based on group testing where a set of buyers/users are pooled and tested for

collusion attack is discussed in [37�39].

The authors in [40,41] apply group testing to solve the problem of verifying web services

(WS) in a dynamic service-oriented architecture (SOA) where new services can be com-

posed at run-time using existing WS. The veri�cation checks whether the WS behavior is

normal, and knowing the WS's state helps establish trust in the users [42].
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To realize e�cient data transmissions in an authenticated manner in the context of the

Internet of Things (IoT), the authors in [43,44] propose a group testing-based method for

message authentication using an aggregate message authentication code (MAC). Further,

the authors in [45] and [46] apply group testing to detect application denial-of-service

(DoS) attacks. Group testing algorithms have been applied to detect malicious users [47];

to detect anomalous patterns like attacks, hot IPs, and the status of hosts and services in

distributed systems [48,49].

The authors in [50] propose a variant called sum-observation group testing, where the

group test outcomes contain the count of defective items that have participated in the test

for detecting heavy hitters in communication networks. A hierarchical group testing-based

solution for the byzantine attack, i.e., where the worker node in a distributed computing

pipeline sends an incorrect result to the central master, is addressed by the authors in [51].

Further, a failed link detection in a network using group testing has been proposed along

with the theoretical bounds in [52,53]. Similarly, fault detection in an all-optical network

using non-adaptive combinatorial group testing has been proposed in [54]. The authors

in [55] apply group testing to accelerate the rational uni�ed process (RUP), where testing

is performed throughout the software (product) development process.

The authors in [56] note that the non-uniformity in the photo response noise associated

with an imaging sensor or a camera can be used to identify the speci�c camera used for

capturing an image. However, storing the �ngerprints of possibly thousands of camera

devices available in a database is both memory and time-consuming while matching and

retrieving, rendering the idea impractical. The authors propose to use group testing

with carefully constructed composite �ngerprints to overcome this bottleneck. Recently,
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the authors in [57] present and analyze a distributed group testing algorithm applied

to a network intrusion detection problem, where the goal is to identify unauthorized or

malicious activities within a computer network.

1.3.6 Infectious Disease Detection and Medical Screening

After the success of group testing to screen Syphilis by Dorfman [1], the same idea has

been applied successfully to screen various infectious diseases. In particular, the authors

in [58] apply a pooled testing strategy to detect Malaria using a polymerase chain reaction

(PCR) assay. Other applications include detecting viral infections like acute human im-

munode�ciency virus (HIV), hepatitis B and C, and West Nile virus, to name a few (see

the references in [58]).

Recently, group testing has regained popularity owing to the Covid-19 pandemic [59,

60]. The authors in [61] concluded that the detection limit is 1 − 3 Ribonucleic acid

(RNA) copies per µl of the sample. Covid-19 detection using a multi-stage group testing

has been proposed by [60, 62], where the individual samples are classi�ed as having {no,

low, medium, high} infection level. The authors in [63] apply non-adaptive group testing

algorithms, whereas the authors in [64, 65] apply compressed sensing (CS) algorithms

for Covid-19 detection. Further, group testing has been used to improve test reliability

and throughput via possibly non-binary pooling matrices [66]. We discuss more such

works from the literature about the application of group testing for Covid-19 detection in

Section 4.1.3.

Another exciting area that bene�ts from group testing is expanding a cancer staging

system called tumor lymph node metastasis, where groups of cancer patients' records are

formed. Then, statistical testing is applied to detect the di�erence among the groups [67].
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On similar lines, group testing has been helpful in drug and Deoxyribonucleic acid (DNA)

library scanning [68�71]. Lastly, it is possibly applicable to monkeypox detection [72] and

to scale-up testing to detect Khosta 2, a type of sarbecovirus [73].

1.3.7 Other Applications of Group Testing

In addition to the above-mentioned areas, group testing has found a use in improving the

latency of single-touch detection on a capacitive touch screen [74]; to enable an e�cient

continual face authentication on the cloud [75]; in wavelet-based image compression [76,77]

and video compression [78]. Further, group testing has increased the storage density of

topological DNA-based data storage [79, 80]. Similarly, group testing has been applied

to DNA microarrays to perform a large number of DNA-DNA hybridization experiments,

where oligonucleotide probes could bind to multiple targets simultaneously [81]. This

approach overcomes the need for designing sequence-speci�c probes, which has become a

signi�cant challenge due to the presence of closely related target families in the sample.

Further, combinatorial group testing has also been applied to check the integrity of the

hard disks by hashing [82]. The proposed method improves the storage space required to

store the hash values of the sectors as compared to classical solutions.

Another exciting area of research where group testing has been found useful is in identi-

fying the k most connected vertices (kMCV) in hidden bipartite graphs and applying the

results in various applications like spatial databases, graph databases, and bioinformatics.

In a hidden bipartite graph, some edges are not explicitly given, and edge probe tests are

required to detect the presence of edges. A single invocation of a group test can reveal as

much information as multiple invocations of 2-vertex tests [83].

The authors in [84] have applied group testing to the problem of beam alignment (BA)
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in an uplink multi-path communication between user equipment (UE) and BS. They show

that a group testing-based algorithm for BA improves (minimizes) the expected BA du-

ration in both noiseless and 5G millimeter wave (mmWave) settings.

Large-scale image classi�cation tasks where the number of object categories runs into

millions, whereas the number of categories (of the objects) that appear in a given image

is low (∼ 10 − 50) can be made more e�cient by reducing the number of one-vs.-rest

classi�ers required, using group testing [85]. The authors in [86] use group testing in

neural network inference to test (infer) multiple images in batches or groups to determine

rare but inappropriate images, for example, in an image moderation task. Recently, neural

group testing has been applied to wireless/sensor networks in [87].

1.4 Group Testing: Bene�ts and Challenges

The discussion in the above section shows that group testing has been found useful in a

wide range of applications. When the number of defective items in a population is low as

compared to the population size, and further, when there is a constraint on time-to-test/

resources, group testing has been known to be useful in improving the throughput of the

testing procedure with optimal use of available resources and man-power [58,88].

In addition to the throughput improvement, group testing applied to product testing

can improve the reliability of the veri�cation process [31]. Under an assumption that

the unsampled and, hence, untested products display similar statistical properties and,

further in the interest of time-to-test, products from an industrial manufacturing line are

sampled and subjected to quality checks. If the products can be tested in pools or groups,

then group testing enables higher coverage and reliability of the overall quality assurance
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process. In the early stages of a pandemic or breakdown of a contagious infection in the

population, group testing can support in realizing a robust population monitoring process

and help arrest the spread of the disease early on [88].

Owing to multiple advantages o�ered in a wide range of applications where group testing

has been applied successfully, understanding the theoretical implications and results that

characterize the group testing protocols and the decoding algorithms has been of critical

interest. In adaptive group testing, work on understanding how to decide the optimal pool

size and number of stages in which the group test is conducted can be found in [89, 90].

In the non-adaptive variant, designing an optimal pooling matrix such that it guarantees

recovery of a certain number of defective items, guarantees recovery under constraints

on the number of tests that an item can participate and the number of items a test

could accommodate has been studied [7]. In addition, a lower bound (also called converse

bound) on the number of tests required below which no group testing algorithm can

guarantee a vanishing probability of decoding error has been studied [4, 7, 90, 91]. Lastly,

the expected number of tests and asymptotic results for the achievability or su�ciency

bounds on the number of tests for di�erent decoding algorithms have been studied in the

literature [4, 6, 90,92].

In practice, the number of items to be tested is �nite. Therefore, one is often interested

in non-asymptotic analysis-based bounds. Non-asymptotic bounds are presented in the

literature for a maximum-likelihood-based algorithm, which is computationally intractable

even when the problem size is moderate [93, 94]. Furthermore, in practical settings with

�nite resources, one is often interested in ensuring that the probability of the error incurred

by the decoding algorithm remains below a small number, which is called con�dence. Also,
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one could be interested in the approximate recovery of the defective items where a certain

amount of decoding errors are tolerated [92]. As far as we know, there is no work in the

literature where su�ciency bounds for practical group testing algorithms like COMP and

DD are presented under both exact and approximate recovery scenarios parameterized

by a con�dence parameter in a single framework. We bridge this gap by viewing group

testing as a function learning problem, which enables us to apply probably approximately

correct (PAC) analysis to derive su�ciency bounds. Our bounds enable us to quantify

the sensitivity of the group testing algorithms to both con�dence level and error tolerance

separately.

On the other hand, group testing algorithms for Covid-19 detection and similar applica-

tions where the system model exhibits non-linearity and the feasibility set of the decoder's

optimization problem includes both �nite values and in�nities have been of interest. We

develop Covid-19 detection algorithms for the case when the e�ciency parameter of the

PCR test is unknown. In addition, from the practitioner's point of view, it is interesting

to understand when group testing is useful, namely, how does one read the theoretical

results and use them in practice?

The above aspects form the core of this thesis. We next introduce, without delving

into mathematical details, the research problems explored in this thesis and our original

contributions regarding the methodologies and algorithms developed to address them.

More elaborate discussions are relegated to the dedicated chapters.

1.5 Scope and Contributions of the Thesis

This thesis focuses on two central themes: 1) theoretical analysis of the group testing
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algorithms where we derive su�ciency bounds for well-known practical group testing al-

gorithms under both exact and approximate recovery conditions and also parameterized

by a desired con�dence level and 2) iterative decoding algorithms for recovering a set of

Covid-19 infected individuals and estimating the state of the infection under a non-linear

system model and unknown PCR e�ciency factor. In the context of Covid-19 detection

using reverse Transcriptase quantitative PCR (RT-qPCR), the state of the infection is

quanti�ed by a parameter called the cycle threshold (CT). That is, the decoding algo-

rithm must not only �nd the set of infected individuals, it also needs to estimate the CT

values of each infected individual.

In the next two subsections, we brie�y overview each of these and highlight our main

contributions.

1.5.1 PAC Analysis for Group Testing Algorithms

In Chapter 2, we reformulate the group testing problem from a function learning view.

We establish an equivalence between the average error probability in the exact recovery

case and the prediction error by the learned function. Then, in Chapter 3, we relate the

false positive (FP) and false negative (FN) errors to the approximation error of the function

learning problem. Further, we use the PAC framework to derive su�ciency bounds for

well-known practical group testing algorithms. We summarize the main contributions

leading to novel su�ciency bounds for the group testing algorithms using PAC analysis

below.

1. We reformulate the defective set identi�cation problem in non-adaptive group test-

ing with random pooling as a function learning problem. We relate the notion of
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recovery error in group testing with the prediction error in the function learning

problem. Speci�cally, we show that the exact recovery of the defective set by a de-

coding algorithm is equivalent to prediction with zero error in the function learning

problem. Further, we relate the number of false positives (similarly, the number of

false negatives) to the approximation error probability used in the PAC formulation.

This establishes a connection between the parameters used in the PAC formulation

and the conventional metrics of interest in group testing.

2. We apply the PAC analysis to derive a su�ciency bound on the number of tests in

exact and approximate recovery conditions for the binary group testing algorithms:

COMP and DD. The COMP algorithm is analyzed under a Bernoulli test design

and a near-constant row-weight design, whereas DD is analyzed under the Bernoulli

design. We use the terms COMP-B and COMP-R to distinguish between the analysis

of the COMP algorithm with Bernoulli design and the COMP algorithm with near-

constant row-weight design, respectively. The PAC analysis serves as a common

framework, where exact recovery results in the literature emerge as a special case.

We extend the existing results on the coupon collector problem to handle collection

of only a subset of coupons and apply them to derive the COMP-R bound. Further,

we optimize the Cherno� design parameter to get a tighter bound for COMP-R.

Finally, we derive the order-wise behavior of the PAC bounds for all the three cases

which leads to easily-interpretable and insightful su�ciency bounds.

3. The PAC-based analysis allows us to trade o� the accuracy of defective set recovery

with the con�dence with which the decoded set meets that accuracy requirement. We

present a visualization of this trade-o� in a su�cient number of tests contour/surface,
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which shows its dependence on the approximation error tolerance and the probability

of failure to meet the required error tolerance. Also, PAC analysis enables one to

characterize a lower bound on the cumulative distribution of the approximation

errors.

Numerical results show the agreement between the theoretical bounds and the simulated

values. Using the PAC framework for analyzing practical group testing algorithms opens

up means to accommodate both exact and approximate recovery and further account for

the randomness in the test matrix, in a common framework. Finally, as mentioned earlier,

PAC bounds enable us to study the sensitivity of the group testing algorithms to both

con�dence level and error tolerance, separately.

1.5.2 Recovery Algorithms for Covid-19 Group Testing

As mentioned earlier, group testing has regained practical importance due to the Covid-

19 pandemic. Owing to the non-linear nature of the PCR system model and stability

issues encountered by the optimization algorithms due to the presence of in�nities in the

feasible set, the recovery performance of the existing group testing algorithms for Covid-19

detection is low. We develop a set of novel iterative recovery algorithms to overcome this

bottleneck in Chapter 4. In particular, these recovery algorithms estimate the individual

sample CT values. Then, in Chapter 5, we develop robust recovery algorithms to estimate

the individual sample CT values when the PCR e�ciency factor is unknown. Now, we

summarize our main contributions in that part of this thesis.

1. We develop two novel algorithms to accurately recover the individual sample CT

vector given the pooled CT vector and the pooling matrix, from the non-linear



Chapter 1. 20

RT-qPCR model. Further, to address the unknown PCR e�ciency factor issue, we

develop two novel algorithms that can jointly recover the individual sample CT vector

and estimate the unknown e�ciency factor. The developed recovery algorithms are

robust to noise and varying machine parameters.

2. A case study describing the advantage of using quantitative measurements in non-

adaptive pool testing in terms of the testing rate and, hence, the cost, is presented

using publicly available data on the number of tests conducted. The best rates

achievable for a given prevalence rate using deterministic testing matrix designs are

compiled. In practice, the prevalence rate estimate obtained from the previous day

can be used to decide the optimum (testing) rate design for each day.

The performance of the proposed algorithms is evaluated using a simulated model of

the RT-qPCR process for Covid-19 to conclude that they outperform related algorithms

in the literature under practical settings (e.g., unknown machine-speci�c parameters, CT

measurement noise, etc.) in terms of the normalized mean-squared error (NMSE) and the

sparsity level up to which the algorithms guarantee zero recovery errors.
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2 Probably Approximately Correct

Formulation for Group Testing

Chapter Highlights

This chapter sets the stage for the PAC analysis of non-adaptive group testing algorithms.

We start by formally describing the non-adaptive group testing problem. The notion of exact

recovery of defective items and the average probability of error under a combinatorial setting

is then de�ned. A summary of various results on su�ciency bounds for the number of tests is

presented. The concept of approximate recovery and its applications are stated, followed by how

various works in the literature have derived the su�ciency bound to accommodate this relaxation

in the recovery condition. The gaps in the existing analysis methods are presented to motivate a

novel reformulation of the group testing problem.

We present the PAC learning view of the group testing problem. In particular, the group test

outcomes are viewed as an output of a k-literal OR-ing function. The group testing algorithm

aims to learn a k-literal OR-ing function that satis�es a certain notion of correctness at a certain

con�dence level. PAC analysis enables us to determine a su�cient number of tests for a target

level of correctness and con�dence. The bounds derived using our PAC learning formulation

enable the characterization of the su�cient number of tests as a function of two parameters in

addition to the number of items, n and the number of defectives, k: 1) the approximation error

tolerance, ε, and 2) the con�dence, 1 − δ. This chapter presents a Lemma that relates PAC

learning to group testing in the exact recovery case. This chapter forms the foundation for the

next chapter, where we present how the approximation error tolerance manifests in terms of

false positives and false negatives depending on the group testing algorithm under consideration,

followed by a derivation of corresponding su�ciency bounds on the number of tests.

22



Chapter 2. 23

2.1 Introduction

We describe the system model for random pooling-based non-adaptive group testing [21].

Here, the decision about which items will participate in which group test is predetermined

and is encoded in a random binary test matrix denoted by A ∈ {0, 1}m×n [7]. The (i, j)th

element of A, denoted by aij, takes the value 1 or 0 depending on whether the jth item

participates in the ith group test or not, respectively. The item vector is denoted by

x ∈ {0, 1}n, whose jth entry, denoted by xj, takes the value 1 if the jth item is defective,

and 0 otherwise. In addition, the support of x is denoted by the set K such that |K| = k,

where | · | denotes the cardinality of a set. Finally, the outcome of the ith group test

is yi = ∨nj=1 aijxj, i ∈ [m], where ∨ denotes the Boolean OR-ing operation. Thus, the

outcome is 1 if the group test includes one or more defective items and is 0 otherwise.

Once the group test outcomes (yi, i ∈ [m]) are collected, a decoding algorithm aims to

output an item vector estimate denoted by x̂ ∈ {0, 1}n. The estimate of the defective item

set, K̂ is then simply the support of x̂, i.e., the set of indices corresponding to the nonzero

entries in x̂.

Now, when exact set identi�cation is considered, the decoding algorithm succeeds when

K̂ = K and fails otherwise. Let PA

(
K̂ 6= K

)
denote the probability of error given the set

of defectives, K. Then, the average probability of error under a combinatorial setting can

be written as [7]

P(err) = PA,K(K̂ 6= K) =
1(
n
k

) ∑
K:|K|=k

PA(K̂ 6= K). (2.1)

Characterizing P(err) as a function of k, n, and m is helpful in using group testing for

practical applications. For instance, one can ask: Given k and n along with an upper
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bound on P(err), what is the su�cient number of tests, mS, required by a group testing

algorithm? In the following subsection, we discuss the existing work toward answering

this question before presenting our main contributions for this chapter.

2.1.1 Prior Work

Under δ′ ≡ P(err) = n−δ, δ > 0 and k = o(n), the authors in [5, 6] show that an

upper bound on the number of tests is ek(1 + δ) log n and 2ek(1 + δ) log n for COMP

algorithm with Bernoulli design, i.e., COMP-B (also called CoMa in [6]) and COMP

algorithm with a near-constant row-weight design, i.e., COMP-R (also called CBP in [5]),

respectively.1 Further, the LiPo decoder requires no more than O(k log n) tests under the

same conditions with the constant factor associated with the asymptotic expression being

a function of (1+1/k), log k/ log n and δ [6]. Similarly, the su�cient number of tests for DD

and SCOMP algorithms is also Cak log n, with a decoder-dependent constant Ca > 0 [4].

In addition, a lower bound on the required number of tests is (1 − δ′)k log(n/k) (See [6]

and references therein, e.g., [95, 96].). In the above works, the entries of the test matrix

are chosen i.i.d. from a Bernoulli distribution with parameter p ∈ (0, 1), denoted by B(p).

Further, the author in [97] presents an improved converse bound for this Bernoulli-design

group testing.

Other test matrix designs have been considered and contrasted with the Bernoulli de-

sign. The authors in [98] draw inspiration from spatially-coupled low-density parity check

(LDPC) codes for designing their test matrix. For any 0<β < 1, k∼ nβ, ε′ > 0, the au-

thors derive lower and upper bounds on the number of tests as (1−ε′)minf and (1+ε′)minf,

respectively, where minf = max{β/ log2 2, (1−β)/ log 2}k log n. The authors in [99] show

1Throughout the thesis, log denotes the natural logarithm, unless speci�ed otherwise.
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similar results for the number of tests below which any group testing algorithm fails and

above which the SCOMP and/or DD algorithms succeed.

The authors in [100] provide bounds on the number of tests for disjunct test matrices.

In [94,101], the authors show that a (near-)constant tests-per-item design with m(log 2)/k

tests-per-item (chosen with replacement) requires 23.4% fewer tests (correspondingly, the

testing rate improves by ≈ 30%) than the Bernoulli design, when coupled with COMP

or DD algorithms. The authors in [102] show that, in the sub-linear sparsity regime (i.e.,

k = Θ(nβ), β ∈ (0, 1)), the DD algorithm under a constrained design with at most a

�xed number of tests-per-item and ρ = O
(
(n/k)β

)
, β ∈ [0, 1) items-per-test, yields an

improved achievability result compared to the COMP algorithm under an unconstrained

design. The work in [103] presents an analysis of constrained design (e.g., constraints on

the number of tests per item or the item-divisibility and on the number of items per test)

and shows that even a small amount of constraint can have a signi�cant e�ect on the

information-theoretic bound. Recently, the authors in [104] considered both a constant

column-weight design (termed ∆-divisible item setting) and a constant row-weight design

(termed Γ-sized test setting) while analyzing the achievable number of tests of various

decoding algorithms. Under the k ∼ nβ regime and Γ = Θ(1) assumption, the DD

algorithm succeeds w.h.p. for m ≥ max {2, 1+bβ/(1−β)c}n/Γ [104, Theorem 4.10]. In

contrast to the sub-linear regime, the works in [95,105] consider very sparse regime, where

k = O(1) and the works in [106�108] consider a linear regime, i.e., k = pn for p ∈ (0, 1).

The work by the authors in [109, 110] considers a case when there are inhibitors, pre-

tenders, or unreliable items in the population. In contrast to the (unconstrained) non-

adaptive protocol considered here, adaptive techniques (see [7,90,111�114] and references
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therein) and group testing models, where block length, run-length, geometric and graph

constraints, community-awareness, correlation (as opposed to items being defective inde-

pendently) have been considered for theoretical analysis in the literature (see [112,114�119]

and references therein). Also, noisy group testing has been analyzed under di�erent test

designs (see [111,120,121] and references therein).

Converse results for both adaptive and non-adaptive testing algorithms using �nite block-

length results and directed information theory formulations are presented in [122]. Fur-

thermore, results in the literature can be categorized based on what error metric is used

and how it is characterized. In a probabilistic group testing (PGT), one is interested in

determining the bounds on the number of tests such that P(err)→ 0 as n→∞, whereas

in the combinatorial group testing (CGT), the criterion changes to P(err) = 0 for any

n [123]. Other metrics of interest include number of false positives and false negatives, to

name a few. More discussions on this are deferred to Section 2.1.2.

The authors in [93] present a su�ciency condition on m for a weakened version of the

maximum likelihood decoder in the non-asymptotic regime, i.e., when the problem dimen-

sions are �nite. The non-asymptotic bounds are more practically useful: for instance, in a

typical RT-qPCR based Covid-19 testing kit, one can accommodate ∼ 96 or 384 (pooled)

samples.2 However, the analysis of the maximum likelihood-based decoder is dependent

on the decoder having the knowledge of k and is typically computationally intractable

even for moderate-sized problems [7,94]. Therefore, practical and computationally simple

group testing algorithms like COMP and DD are attractive.

2PCR Plastics - PCR Plate Con�gurations: https://www.thermofisher.com/in/en/home/

life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/

pcr-education/pcr-qpcr-plastics/pcr-qpcr-plastics-considerations.html

https://www.thermofisher.com/in/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/pcr-education/pcr-qpcr-plastics/pcr-qpcr-plastics-considerations.html
https://www.thermofisher.com/in/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/pcr-education/pcr-qpcr-plastics/pcr-qpcr-plastics-considerations.html
https://www.thermofisher.com/in/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/pcr-education/pcr-qpcr-plastics/pcr-qpcr-plastics-considerations.html
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2.1.2 Approximate Defective Set Identi�cation

In many group testing applications, approximate defective set recovery is su�cient [7].

Here, the estimated defective set can contain missed defective items or false positive items.

As an example, consider the scenario where one needs to quickly identify a few people with

a particular antigen in their blood when the incidence of the antigen in the population is

low. We need not identify all the defective items (i.e., all the people with the antigen in

their blood), a subset is su�cient. In such a scenario, false negatives can be tolerated.

Alternatively, consider the problem of shipping out a small set of non-defective industrial

products in urgency [31]. In this case, the goal is to ensure fast scrutiny of which items are

non-defective and ship them out quickly. It is su�cient to detect the required number of

non-defective items to be shipped, which may be only a fraction of the full non-defective

set. In order words, false positives can be tolerated.

In such scenarios, one could reduce the su�cient number of tests by exploiting the re-

laxation on the required accuracy of the recovered defective/non-defective set. In this

direction, the authors in [124] present an achievability bound on the number of tests when

up to αk misses out of k defectives are allowed given n items, as O
(
e(1−α)k logn/H(e−α)

)
,

where H(·) denotes the binary entropy. The authors in [93, 125] consider approximate

defect set identi�cation and derive both achievability and converse bounds on m in the

sub-linear regime, i.e., k=Θ(nβ), β∈(0, 1). The proof uses information spectrum methods

and thresholding techniques from channel coding theory. For achievability, the authors

use a maximum likelihood-like recovery algorithm. Similarly, the authors in [92] consider

a list-decoding algorithm for approximate recovery. The results in all these scenarios show

that allowing bαkc defectives to be missed relaxes the converse bound on m by at most a
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multiplicative factor 1−α, where α ∈ (0, 1).

The authors in [126] show that the probability that the maximum of the false positive

(FP) or false negative (FN) errors incurred is no more than αk, α ∈ (0, 1) approaches

one when m ≥ (1 +α′)(1−α) log2

(
n
k

)
but the same probability approaches zero when

m < (1−α′) log2

(
n
k

)
, for arbitrary α′ > 0, as n → ∞. A treatment of this all-or-nothing

phenomenon is also presented in [127]. The authors in [128] use sparse graph codes and

present a decoder called SAFFRON which can recover (1−ε′)k defectives with probability

1−k/nr with 2(1+r)C ′k log2 n tests, where C ′ is a function of ε′ > 0 and r ∈ Z+.

The available bounds on the su�cient number of tests for approximate defective set

recovery also depend on the underlying test matrix design, i.e., the distribution from

which the test matrix is drawn. For example, in the sub-linear regime, with an i.i.d.

Bernoulli(log 2/k) test matrix, k log(n/k)/ log2 2 tests are su�cient for the error probabil-

ity (appropriately de�ned to account for the maximum number of FPs and FNs allowed)

to approach zero [129]. Similarly, under a doubly-regular design with column-weight r

and row-weight s, it is known that the false negative rate (FNR) is minimized for larger

r and smaller s, whereas the number of tests is rn/s [130]. Therefore, they �x di�erent

(nonzero) values for the allowed FNR and numerically analyze the number of tests. They

de�ne the false positive rate (FPR) = E[|K̂ \ K|]/|[n] \ K| and FNR = E[|K \ K̂|]/|K|,

where [n] , {1, . . . , n} as a measure of the average approximation errors.

Recently, the authors in [131] addressed a question related to the computational-statistical

gap (CSG) in the non-adaptive group testing paradigm, where one is interested in (1−

o(1))−approximate recovery in the k = o(n) regime, for the B(log 2/k) test design [129,

Sec. IIA]. The CSG is de�ned as the gap between the number of tests above which
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recovery is information-theoretically possible and the number of tests required by the

currently best-known e�cient algorithms to succeed [131]. The authors provide evidence

that the gap can be closed when m ≥ (1+α)k log2(n/k), α∈(0, 1) and n, k →∞, enabling

(1−α′)m tests to contain at least b(1−α)kc defectives asymptotically almost surely, for

any α′ > 0. The authors show that the absence of CSG implies that a practical local

search routine succeeds in solving the smallest satisfying set (SSS) estimator under the

said regime, which otherwise has a combinatorial complexity.

In contrast to the usual error probability or the FP/FN rates, the author in [132] considers

a new metric called the expected number of tests per infected individual found (ETI). One

of the questions posed in this work involves tolerating partial recovery and analysis of the

SAFFRON3 algorithm's ETI, which is shown to be 2e log2(n/k). Lastly, [7, 105, Section

5.1] presents bounds on m for COMP and DD under partial recovery conditions, albeit

without proof. For instance, for m ≥ (1 +η)ek log(n/k), where η > 0, the average number

of FPs output by the COMP algorithm behaves as o(k), and, therefore, the probability of

getting more than γk false positives, for a �xed γ ∈ (0, 1), tends to zero. A similar result

is presented in the context of the DD algorithm for FN errors. The authors in [2] also

brie�y discuss partial defective set recovery in group testing.

In practical settings with �nite resources, one is often interested in ensuring that the

probability of the error incurred by a function learned using a �nite number of randomly

drawn samples exceeding a threshold remains below a small number, called con�dence.

We use the PAC formulation [133,134] to bridge this gap.

We have presented some of the main results from the vast �eld of research on group

3SAFFRON: Serial estimate of the Alpha Fraction that is Futilely Rationed On true Null hypotheses.
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testing relevant to this work. A collection of extensive results and deeper discussions

pertaining to various decoder rules, testing protocols, and designs, including the bounds

on the number of tests under di�erent constraints, reliability criteria, various measurement

and mixing models can be found in [7] and references therein. With this background, we

now summarize the motivation for applying PAC analysis to group testing algorithms.

2.1.3 Motivation and Contributions

To the best of our knowledge, a rigorous treatment of su�ciency bounds on m for ap-

proximate recovery using practical algorithms like COMP and DD accounting for the

randomness in the test matrix and at nonzero con�dence levels is not available in the

literature. In order to bridge this gap, we start by reformulating the group testing prob-

lem and view these algorithms through the lens of function learning and PAC analysis.

In turn, this allows us to shed light on the relationship between PAC-learning and the

exact recovery bounds available in the literature [4, 6]. A fundamental di�erence between

PAC learning [133, 134] and our problem is as follows. In group testing, we can choose

the data distribution from which the samples are drawn for function learning based on

our knowledge of the hypothesis space from which the target function is to be learned (in

the context of group testing, function learning corresponds to identifying defective items.)

For example, in i.i.d. Bernoulli test matrix designs, we can choose the probability p with

which a given item participates in a given test. As we will see, this additional degree

of freedom allows us to optimize the PAC learning process and obtain tighter and more

general bounds on the su�cient number of group tests.

It is worth mentioning that viewing group testing as a function learning problem has

other potential applications: blind chemistry, where one is interested in determining which
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k out of n reactants in a chemical reaction has the potential to create a particular (useful)

detectable compound [2]; identi�cation of key design variables for improving an automo-

bile's fuel e�ciency; key-species identi�cation in a complex biological ecosystem; reactions

of bacteria in gut micro-biome to a given drug, etc [2,135]. Also, multi-label classi�cation

with a large number of the number of class labels n ∼ 103−106 and a small number of

classes per input (e.g., an image) is k� n can be performed by a set of n one-vs.-rest

classi�ers. That is, the jth classi�er is trained to output 1 if the jth object is detected in

the input image, and 0, otherwise for each j ∈ [n]. The authors in [85] propose to use a

(k, e)-disjunct matrix and encode the n-dimensional label vector using an m-dimensional

vector, where m� n. The m-length binary vector is constructed by learning m one-vs.-

rest classi�ers. Then, the recovery of the original n-length label vector from the m-length

binary vector is solved as a classical group testing problem. The test design in [85] can

tolerate up to be/2c misclassi�cations. On a similar note, the authors in [136] show how

group testing can be used in a binary classi�cation problem by posing it as an exact

rule-learning problem.

We note that the PAC formulation is one of the key tools used to analyze machine

learning algorithms [133]. For example, PAC analysis aids in developing a lower bound

on the probability that the error rate of the above-mentioned multi-label classi�er lies

below a certain error threshold. However, the existing analysis of group testing algorithms

does not conform to this notion of characterizing the distribution of the error rates over

the randomness of the test matrix. By formulating group testing as a PAC learning

problem and developing corresponding achievability bounds, we are able to bridge this

gap. Furthermore, since the PAC formulation allows one to characterize the decoding
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error rate and the con�dence in a uni�ed framework, it is well suited for applications

where the target error tolerance is small but nonzero, as in the examples discussed above.

In this chapter, we set the stage for PAC analysis of group testing algorithms. Then, in

the next chapter, we use the PAC analysis to characterize the su�cient number of tests,

m, required for approximate recovery of the defective set with high-probability using the

PAC learning framework. Our main contributions in this chapter are as follows:

1. We reformulate the defective set identi�cation problem in non-adaptive group testing

with random pooling as a function learning problem. It can be seen that the non-

adaptive group testing problem is equivalent to learning a k-literal OR-ing function,

where k denotes the number of defective items in the population of n items.

2. A PAC model for group testing is established where we show that the average proba-

bility of error de�nition in the combinatorial group testing model setting is equivalent

to that of the PAC bound given in (2.6) when the approximation tolerance proba-

bility, ε, is equal to 0.

The technical novelty of this part of the thesis is that it investigates the group testing

problem from a new perspective, i.e., the PAC framework. Traditional PAC analysis

methods require ε > 0 and show that the sample complexity for PAC learnability varies

as 1/ε [133]. In the context of group testing, we obtain the exact recovery bounds by

setting ε = 0. Therefore, the proof techniques used in classical PAC analysis can not be

directly applied to group testing. We �rst bridge this gap between the traditional PAC

framework and the analysis of group testing algorithms. We show an equivalence between

the performance characterization in PAC learning and group testing in the exact recovery

scenario, through Lemma 2.1. As we shall see in Chapter 3, we relate the allowed number
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of FP errors, gε and the FN errors, dε, with the approximation error tolerance probability,

ε, of the PAC framework in the approximate recovery scenario (see (3.1), (3.12) and (3.28)).

2.2 PAC Learning View of Group Testing

In this section, we cast the group testing problem as a function learning problem, also

termed as learning from examples [137]. Here, a target function f ∈ C is learnt using

m training examples (ai, f(ai)), i ∈ [m], with the inputs ai drawn independently from

a distribution D. The training examples are fed to the learner, which then outputs an

estimate of f , also called a hypothesis, and denoted by h. The error between h and f

evaluated on unseen test data is

e(h, f) = Pa∼D(h(a) 6= f(a)). (2.2)

However, the quantity e(h, f) is random because the m training examples are drawn from

D. Therefore, we can ask how many training examples are su�cient to ensure that

P(e(h, f) > ε) ≤ δ, (2.3)

where δ ∈ (0, 1) and 1− δ is called the con�dence parameter. Obviously, it is desirable to

have small ε and δ.

2.2.1 PAC Model for Group Testing

Given a test matrix, A, and the corresponding test outcomes, yi, i ∈ [m], consider

the problem of learning a hypothesis that can predict the group test outcomes with high

con�dence. More formally, we consider the ith row of the test matrix, ai, i ∈ [m] as the

input, and the outcome of the ith group test, yi, as a label associated with the ith training
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Table 2.1: Group Testing as a PAC Learning Problem

Target Training Examples Hypothesis

Group testing case x(·) (ai
i.i.d.∼ D, yi = x(ai)) x̂(·)

PAC learning case f(·) (ai
i.i.d.∼ D, f(ai)) h(·)

example: (ai, yi). Since the entries of x corresponding to the non-defective items are 0,

we can write yi as

yi = aij1xj1 ∨ . . . ∨ aijkxjk

= aij1 ∨ aij2 ∨ . . . ∨ aijk , x(ai), (2.4)

where j1, j2, . . . , jk are the indices of x corresponding to the defective items. Thus, x(ai)

is a k-literal logical OR-ing function, and is our target function to learn. In computer

science, this problem is referred to as the k-disjunctive function learning problem [138].

The target function space, denoted by C, consists of all k-literal OR-ing functions, where

k literals are picked without replacement from n literals in accordance with (2.4).

The relationship between non-adaptive random pooling-based group testing and the func-

tion learning problem is summarized in Table 2.1. One could set the distribution from

which the entries of the test matrix is drawn as D = B(p). Another well-studied random

pooling design is to uniformly and independently sample s items with replacement in each

group test [5].

In the notation of group testing, (2.2) can be written as

e(x̂(·), x(·)) = Pa∼D(x̂(a) 6= x(a)), (2.5)

which denotes the error probability on future group tests, i.e., after m training samples
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are observed and the mapping x̂(.) is learnt. Thus, in the PAC learning view, we seek to

determine the number of training examples, m, and a mapping from the training examples

to a hypothesis, x̂(·), such that with a con�dence probability 1− δ, the error between x(·)

and x̂(·) is at most ε [137], [133, Chapter 2], i.e.,

P(e(x̂(·), x(·)) > ε) ≤ δ (2.6)

holds true, where e(·, ·), as de�ned in (2.5), is a random variable.

A fundamental di�erence between the PAC formulation of the group testing presented

here as compared with the classical PAC-learning problem is that the data distribution,

D, is choosable. For example, the distribution can be set based on the hypothesis class,

C, i.e., based on the sparsity parameter, k. Even though the group testing algorithms

considered in this work do not use the knowledge of k during the defective set recovery

process, the design of the testing matrix and hence, the test data distribution, depends on

this knowledge.

We demonstrate that, when ε = 0, the bounds on m derived via the PAC model reduce

to the exact recovery results derived in [4, 6]. Note that, in classical group testing, the

goal is to correctly identify the defective set, whereas in the PAC learning view of group

testing, we seek to learn a hypothesis satisfying (2.6). The following Lemma relates the

PAC learning to group testing in the exact recovery case.

Lemma 2.1. Let D be a distribution such that PD(aj = 1) ∈ (0, 1), j ∈ [n] and ajs are

independent. Let C denote the set of all k-literal OR-ing functions in n-dimensional space,

where k < n. Let x̂ : {0, 1}n → {0, 1} (correspondingly K̂) be a function in C that is learnt

using a set of m training samples. Then, K̂ = K if and only if Pa∼D(x̂(a) 6= x(a)) = 0.



Chapter 2. 36

The proof of Lemma 2.1 is presented in Appendix A.1. Lemma 2.1 says that provided the

marginal probability of every entry of the vector a is bounded in the open interval (0, 1)

and the entries of a are drawn independently, the notions of recovery in (2.1) and (2.6)

when ε = 0 are equivalent.

2.3 Chapter Summary

In this chapter, we have set the stage for analyzing non-adaptive group testing algorithms

using a PAC framework. We formally described the non-adaptive group testing problem,

followed by an overview of some well-known binary group testing algorithms available

in the literature. Then, some important results on achievability bounds available in the

literature for exact and approximate recovery scenarios were summarized. The concept of

approximate recovery and its applications were stated.

Next, the PAC learning view of the group testing problem was formally described along

with the PAC model for group testing. In particular, the group test outcomes are viewed

as an output of a k-literal OR-ing function. The goal of the group testing algorithm is

then to learn a k-literal OR-ing function that satis�es a certain notion of correctness at a

certain con�dence level. Lemma 2.1 shows the equivalence between the PAC learning and

the group testing problem when ε = 0, i.e., under exact recovery case. We emphasize that

the PAC formulation presented in this chapter is di�erent from the classical PAC analysis

since the data distribution can be chosen based on the hypothesis space containing the

target function. With this foundation, we derive su�ciency bounds for well-known binary

group testing algorithms in the next chapter.



3 Probably Approximately Correct

Bounds for Group Testing

Chapter Highlights

In this chapter, we derive a su�ciency bound for well-known non-adaptive binary group testing

algorithms. The �rst part of this chapter presents a PAC analysis for an algorithm that makes

only FP errors. This section is comprised of two parts: 1) the COMP algorithm with Bernoulli

test matrix design (COMP-B) and 2) the COMP algorithm with near-constant row-weight test

matrix design (COMP-R). In both cases, we establish the relationship between the approximation

error probability, ε, and the number of FPs tolerated. Then, the main results, i.e., the su�ciency

bounds, are stated. Next, special cases of the bound, including the exact recovery scenario

obtained by setting ε = 0, are discussed. The optimal Bernoulli parameter, p, in the case of

the COMP-B bound and the importance of optimizing the Cherno� parameter in the case of

the COMP-R bound are then discussed. Also, we extend the results on the expected stopping

time and the tail probability for the stopping time in the context of the coupon collector problem

(CCP) to collecting a subset of coupons. The new results are used to derive the COMP-R bound.

The second part of this chapter presents a PAC analysis with FN errors. In particular, the DD

algorithm with Bernoulli test matrix design is analyzed. As before, we establish the relationship

between the approximation error probability, ε, and the number of FNs tolerated, followed by the

main result. By setting ε = 0, we see that the derived bound agrees with the exact recovery bound

available in the literature under the sub-linear regime. An order-wise analysis is performed for all

three cases. We observe that our bound is ∝ log(Cd/δ) with a constant, Cd = 2 for the COMP-R

algorithm and Cd = 1 for COMP-B and DD algorithms when we �x n, k and ε. Further, the

su�cient number of tests is ∝ (log (1/ε) + 1/ε) when we �x n, k and δ.

Finally, we show that the novel theoretical bounds agree with that obtained by the simulations

by a suitable numerical experiment. In other words, we comment on the tightness of the derived

bounds. We then analyze the e�ect of approximation error tolerance on the bounds, followed by

the side e�ects of performing insu�cient number of tests. Lastly, we pictorially illustrate how

testing rate surface and su�cient tests contours behave as a function of ε and δ.

37
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3.1 Introduction

The previous chapter discussed the motivation for applying PAC analysis to the non-

adaptive group testing problem. Recall from Section 2.2.1 that two parameters characterize

the PAC-based analysis of group testing: 1) the approximation error tolerance, ε, and 2)

the con�dence, 1− δ. Further, recall that n denotes the number of items, k (< n) denotes

the number of defective items in the population, and K denotes the defective set with

|K| = k. In this chapter, we apply the PAC analysis to well-known binary group testing

(decoding) algorithms under the following three scenarios [4, Chapter 2] [6]

1. Combinatorial Orthogonal Matching Pursuit (COMP) algorithm with Bernoulli test

matrix design (COMP-B);

2. COMP algorithm with a near-constant row-weight (random) test matrix design

(COMP-R);

3. De�nite Defectives (DD) algorithm with a Bernoulli test matrix design,

and derive a su�ciency bound for the number of tests, m, in each case as a function of

n, k, ε, and δ. This enables us to perform a �ner analysis of the group testing algorithms

by separately accounting for the randomness in the test matrix A ∈ {0, 1}m×n and the

defective set K.

We note that exact recovery bounds can be obtained by setting ε = 0. As a result, the

exact defective set recovery results found in the literature emerge as a special case of our

analysis. In other words, we develop a common framework to arrive at su�ciency bounds

on the number of tests for both exact and approximate set recovery with high probability.
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Recall from Section 2.1.2 that the available bounds on the su�cient number of tests for

approximate defective set recovery also depend on the underlying test matrix design, i.e.,

the distribution from which the test matrix is drawn. In our thesis, we are interested in

the number of FP or FN errors allowed at a given n, k, and with the con�dence parameter,

δ. Lastly, we work mainly in the non-asymptotic regime, which is of practical interest, as

mentioned in Section 2.1.1.

Note that, under the group testing model described in Section 2.1, COMP only make

FP errors, i.e., K̂ ⊇ K, while DD only makes FN errors, i.e., K̂ ⊆ K, where K̂ denotes

an estimate of K output by the group testing algorithm [4]. COMP and DD are some

of the most popularly studied algorithms in the group testing literature [7]. As stated

above, the COMP algorithm is appropriate when one can tolerate FP errors, i.e., when

the cost of FP error is low relative to the cost of FN errors. Similarly, the DD algorithm

is suitable in scenarios when FN errors can be tolerated (see Section 2.1.2 for examples

of such applications). Since the PAC formulation for group testing is a new introduction,

we analyze the su�cient number of tests with the COMP and DD decoding algorithms.

These algorithms show near-optimal behavior in terms of the su�cient number of tests

asymptotically as the number of items goes to in�nity, in the exact recovery case. In

this chapter, we answer the following question: When the con�dence parameter, δ, and

the approximation error tolerance, ε, are nonzero, what is the scaling of the number of

tests given a number of FN or FP errors (corresponding to the nonzero ε) that is allowed?

Towards this end, we analyze these algorithms separately in the sequel. Before we proceed

to present the main results, we summarize the contributions of this chapter below:

1. We use the PAC-learning formulation of the non-adaptive group testing presented
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in Chapter 2 for deriving a su�ciency bound on the number of tests in both exact

and approximate recovery conditions for the well-known and popular binary group

testing algorithms: COMP and DD. In contrast to existing works, we optimize the

design parameters to get a tighter bound on the su�cient number of tests for COMP-

R. Further, the existing results on the coupon collector problem do not apply to

approximate recovery. Therefore, we also extend the analysis of the coupon collector

problem to handle collection of only a subset of coupons. The new results are then

used to develop measurement bounds for approximate recovery of the defective set

using the COMP algorithm with near-constant row-weight test matrix design.

2. We derive the order-wise behavior of the PAC bounds for large n and k. When

we �x n, k, and ε, the su�cient number of tests obtained by the PAC analysis is

∝ log(Cd/δ) with a constant, Cd = 2 for COMP-R and Cd = 1 for COMP-B and

DD. Further, the su�cient number of tests is ∝ (log(1/ε) + 1/ε) when we �x n, k

and δ.

3. We relate the number of FP errors tolerated, denoted by gε (similarly, the number

of FN errors tolerated, dε) to the approximation error probability ε used in the PAC

formulation. This way of relating the theoretical results to the practical metrics of

interest makes the results appealing to practitioners also.

4. The PAC-based analysis allows us to trade-o� the accuracy of defective set recovery

with the con�dence with which the decoded set meets that accuracy. We present a vi-

sualization of this trade-o� in the form of a su�cient number of tests contour/surface,
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which shows its dependence on the approximation error tolerance and the probabil-

ity of failure to meet the required error tolerance. Also, PAC analysis enables one

to characterize a lower bound on the cumulative distribution of the approximation

errors (see (2.6)).

The technical novelty in this part of the thesis is that the existing results for the coupon

collector problem (CCP) [139] cannot be directly applied to derive COMP-R bounds in

the approximate recovery case. Therefore, we derive the expressions for the expected stop-

ping time and the tail probability bound for a subset coupon collection problem (SCCP),

where one is interested in acquiring only a subset of coupons to complete the collection,

in Lemma 3.2. We note CCP �nds applications beyond group testing, e.g., in animal

species census or biodiversity sampling, electrical fault detection and network failure anal-

ysis, and data compilation, to name a few [140�142]. Extensions to the CCP problem

continue to be an active area of research [143,144]. To our knowledge, SCCP analysis has

not been directly addressed in the literature, making it a potentially useful contribution

of independent interest.

Further, we optimize the Cherno� parameter by bounding the error probability in two in-

dependent parts in the COMP-R analysis, thereby obtaining a tighter bound as compared

to that in the literature for the exact recovery case [6].

Lemma 3.1 and Lemma 3.3(c) forms the basis for deriving the su�ciency bound for

COMP-B and DD algorithms: the exact computation of the probabilities that g non-

defective items are hidden and d defectives items are unidenti�ed (respectively) is charac-

terized. Also, the order-wise analysis of DD bound involves simpli�cation of an implicit

equation in (3.30) and solving the transcendental equation in (3.33). Lastly, we give the
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Table 3.1: PAC-based bounds vs. existing bounds on the su�cient number of tests for
exact recovery for COMP and DD algorithms, where κ(γ′) , max{γ′, 1 − γ′} with k =

n1−γ′ . Also, we set δ′ , Cδn
−δ, where the constant Cδ = 2 for COMP-R and Cδ = 1 for

COMP-B and DD with Cη denoting an algorithm-speci�c constant.

Algorithm PAC Bound with ε = 0 Existing Bound

COMP-B e(k + 1)
(
log n+log

(
1
δ

))
ek
(
log n+log

(
1
δ′

))
[6, Thm. 4]

COMP-R ek

1− Cη√
n logn

[
log(n− k)+log

(
2
δ

)]
2ek

(
log n+log

(
2
δ′

))
[6, Thm. 3]

DD ek

(
log
(
n
k

)
+

log( 1
δ )

log(nk )
+2

)
ek
(
κ (γ′) log n+log

(
1
δ′

))
[4, Thm. B.3]

su�ciency bounds for the COMP and DD algorithms in terms of the allowed number of

false positives or false negatives. In case the practitioner is unable to perform the required

number of tests or they perform additional tests, the expressions in (3.3), (3.13) and (3.30)

can be used to determine the increase or decrease in the FP or FN errors to be expected,

respectively, and at di�erent con�dence levels.

Before we proceed forward, we summarize simpler, order-wise versions of our PAC

bound for COMP and DD algorithms in Table 3.1 along with the existing bounds, in

the exact recovery scenario, for quick reference. We note that the bounds derived in the

thesis are more general, as they are applicable even under approximate recovery scenarios.

From Table 3.1, we see that our COMP-B and DD bounds are similar to the ones in the

literature, whereas the COMP-R bound is tighter by a constant factor since Cη/
√
n log n�

1 for large n. Further, the existing bounds implicitly use a vanishing error probability

δ′ = n−δ, whereas our bounds do not have such assumptions. Often, in practice, a �xed

but small error probability is acceptable.

Also, the order-wise versions of the general bounds are summarized in Table 3.2 for refer-

ence. We note that there are no equivalent existing bounds in the general scenario where
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Table 3.2: The general order-wise PAC bounds for COMP and DD algorithms, where
δ ∈ (0, 1), ε ≥ 0.

Algorithm Order-Wise PAC Bound

COMP-B 2ke

[
log
(

n
keε+1

)
+1+

log( 1
δ )

keε+1

]
COMP-R 2ke

[
log
(

n
keε+1

)
+1+log

(
2
δ

) [
1

keε+1
+ e

2k

]]
DD ke

(
log
(
n
k

)
+

log( 1
δ )

(keε+1) log(nk )
+

log( ke
keε+1)

log(nk )

)

the e�ects of both δ and ε are accounted for, with COMP and DD decoding algorithms.

However, as stated earlier, the authors in [7] provide some insight into how FP or FN er-

rors scale for COMP and DD algorithms (see Section 2.1.2). In particular, they show that

when the number of tests, m ≥ (1+η)ek log(n/k), where η > 0, the average number of FPs

(or FNs) in COMP (or DD) algorithm behaves as o(k). Finally, the lower bound based

on the counting argument states that k log(n/k) tests are necessary [4,7]. From Table 3.1

and Table 3.2, we see that the derived su�ciency bounds follow a similar trend in terms

of their dependence on n and k.

3.2 PAC Analysis with False Positive Errors

In this section, we develop a PAC analysis for the case where only false positive errors

occur, i.e., when K ⊆ K̂. This is the case with the COMP algorithm. As mentioned earlier,

COMP has been known under various names in the literature. For example, the authors

in [5, 6] couple the test matrix design with a decoding procedure. In particular, they

called COMP with the Bernoulli test design as a Column Matching (CoMa) algorithm.

Also, COMP with a near-constant row-weight test design is called the Combinatorial Basis
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Pursuit (CBP) algorithm. One can view the CoMa algorithm as a column-wise decoding

view of the decoding procedure, while the CBP algorithm as a row-wise decoding view of

the decoding procedure [6]. The two algorithms are mathematically equivalent in the sense

that they always output the same K̂. More recently, the authors in [7] suggest decoupling

the test matrix design from the decoding algorithm. Therefore, as mentioned earlier, we

refer to the COMP algorithm with Bernoulli design as COMP-B and the COMP algorithm

with near-constant row-weight design as COMP-R. However, we stick to the column-wise

vs. row-wise decoding procedures for the analysis and the derivation of the PAC bound.

Consequently, the upper bound analysis and takeaways are di�erent in the two cases.

3.2.1 The COMP Algorithm: Bernoulli Test Design (COMP-B)

We start by brie�y summarizing the column-wise decoding view of the COMP algo-

rithm [6]. We declare an item as defective if the ones in the column of the test matrix

corresponding to that item are a subset of the ones in the outcome vector. Otherwise,

the item is declared as non-defective. The algorithm never classi�es a defective item as

a non-defective. However, the estimate may contain false positives, which occur when

non-defective items do not participate in any of the negative outcome tests in the training

phase. Such items are also called hidden non-defectives.

Suppose the hypothesis output by COMP-B has G hidden non-defective items. Then,

from (2.5), the probability that x̂(·) ≡ x̂ di�ers from x(·) ≡ x for the next group test,

de�ned as Pai∼B(p)(x̂(ai) 6= x(ai)), is a function of G. Suppose we want the error between

x̂ and x to be at most ε. In turn, this requires G ≤ gε, where gε can be computed from

Pai∼B(p) (x̂(ai) 6= x(ai)) = (1− (1− p)G)(1− p)k ≤ ε
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⇒ gε =

⌊
log
(

1− ε/ (1− p)k
)

log(1− p)

⌋
. (3.1)

Thus, the bound in (2.6) reduces to P(G > gε) ≤ δ. In order to proceed further, we need

the following Lemma.1

Lemma 3.1. The probability that a �xed set of g (1 ≤ g < k) non-defective items remain

hidden in all m tests is given by

Phg(m) =
(
1− (1− p)k + (1− p)g+k

)m
. (3.2)

From the above Lemma, we obtain the following su�ciency condition on m for COMP-B

under the PAC model:

Theorem 3.1. The su�cient number of tests such that the predicted outcome based on

the estimated defective set does not agree with the true outcome on future group tests with

probability at most ε and con�dence parameter 1− δ is

mS =
log
(
n−k
gε+1

)
+ log 1

δ

log (1/(1− (1− p)k + (1− p)gε+k+1))
, (3.3)

with gε as given by (3.1).

From (3.3), we observe that our bound on the number of tests is a function of gε (equiv-

alently, ε) and δ in addition to n and k. In contrast, the existing bounds in the literature

do not capture the e�ect of both ε and δ. When ε tends to zero, our PAC bound reduces

to the bound given in the literature [6] and is discussed in a paragraph after (3.6). Also,

as we shall see in Section 3.2.1.2, the PAC bound shows k log n dependency, similar to the

counting bound [4].

1All the proofs to the results present in this chapter can be found in Appendix B.
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Figure 3.1: Comparison of the solution of MINLP using grid-search vs. the implicit
equations for mS, popt and gε at δ = 0.01 over various approximation error tolerance, ε,
when (n, k) ∈ {(2500, 50), (10000, 200), (10000, 100)}.

3.2.1.1 Optimum Bernoulli Parameter

We can determine the optimum value of p for which (3.3) is minimized by solving the

following mixed-integer non-linear program (MINLP):

m̂S, p̂opt, ĝε = arg min
m∈Z+, p∈(0,1)
gε∈Z+∪{0}

m

s.t. (1− (1− p)gε)(1− p)k ≤ ε

and
(
n− k
gε + 1

)(
1− (1− p)k + (1− p)gε+1+k

)m ≤ δ. (3.4)

The constraints above correspond to the error probability (ε) and con�dence (1 − δ) re-

quirements. Since the problem does not admit a closed-form solution, we solve (3.4) using

a grid-search over m, p and gε, ensuring that we are varying them over the feasible range.

In order to obtain insights, we also minimize (3.3) using a heuristic �xed-point iteration

method. Note that (3.3) holds for any gε ∈ Z+. Further, when gε = 0 (i.e., for exact
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recovery), popt in (3.5) reduces to 1/(k + 1) or O(1/k) for large k. We can use 1/(k + 1)

as an initial value for p and �nd the largest number of false positive errors gε for which

the ε-constraint is satis�ed from (3.1). Then, for the given gε, we seek the p for which the

term
(
1− (1− p)k + (1− p)gε+1+k

)
is minimized, since this results in the smallest m for

which the δ-constraint is satis�ed. Di�erentiating this term and setting it equal to zero

yields the optimum value of p as

popt=1− gε+1
√
k/(k+gε+1). (3.5)

We now iterate between (3.5) and (3.1) to obtain the optimal gε and popt.

Although it appears hard to prove analytically, we �nd that this procedure converges,

and yields the globally optimal solution. We compare the numerical solution, ĝε and p̂opt,

obtained by solving (3.4) with that obtained using the �xed-point procedure, namely,

gε and popt. Also, we compare the value of the testing rate ρR , mS/n computed

from Theorem 3.1 along with (3.5) and (3.1) with that obtained by solving (3.4), i.e.,

ρ̂R , m̂S/n. The computed values and the solution of the MINLP are plotted in Fig-

ure 3.1 over various values of the approximation error tolerance, ε, with δ = 0.01 for a

collection (n, k) ∈ {(2500, 50), (10000, 200), (10000, 100)}. It can be observed that the ex-

pression for popt as given in (3.5) is consistent with the expression for gε in (3.1) which

further yields the optimum mS as given by (3.3).

3.2.1.2 Order-Wise Analysis of (3.3)

We note that the log
(
n−k
gε+1

)
term appearing in the expression for mS is similar to the

log
(
n−k
τ

)
term obtained in [7,93], where τ denoted the number of false positives. Further,

the achievability bound in [93] is characterized by the conditional mutual information term
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in the denominator. In this sub-section, we elucidate the behavior of the denominator

in (3.3) for large n and k, resulting in an order-wise characterization of the achievability

bound.

First, we can relate the COMP-B bound for the exact recovery case in [6] to our PAC

bound. From (3.1), we see that ε = 0 implies gε = 0. In the sub-linear regime, k =

Θ(nβ), β ∈ (0, 1), the numerator in (3.3) can be upper bounded by log n + log(1/δ). Let

z , 1 − (1 − p)k + (1 − p)k+1. Using log(1/z̃) ≥ 1 − z̃, z̃ > 0, the denominator in (3.3)

can be lower bounded as follows:

log (1/z̃) ≥ p(1− p)k =
1

ek
−O

(
1

ek2

)
≥ 1

e(k + 1)
(3.6)

where p = 1/k [6], and Laurent's series is used in the penultimate step as k gets large.

Combining the reduced expressions, we obtain that m = e(k + 1) (log n+ log(1/δ)) are

su�cient for exact recovery. From the su�ciency result for m in [6, Theorem 4], with

δ′,n−δ, m = ek(log n+ log(1/δ′)) is su�cient, which is similar to our bound at ε=0.

Second, we analyze how the achievability bound in (3.3) behaves as as a function of δ

and ε when n and k grow large. De�ne z , (1 − p)k − (1 − p)gε+k+1. Using
(
n−k
gε+1

)
≤

(e(n− k)/(gε + 1))gε+1 along with the fact that log(1/(1− z)) ≥ z, z ∈ [0, 1] in (3.3), we

see that

mS =
(gε + 1) log

(
n−k
gε+1

)
+ (gε + 1) + log

(
1
δ

)
(1− p)k (1− (1− p)gε+1)

, (3.7)

tests are su�cient to ensure no more than gε errors with con�dence 1 − δ. Set p = 1/k

in (3.7). Using (1 − x)r ≤ e−xr for x ∈ [0, 1], r ≥ 0 and 1 − e−y ≥ y/2, for y ∈ [0, 1], we

lower bound the second factor in the denominator of (3.7) with x = p, r = gε + 1 and
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y = (gε + 1)/k as:

1− (1− p)gε+1 ≥ gε + 1

2k
. (3.8)

Using (1− p)k → 1/e for large k and log(n− k) < log n, along with (3.8) in (3.7), we get

mS = 2ke

[
log

(
n

gε + 1

)
+ 1 +

log
(

1
δ

)
gε + 1

]

= 2ke

[
log

(
n

keε+ 1

)
+ 1 +

log
(

1
δ

)
keε+ 1

]
, (3.9)

where we have used p = 1/k in (3.1) and log(1−x)→ −x, x→ 0 along with (1−p)k → 1/e

as n and k grow, to get gε = keε. From (3.9), we see that mS ∝ log(1/δ)/ε for very small

δ. Further, we see that the dependency of our bound on ε > 0 is ∝ (log(1/ε) + 1/ε). On

the other hand, we get mS ≈ 2ke (log n+ 1 + log(1/δ)) by setting ε = 0, i.e., for the exact

recovery case, accounting for the con�dence parameter δ.

3.2.2 The COMP Algorithm: Near-Constant Row-Weight Test

Design (COMP-R)

Under the row-wise decoding view [6], we declare all the items participating in the group

tests with negative outcomes as non-defective, and the remaining items as defective. It

is clear that the COMP-R makes only false positive errors. In contrast to COMP-B, the

analysis technique is di�erent in the COMP-R case. As we shall see from the numerical

results, the COMP-B bound is tighter (i.e., it follows the simulated behavior more closely)

than the COMP-R bound, in the exact recovery case. On the other hand, the COMP-R

bound is tighter in the approximate recovery case, i.e., as gε increases. Therefore, it is of

interest to study COMP-R bounds separately. We also note that the COMP-B analysis
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yields an analytical expression for the optimum parameters of the test design, as seen

earlier.

The analysis of the COMP algorithm with near-constant row-weight design is related

to the theory of Coupon Collector Problem (CCP), where the goal is to collect distinct

coupons to obtain a set of all available coupons [6]. More precisely, there is one of n

distinct types of coupon, say, inside each cereal box. How many cereal boxes should a

person purchase in order to collect all the n coupons?

The expected stopping time, i.e., the average number of purchases required to succeed

(with replacements, as coupons can repeat across purchases) is nHn, whereHn ,
∑n

i=1 1/i

denotes the nth Harmonic number for any n ∈ N and H0 , 0. A well known asymptotic

approximation for Hn is Hn ≈ log n + γ + 1/2n + O(1/n2) ≈ O(log n), where γ ≈ 0.5772

is the Euler�Mascheroni constant. Therefore, the expected stopping time is O(n log n) for

su�ciently large n. One can bound Hn as log n + γ < Hn < log(n + 1) + γ. Also, the

probability that the stopping time exceeds χn log n is at most n−χ+1, for χ > 1 [139,145].

Before we present the main result, on similar lines to [6], we relate the COMP-R decoding

procedure to the CCP as follows. The COMP-R procedure collects items from a sequence

of tests. Consider an s-length test vector whose entries index the items being pooled in a

given test. The s items are chosen with replacement.2

Following [6], it is clear that there is a natural bijection between the s-length vector and

n-length row vector ai of the ith group test. Since the probability of an item occurring at

any location of the s-length vector is uniform and independent, and this property holds

2A given item can be potentially picked more than once apart from being picked once or not picked
at all. By assigning the number of times an item is picked in the ith test to the (i, j)th entry of the
test design matrix, the authors in [146] present a multi-group testing model using standard (not Boolean)
arithmetic. However, in our work, the (i, j)th entry of the testing matrix is set to one irrespective of
whether the jth item is picked once or more than once in ith test, and is set to zero otherwise.
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across the tests, the items in any sub-sequence of m′ tests with negative outcomes may be

viewed as the outcome of a process of selecting a single chain of sm′ coupons. Since the

outcome of a single test with s items is negative with probability ((n − k)/n)s, in order

for COMP-R to succeed with m tests, in the exact recovery case, we require

ms

(
n−k
n

)s
≥ (n−k)Hn−k ≥ (n−k) [log(n−k)+γ] . (3.10)

For approximate recovery, i.e., gε errors, it su�ces to stop collecting items participating

in negative outcome tests once we collect n − k − gε non-defective items. Lemma 3.2

presents the expected stopping time and tail probability in this case.

Lemma 3.2. For the coupon collector problem with w distinct coupons, with each coupon

being picked in an equally likely and independent fashion, if any subset containing w − g

distinct coupons are su�cient to complete the collection, then

(a) The expected stopping time is w[logw + γ − Hg], where γ is the Euler-Mascheroni

constant and Hg is the gth Harmonic number as de�ned earlier.

(b) For any χ > 1, the stopping time exceeds χw[logw + γ −Hg] with probability at most

w(g+1)(−χ+1) e(g+1)χ[Hg−γ]+g

(g+1)(g+1) .

From Lemma 3.2(a), the RHS of (3.10) can be modi�ed with g = gε and w = n − k to

obtain

ms

(
n− k
n

)s
≥ (n− k) [log(n− k) + γ −Hgε ] . (3.11)

With this background, we are ready to present the result on the su�cient number of tests

required by COMP-R in the PAC framework. Since COMP can only make false positive

errors, the PAC equation (2.6) takes the form P(G > gε) ≤ δ.

We note that an error in the prediction occurs when none of the k defectives out of n
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items participate in the group test and at least one of G hidden non-defectives participates,

making the predicted outcome 1 whereas the true outcome is 0. On similar lines as (3.1),

the largest value of gε such that the error between x̂ and x is at most ε can be computed

as

Pai∼S(x̂(ai) 6= x(ai)) =

(
1− k

n

)s [
1−
(

1− G

n−k

)s]
≤ ε,

where S denotes a uniform distribution over all s-length vectors. This yields

gε =

(n− k)

1−

(
1− ε(

1− k
n

)s
)1/s

 . (3.12)

The following theorem characterizes the su�cient number of tests required by COMP-R

in the PAC framework.

Theorem 3.2. Suppose s items are chosen with replacement in each group test. A su�-

cient number of tests such that the predicted outcome based on the estimated defective set

does not agree with the true outcome on future group tests with probability at most ε and

con�dence parameter 1− δ is

mS =
χ(n− k)

(1− η)s
(
n−k
n

)s [log(n− k) + γ −Hgε ] , (3.13)

where gε is given by (3.12),

χ =

[
log( 1

cδ )
gε+1

+ gε
gε+1

+ log
(
n−k
gε+1

)]
log(n− k) + γ −Hgε

, (3.14)

η = (−C +
√
C2 + 4C)/2 ∈ (0, 1), with

C ,
log
(

1
(1−c)δ

)
(
n−k
s

) [ log( 1
cδ )

gε+1
+ gε
gε+1

+log
(
n−k
gε+1

)] , (3.15)
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and c ∈ (0, 1) is a design parameter.

In the subsequent subsections, we understand the implications of Theorem 3.2 in more

detail. A quick observation shows the dependency of ε and δ in addition to n and k, which

the bounds in the literature do not capture. As we shall see, when we set ε = 0, our

PAC bound is tighter by a constant amount as compared to the bound in [6]. Further

discussions are deferred to Section 3.2.2.3 and Section 3.4.4. Like the COMP-B bound, our

COMP-R bound shows a k log n dependency, similar to the lower (counting) bound [4].

3.2.2.1 Order-Wise Analysis - Exact Recovery Case

We now discuss the order-wise behavior of (3.13) for large n and k, and specialize the

result to the case when ε = 0. Note that di�erentiating (3.10) with respect to s and setting

the derivative equal to 0 yields s∗ = 1/ log(n/(n − k)). Using this value of s∗, we obtain

the following corollary.

Corollary 3.1. With χ and η as speci�ed in Theorem 3.2 computed at s = s∗ , 1/ log(n/(n−

k)), a su�cient number of tests such that the predicted outcome based on the estimated

defective set does not agree with the true outcome on future group tests with probability at

most ε and con�dence parameter 1− δ is

mS =
χk

(1− η)

(
n

n− k

)s∗
[log(n− k) + γ −Hgε ] , (3.16)

with gε as given by (3.12).

Recall that gε = 0 corresponds to the exact recovery case as considered in the litera-

ture [5]. Also, for reasonably large n, (n/(n − k))s
∗ → e from below. Substituting for χ
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from (3.14) with gε = 0 into (3.16) leads to

mS =
ek

(1− η)

[
log(n− k) + log

(
2

δ

)]
. (3.17)

We now set s = s∗, c = 1/2, and gε = 0 and reduce (3.15) to

C =
s∗ log

(
2
δ

)
(n− k)

[
log
(

2
δ

)
+ log(n− k)

] (3.18)

≈

 s∗

(n−k)
, δ � 2

n−k
s∗ log( 2

δ )
(n−k) log(n−k)

, δ � 2
n−k

(3.19)

Using the fact that s∗/(n − k) � 1 holds for large n and in the sub-linear regime along

with (3.18) and (3.19), a Taylor series approximation yields

η≈



√
s∗

(n−k)
, δ� 2

n−k (3.20a)√
s∗ log

(
2
δ

)
(n−k) log(n−k)

, δ� 2
n−k (3.20b)√

s∗ log
(

2
δ

)
(n−k)

[
log
(

2
δ

)
+log(n−k)

] , δ∼ 2
n−k (3.20c)

where, in (3.20c), a ∼ b is used to signify that a and b are of the same order.

From (3.20c), we see that η scales as O
(
1/
√
n log n

)
for large n. From the su�ciency

result for m in [6, Theorem 3], with δ′ , 2n−δ, m = 2ek(log n + log(2/δ′)) is su�cient,

which is similar to our PAC bound (3.17) when ε = 0 (also see the discussion below (3.27)).

Explicitly computing the optimum η as in (3.20a), (3.20b) and (3.20c) instead of using a

nominal value η = 1/2 [6] yields approximately a factor of 2 improvement in the testing

rate when gε = 0.

3.2.2.2 Order-Wise Analysis - Approximate Recovery Case

We �rst discuss the behavior of η when gε > 0, for large n and k. When gε > 0, we
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have 1/2 ≤ gε/(gε + 1) < 1 and further, dropping gε/(gε + 1) in the denominator of (3.15)

only increases the value of C and hence η. Therefore, dropping the gε/(gε + 1) term in the

expression for C does not violate the su�ciency of the bound in (3.16). As before, we set

c = 1/2 and s = s∗ and observe that s∗/(n− k)� 1 holds for large n and therefore, using

a Taylor series approximation in the sub-linear regime, the Cherno� parameter, η, can be

approximated as

η ≈

√√√√√ s∗ log
(

2
δ

)
(n−k)

[
log( 2

δ )
gε+1

+log
(
n−k
gε+1

)] . (3.21)

From (3.21), we observe that η scales as O(1/
√
n log n) for any �xed ε ≥ 0, similar to its

behavior in the exact recovery scenario. Further, (3.21) reduces to (3.20c) at ε = 0.

We now characterize the order-wise behavior of our bound. We start by substitut-

ing (3.14) in (3.16), to get

mS =
ek

(1− η)

[
log
(

1
cδ

)
gε + 1

+
gε

gε + 1
+ log

(
n− k
gε + 1

)]
, (3.22)

where (n/(n − k))s
∗ → e from below as n grows large. Using η = (−C +

√
C2 + 4C)/2

from Theorem 3.2, we get

1

1− η
≤ 2 + C. (3.23)

Using log(1/x) → 1 − (1/x) for x → 1 with x = (n − k)/n, we get s∗ → (n − k)/n, for

large n. Therefore, we use

C =
log
(

1
(1−c)δ

)
k

[
log( 1

cδ )
gε+1

+ gε
gε+1

+ log
(
n−k
gε+1

)] , (3.24)
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along with (3.23) in (3.22) to get

mS = 2ke

[
log

(
n− k
gε + 1

)
+

gε
gε + 1

+
log
(

1
cδ

)
gε + 1

]
+ e log

(
1

(1− c)δ

)
. (3.25)

Observe that gε/(gε + 1) < 1 and log(n − k) < log n, when n > k > 0. Setting c = 1/2

in (3.25), we get

mS = 2ke

[
log

(
n

gε+1

)
+1+log

(
2

δ

)[
1

gε+1
+
e

2k

]]
. (3.26)

As mentioned earlier, (n/(n− k))s
∗ → e for large n. Also, (1− x)(1/x)−1 → 1/e as x→ 0

with x = k/n and (1 − x)n → 1 − nx for x < 1 and |nx| � 1. Therefore, gε = keε

from (3.12). Substituting for gε in (3.26), we arrive at

mS = 2ke

[
log

(
n

keε+1

)
+1+log

(
2

δ

)[
1

keε+1
+
e

2k

]]
. (3.27)

For a given n, k, and δ, we see that the dependency of our COMP-R bound on ε > 0

is ∝ (log(1/ε) + 1/ε), similar to the COMP-B bound. On the other hand, we get mS =

2ke[log n + 1 + (1 + e/2k) log(2/δ)] for the exact recovery case by setting ε = 0, showing

that the analysis in this subsection is inclusive of the exact recovery case.

3.2.2.3 Utility of Optimizing the Cherno� Parameter

We now discuss the e�ectiveness of the approximation to the Cherno� parameter, η, for

both gε = 0 and gε > 0. To this end, recall the de�nition of the testing rate, ρR , mS/n.

Note that ρR denotes the su�cient number of tests per item.

Figure 3.2 shows the testing rates, ρR over various values of the log con�dence parameter,

log(1/δ) for both exact recovery and approximate recovery cases. For illustration, we

choose gε = 5 for our discussion on the approximate recovery case in this subsection. The
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Figure 3.2: Comparison of the su�ciency bound given in (3.16) and (3.17) with n = 2500,
k = 50, s = s∗ and c = 1/2.

plots are generated with n = 2500 and k = 50, corresponding to an error tolerance of 10%

in the approximate recovery case.

From Figure 3.2, we see that the approximations in (3.20a)�(3.20c) (the red, green,

and blue curves, respectively) match well with the exact expressions from Corollary 3.1

(the black curve) under the exact recovery. Similarly, the approximation in (3.21) (the

magenta dashed curve) matches well with the exact expression from Corollary 3.1 (the

magenta solid curve). A closer observation under the exact recovery condition shows that

the approximation in (3.20b) (the green curve) closes in on the exact bound at higher δ

where the condition, δ � 2/(n−k), is valid. Further, we observe that the testing rate has

almost halved when we allow 5 errors as compared to the exact recovery case at very high

con�dence, log(1/δ) = 7. Lastly, the rate of increase of ρR with log(1/δ) is lower when

gε > 0 compared to when gε = 0, i.e., the slope of the magenta curve is lower than that

of the black curve in Figure 3.2. For example, if gε = 0, i.e., we wish to guarantee exact

recovery, and if we perform 0.6n tests, the set output by the algorithm will fail to match

the defective set for about 15% of the random test matrices. In contrast, if gε = 5, with
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0.5n tests, a randomly drawn test matrix will fail with probability less than 0.1%. As we

will see, such observations hold for the other algorithms also.

3.3 PAC Analysis with False Negative Errors

In this section, we illustrate how PAC analysis can be used to quantify the approximation

tolerance when only false negative errors occur. Speci�cally, we consider the DD algorithm

whose defective set estimate satis�es K̂ ⊆ K [4].

3.3.1 The DD Algorithm: Bernoulli Test Design

The DD algorithm proceeds in two stages: 1) a COMP-like method to eliminate all the

items participating in negative tests to obtain a probable defective set (PDS) comprising

the remaining items, and 2) an item in the PDS is declared a de�nite defective if it is the

sole item participating in any positive outcome test, after eliminating the items identi�ed

as non-defective in the �rst stage [4]. Therefore, the DD algorithm never classi�es a

non-defective item as a defective. However, it may make false negative errors.

We characterize the number of false negatives by counting the number of unidenti�ed de-

fectives i.e., the defective items that remain unidenti�ed in the training phase due to their

participation in only those group tests which have other (de�nite) defectives participating

in them. Suppose the hypothesis, i.e., the outcome x̂(·) of the DD algorithm, has D ≤ k

unidenti�ed defectives, and we want the error in the testing phase to be at most ε. This

requires D ≤ dε, where dε can be obtained from

Pai∼B(p) (x̂(ai) 6= x(ai)) = (1− (1− p)D)(1− p)k−D ≤ ε

⇒ dε =

⌊
log(1 + ε/(1− p)k)

log(1/(1− p))

⌋
. (3.28)
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Here, the PAC bound in (2.6) reduces to P(D > dε) ≤ δ.

We use a similar approach as in [4] till Lemma 3.3 below, with the de�nition of the

success probability modi�ed to accommodate the approximate recovery condition. Think

of each group test as a ball, and bin the balls (group tests) into k + 2 bins. The �rst k

bins correspond to the k defectives, i.e., a ball will fall into the ith bin, i = 1, 2, . . . , k,

if only the ith defective item participates and no other defective item participates in the

corresponding group test. The ball will fall into the (k + 1)th bin, if the corresponding

group test has more than one defective item participating. Lastly, the ball will fall into the

(k+ 2)th bin, if the outcome of the corresponding test is negative, i.e., when no defectives

participate. We construct a vector B′ = (B1, B2, . . . , Bk, B+, B−) containing the number

of tests of each type that are conducted in the training phase comprising m independent

group tests. If the entries of each group test are drawn i.i.d. from B(p), the probability

vector associated with the bins is q = (q1, . . . , q1︸ ︷︷ ︸
k bins

, q+, q−), [4] with

q1 = P(Only one defective participates) = p(1− p)k−1,

q− = P(None of the defectives participates) = (1− p)k,

q+ = P(More than 1 defectives participate) = 1− kq1 − q−,

and hence B′ follows the multinomial distribution [4]

Pm;q(b1, . . . , bk, b+,b−)=
m!

b+! b−!
∏k

i=1 bi!
qb1+···+bk

1 q
b+
+ q

b−
− , (3.29)

where
∑k

i=1 bi + b+ + b− = m.

Recall that the PDS is a set containing all the defective items as well as 0 ≤ g ≤ n− k

hidden non-defective items. An item participating in a positive test can be declared de�nite
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defective if and only if none of the other items in the PDS participate in that test [4]. The

probability of the event where all g hidden non-defectives do not participate in a given test

is (1−p)g. Using this, we divide ith bin into two (sub-) bins containing Li and Bi−Li balls,

with corresponding probabilities (1 − p)gq1 and (1 − (1 − p)g)q1, respectively, for i ∈ [k].

We call the bin with Li balls as the ith singleton bin: any ball in this bin corresponds to a

group test where only the ith defective item (and no other item in the PDS) participates.

Therefore, if the Li ≥ 1, we can declare the ith item as a de�nite defective. Thus, the new

bin vector isB = (B+, B−, L1, L2, . . . , Lk, B1−L1, B2−L2, . . . , Bk−Lk) with the associated

probabilities q = (q+, q−, (1− p)gq1, . . . , (1− p)gq1︸ ︷︷ ︸
k bins

, (1− (1− p)g)q1, . . . , (1− (1− p)g)q1︸ ︷︷ ︸
k bins

).

We now have:

Lemma 3.3. Consider the DD algorithm run using the outcomes of m tests, with the test

matrix drawn from B(p). Then,

(a) The probability that there are r negative test outcomes is

P(B− = r) =
(
m
r

)
qr−(1− q−)m−r.

(b) If G denotes the number of hidden non-defectives in the PDS, we have

E[G] = ḡ = (n− k)(1− p(1− p)k)m.

(c) Given a set of d unidenti�ed defectives after the second stage, conditioned on G = g,

we have P(∩di=1{Li = 0}|G = g) = (1− dp(1− p)k−1+g)m.

We note that the relation in Lemma 3.3(a) gives the marginal distribution of B−. Fur-

ther, Lemma 3.3(c) speci�es the probability that a given set of d singleton bins are empty,

conditioned on there being g hidden non-defectives. We now present a su�ciency bound

on m for the DD algorithm:
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Theorem 3.3. A su�cient number of tests such that the predicted outcome based on the

estimated defective set does not agree with the true outcome on the future group tests with

probability at most ε and con�dence 1−δ is implicitly given by the value of mS that satis�es

(
k

dε + 1

)
(1− (dε + 1)p(1− p)k−1+ḡ+g̃)mS ≤ δ, (3.30)

where dε is given by (3.28), ḡ = (n− k)(1− p(1− p)k)mS and g̃ ≥ 0 is a parameter.

In the above, g̃ is a parameter that arises in proving the su�ciency condition in (3.30).

Due to the complicated form of P(G = g) in (B.19), it is hard to analytically derive its

precise value, but since the last expression in (B.22) is monotonically increasing in g̃, the

inequality will be satis�ed for some non-negative g̃. In our simulations, we have seen that

choosing g̃ = dḡe− ḡ is su�cient to ensure that the inequality (B.22) holds, and hence the

mS obtained from (3.30) is indeed su�cient.

The dependency of ε and δ can be seen in (3.30), in addition to n and k. When ε = 0, our

bound matches the bound in the literature [4]. Lastly, the k log n dependency is similar

to the counting bound [4]. Further discussion is relegated to Section 3.3.1.1.

3.3.1.1 Order-Wise Analysis of (3.30)

We now discuss the behavior of mS for nonzero ε as n and k grow. We use p = 1/k and

g̃ = 1 in our analysis. First, we observe that,

ḡ = (n− k) (1− 1/ke)m → ne−m/ke, (3.31)

where we use (1 + a/x)x → ea from below for large x with x = m and a = −m/ke. Using
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(
k

dε+1

)
≤ (ek/(dε + 1))dε+1 and (3.31) in (B.23), we get

(
ek

dε + 1

)dε+1
(

1− (dε + 1)
1

k

(
1− 1

k

)k+ḡ
)m

≤ δ

(
ek

dε + 1

)dε+1
(

1− dε + 1

ke

(
1− 1

k

)ne−m/ke)m

≤ δ

m log

(
1− dε+1

ke

(
1− 1

k

)ne−m/ke)
≤ log

(
δ

(
dε+1

ke

)dε+1
)
, (3.32)

where we use the fact that (1− 1/k)k → 1/e for large k along with (3.31) in penultimate

step. We now observe that (1 − x)a ≈ (1 − ax) holds when x is small and for �xed a. It

also holds when x becomes smaller at a faster rate than the growth of a. Therefore, the

condition stated above is valid for m > ke log n with x = 1/k and a = ne−m/ke. Further,

for ne−m/ke/k < 1 to hold, we require m > ke log(n/k). Since we have m > ke log n, the

above condition on m holds too, for k ≥ 1. Using these conditions in (3.32), we get

m log

(
1− dε+1

ke

(
1−ne

−m/ke

k

))
≤ log

(
δ

(
dε+1

ke

)dε+1
)

m

(
1−ne

−m/ke

k

)
≥ ke

[
log
(

1
δ

)
dε+1

+log

(
ke

dε+1

)]
, (3.33)

where we use log(1 − x) → −x for small x with x = dε+1
ke

(
1− ne−m/ke

k

)
� 1 for large n

and m in the last step. The solution to the transcendental equation in (3.33) subject to

m > ke log n gives the su�cient number of tests, mS required for the DD algorithm to

succeed with con�dence 1− δ when dε false negative errors are allowed. De�ne

D , ke

[
log
(

1
δ

)
dε + 1

+ log

(
ke

dε + 1

)]
. (3.34)
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Note that as m increases, D/m decreases. Using (3.34) in (3.33), we get

−mS

ke
+ log

(n
k

)
≤ log

(
1− D

mS

)
m2
S

ke
−mS log

(n
k

)
−D ≥ 0, (3.35)

where the last step uses log(1− x)→ x for small x with x = D/m. Therefore, we get

mS =
ke

2

[
log
(n
k

)
+

√
log2

(n
k

)
+

4D

ke

]
. (3.36)

Since mS > ke log n, the solution to m in (3.36) is consistent. Further using
√

1 + x ≈

1 + x/2 with x = 4D/ke log2(n/k) in (3.36), we get

mS =
ke

2
log
(n
k

)[
2+

2D

ke log2
(
n
k

)]
= ke log

(n
k

)
+

D

log
(
n
k

) . (3.37)

From (3.28), we see that for p = 1/k and large k, we get dε ≈ keε using 1/(1−x) ≈ 1 +x,

(1 − p)k → 1/e and log(1 + x) ≈ x for small x. Substituting for D from (3.34) in (3.37)

along with dε = keε, we get

mS = ke

[
log
(n
k

)
+

log
(

1
δ

)
(keε+1) log

(
n
k

)+
log
(

ke
keε+1

)
log
(
n
k

) ]
. (3.38)

As in the COMP-B and COMP-R case, we see that the behavior of the DD bound for

a �xed n, k and δ is ∝ (log(1/ε) + 1/ε) for any ε > 0. Lastly, setting ε = 0, we get

mS = ke
(

log(n/k) + 1
log(n/k)

[log(1/δ) + log k + 1]
)
in the exact recovery case. Noting

that 1/ log(n/k) < 1 along with log k/ log(n/k) < 1 for k � n, we get the following

mS = ke
(

log(n/k) + log(1/δ)
log(n/k)

+ 2
)
when ε = 0. Using [4, Theorem B.3], we get m =

(κ(γ′) + δ)ek log n is su�cient, where κ(γ′) , max{γ′, 1 − γ′} with k = n1−γ′ . Using
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Figure 3.3: (Left) Comparison of the su�ciency bound in [6, Theorem 4] and theoretical
PAC bounds (3.3) on the testing rate; (Right) theoretical and simulated testing rates at
di�erent error tolerance values, for COMP-B.

δ′ = n−δ, m = ek(κ(γ′) log n + log(1/δ′)) is su�cient for exact recovery, which is similar

to our bound.

3.4 Simulation Results

3.4.1 Tightness of the Bounds

We simulate exact and approximate set identi�cation scenarios for the COMP-B, COMP-

R and DD algorithms3, and compare them with our theoretical bounds and the existing

results [4, 6]. We consider n = 2500 items, out of which k = 50 are defective. Further,

we use Bernoulli parameter p = 1/k for generating the plots with COMP-B and DD

algorithms and s = s∗ with the weight parameter, c = 1/2, in the COMP-R algorithm

(see Theorem 3.2). The simulated curves are obtained by averaging over 1,000 Monte

Carlo runs.

3As mentioned earlier, COMP-B and COMP-R denote the use of Bernoulli and near-constant row-
weight test designs with the COMP algorithm. We use the Bernoulli test design with the DD algorithm
in our analysis, and therefore, we do not add a separate quali�er to denote the test design.
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Figure 3.4: (Left) Comparison of the su�ciency bound in [6, Theorem 3] and the theo-
retical PAC bounds (3.13) on the testing rate; (Right) theoretical and simulated testing
rates at di�erent error tolerance values, for COMP-R.
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Figure 3.5: (Left) Comparison of the su�ciency bound in [4, Lemma A.8] and the theo-
retical PAC bounds (3.30) on the testing rate; (Right) theoretical and simulated testing
rates at di�erent error tolerance values, for the DD algorithm.

Figure 3.3, Figure 3.4 and Figure 3.5 show the relationship between the testing rate,

ρR = mS/n and log(1/δ), a notion similar in behavior to the con�dence parameter, 1− δ,

for COMP-B, COMP-R and DD algorithms, respectively. In particular, 1) the left subplots

illustrate how our PAC bound compare with the existing bounds whereas 2) the right

subplots compare the theoretical PAC bounds with the simulation curves.

From the left subplots of Figure 3.3 and Figure 3.5, we note that the testing rate obtained
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from the PAC analysis equations when ε = 0 (blue curves) match with the existing upper

bounds under exact recovery (black curves) for both COMP-B and DD algorithms. In

contrast, from left subplot of Figure 3.4, we note that there is a di�erence of ≈ 0.4−0.5 in

testing rates between the PAC bound when gε = 0 (blue curve) and the existing su�ciency

condition under the exact recovery (black curve). This di�erence can be attributed to the

choice of the Cherno� parameter η in the two cases. The authors in [5] choose η = 1/2,

whereas, we optimize η to obtain the minimum number of tests such that the probability

of error is lower than δ. We defer further discussion on optimizing η to Section 3.4.4.

We note that the su�cient number of tests is lower when we allow ε > 0 in both COMP

(COMP-B and COMP-R) and DD algorithms. Also, the right subplots validate the PAC

upper bound derived in the paper, and we note that the bound is particularly tight in the

case of the DD algorithm (Figure 3.5.)

We see that allowing for a few missed/false positive items in the set output by the

algorithm can help signi�cantly reduce the su�cient number of tests needed. As mentioned

earlier in Section 2.1.2, allowing for a few false positives (as in the COMP algorithm)

can also be useful in applications where the goal is to identify most of the non-defective

items [147], since these algorithms do not miss defective items. Similarly, as in the rare

antigen identi�cation example mentioned in Section 2.1.2, allowing for a small number of

missed defectives is useful when it is important to quickly identify some of the defective

items, and we see that by not requiring that all the defective items be found, the DD

algorithm can signi�cantly reduce the number of group tests that need to be conducted,

while retaining a high con�dence in the outcome.
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Figure 3.6: The su�ciency bound for COMP-B and COMP-R (left subplot) and DD (right
subplot) as the number of errors allowed varies, for di�erent values of δ.

Lastly, we observe from the right subplots of Figure 3.3 and Figure 3.4 that the COMP-

B bound is tight for exact recovery whereas the COMP-R bound follows the slope of the

simulated curves slightly better at higher gε and lower con�dence.

3.4.2 E�ect of Approximation Error Tolerance on the Bounds

In this subsection, we discuss the achievability bounds for COMP-B, COMP-R, and DD,

as a function of the number of errors allowed. Figure 3.6 shows how the testing rate,

ρR = mS/n, of COMP-B and COMP-R (left subplot) and DD (right subplot) varies as

the number of FPs and FNs, respectively, for di�erent values of the parameter δ. In the

plots, the mS is computed by setting n = 2500, k = 50 using Theorem 3.1, Theorem 3.2,

and Theorem 3.3 for COMP-B with p = 1/k, COMP-R with s = s∗, and DD with p = 1/k,

respectively.

From Figure 3.6, we see that the testing rate, ρR, (and thus the su�ciency bound on m)

is proportional to (log(1/τ) + 1/τ), where τ = gε + 1 in the COMP-B and COMP-R cases,

and τ = dε + 1 in the case of DD. From the left subplot, we see that although the testing
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rate for COMP-R as computed from our bounds for gε = 0 is higher than for COMP-B,

the slope for COMP-R is steeper as gε increases. Therefore, the testing rate obtained from

the COMP-R bound at, say, gε = {25, 30} is lower than that obtained from the COMP-B

bound. For example, at gε = 30, the testing rate of COMP-B is ρR ≈ 0.3574 and that

of COMP-R is ρR ≈ 0.325 at a δ = 0.1. The di�erence seen can be attributed to the

analysis procedure and the way the test matrix is constructed. A similar observation can

be made from the right subplots of Figure 3.3 and Figure 3.4. From the right subplots

of Figure 3.3 and Figure 3.4, we see that the COMP-B bound matches very well with

the simulation curve at gε = 0 whereas the COMP-R bound is relatively loose. On the

other hand, the COMP-B bound is looser than the COMP-R bound relative to their

respective simulation curves at gε = 25. Thus, the analysis used in deriving the COMP-B

bound is useful for low approximation error scenarios, whereas that used in the COMP-R

is useful when we allow for higher approximation error. This can be attributed to the

use of the union-bound argument (see (B.2)). The slope of the factor
(
n−k
gε+1

)
is bounded

between [(cl/x)x(log(cl/x) − 1), (cu/x)x(log(cu/x) − 1) where x = gε + 1, cu = e(n − k)

and cl = n − k. That is, the slope increases with gε, making the COMP-B bound looser

relative to the COMP-R bound at higher gε when gε + 1� (n− k)/2.

Further, from the right subplot of Figure 3.6, the testing rate of the DD algorithm is

lower than that of COMP-B and COMP-R algorithms, due to the dependency of mS

on κ(γ′) log n = log k in the former case as against a dependency on log n in COMP-

B/COMP-R.

3.4.3 E�ect of Performing an Insu�cient Number of Tests

In this subsection, we present the utility of our bounds from an alternative viewpoint:
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Figure 3.7: Illustration of the trade-o� between the con�dence parameter and the approx-
imation error tolerance for COMP-B, COMP-R and DD algorithms.

what guarantees can be provided for a given n and k, if the number of group tests per-

formed is insu�cient to guarantee exact recovery with high con�dence? To illustrate this,

in Figure 3.7, we plot the parameter, δ, as a function of gε for COMP-B and COMP-R

algorithms, and as a function of dε for DD algorithm, at two di�erent values of m for each

algorithm. The plot is generated by setting n = 2500, k = 50, p = 1/k, c = 1/2, s = s∗

in Theorem 3.1, Theorem 3.2 and Theorem 3.3 for the purpose of discussion. However,

similar observations can be made across di�erent values of n, k, m etc.

From Figure 3.7, we see that allowing a small number of false positive/negative errors

allows one to obtain signi�cantly higher con�dence, i.e., a lower δ, for a given number of

tests. For example, to ensure a con�dence of ≈ 91%, with the COMP-B algorithm, 1400

tests are su�cient as per (3.3) with n = 2500, k = 50 and p = 1/k for exact recovery.

However, if only 1250 tests could be conducted, one can provide a con�dence of ≈ 73% for

exact recovery, while tolerating a single false positive error yields a con�dence of ≈ 96%

(> 91%). If two false positives are allowed, the con�dence goes well above 99%. Similar

conclusions can be drawn from the COMP-R and DD algorithms.
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Figure 3.8: The COMP-R parameter, η, computed at di�erent gε and δ with n = 2500,
c = 1/2, s = s∗, as the prevalence rate (%) is varied.

This example illustrates that the PAC bounds can provide a range of guarantees when

the number of group tests performed is insu�cient to guarantee exact recovery with high

con�dence. One can either tolerate a small number of errors or choose to operate at lower

con�dence levels.

3.4.4 E�ect of Optimizing η in COMP-R Analysis

In this subsection, we present empirical evidence that optimizing the Cherno� parameter

η yields tighter bounds on the number of tests. For this experiment, we set n = 2500, s = s∗

and c = 1/2 in the COMP-R algorithm (see Theorem 3.2). From (3.13), it is clear that

mS decreases as η is decreased. At the same time, choosing an η such that (B.10) is upper

bounded by δ ensures that the su�ciency condition is satis�ed. We illustrate the e�ect

of varying the prevalence rate (%), i.e., 100 × k/n at δ ∈ {10−5, 0.05} and gε ∈ {0, 10}

in Figure 3.8. We see that η computed using (B.13) decreases as the prevalence rate

increases irrespective of the choice of δ and gε. For a �xed δ, the value of η is higher under

exact recovery (i.e., when gε = 0) to that when gε = 10, and, consequently, the su�cient
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Figure 3.9: The surface of the COMP-R parameter, η, computed at gε = 0 with n = 2500,
c = 1/2, s = s∗, as the prevalence rate (%) and δ are varied.

number of tests is lower in the latter case. For a �xed gε, as the con�dence, 1−δ, decreases,

η decreases, thereby lowering the su�cient number of tests. The gap between the values

of η is higher across the above δ and gε values when the prevalence rate is lower, in fact,

close to 0%, and as we move towards right in Figure 3.8, the gap decreases.

Next, in Figure 3.9, we show the e�ect of varying δ and the prevalence rate using a surface

plot of η, for gε = 0. When the prevalence rate is very low, η = 1/2 is optimum. Otherwise,

the optimum value of η is much lower. Hence, computing η using (B.13) leads to a tighter

su�ciency bound, an improvement by a factor of 2 (see left subplot of Figure 3.4).

We conclude our discussion on the parameter η by empirically showing its variation as

n varies in Figure 3.10. The optimum value of η decreases as n increases. The variation

across the prevalence rate remains similar to the observations made earlier. Therefore,

in conclusion, the computation of the optimum Cherno� parameter, η, can signi�cantly

improve the su�ciency bound on m.
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Figure 3.10: The COMP-R parameter, η, as the prevalence rate (%) is varied, computed
for di�erent values of n, with gε = 0, δ = 10−5, c = 1/2, s = s∗.

3.4.5 Numerical Analysis of the DD Tuning Parameter, g̃

We present an alternate view of Theorem 3.3, where the su�cient number of tests for

DD algorithm to succeed with con�dence 1 − δ when ε approximation errors are allowed

is given implicitly by (3.30). We set p = 1/k and relate ε to the allowed number of false

negative errors, dε, by (3.28). We start by posing the problem of solving for the su�cient

number of tests in Theorem 3.3 as an optimization problem:

mS, g̃ = arg min
m∈Z+, g̃′∈(0,∞)

m

s.t.
n−k∑
g=0

(1−(dε+1)p(1−p)k−1+g)mP(G = g) ≤ (1− (dε + 1)p(1− p)k−1+ḡ+g̃′)m

and
(

k

dε+1

)
(1− (dε + 1)p(1− p)k−1+ḡ+g̃′)m ≤ δ, (3.39)

where p = 1/k, dε < k and P(G = g) is given by (B.19). We solve the optimization

problem in (3.39) using a grid-search over a suitable range of m and g̃′ to ensure that we

are operating in the feasible range.

Figure 3.11 shows a scatter plot of the optimum g̃ obtained by solving (3.39) with p = 1/k
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Figure 3.11: Solving for g̃ numerically by varying n from 100 to 500 in steps of 50 and
suitable values of k where the DD algorithm succeeds with δ = 0.01 and dε ∈ {0, 1, 2}.

by varying the population size, n, in range [100, 500] in steps of 50 with suitable values of

k, δ = 0.01 and dε ∈ {0, 1, 2}. The color bar in Figure 3.11 shows the su�cient number

of tests, mS, obtained by solving the optimization problem. We observe that g̃ increases

with dε since the values of g at which P(G = g) becomes negligible shifts to the right.

Further, as k increases, g̃ shows as slight increase, achieving a peak value at k ≈ dε + 4

and then, tapering o� as kα−1e−βkβα with α ≈ 1.667 and β ∈ [1/5, 1/3]. Finally, g̃ varies

as log2 n for a �xed k.

3.4.6 Testing Rate Surface and Su�cient Tests Contours

We now introduce the notions of the testing rate surface and su�cient tests contours,

which allow better visualization of the trade-o� between the error margin and the con�-

dence parameter. These are illustrated in the left (testing rate surface) and right (su�cient

tests contour) subplots of Figure 3.12, Figure 3.13 and Figure 3.14 for COMP-B, COMP-R,

and DD algorithms, respectively. Speci�cally, the testing rate surface shows the su�cient

testing rate, ρR, as a function of the error tolerance gε (or dε) and con�dence 1− δ. The
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Figure 3.12: (Left) The su�cient testing rate surface and (Right) su�cient number of
tests contours vs. the con�dence parameter, 1− δ, and error tolerance, gε with n = 2500,
k = 50 and p = 1/k for COMP-B.

Figure 3.13: (Left) The su�cient testing rate surface and (Right) su�cient number of
tests contours vs. the con�dence parameter, 1− δ, and error tolerance, gε with n = 2500,
k = 50, c = 1/2 and s = s∗ for COMP-R.

testing rate contours are plotted over log con�dence and mark the boundary over which

a given number of tests are su�cient. For example, referring to Figure 3.12, all error

tolerance and con�dence values to the right and under the blue curve are achievable when

1,000 group tests are used. From the left subplots, we see that allowing for a nonzero

error tolerance allows us to reach a high con�dence level without signi�cantly increasing

the number of tests. On the other hand, if exact recovery is required, the number of tests
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Figure 3.14: (Left) The su�cient testing rate surface and (Right) su�cient number of
tests contours vs. the con�dence parameter, 1− δ, and error tolerance, dε with n = 2500,
k = 50 and p = 1/k for DD.

rapidly increases as the con�dence approaches one. Similar observations on the trade-o�

between the error tolerance and con�dence parameter can be made from the right subplots

also.

Comparing the testing rate surfaces of COMP-B, COMP-R, and DD algorithms, we note

that although the geometry of the surfaces is visually similar, the testing rate o�ered by

the DD algorithm is better by a factor ≈ 1.5 compared to that of COMP-B and by a factor

≈ 1.6 compared to that of COMP-R when the con�dence level is close to 1, across various

error tolerances ε. In other words, at a given con�dence level, allowing for a small number

of missed defectives leads to a larger reduction the number of group tests compared to

allowing for a small number of false positives. Thus, at high con�dence (≈ 1.0) and low ε,

the COMP-R algorithm requires the highest number of tests at 1675, followed closely by

COMP-B at 1500 and then by a larger margin, by the DD algorithm at 1100.



Chapter 3. 76

10
3

10
5

10
7

10
9

Number of Items, n

10
-6

10
-4

10
-2

10
0

T
e

s
ti
n

g
 R

a
te

, 
R

COMP-B with  =0.2

COMP-R with  =0.2

DD with  =0.2

COMP-B with  =0.35

COMP-R with  =0.35

DD with  =0.35

COMP-B with  =0.5

COMP-R with  =0.5

DD with  =0.5

10
3

10
5

10
7

10
9

Number of Items, n

10
-6

10
-4

10
-2

10
0

T
e

s
ti
n

g
 R

a
te

, 
R

(10
6

, 0.0563)

(10
6

, 0.0356)

(10
6

, 1.01 10
-3

)

(10
6

, 5.21 10
-4

)

(10
6

, 0.0373)

(10
6

, 0.0220)

(10
6

, 6.96 10
-4

)

(10
6

, 4.49 10
-4

)

Figure 3.15: Su�cient testing rate vs. population size, n, across various inverse-sparsity
parameter β with k = 0.95nβ, s = s∗, c = 1/2, p = 1/k and δ = 10−3 for COMP-B,
COMP-R and DD algorithm in exact recovery case in the left subplot and approximate
recovery case (gε=dε=5) in the right subplot.

3.4.7 Testing Rate vs. Population Size

In the sub-linear regime, we choose k = Θ(nβ), where β ∈ (0, 1) is called the inverse-

sparsity parameter, because the number of defective items increases (i.e., the item vector

x becomes less sparse) as β increases. In Figure 3.15, we compare the testing rate as

n increases across various values of β ∈ {0.2, 0.35, 0.5} at high con�dence, i.e., when

δ = 10−3. The left subplot in the �gure shows the testing rate under exact recovery. The

right subplot shows the behavior for approximate recovery, i.e., with gε = dε = 5.

From the left subplot of Figure 3.15, we see that, for exact recovery, a testing rate of

≈ 0.0563 and 1.01× 10−3 for COMP (i.e., for both COMP-B and COMP-R) and a testing

rate of ≈ 0.0356 and 5.21 × 10−4 for DD at β = 0.5 and 0.2, respectively, are su�cient

when the population size is n = 106. Similarly, from the right subplot, we see that the

testing rates relax to 0.0373 and 6.96× 10−4 for COMP and to 0.022 and 4.49× 10−4 for

DD at β = 0.5 and 0.2, respectively, at the same population size when we allow for 5
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errors. In summary, the testing rates relax by ≈ 33% and 31% for COMP and by ≈ 38%

and 13% for DD given n = 106 when we allow for 5 errors at β = 0.5 and 0.2, respectively.

The lower percentage change in the case of the DD algorithm at β = 0.2 can be attributed

to the dependency of the su�cient number of tests on log
(

k
dε+1

)
in DD vs. that on log

(
n−k
gε+1

)
in COMP.

As β increases, the testing rates increases in all the three cases. More speci�cally, we

have seen in Section 3.2.1 that O (k log n) tests are su�cient for exact recovery for large n.

With k = Θ
(
nβ
)
, we get the following: log ρR = O ((β − 1) log n+ log(log n)). Therefore,

log ρR is approximately linearly decreasing with log n with slope β−1 for large log n, which

matches with the exact bound shown in the plot. From the curves in the right subplot, we

see that our observation on the slope holds true even for the approximate recovery case.

Finally, the DD algorithm performs the best in terms of the su�cient number of tests

required, across all β's. While this is known for the exact recovery case [4,7], we see from

the right subplot that a similar observation holds for the approximate recovery case also.

3.5 Chapter Summary

In this chapter, we used the PAC analysis to derive a su�ciency bound on the number

of tests needed for both exact and approximate defective set recovery for Boolean group

testing algorithms, namely, COMP (under Bernoulli and near-constant row-weight designs

denoted by COMP-B and COMP-R, respectively) and DD (under Bernoulli design). The

PAC-learning-based bounds are a function of the number of items, n, the number of

defective items, k, a con�dence parameter, δ, and an approximation error tolerance, ε.

This analysis enabled us to characterize a lower bound on the cumulative distribution
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of the approximation errors. We showed that the PAC-based bounds reduce to known

su�ciency bounds in the case of exact recovery when we set ε = 0.

Also, we related the number of false positives, gε (similarly, the number of false negatives,

dε) to the approximation error probability ε used in the PAC formulation. In contrast to

existing works, we optimized the design parameter, η, to get a tighter COMP-R bound.

Further, the classical CCP results do not apply to approximate recovery. Therefore, we

extended the analysis of the coupon collector problem to handle collection of only a subset

of coupons and applied the new results to derive a su�ciency bound for COMP-R. Further,

order-wise behavior of the PAC bounds for large n and k were derived.

Towards the end of the chapter, we presented numerical results illustrating the bounds

vis-à-vis the desired con�dence level for both exact and approximate recovery cases. We

demonstrated the advantage of the PAC formulation by empirically illustrating its ability

to quantify the su�cient number of group tests across various con�dence levels and error

tolerances. Lastly, we observed that the PAC-based analysis allows us to trade o� the

accuracy of defective set recovery with the con�dence with which the decoded set meets

that accuracy. A visualization of this trade-o� in the form of a su�cient number of tests

contour/surface, which shows its dependence on the approximation error tolerance and

the probability of failure to meet the required error tolerance, was presented.



4 Recovery Algorithms for Covid-19

Group Testing

Chapter Highlights

We now change gears from the theoretical analysis discussed in the previous chapters and focus

on developing novel recovery algorithms for group testing. In particular, we present novel recovery

algorithms for detecting COrona VIrus Disease (Covid-19) infected samples using group testing.

The detection of Covid-19-infected samples involves checking for the presence of a virus called

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using the reverse transcriptase

(quantitative) polymerase chain reaction (RT-qPCR) test procedure. We start this chapter with

a brief overview of the RT-qPCR process, including the role of the cycle threshold (CT) and the

PCR e�ciency factor, q. Then, we describe a system model for a typical RT-qPCR test process

and extend the model to a pooled testing setup.

We then recap two classical group testing algorithms: 1) Combinatorial Orthogonal Matching

Pursuit (COMP) and 2) De�nite Defectives (DD) as applied to the Covid-19 detection using group

testing with binary test outcomes. COMP only makes FP errors, and DD only makes FN errors.

In order to control both these errors, we present new, iterative algorithms: 1) Gradient Descent

- CT (GD-CT) and 2) Iterative Mirrored Hard-Thresholding - CT (IMHT-CT) for detecting the

infected samples and in addition, estimating their CT values using the quantitative group test

outcomes. The convergence results for the GT-CT algorithm show that the iterates, i.e., the

estimates of the individual sample CTs, converge in probability to a local minimizer. Numerical

simulations comparing the normalized mean squared error (NMSE), false positive rate (FPR)

and false negative rate (FNR) performances of GD-CT and IMHT-CT algorithms are presented.

In terms of NMSE and FPR, the GD-CT algorithm outperforms the IMHT-CT algorithm. The

performance is similar in terms of the FNR.

79
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4.1 Introduction

COrona VIrus Disease (Covid-19), which originated in late 2019 as a local infection,

turned into a pandemic of unprecedented levels. The disease spread rapidly and globally

from the place of its origin. The mortality rate of Covid-19 is statistically low (∼ 0.5 −

4%) [148]. However, the large caseload in small geographical regions destabilized the

healthcare systems in many countries during the year 2020-2021 and, in certain cases,

extended till 2022. The disease entered the endemic stage in 2023. In a signi�cant number

of cases (guesses vary widely ∼ 50 − 85%), the disease manifested itself with mild or no

symptoms [149�153]. However, such individuals (silent spreaders) could still spread the

disease [154, 155]. During large public gatherings, the presence of such individuals can

and has in the past resulted in massive super-spreader events. Thus, it became a major

concern for opening up campuses, o�ce spaces, and other public amenities. Rapid testing,

contact tracing, and isolation of the infected have been the only known e�ective way to

control the spread of the disease [156].

Various vaccines have come out on the market in the past few years. However, the

virus mutated rapidly, with each strain having a di�erent combination of lethality and

transmissibility (R0) [157]. As a result, most parts of the world witnessed at least three

waves of the pandemic, varying in severity. New strains and local waves have appeared

even in May 2024.1 Furthermore, with rapid globalization and faster methods to travel in

place, a new, local infection of this kind could be a signi�cant concern in the future. A few

notable examples as provided by the World Health Organization (WHO) for the diseases

1FiLRT variant detected in Singapore: https://www.travelweekly-asia.com/

Destination-Travel/FLiRT-alert-for-Singapore-as-Covid-cases-rise.

https://www.travelweekly-asia.com/Destination-Travel/FLiRT-alert-for-Singapore-as-Covid-cases-rise
https://www.travelweekly-asia.com/Destination-Travel/FLiRT-alert-for-Singapore-as-Covid-cases-rise
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with epidemic potential where there are no or insu�cient counter-measures include Zika,

Nipa, Lassa fever, to name a few.2 Primary prevention steps should be in place to curb

such outbreaks. Therefore, testing protocols which are systematic, cost-e�ective, reliable,

and repeatable that can aid e�ective contact tracing have not lost their importance [158].

In this chapter, we are interested in algorithms for detecting infected samples from a

population using group testing. In particular, we focus on Covid-19 disease detection.

However, as we shall see below, the testing method used to construct our system model

is used in various other infectious disease detection. Therefore, our algorithms can be

potentially applied in various scenarios. Among the various methods that have been

developed to detect the Covid-19 virus in an individual [159], one of the most reliable

testing methods is the RT-qPCR, which is described next.

4.1.1 The RT-qPCR Process

The RT-qPCR process [159,160] is a type of nucleic acid ampli�cation test. A biological

(e.g., naso-oropharyngeal swab) sample is collected from an individual and viral RNA

molecules, if any, are extracted via a pre-test preparation process. The RNA molecules

are converted to complementary DNA (cDNA) molecules using the RT process. The PCR

process, which is a sequence of exponential ampli�cation cycles with heating and cooling

phases, is conducted next. Identical copies of the target DNA are obtained in each cycle,

roughly doubling the initial population. The rate at which viral loads replicate is often

called the PCR (ampli�cation) e�ciency factor, denoted by q.

A Taqman probe is added, which contains �uorophores that emit light upon excitation.

2WHO Listed Diseases with Emergency R&D Priority: https://www.who.int/activities/

prioritizing-diseases-for-research-and-development-in-emergency-contexts

https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts
https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts


Chapter 4. 82

The intensity of light emitted is proportional to the number of viral DNA strands present

in the sample at any given time. The cycle at which the �uorescent light intensity exceeds

a preset threshold, denoted by τ , is called the cycle threshold (CT) value and is the

quantitative output of the RT-qPCR test.

The CT usually takes values between 15 − 35 for positive Covid-19 tests [161]. It can

also be noted that a higher initial viral load implies that the preset threshold is crossed in

the earlier cycles in the PCR process, i.e., CT is low. Also, zero viral loads in the sample

are depicted by CT =∞, to say that the preset threshold is not crossed in a �nite time.

4.1.2 Motivation

The major non-renewable components of the RT-qPCR test are the reagents like the

Taqman probes, primers, and time-to-test itself. The overall RT-qPCR test procedure

typically takes 3 to 8 hours [162]. A standard PCR plate can accommodate roughly 93 or

381 individual samples depending upon the plate layout, after reserving space for positive

and negative controls (PC and NCs).3 Scaling horizontally by procuring more testing

kits is often not feasible due to the high procurement and the operational costs involved.

Therefore, vertically scaling, i.e., making the testing process more e�cient in e�ective

time-taken per sample and resource usage is crucial in aiding large-scale testing reliably

and repetitively (e.g., daily).

Vertical scaling of the test process can be accomplished by pool testing [3] (a.k.a. group

testing). In recent decades, group testing has converged to the area of compressed sensing

(CS), and is often called Boolean compressed sensing [163].

3PCR Plastics - PCR Plate Con�gurations: https://www.thermofisher.com/in/en/home/

life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/

pcr-education/pcr-qpcr-plastics/pcr-qpcr-plastics-considerations.html

https://www.thermofisher.com/in/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/pcr-education/pcr-qpcr-plastics/pcr-qpcr-plastics-considerations.html
https://www.thermofisher.com/in/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/pcr-education/pcr-qpcr-plastics/pcr-qpcr-plastics-considerations.html
https://www.thermofisher.com/in/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/pcr-education/pcr-qpcr-plastics/pcr-qpcr-plastics-considerations.html
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4.1.3 Related Work

We recall that the idea of pool testing, �rst proposed by Dorfman [1] in 1943 was used

to screen prospective entrants into the US military for Syphilis. Pool testing has a long

history, and has been applied in various settings, including in nucleic acid ampli�cation

tests like PCR (see [58] and the references therein) and also for Covid-19 detection [60].

As mentioned in Section 1.2, the Dorfman-style testing methods are called adaptive pool

testing [3]. In contrast, in non-adaptive pool testing, all the required tests are performed

in a single stage, followed by an application of a suitable decoding algorithm [4,5, 164] to

recover the individual sample status given the pooled test outcomes and a pooling matrix.

Each RT-PCR test takes several hours to run, and at the same time, a standard RT-

PCR plate can accommodate either 93 or 381 samples depending on the plate layout. An

adaptive test, which is a multi-stage procedure, would require 2x or more time than a

single-stage non-adaptive group test. Secondly, pooled sample preparation before each

stage of multi-stage adaptive testing would expose the technician to bio-hazards for longer

duration. Lastly, using �nite size, deterministic non-adaptive pooling matrices is practical,

especially with the advent of pooling robots [88]. Therefore, non-adaptive pooling methods

o�er time-advantage, are practitioner-friendly, and are safer for infectious disease testing

than the adaptive testing methods. A binary pooling matrix speci�es which individuals

participate in which test.

The authors in [163] show that the estimation of the n length individual status vector

is feasible with an arbitrarily small probability of error using m pooled tests as long as

m ≥ O(k log n), where k denotes the number of sick individuals. However, this is an

asymptotic bound, i.e., it is valid as n→∞, with k growing sub-linearly with n [163].
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Recently, testing of pooled samples was shown to be feasible for the detection of Covid-19

using RT-qPCR [59]. The authors in [61] optimize pool size and test protocol for Covid-

19 detection via RT-qPCR tests and conclude that the limit of detection is 1 − 3 RNA

copies per µl. An algorithm for classifying each individual as having {no, low, medium,

high} infection level was developed in [62]. However, in practice, one may be interested in

recovering the actual viral load of the individuals, rather than coarse classi�cation.

The performance of binary pool testing algorithms like COMP and its noisy version,

Noisy-COMP (NCOMP) was studied in [63]. In the current chapter, we use COMP as

a pre-processing step to �lter out negative tests with CT = ∞ and reduce the problem

dimension. The authors in [165] use the non-negative least absolute deviation (NN-LAD)

algorithm for decoding in a non-adaptive pool testing setup. The authors in [64] and [66]

consider improving test reliability and throughput via possibly non-binary pooling ma-

trices. Although these papers use sparse recovery techniques to infer the individual viral

loads, the system model in these papers is formulated as linear observations corrupted by

additive noise, which does not match with well-accepted RT-qPCR models [166].

In [65], a weighted least-squares (LS) approach is used to solve the non-linear CS problem

y = f(Ax), where A is the test matrix, f(·) is the non-linearity due to the ampli�cation

and interpolation operation relating the CT values, y, to the sample viral loads, x. For

lab-experiments, they model the sensing matrix as A = P�W, where P is a binary-valued

participation matrix and W is a positive real-valued sample allocation matrix. The (i, j)th

element of the allocation matrix determines the fraction of the jth sample participating

in the ith test. We note that the sensing matrix is no longer binary-valued; instead, it has

either 0 or positive real entries.
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Despite the large body of work on group testing for Covid-19, the existing methods avail-

able in the literature are primarily Boolean group testing-based or compressed sensing-

based approaches, which assume a linear system model. As we shall see in Section 4.5

and Section 5.4, we show that our recovery algorithms outperform both Boolean group

testing and compressed sensing-based methods. Further, an algorithm inspired from the

area of non-linear compressed sensing techniques (see Section 4.4.2) and applied to our

non-linear RT-qPCR model performs worse than the proposed gradient descent-based al-

gorithm (see Section 4.4.1). In particular, due to the exponential nature of the RT-qPCR

process (see Section 4.2 for more details), linearized RT-qPCR model-based methods are

inaccurate. Further, we show in Section 5.4.4 that the performance of our algorithms is

superior to that of the state-of-the-art compressed sensing-based methods available at the

time our paper on the topic was published (see Section 1.6), under a noisy measurement

model and when the PCR e�ciency factor is unknown (see Table 5.2 and Table 5.3).

Also, our algorithms perform better than the Boolean group testing algorithms (see Sec-

tion 4.5.2, Section 4.5.3, Section 5.4.2 and Section 5.4.3).

In addition to the binary and CS-based quantitative methods for group testing, there are

approaches which do not fall strictly into either category, and therefore require a separate

mention. For instance, the authors in [167, 168] propose to use tropical arithmetic and

formulate an adaptive group testing protocols based on a delay and match principle. The

delay-and-match principle uses a protocol where they add samples into the pool during

the testing process, i.e., say after, ∆ cycles, and use this information while decoding.

Similarly, the authors in [169] present algorithms for the so-called tropical group testing.

The authors in [170] present random block test designs with a doubly-disjunct property
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and deterministic constructions for tropical group testing.

More recently, the Covid-19 detection problem has been addressed by various other for-

mulations which incorporate the community structure [119] or side-information collected

from contact tracing [118]. Further, techniques like learned factor graphs which com-

bine factor graphs with deep learning methods [121], an expectation maximization-based

adaptive protocol [171], a belief propagation approach to handle the scenario when two

types of defectives, say, signifying omicron and delta variants of Covid-19 [172], need to

be detected, have been proposed. Lastly, a high-performance Bayesian method that uses a

distributed computing framework for streaming/online analysis (Apache Spark) has been

proposed to scale the disease surveillance [173, 174]. These recent works on Covid-19 re-

covery algorithms are signi�cantly di�erent from the focus of this thesis in Chapter 4

and Chapter 5.

4.1.4 Contributions

In this chapter, we mainly focus on estimating the viral loads and determining healthy/sick

status of individuals using the pooled RT-qPCR outcomes and the deterministic, single-

stage pooling matrix when the PCR e�ciency factor, q, is known. The rest of the chapter

is organized as below:

1. We describe the system model for the pooled RT-qPCR in Section 4.2.

2. We then restate two binary (test outcome) group testing algorithms, namely, com-

binatorial orthogonal matching pursuit (COMP) and de�nite defectives (DD) as

applied to the CT-space pooled RT-qPCR system model in Section 4.3. Recall that

COMP makes only FP errors whereas DD makes only FN errors. We use COMP in
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a pre-processing step to reduce the dimensions of the system model thereby ensur-

ing faster convergence of the proposed recovery algorithms using quantitative test

outcomes.

3. We develop two novel algorithms, namely, a gradient descent (GD)-CT method and

an iterative mirrored hard thresholding (IMHT)-CT method, which can recover the

individual CT vector given the pooled CT vector and the pooling matrix in Sec-

tion 4.4 The challenge lies in addressing the non-linear nature of the mathematical

model of the RT-qPCR process. Due to this, the recovery problem departs from the

standard sparse signal recovery problem [175,176].

4. We present a theorem to show that the GD-CT algorithm converges to a local opti-

mum in Section 4.4.1 and also empirically evaluate the performance of our algorithms

in terms of the normalized mean-squared error (NMSE), false positive rate (FPR)

and false negative rate (FNR) in Section 4.5.

One of the main takeaways from this chapter is that the use of quantitative measurements

in a non-adaptive pool test setting results in signi�cant cumulative cost savings. Also, the

optimal achievable testing rate vs. prevalence rate compiled using various deterministic

pooling matrix designs and recovery algorithms in the non-linear RT-qPCRmodel is crucial

for reducing pooled testing ideas to practice.

4.2 System Model and Problem Statement

A system model inspired by the RT-qPCR mechanism [166] is described in this section.

Denote the maximum number of cycles in the PCR process by cmax. The cycle number
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is indexed by t and therefore, t ∈ {1, 2, . . . , cmax}. Also, denote the e�ciency of the PCR

reaction by q, and let x0 denote the initial viral load concentration (e.g., DNA molecules

per µl). For the sample to be considered positive, the viral load concentration should cross

a preset threshold τ in c ≤ cmax PCR cycles. Using [166, Equation (7)], the relationship

governing the growth of the viral load concentration up to the cycle threshold can be

written as:
bcc∏
t=1

(1 + qt)(1 + qbcc+1)c−bccx0 = τ.

Note that, c ∈ R although the cycles are indexed by {1, 2, . . . , cmax}. This is because

the PCR machine's software performs the interpolation implied by the above equation to

output a real-valued CT.

By calibrating the operating protocol, in practice, one can ensure that the variation in

qts across tests is negligible. Then, the model can be simpli�ed by letting qt = q for all

t = 1, 2, . . . , cmax. Thus, (4.1) can be simpli�ed as

(1 + q)cx0 = τ. (4.1)

Further, without loss of generality, we have taken the proportionality constant to be

unity [166, see Equation (4)], since one can appropriately scale the threshold τ . The

value of q depends on various factors like probe-primer combination [177], dilution of the

test solution, whether annealing equilibrium [166] method is used or not, etc. In most lab

experiments, the value of q is observed to lie in X , [0.5, 1.0) over various probe-primer

combinations [166, 177]. As mentioned in Section 4.1.1, when the viral load is zero, the

threshold τ is not reached even after cmax cycles. This is indicated by setting c = ∞.

In practice, depending on the PCR kit and sample preparation protocols, manufacturer's
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instructions etc., cmax = 40 to 50 PCR cycles are conducted.

We now extend the model to pool testing based on RT-qPCR and account for noise.

Here, n individuals participate in m pool tests, with m � n. The CT values observed

from the m pool tests are collected in a vector as c , [c1, c2, . . . , cm]T , where ci is the CT

of the ith pool test. Similarly, the initial viral loads contributed by the n individuals to the

pool tests can be written as x = [x1, x2, . . . , xn]T .4 In non-adaptive pool testing, the pool

tests are de�ned by the binary pooling matrix A ∈ {0, 1}m×n, where the (i, j)th element

of A equals 1 if the jth individual participates in the ith test, and equals 0 otherwise. We

can now extend (4.1) to the pool testing framework and write the model for the ith pool's

CT measurement, denoted by ci, as

τ(1 + q)−ci = (1 + q)εiAT
i x , i = 1, 2, . . . ,m, (4.2)

where AT
i is the ith row of A and εi ∼ N (0, σ2

ε ) is the CT measurement noise with

unknown variance σ2
ε .

In (4.2), the term AT
i x represents the e�ect of pooling. That is, the total initial viral

load in the ith pool test is the sum of all the initial viral loads of the individual samples

participating in the ith test, determined by the locations of 1s in the row AT
i . Also,

note that the noise contribution appears as an exponent to the overall process e�ciency

factor, (1 + q). This is due to (4.1), where the CT depends on the initial viral load via an

exponential term. Therefore, any additive noise observed during the measurement of the

4Note that, if the jth individual does not participate in the ith test, we may set xj = 0 for that test.
Also note that, in practice, the jth individual may contribute di�erent initial viral loads to the di�erent
tests it participates in. However, in the detection regimes of interest, where reliable detection is possible
(e.g., where the positive individuals contribute about 100 or more viral particles per µl to the test), these
variations do not signi�cantly a�ect the resulting CT values.
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CT values shows a similar exponential dependency with the initial viral load. A similar

model was used in [88, Equation (9)], where the authors expressed system model in terms of

the ratio of the initial viral loads in the pooled samples and the viral load corresponding to

the minimum observed CT among all pools. In contrast, the (intermediate) model in (4.2)

relates the actual un-normalized initial viral loads of the individual samples with the

observed pooled CT values. Further, as we shall see, our �nal model relates the observed

pooled CT values to the individual sample CT values, which we want to estimate.

4.2.1 Problem Statement

The goal is to solve the inverse problem of inferring the vector of individual viral loads, x,

from (4.2) given the pooling matrix A and m pooled CTs, c1, c2, . . . , cm. We note that, the

system model as shown in (4.2) is under-determined since m � n. When the prevalence

rate is low, ‖x‖0 � n, sparse signal recovery methods can potentially be used for solving

the inverse problem at hand.5 However, our measurement model in (4.2) is nonlinear and

the noise is multiplicative, unlike the standard sparse signal recovery problem [175, 176].

Further, the values of τ and q are unknown. The range of values over which the viral loads

typically vary is large, making the inverse problem numerically hard to solve. Suppose

x0 = 1 in (4.1) (i.e., 1 viral particle per µl) results in c = 35 in the noiseless case.

Assuming an ideal PCR e�ciency of q = 1, we obtain log2 τ = 35. Thus, an observed

c = 15 corresponds to a viral load x0 = 220 ≈ 106. As a result, the range over which the

viral load can potentially vary is [1, 106]. In contrast, the range over which the CT values

vary is much smaller, i.e., [15, 35].

5The expression ‖x‖0 denotes the l0 norm of a vector x, i.e., the number of non-zero elements in
x [178, De�nition 2.1].
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In order to solve the problem in a numerically stable manner, we transform the problem

from viral-load -space into CT -space. To keep the notations distinct between the pooled-

sample CTs and the individual-sample CTs, the individual-sample CTs are henceforth

denoted by u = [u1, u2, . . . , un]T ∈ Rn×1. From (4.1), the individual-sample CTs are

related to the viral loads as

x = τ(1 + q)−u, (4.3)

where (1 + q)−u , [(1 + q)−u1 , (1 + q)−u2 , . . . , (1 + q)−un ]T ∈ Rn×1. Hence, we get

ci = − 1

log(1 + q)
log
(
AT
i (1 + q)−u

)
+ εi , i = 1, 2, . . . ,m. (4.4)

In matrix-vector form,
c1

...

cm

 = − 1

log(1 + q)


log
(
AT

1 (1 + q)−u
)

...

log
(
AT
m(1 + q)−u

)
+


ε1
...

εm

 ,
or c = − 1

log(1 + q)
log
(
A(1 + q)−u

)
+ ε. (4.5)

The goal now is to solve the inverse problem of inferring u, the vector of individual CTs,

from (4.5), given the pooling matrix, A, and the vector of pooled CTs, c. We note that

the parameter τ does not appear in the CT-space formulation of the system model.

In summary, the following points:

� Usage of binary pooling matrix and the fact that there are two kinds of pooled test

outcomes: negative test outcomes have CT = ∞ while the positive test outcomes

are non-negative �nite real values, and

� Multiplicative and non-Gaussian nature of the noise term, (1 + q)ε as seen in (4.2)

or additive nature of the noise but with a non-linear model in the log space as seen
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in (4.5),

make the problem challenging. To this end, we develop a set of novel, robust recovery

algorithms to estimate the vector of individual CTs.

4.3 Recovery Algorithms: Binary-Valued Measurements

In this section, we recap two well-known binary pool testing algorithms: COMP and

DD [5,7] applied to the CT system model after transforming the model to a binary system.

Recall that there are a variety of binary pool testing algorithms like SSS, SCOMP, etc.

in the literature [5, 7]. We restrict our comparisons to COMP and DD, because, in a

noiseless setting, (1) COMP algorithm does not make a type-2 (or FN) error; (2) DD

algorithm does not make a type-1 (or FP) error as mentioned in Section 3.1. As mentioned

earlier in Section 4.1.3, COMP is used in the pre-processing stage of the CT algorithms

(see Section 4.4 and Section 5.3).

4.3.1 Combinatorial Orthogonal Matching Pursuit (COMP)

The measured pool CT's are converted to binary values using

bi =

 1, ci 6=∞

0, ci =∞,
(4.6)

for i = 1, 2, . . . ,m. Let N , {1, 2, . . . , n} denote the index set of samples. The samples

appearing in only negative pool tests (i.e., bi = 0) are declared as de�nite negatives,

denoted by the set DN . Then, the samples remaining in the set N \ DN are declared as

positive samples.

In the sequel, we �rst pre-process the CT values using the COMP algorithm to �lter out
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the de�nite negatives. Then, in the system model, we remove the rows of A corresponding

to the negative test outcomes, and the columns of A and the entries of u corresponding to

the de�nite negatives. This, in turn, reduces the overall system dimension for further pro-

cessing. In fact, at low prevalence rates, the reduced system can even be over-determined.

The application of COMP also removes the negative tests with CTs equal to ∞ and is

thus numerically better suited for optimization-based recovery algorithms. Now, in order

to avoid additional notation, we reuse the notations de�ned earlier to de�ne the model

after the COMP stage. For example, n and m will respectively denote the number of

samples and number of tests remaining, after the COMP stage.

4.3.2 De�nite Defectives (DD)

The DD algorithm comprises two stages. In stage-1, similar to the COMP algorithm, the

de�nite negatives and hence the set of possible positives, PP , N \DN is determined. In

stage-2, the items from PP which are sole participants in positive pool tests (i.e., bi = 1)

are declared as positive samples and the rest are declared as negative samples.

4.4 Recovery Algorithms: Known PCR E�ciency Fac-

tor

In this section, we describe two algorithms which use the pooled CTs, the e�ciency

factor, q and the pooling matrix, A as inputs and recover the individual CTs.

4.4.1 Gradient Descent (GD) - CT Algorithm

Recall that the additive measurement noise is modeled as a Gaussian, i.e., εi
iid∼ N (0, σ2

ε ),

i ∈ {1, 2, . . . ,m}. Further, the vector of viral loads, x, is sparse. An optimum solution
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to (4.5) can be obtained by a maximum aposteriori probability (MAP)-type formulation

with a spike-and-slab prior [179]. This leads to a l0-norm regularized optimization objective

comprised of the sum of two terms. The �rst term arises from the least-squares or l2-norm

minimization of the error vector, and the second (regularization) term imposes sparsity.

In particular, with (4.5) as the system model, the optimization problem we wish to solve

can be written as follows:

û = arg min
u

1

2
‖ε‖2

2 + κ̄
∥∥τ(1 + q)−u

∥∥
0
, (4.7)

where κ̄ is a regularization parameter and the expression ‖ε‖2 denotes the l2 norm of a

vector ε [180].

We note that the `0 optimization problem in (4.7) is NP-hard (see Appendix C.3). A

commonly adopted approach is to relax the above NP-hard problem into an `1 optimization

problem [175, 181, 182]. Towards this end, we de�ne x̃ = (1 + q)−u such that ‖x̃‖∞ ≤ κ̃,

followed by computing the convex biconjugate of f(x̃) = ‖x̃‖0 to get f ∗∗(x̃) = 1
κ̃
‖x̃‖1 [183].

We then replace the `0 norm term in (4.7) with its `1 relaxation to get

û = arg min
u

1

2
‖ε‖2

2 + κ
∥∥(1 + q)−u

∥∥
1
, (4.8)

where κ , κ̄|τ |/κ̃ τ>0
= κ̄τ/κ̃ is the e�ective regularization parameter for the optimization

problem and the expression ‖x‖1 denotes the l1 norm of a vector x [180]. We note that (4.8)

is still a hard problem to solve due to its non-linear and non-convex nature. In the

literature, the gradient descent (GD) is one of the attractive and practical algorithms

available to solve a wide range of optimization problems [184]. It is especially useful

when the gradient of the objective function exists and can be e�ciently computed. The
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Algorithm 1 Gradient Descent (GD) - CT

Input: c, A, K, κ, η and q
Output: û

1: Initialize u1.
2: for k ← 1 to K do

3: Compute g(uk; A, c, q) using (4.9) with u = uk.
4: Update

uk+1 = uk − ηg(uk; A, c, q). (4.10)

5: end for

6: Set the estimate of individual CTs, û = uK+1.

optimization problem in (4.8) can be solved using the GD algorithm and is termed as the

GD-CT algorithm due to the usage of CT values.

In order to derive the GD-CT algorithm, we start by computing the gradient of the

objective function in (4.8) with respect to u, denoted by g(u; A, c, q). Denoting the

(i, j)th element of A by Aij, the gradient is given by

g(u; A, c, q) =

m∑
i=1

(
log
(
AT
i (1 + q)−u

)
log(1 + q)

+ ci

)

× −1

AT
i (1 + q)−u


Ai1

(1+q)u1

...
Ain

(1+q)un

− κ (ln(1 + q)) (1 + q)−u. (4.9)

The GD-CT procedure is presented in Algorithm 1, where η is the step size and K is the

maximum number of iterations.

In Algorithm 1 and henceforth, we denote the vector u at kth iteration of the algorithm

and the jth entry of u by uk and uj, respectively. Then, the (j, j)th diagonal element of

the Hessian H(u) of the objective function is given by

Hjj(u) =
m∑
i=1

[
ciAij ln(1 + q)(1 + q)−uj

AT
i (1 + q)−u

−
ciA

2
ij ln(1 + q)(1 + q)−2uj

(AT
i (1 + q)−u)2
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− Aij log(AT
i (1 + q)−u)

(1 + q)uj AT
i (1 + q)−u

+
A2
ij(1 + q)−2uj

(AT
i (1 + q)−u)2

−
A2
ij log(AT

i (1 + q)−u)(1 + q)−2uj

(AT
i (1 + q)−u)2

]
− κ ln2(1 + q)(1 + q)−uj , (4.11)

and the (j, j′)th element for j 6= j′ is given by

Hjj′(u) =
m∑
i=1

AijAij′(1 + q)−uj−uj′

(AT
i (1 + q)−u)2

×
[
ci +

1

log(1 + q)
− log(AT

i (1 + q)−u)

]
. (4.12)

Theorem 4.1. [185, 186] Given an open convex set, S, let the objective function, f :

S 7→ R be twice di�erentiable. Let η be the step size of the GD-CT algorithm such that

0 < η < 1/L, where ∇uf is L-Lipschitz continuous, for L < ∞. The GD-CT update

as given by (4.10), generates a sequence of iterates {uk}. If the limk→∞ uk exists, then

P (limk→∞ uk = u∗) = 1, where u∗ is a local minimizer.

Theorem 4.1 says that the gradient descent algorithm never converges to a saddle point.6

We now show that the objective function in (4.8) satis�es the conditions in Theorem 4.1,

and, therefore, the GD-CT iterates converge to a local minimum.

The objective function in (4.8) is twice di�erentiable (see (4.11) and (4.12)) and is

comprised of elementary operations. Hence, it is analytic and satis�es the �ojasiewicz

gradient inequality.7 Therefore, the limit of the iterates exists [185]. Further, showing

that the gradient is L-Lipschitz is equivalent to bounding the spectral norm of the Hes-

sian, |||H|||2 =
√
λmax(HHH) ≤ L < ∞, where λmax(H

HH) is the largest eigenvalue of

HHH [186]. Since HHH < 0, we have λmax(H
HH) ≤ trace(HHH) = ‖H‖2

F .
8 Therefore,

it su�ces to show that the entries of the Hessian are upper bounded by �nite constants.

6See Appendix C.4 for an intuition, reproduced from [185].
7See Appendix C.5 for the formal de�nition and a note.
8The expressions ‖A‖2F and |||A|||2 denote the Frobenius norm and spectral norm of the matrix A and

A < 0 means that the matrix A is positive semi-de�nite [180].
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Recall that the COMP pre-processing removes the tests with pooled CT values ci =∞.

Thus, at least one positive sample with uj <∞ appears in each test, and the pooled CT is

bounded as ci ≤ cmax. This also ensures that AT
i (1+q)−u 6= 0 in the denominator of (4.11)

or (4.12). Let S = (mu,Mu) such that, 0 < mu < uj < Mu. The positive lower bound

assumption is valid since at least one PCR cycle is conducted. Let x̃ = (1+q)−u, such that

the entries, x̃j, of x̃ are bounded between mx < x̃j < Mx <∞ for the positive individuals

and x̃j = 0 for the negative individuals, wheremx andMx are constants depending only on

Mu and mu, respectively. Lastly, note that log(mx

∥∥AT
i

∥∥
1
) < log(AT

i x̃) < log(Mx

∥∥AT
i

∥∥
1
).

Since 1 ≤
∥∥AT

i

∥∥
1
≤ n, we can relax the bound further as log(mx) < log(AT

i x̃) < log(nMx).

De�ne γ , max(| log(mx)|, | log(nMx)|) and note that | log(AT
i x̃)| < γ. Then, the entries

of the Hessian can be bounded as

Hjj′ ≤

CH [1 + γ(n+ 1) + ncmax ln(1 + q)] , j = j′

CH

[
γ + cmax + 1

ln(1+q)

]
, j 6= j′,

with CH , m(Mx/mx)
2. Since ‖H‖2

F contains n diagonal and n(n−1) o�-diagonal entries

of H, the trace(HHH), and hence the |||H(u)|||2 is �nitely upper bounded, satisfying the

last of the su�cient conditions for almost sure convergence of Algorithm 1 to a local

minimizer using Theorem 4.1.

Remark: Instead of using a constant step-size η, we can use adaptive step-sizes. Algo-

rithm 1 can be modi�ed to allow step-size adaptation as follows: Replace step 4 by

ηk = AdaptStep(ηk−1)

uk+1 = uk − ηkg(uk; A, c, q),

where AdaptStep(·) implements the recipe to adapt the step size [187, 188]. In this case,
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the L-Lipschitz requirement on the gradient in Theorem 4.1 can be relaxed.

4.4.2 Iterative Mirrored Hard Thresholding (IMHT) - CT Algo-

rithm

Motivated by the literature in non-linear compressed sensing [189], the system model in

(4.5) can be seen as a non-linear transformation relating the pooled CTs vector, c with

the individual CTs vector, u, given by c = Φ(u) + ε, where Φ(u) , −
log(A( 1

(1+q)u ))
log(1+q)

is a

multi-variable vector-valued non-linear function. A �rst-order Taylor series approximation

of Φ(u) about a �xed point u∗ can be written as Φ(u) u Φ(u∗) + J(u∗)(u − u∗) and is

valid when ‖u− u∗‖ ≤ δ′ for a su�ciently small δ′ > 0. In the Taylor series expansion,

J(u) is the m × n Jacobian matrix of Φ(u) computed at u = u∗. The (i, j)th element of

J(u) is

Jij(u) =
∂(Φi(u))

∂uj
=

Aij
(1 + q)uj

(
1

AT
i (1 + q)−u

)
, (4.13)

where Φi(u) is the ith element of Φ(u).

We introduce the following additional notations before describing the algorithm. Let s

denote the number of �nite entries in the vector, u or equivalently, the sparsity of the

viral-load vector, x. Let Πuth,s(u) denote the mirrored hard-thresholding operation, i.e.,

the operation that sets the n− s largest values of u to uth. With η denoting the step size

and K denoting the maximum number of iterations, the IMHT-CT algorithm is described

in Algorithm 2. Although Algorithm 2 takes the value of s as an input, we have observed

that an overestimated value of s does not a�ect the simulation performance.
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Algorithm 2 Iterative Mirrored Hard Thresholding (IMHT) - CT

Input: c, A, s, K, η and q
Output: û

1: Initialize u1.
2: for k ← 1 to K do

3: Compute the entries of J(uk) using (4.13) for each i ∈ {1, 2, . . . ,m} and j ∈
{1, 2, . . . , n} with u = uk.

4: Update
uk+1 = Πuth,s(uk − ηJ(uk) (c− Φ(uk))). (4.14)

5: end for

6: Set the estimate of individual CTs, û = uK+1.

4.5 Numerical Simulations

In this section, we present the simulation results showing the e�ectiveness of our algo-

rithms for recovering the infected samples given the outcomes of group testing and the

pooling matrix. We start by describing the experimental setup in the next subsection.

4.5.1 Experimental Setup

For generating the simulation data, we use q = 0.95 and the Kirkman matrix9 with m =

45 rows and n = 105 columns as the pooling matrix, unless stated otherwise.10 We choose

m = 45 because a standard PCR plate can accommodate a maximum of 93 test samples at

a time (See Section 4.1.2). Therefore, using m = 45, one can perform two pooled tests in

parallel with a 93-capacity plate, making it practically useful in terms of reducing wastage

due to empty wells. The indices of nonzero viral loads in x ∈ N105×1 are picked uniformly

at random and stored in an index set NZI with cardinality |NZI| = dnsx/100e, where

9See Appendix C.1 for a note on Kirkman designs.
10We obtain Kirkman matrix of size 45× 105 by selecting �rst 105 columns from the full sized 45× 285

Kirkman matrix. Other options which can be used are to select columns uniformly randomly without
replacement; or select/drop a column if it does not increase/decrease the mutual coherence, etc.
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sx (%) is the prevalence rate. The viral load in a negative sample is zero. The positive

entries of the initial viral-load vector, xj, are drawn from the Poisson(λj) distribution

where λj ∼ Unif(100, 106), for j ∈ NZI. Finally, using the relationship in (4.2), the

pooled CT vector, c ∈ R45×1
+ is generated. In the distribution of the hyper-parameter λj,

the lower and upper limits are the average least and highest viral load (or equivalently,

cDNA/ RNA particles) in a positive sample.

We use CT = 45 as the decision threshold, i.e., samples with estimated CT > 45 are

declared as negative. This parameter can be easily varied based on the actual number

of PCR cycles conducted in the RT-qPCR machine. The maximum number of iterations

is set as K = 500. The CT threshold value is set as uth = 100 in Algorithm 2. Also,

in Algorithm 2, the true value of s is assumed to be known in our simulations. In practice,

s can be estimated using the prevalence rate curve. Finally, the regularization parameter,

κ = 10−3, and the step size η = 0.01 are chosen via cross-validation. We have noticed

in our simulations that the value of κ can be set very close to 0 without signi�cantly

changing the performance. This is because, after the COMP stage, the problem is often

over-determined. Therefore, the relative importance of the sparsity promoting term is low.

Also, since the viral loads are non-negative, the l1 regularization is not necessary to ensure

a unique solution to (4.8) [190,191].

All the results are averaged over 10, 000 Monte-Carlo runs. We use the following metrics:

average NMSE in the CT values recovered, the average FNR, and the average FPR, for

the prevalence rate (sparsity) up to 10%. The NMSE is the mean squared error (MSE)

between the estimate û and the true vector u normalized by the mean `2 norm-squared of

the true vector, i.e., NMSE , E
[
‖u− û‖2

2

]
/E
[
‖u‖2

2

]
. Ignoring the role of the in�nities
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Figure 4.1: Comparison of the NMSE performance of GD-CT and IMHT-CT algorithms
over di�erent sparsity (%) levels at di�erent noise standard deviations, σε.

in the computation of `2 norm of the CT vector, we note that the average `2 norm of

the CT vector increases as the number of defective items in the population increases,

thereby proportionally scaling un-normalized error metrics like MSE. In order to remove

this bias in the error performance when comparing across the sparsity levels, the NMSE

is considered instead of the MSE.

The comparison is performed across two scenarios: �rstly, under the various noise stan-

dard deviations, σε ∈ {0, 3.0} [177] at q = 0.95 and secondly, under di�erent e�ciency

factors, q ∈ {0.5, 0.95} at σε = 0. The noise standard deviation σε = 0 indicates the

noiseless model.

4.5.2 Algorithm Performance at Di�erent Noise Levels

We illustrate the NMSE performance of the GD-CT and IMHT-CT algorithms in Fig-

ure 4.1 as the sparsity (%) is varied from 0.1% to 10% over two di�erent values of the

noise standard deviations, σε. From Figure 4.1, we observe that the NMSE curves shift
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Figure 4.2: Comparison of the FNR and FPR performances of COMP, DD, GD-CT and
IMHT-CT algorithms over di�erent sparsity (%) levels at di�erent noise standard devia-
tions, σε.

up when the noise σε > 0. The NMSE of GD-CT algorithm is lower than that of the

IMHT-CT algorithm at higher sparsity levels. As the number of infected sample in the

population increases, we observe that the NMSE increases at faster rate and the NMSE

curves corresponding to the noiseless (i.e., σε = 0) and noisy (i.e., σε = 3.0) case come

closer to each other. The decoding capability of the recovery algorithm depends on the

test matrix design. Therefore, the decoding process fails irrespective of noise level and the

recovery algorithm estimates get worse. Lastly, in addition to o�ering a better NMSE er-

ror, the NMSE curve of the GD-CT algorithm stays at its minimum value up to a sparsity

of 4% as compared to IMHT-CT where the curve raising above the minimum value from

2% at σε = 0. Similar behavior is seen in the noisy case too making the GD-CT, a better

algorithm, of the two.

The FNR and FPR performances of GD-CT and IMHT-CT algorithms are shown in Fig-

ure 4.2 at two noise standard deviations as the sparsity (%) is varied from 0.1% to 10%.
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Figure 4.3: Comparison of the NMSE performance of GD-CT and IMHT-CT algorithms
over di�erent sparsity (%) levels at two PCR e�ciency factors, q, used to generate the
data.

From the subplot A in Figure 4.2, we see that the FNR of both GD-CT and IMHT-CT

algorithms are similar across σε. In addition, COMP makes no FN errors irrespective

of the noise level whereas DD makes FN errors higher than either GD-CT or IMHT-CT

algorithms as sparsity levels increase. From subplot B in Figure 4.2, we observe that

the performance of the GD-CT algorithm is better than that of the IMHT-CT algorithm.

Here, we observe further that DD makes no FP errors whereas COMP makes much higher

FP error as compared to GD-CT and IMHT-CT algorithms. Further, we see that the

FPR and FNR performances of both GD-CT and IMHT-CT algorithms are not a�ected

by the noise levels. Lastly, even though the NMSE performance of the algorithms degrade

as the infected sample percentage in the population increases, the FNR and FPR remain

stable and agnostic of the noise level in the system. In order to degrade the FNR and

FPR performance, the noise levels have to be set to much higher values.
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Figure 4.4: Comparison of the FNR and FPR performances of COMP, DD, GD-CT and
IMHT-CT algorithms over di�erent sparsity (%) levels at di�erent PCR e�ciency factors,
q, used to generate the data.

4.5.3 Algorithm Performance at Di�erent PCR E�ciency Factors

In this subsection, we discuss the performance of the GD-CT and IMHT-CT algorithms

across the PCR e�ciency factors. The NMSE performance of the GD-CT and IMHT-

CT algorithms are shown in Figure 4.3 as the sparsity (%) is varied from 0.1% to 10%

over two di�erent values of the PCR e�ciency factor, q. It can be observed that the

NMSE performance of GD-CT across e�ciency factors is better than that of the IMHT-

CT algorithm. The relative variation in the performance of algorithms across the two

e�ciency factors (q) is ≈ 20% for the IMHT-CT algorithm and ≈ 9% for the GD-CT

algorithm at sparsity level of 10%. Thus, the performance of the GD-CT algorithm is

more stable with respect to variations in the e�ciency factor.

The FNR and FPR performances of GD-CT and IMHT-CT algorithms are shown in Fig-

ure 4.4 at two PCR e�ciency factors as the sparsity (%) is varied from 0.1% to 10%. From
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the subplot A in Figure 4.4, we see that the FNR of both GD-CT and IMHT-CT algo-

rithms are similar across the two values of q. In addition, as seen before in Section 4.5.2,

COMP makes no FN errors whereas DD makes FN errors higher than either GD-CT or

IMHT-CT algorithms as sparsity levels increase irrespective of the value of q used to gen-

erate the data. From subplot B in Figure 4.4, we observe that the performance of the

GD-CT algorithm is slightly better than that of the IMHT-CT algorithm. Here, we ob-

serve further that DD makes no FP errors whereas COMP makes much higher FP error as

compared to GD-CT and IMHT-CT algorithms. Further, we see that the FNR and FPR

performance of GD-CT is not a�ected by the value of q used to generate the data. How-

ever, the performance of IMHT-CT algorithm shows a slight variation at higher sparsity

(%) across the two values of q used in the experiment.

4.6 Chapter Summary

In this chapter, we developed novel recovery algorithms for detecting Covid-19-infected

samples using pooled RT-qPCR. The binary group testing algorithms like COMP and DD

were restated with the Covid-19 system model. COMP makes only FP errors, whereas

DD makes only FN errors. Therefore, COMP can be used in the pre-processing stage to

reduce the system dimension. In addition, two novel, iterative quantitative group testing

algorithms, namely, GD-CT and IMHT-CT, were presented. The GD-CT iterates converge

to a local minimum of the cost function in (4.8).

The update step in (4.14) of the IMHT-CT algorithm executes a projection step, namely,

the mirrored-hard thresholding operation, Πuth,s(u). Compared to the GD-CT algorithm,

where iterates are computed optimally using the direction of the negative gradient, the
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projection step in the IMHT-CT algorithm does not guarantee that the projected iterate

exactly satis�es the optimality condition. Therefore, there is a trade-o� between ensuring

that the iterates are feasible (as in IMHT-CT) vs. the iterates satisfying the optimality

condition (as in GD-CT). Our numerical simulations revealed that the FPR and NMSE

performance of the GD-CT algorithm is better than that of the IMHT-CT algorithm,

whereas the FNR performances are similar. Further, the GD-CT algorithm performs

better in terms of NMSE as compared to the IMHT-CT algorithm. Overall, in balance,

the GD-CT algorithm outperforms the IMHT-CT algorithm.

The GD-CT and IMHT-CT algorithms take the PCR e�ciency factor, q, as an input. The

value of q depends on various factors like the probe-primers used and ambient temperature,

to name a few. Therefore, it is essential to jointly estimate both the individual sample

CTs and the PCR e�ciency factor. We address this issue in the next chapter.



5 Robust Recovery Algorithms for

Covid-19 Under Uncertainty

Chapter Highlights

This chapter overcomes a shortcoming of the algorithms presented in the previous chapters.

That is, we focus on recovering the CT values of the individuals from the pooled-CT values under

uncertainty. The value of the PCR e�ciency factor, q, dictates the pace of the reaction, i.e., the

rate at which the viral load in the sample replicates. In practice, q is unknown and, therefore, is

set to a nominal value, e.g., 0.95. In theory, an ideal value for the PCR e�ciency factor is unity.

However, the value of the PCR e�ciency factor varies in the range [0.5, 1.0) and depends on

factors like the probe-primer combination used and the ambient temperature. Due to the highly

non-linear nature of the RT-qPCR system model where q appears as the base of an exponential

term, a small change in q results in a wide variation in the CT value. Therefore, algorithms that

can recover the infected sample CT values when q is unknown are essential. In this chapter, we

develop two novel, iterative algorithms: 1) Block Coordinate Descent - CT (BCD-CT) and 2)

Alternating Direction Method of Multipliers - CT (ADMM-CT), which can jointly estimate both

the individual sample CTs and the PCR e�ciency factor. The individual sample CTs can then

be used to determine the infection status of the samples. Our algorithm performances are robust,

i.e., a similar performance is observed across the range of values q can take.

We start this chapter with a recap of the related work and the system model presented in

the previous chapter. Next, we describe the BCD-CT and ADMM-CT algorithms, followed by a

discussion on the convergence to a local optimum. Numerical simulations are presented comparing

the NMSE, FPR and FNR performances of BCD-CT and ADMM-CT. In terms of NMSE and

FPR, the ADMM-CT outperforms BCD-CT. The performance is similar in terms of the FNR.

Further, the performance is compared with that of binary group testing algorithms like COMP

and DD, as well as CS-based algorithms. Lastly, we present empirical results related to the Covid-

19 pandemic testing numbers to show when group testing is useful, followed by a discussion on

the impact of test designs on the testing rates obtainable for di�erent prevalence rates.

107



Chapter 5. 108

5.1 Introduction

The recent Covid-19 pandemic has increased the interest in novel group testing algo-

rithms [88, 165]. In particular, recovery algorithms that can estimate the infection status

of an individual sample from the quantitative pooled test outcome and pooling matrix

have gained much attention (see Chapter 4). As discussed in Section 4.1.2, systematic,

cost-e�ective, reliable, and repeatable testing protocols that form the backbone of a stan-

dard contact tracing procedure are essential. Towards this end, binary- and quantitative-

outcome group testing algorithms were discussed in Section 4.3 and Section 4.4, respec-

tively. The GD-CT and IMHT-CT algorithms presented in Section 4.4 require the knowl-

edge of certain model parameters like the PCR e�ciency factor.

The PCR e�ciency factor, denoted by q, determines the pace of the chemical reaction and

typically lies in the range [0.5, 1.0). Rarely, in controlled conditions, q can exceed 1.0 when

the environment is conducive for faster-than-normal growth of the microbe under study.

In the context of Covid-19, the value of q is set to a nominal value of 0.95 [88]. However,

the actual value of q depends on various factors like the probe-primers used, concentration

and clustering of the virus particles in the initial mixture, and the ambient temperature, to

name a few. Recall from (4.5) that q appears as a base of an exponent in the non-linear RT-

qPCR model. Further, the pooled-CT value is obtained by summing up these exponential

terms as dictated by the (row-) entries of the pooling matrix. Therefore, a small change

in the value of q results in wide variation in the CT value. As we shall see in Section 5.4.4,

setting an incorrect value of q results in the degradation of the performance of the recovery

algorithms (see Table 5.3). Therefore, it is essential to design recovery algorithms that

are robust to the uncertainty in the value of q. Therefore, we develop novel recovery
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algorithms to jointly estimate q and the individual-sample CTs (i.e., the infection status),

given the pooled testing outcomes and the pooling matrix. In particular, we develop

two iterative, joint-estimation algorithms: 1) Block Coordinate Descent - CT (BCD-CT)

and 2) Alternating Direction Method of Multiplier - CT (ADMM-CT). As mentioned in

Chapter 4, the su�x CT denotes the fact that the algorithm operates in the CT space.

5.1.1 Related Work

We refer the readers to Section 4.1.3 for a more detailed discussion of the related work.

In this sub-section, we summarize the salient points relevant for this chapter. The authors

in [88] convert the observed pooled-sample CT values into corresponding viral loads. Such

conversion requires the knowledge of the PCR e�ciency factor (q = 0.95 is used). The

CS-based algorithms proposed in [165] implicitly use the knowledge of q to convert the

system model into a form where standard CS-based algorithms can be applied. We show

that the mismatch between the actual value of q and its value assumed by the decoding

algorithm can result in severe performance degradation. Therefore, developing recovery

algorithms that are robust to the uncertainty in the knowledge of q is essential.

5.1.2 Contributions

In this chapter, we focus on estimating the viral loads and determining healthy/sick

status of individuals using the pooled RT-qPCR outcomes and the deterministic, single-

stage pooling matrix when the PCR e�ciency factor is unknown. The rest of the chapter

is organized as below:

1. We recall the system model for the RT-qPCR in the CT-space in Section 5.2.
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2. We develop two novel algorithms: 1) ADMM-CT and 2) BCD-CT, which can jointly

recover the individual sample CT vector and estimate the unknown e�ciency factor

in Section 5.3. The sub-problem of estimating the CTs is performed using GD-CT

(see Algorithm 1) or IMHT-CT (see Algorithm 2). The sub-problem involving q

is solved using the projected gradient descent (PGD) method (see Section 5.3.1.1).

Our recovery algorithms are robust to noise and varying machine parameters.

3. We empirically evaluate the performance of our algorithms in Section 5.4 and show

that they outperform related algorithms in the literature under practical settings

(e.g., unknown machine-speci�c parameters, CT measurement noise, etc.) in terms

of the NMSE and the sparsity level up to which the algorithms guarantee zero

recovery errors.

4. The advantage of using quantitative measurements in non-adaptive pool testing in

terms of the testing rate and hence the cost is presented in Section 5.5.1 using

publicly available data on the number of tests conducted. The results illustrate that

using quantitative measurements results in signi�cant cumulative cost savings.

5. We compile the best rates achievable for a given prevalence rate using deterministic

testing matrices like Kirkman1 [192] and Euler2 [193] designs in Section 5.5.2. The

prevalence rate estimate (e.g., the previous day's value) can be used to decide the

optimum (testing) rate design for each day.

One of the main takeaways from this chapter is that our algorithms recover the un-

normalized CT values without the knowledge of the machine-speci�c parameters. This

1See Appendix C.1 for a note on Kirkman designs.
2See Appendix C.2 for a note on Euler designs.
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makes the output of our algorithms similar to that of individual testing.

5.2 System Model Summary and Focus of the Chapter

We recall the system model of the pooled RT-qPCR presented in Section 4.2, where there

are n individuals participating in m pool tests, with m� n given by
c1

...

cm

 = − 1

log(1 + q)


log
(
AT

1 (1 + q)−u
)

...

log
(
AT
m(1 + q)−u

)
+


ε1
...

εm

 ,
or c = − 1

log(1 + q)
log
(
A(1 + q)−u

)
+ ε, (5.1)

where q ∈ X , [0.5, 1.0) denotes the e�ciency of the PCR reaction, ci ∈ R for i ∈

{1, 2, . . . ,m} denote the CT values observed in the ith pool test, A ∈ {0, 1}m×n denote the

pooling matrix, where the (i, j)th element of A equals 1 if the jth individual participates

in the ith test, and equals 0 otherwise. Further, AT
i is the ith row of A, uj ∈ R denotes the

individual-sample CT value and εi ∼ N (0, σ2
ε ) is the CT measurement noise with unknown

variance σ2
ε in (5.1). Equivalently, the multiplicative noise model is written as

τ(1 + q)−ci = (1 + q)εiAT
i x , i = 1, 2, . . . ,m. (5.2)

The focus of this chapter is to design algorithms to solve the inverse problem of inferring

the vector of individual viral loads, u, from (5.2) given the pooling matrix A and the

vector of pooled CTs, c when q is unknown.

In summary,

� Usage of binary pooling matrix and the fact that there are two kinds of pooled test

outcomes: negative test outcomes have CT = ∞ while the positive test outcomes
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are non-negative �nite real values, and

� Multiplicative and non-Gaussian nature of the noise term, (1 + q)ε as seen in (5.2)

or additive nature of the noise but with a non-linear model in the log space as seen

in (4.5),

makes the problem di�erent from standard models considered in sparse signal recovery

problems [175,176]. To this end, we develop a set of novel, robust recovery algorithms to

estimate the vector of individual CTs.

5.3 Recovery Algorithms: Unknown E�ciency Factor

In this subsection, we develop two algorithms whose basic constituents are Algorithm 1

(GD-CT) or Algorithm 2 (IMHT-CT) described in Chapter 4, and are capable of jointly

estimating q and u.

5.3.1 Block Coordinate Descent (BCD) - CT Algorithm

When q is unknown, we modify the overall optimization problem from (4.8) as

û, q̂ = arg min
u,q

1

2
‖ε‖2

2 + κ
∥∥(1 + q)−u

∥∥
1

s.t. q ∈ X , (5.3)

where X is the convex box constraint set used to restrict the values that q can take. Since

q is a scalar, the box constraint is an interval on the real line. The block coordinate

descent (BCD) algorithm is well suited for problems where the coordinates or variables of

optimization show block-commonality [194]. From (4.9), it is clear that the multiplicative

factor is common across the entries of the gradient. Therefore, the maximum advantage

is obtained in terms of the processing e�ciency when the block-components are de�ned as
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Algorithm 3 Block Coordinate Descent (BCD) - CT

Input: c, A, M , K, L, κ, η and β
Output: û, q̂
1: Initialize u1 and q1.
2: for k ← 1 to M do

3: Update

uk+1 = arg min
u

1

2

∥∥∥∥ log (A(1 + qk)
−u)

log(1 + qk)
+ c

∥∥∥∥2

2

+ κ
∥∥(1 + qk)

−u∥∥
1

(5.4)

qk+1 = arg min
q∈X

1

2

∥∥∥∥ log (A(1 + q)−uk+1)

log(1 + q)
+ c

∥∥∥∥2

2

+ κ
∥∥(1 + q)−uk+1

∥∥
1

(5.5)

4: end for

5: Set the estimate of individual CTs, û = uM+1 and set the estimate of q, q̂ = qM+1.

α = [u; q], where α denotes the overall parameter vector. The vector u is considered as

one block, and the scalar q is considered as the another block. The BCD algorithm for

estimating the values of u and q in a cyclic fashion is called as the BCD-CT algorithm.

Denoting the maximum number of iterations by M , the BCD-CT algorithm is described

in Algorithm 3.

In Algorithm 3 (BCD-CT), the solution to (5.4) in each iteration can be obtained us-

ing either Algorithm 1 (GD-CT) or Algorithm 2 (IMHT-CT). When the information on

whether GD-CT or IMHT-CT algorithms is used is important, we use either BCD-CT-G

or BCD-CT-I, respectively.

5.3.1.1 Project Gradient Descent Algorithm for Estimating q

The projected gradient descent (PGD) algorithm is used to solve sub-problem (5.5)

involving the parameter q in each of the BCD iterations. Let L denote the maximum
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number of iterations in the PGD algorithm, ΠX (w) denote the projection of the point

w ∈ R into the set X ⊆ R, β be the step size and g(q = qk,l; u = uk) denote the gradient

of objective function in (5.5) with respect to q evaluated at q = qk,l and u = uk. It is easy

to show that g(q; u) can be computed using

g(q; u) =
∂

∂q

∥∥∥∥ log (A(1 + q)−u)

log(1 + q)
+ c

∥∥∥∥2

2

=
∂

∂q

m∑
i=1

(
log
(
AT
i (1 + q)−u

)
log(1 + q)

+ ci

)2

=
m∑
i=1

2

(
log
(
AT
i (1 + q)−u

)
log(1 + q)

+ ci

)
∂

∂q

(
log
(
AT
i (1 + q)−u

)
log(1 + q)

)

=
m∑
i=1

(
log
(
AT
i (1 + q)−u

)
log(1 + q)

+ ci

)

×

[
− 1

log(1 + q)AT
i (1 + q)−u

n∑
j=1

Aijuj
(1 + q)uj+1

−
log
(
AT
i (1 + q)−u

)
(1 + q)(log(1 + q))2

]

−
n∑
j=1

κuj
(1 + q)uj+1

. (5.6)

The PGD algorithm is described in Algorithm 4. The second derivative, H(q), of the cost

function in (5.3) w.r.t. q is

H(q) =
m∑
i=1

[
1

log(1 + q) AT
i (1 + q)−u

n∑
j=1

Aijuj
(1 + q)uj+1

+
log(AT

i (1 + q)−u)

(1 + q)(log(1 + q))2

]2

+

(
ci +

log(AT
i (1 + q)−u)

log(1 + q)

)

×


n∑
j=1

Aijuj(uj + 1)(1 + q)−(uj+2)

log(1 + q) AT
i (1 + q)−u

+

(
log(AT

i (1 + q)−u)
)2

(log(1 + q) + 2)

(1 + q)2(log(1 + q))3

+

(
n∑
j=1

Aijuj(1 + q)−(uj+1)

)
(log(1 + q) + 1)

(1 + q)(log(1 + q))2 (AT
i (1 + q)−u)

−

(
n∑
j=1

Aijuj(1 + q)−(uj+1)

)2

log(1 + q) (AT
i (1 + q)−u)

2


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+
n∑
j=1

κuj(uj + 1)

(1 + q)(uj+2)
. (5.7)

Let q ∈ X , [mq,Mq), mq < Mq < ∞. In a positive test where ampli�cation occurs in

each PCR cycle, mq > 0. When uj <∞, H(q) is upper bounded as

H(q) ≤ L′1 , m

[
nMu

log(1 +mq)(1 +Mq)−Mu(1 +mq)mu+1
+

γ′

(1 +mq)(log(1 +mq))2

]2

+m

(
cmax +

γ′

log(1 +mq)

)
×

[
n(Mu+1)2(1+mq)

−(mu+2)

log(1 +mq)(1 +Mq)−Mu
+

(γ′)2(log(1+Mq)+2)

(1 +mq)2(log(1 +mq))3

+
nMu(1 +mq)

−(mu+1)(log(1 +Mq) + 1)

(1 +mq)(log(1 +mq))2(1 +Mq)−Mu

]
+
nκMu(Mu + 1)

(1 +mq)(mu+2)
, (5.8)

where γ′ , max
(
| log(1 +Mq)

−Mu|, | log(n(1 +mq)
−mu)|

)
and when uj =∞, as

H(q) ≤ L′2 , m

[
γ′

(1 +mq)(log(1 +mq))2

]2

+m

(
cmax +

γ′

log(1 +mq)

)[
(γ′)2 (log(1 +Mq) + 2)

(1 +mq)2(log(1 +mq))3

]
. (5.9)

In summary, H(q) ≤ L′ , max(L′1, L
′
2) < ∞. Let the step size, β, be chosen such that

0 < β < 1/L′. Using Theorem 4.1 for the sequence of scalar iterates {qk}, in the context

of gradient descent update step in (5.10), we can conclude that the iterates converge to a

local minimizer, q∗.

5.3.2 Alternating Direction Method of Multipliers (ADMM) - CT

Algorithm

The alternating direction method of multiplier (ADMM) procedure is another well-known

parallel or distributed optimization framework [195]. The essence of the ADMM recipe

lies in using the advantages of the dual formulations and the augmented Lagrangian [195].
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Algorithm 4 Projected Gradient Descent (PGD)

Input: c, A, uk, qk, L and β
Output: qk+1

1: Initialize qk,1 = qk.
2: for l← 1 to L do

3: Compute g(qk,l; uk) using (5.6).
4: Update

qk,l+1 = ΠX (qk,l − βg(qk,l; uk)) . (5.10)

5: end for

6: Set qk+1 = qk,L+1.

A modi�cation to (5.3) on these lines yields the required ADMM optimization problem,

given by

û, ŵ, q̂ = arg min
u,w,q

1

2
‖ε‖2

2 + κ
∥∥(1 + q)−w

∥∥
1

+
ρ

2
‖u−w + µ‖2

2 s.t. q ∈ X , (5.11)

where ρ is the penalty parameter, µ denotes the dual variable and w is the auxiliary

variable. The dual variable is the result of the re-parameterization which converts the

standard ADMM problem into its scaled dual form [195]. The advantage of the dual

formulation, along with the auxiliary variable, is that it allows for the main optimization

problem to be decomposed into multiple, simpler sub-problems which are computationally

e�cient to solve. For example, from (5.11), at least 3 sub-problems involving u, w and

q can be observed. However, dual methods may have slow convergence rates. A penalty

term, ρ
2
‖u−w + µ‖2

2, is added to convert the primal problem into a strongly convex

objective to overcome this issue. Lastly, from (5.11), we note that µ → 0 and ŵ = û on

convergence.

Let N denote the maximum number of iterations. The ADMM algorithm for estimat-

ing u and q given c and A, called ADMM-CT algorithm is described in Algorithm 5.
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Algorithm 5 Alternating Direction Method of Multipliers (ADMM) - CT

Input: c, A, N , K, L, κ, η and β
Output: û, q̂
1: Initialize u1, w1, µ1 and q1.
2: for k ← 1 to N do

3: Update

uk+1 = arg min
u

1

2

∥∥∥∥ log (A(1 + qk)
−u)

log(1 + qk)
+ c

∥∥∥∥2

2

+
ρ

2
||u−wk + µk||22

qk+1 = arg min
q∈X

1

2

∥∥∥∥ log (A(1 + q)−uk+1)

log(1 + q)
+ c

∥∥∥∥2

2

+ κ
∥∥(1 + q)−wk

∥∥
1

wk+1 = arg min
w

κ
∥∥(1 + qk)

−w∥∥
1
+
ρ

2
‖uk −w + µk‖2

2 (5.12)

µk+1 = µk + (uk+1 −wk+1).

4: end for

5: Set the estimate of individual CTs, û = uN+1 and set the estimate of q, q̂ = qN+1.

In Algorithm 5, we note that the sub-problem in (5.12) is convex in w. Hence, it can

be solved using any convex optimization package (e.g., CVX [196]). As stated earlier,

the sub-problem involving optimization over u can be solved using GD-CT (Algorithm 1)

with a term ρ(u − w + µ) added to the gradient in (4.9). Similarly, the sub-problem of

estimating qk+1 can be solved using Algorithm 4.

5.3.3 Comparison Between ADMM-CT and BCD-CT Estimates

We illustrate the advantage of the ADMM-CT algorithm over the BCD-CT algorithm

(with GD-CT algorithm for optimizing u) in terms of the quality of the �nal solution

in Figure 5.1. For the current discussion, the quality of the �nal solution is measured as

the gap between the estimates of the individual CTs for the positive and negative samples.
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Figure 5.1: Comparison of ADMM-CT and BCD-CT algorithms in terms of the distribu-
tion of the estimated individual CTs.

As mentioned in Section 4.1.1, the individual CTs for a positive sample is �nite and is

between 15 − 35. However, for a negative sample, the individual CT is ∞. Therefore,

from the perspective of the recovery algorithms, a larger margin between the estimate of

the individual CTs for positive and negative samples is desirable. In addition, a larger

margin translates to the robustness of the algorithm to the choice of the decision thresh-

olds. From Figure 5.1, we see that there is a well-de�ned and more prominent margin

between the individual CT estimates of the positive and negative samples obtained us-

ing the ADMM-CT algorithm compared to the estimates obtained from the BCD-CT

algorithm.

5.3.4 Convergence to Local Minima

In the optimization problems described above, due to the presence of log and exponential-

to-q terms, the objective function is non-convex in u. To overcome the problem of con-

vergence to the local minima, the BCD-CT and ADMM-CT algorithms are run multiple
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Figure 5.2: Comparison of ADMM-CT algorithm with and without Gaussian randomiza-
tion to overcome local optima.

times with Gaussian randomization (GR) i.e., the algorithm is run with di�erent initial

conditions and the estimates with the lowest objective function value are chosen as the

�nal estimates of q and u [197]. The term Gaussian in GR refers to the fact that the initial

samples are drawn from a Gaussian distribution with certain mean and variance. However,

our simulations show that the performance of our recovery algorithms is insensitive to the

speci�c distribution used for randomization (see Section 5.4 for more details). The FPR

and FNR performance improvement obtained from GR in the ADMM-CT algorithm is

shown in Figure 5.2.

We note that the complexity of the algorithms is not a major concern, as the RT-qPCR

test itself takes several hours to run. All of the recovery algorithms presented here run in

a few seconds on a computer, and therefore their relative complexity is not important for

this application.
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Table 5.1: Recap of the Parameters Used in the Experimental Setup from Chapter 4

Parameter Name Parameter Value

Kirkman Pooling Matrix Size, m× n 45× 105

CT Decision Threshold 45

Maximum GD-CT/IMHT-CT Iterations, K 500

Threshold on CT in IMHT-CT, uth 100

Regularization Parameter, κ 10−3

GD-CT/IMHT-CT Step Size, η 0.01

5.4 Numerical Simulations

In this section, we present the simulation results showing the e�ectiveness of our algo-

rithms for recovering the infected samples given the outcomes of group testing and the pool-

ing matrix when the PCR e�ciency factor is unknown. The comparison is performed across

two scenarios: �rstly, under the various noise standard deviations, σε ∈ {0, 3.0} [177] at

q = 0.95 and secondly, under di�erent e�ciency factors, q ∈ {0.5, 0.95} at σε = 0. In addi-

tion, the algorithms are run with Gaussian randomization, as mentioned earlier. Lastly, the

performance of the developed algorithms in compared with standard CS-based methods,

Algorithm 1 (GD-CT) and binary group testing methods from the literature [4,5,88,165].

We describe the experimental setup in the next subsection.

5.4.1 Experimental Setup

The experimental setup used to generate the results is similar to that used in Chapter 4.

We recap the parameter setting for easy reference in Table 5.1.

The indices of nonzero viral loads in x ∈ N105×1 are picked uniformly at random and

stored in an index set NZI with cardinality |NZI| = dnsx/100e, where sx (%) is the

prevalence rate. The viral load in a negative sample is zero. The positive entries of the
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initial viral-load vector, [x]j, are drawn from the Poisson(λj) distribution where λj ∼

Unif(100, 106), for j ∈ NZI. Finally, using the relationship in (5.2), the pooled CT

vector, c ∈ R45×1
+ is generated. In the distribution of the hyper-parameter λj, the lower

and upper limits are the average least and highest viral load (or equivalently, cDNA/ RNA

particles) in a positive sample.

In the initialization step of the algorithms, the starting points u1 and w1 are drawn i.i.d.

from a Laplace distribution with mean 75 and shape parameter 10 and q1 ∼ Unif(X ). As

mentioned in Section 4.5.1, the distribution function and the associated parameters used

do not a�ect the results much. For example, choosing Normal(50, 10), Laplace(50, 10),

Unif(10, 100) etc. give similar results. Finally, the ADMM-CT penalty parameter, ρ =

0.01, the regularization parameter, κ = 10−3, and the step size in the PGD algorithm is

set as 0.01 each are chosen via cross-validation.

All the results are averaged over 10, 000 Monte-Carlo runs. We compare the performance

using the average NMSE in the CT values recovered, the average FNR, and the average

FPR metrics for the prevalence rate (sparsity) up to 10%.

5.4.2 Algorithm Performance at Di�erent Noise Levels

We illustrate the NMSE performance of the BCD-CT-G, BCD-CT-I and ADMM-CT

algorithms in Figure 5.3 as the sparsity (%) is varied from 0.1% to 10% over two di�erent

values of the noise standard deviations, σε. The NMSE performance of the ADMM-

CT algorithm is the best, followed by that of BCD-CT-G and BCD-CT-I algorithms.

Although ADMM-CT shows a nonzero NMSE at low sparsity levels, there is no e�ect

on the FPR and FNR performances, as we shall see later. Further, from Figure 5.3, the

NMSE curves shift up as the noise level increases. As the number of infected sample in the
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Figure 5.3: Comparison of the average NMSE across ADMM-CT, BCD-CT-G, and BCD-
CT-I algorithms over di�erent sparsity (%) and noise levels.

population increases, we observe that the NMSE increases at faster rate and the NMSE

curves corresponding to the noiseless (i.e., σε = 0) and noisy (i.e., σε = 3.0) case come

closer to each other. Similar observation was made in Section 4.5.2 where this e�ect was

attributed to the fact that the decoding capability of the recovery algorithm depends on

the test matrix design. Therefore, the decoding process fails irrespective of noise level and

the recovery algorithm estimates get worse.

The FNR and FPR performances of the binary group testing algorithms, namely, COMP

and DD along with the BCD-CT-G, BCD-CT-I and ADMM-CT algorithms are shown

in Figure 5.4 at two noise standard deviations as the sparsity (%) is varied from 0.1%

to 10%. We can observe from the subplot A in Figure 5.4 that the FNR performance

of ADMM-CT, BCD-CT-I, and BCD-CT-G are similar. The FPR of the ADMM-CT

algorithm is the best, followed by BCD-CT-G and BCD-CT-I algorithms, as seen in the

subplot B across the noise levels. Further, the FPR performance of the BCD-CT-G is
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Figure 5.4: Comparison of the average FNR and average FPR across COMP, DD, ADMM-
CT, BCD-CT-G, and BCD-CT-I algorithms over di�erent sparsity (%) at di�erent noise
levels.

better than that of the BCD-CT-I algorithm re�ecting the similar behavior which was

observed between the GD-CT and IMHT-CT algorithms in Figure 4.2. The ADMM-CT

approach is able to match the FNR of COMP while simultaneously matching the FPR of

the DD algorithms. Although COMP and DD optimize for FNR and FPR, respectively, the

corresponding FPR and FNR performances are poor. Thus, this highlights the advantage

of quantitative measurement-based algorithms over binary pool testing algorithms like

COMP and DD. Also, pooled CT-based algorithms can estimate the individual CTs, which

could be independently valuable in practice.

5.4.3 Algorithm Performance at Di�erent PCR E�ciency Factors

In this subsection, we discuss the performance of the developed algorithms across the

PCR e�ciency factors. The NMSE performance of the BCD-CT-G, BCD-CT-I and
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Figure 5.5: Comparison of the average NMSE across ADMM-CT, BCD-CT-G, and BCD-
CT-I algorithms for di�erent sparsity (%) and e�ciency factors.

ADMM-CT algorithms are shown in Figure 5.5 as the sparsity (%) is varied from 0.1% to

10% over two di�erent values of the PCR e�ciency factor, q. From Figure 5.5, the NMSE

performance of the ADMM-CT algorithm is the best, followed by that of BCD-CT-G and

BCD-CT-I algorithms. In addition, we see that the performance at q = 0.5 is slightly

better with relatively notable di�erence for the BCD-CT-I algorithm. Thus, in line with

our previous observations from Figure 4.3, the IMHT based algorithms exhibit a wider

variation in performance across di�erent values of q compared to the GD based algorithms,

even when q is unknown and is estimated from the observed CT values.

We de�ne the mean squared error between q and its estimate, q̂, as MSEq , E[|q − q̂|2].

When the sparsity < 5%, we observed that MSEq ≈ 0.052, 0.101 and 0.26 for the σε =

0, 1.0 and 3.0, respectively. Also, while small errors in the estimate of q do not signi�cantly

a�ect the algorithm's FPR or FNR, larger errors cause the algorithm to make FP or FN

errors at lower sparsity levels (see Table 5.3).
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Figure 5.6: Comparison of the average FNR and average FPR across COMP, DD, ADMM-
CT, BCD-CT-G, and BCD-CT-I algorithms over di�erent sparsity (%) at di�erent e�-
ciency factors.

We compare the FNR and FPR performances of algorithms in Figure 5.6 across various

e�ciency factors. We include the performance of binary measurement-based algorithms:

COMP and DD. We can observe from the subplot A in Figure 5.6 that the FNR of

ADMM-CT, BCD-CT-I, and BCD-CT-G are similar. The FPR of the ADMM-CT algo-

rithm is the best, followed by BCD-CT-G and BCD-CT-I algorithms, as seen in the subplot

B across the PCR e�ciency factors. Finally, we observe the bene�t of using quantitative

measurement-based algorithms over binary measurements across di�erent PCR e�ciency

factors too.

5.4.4 Comparison with CS-based Methods: Robustness to Uncer-

tainty

In this �nal subsection, we compare the performance of the ADMM-CT algorithm with
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the existing CS-based algorithms in the literature [88,165]. These previous studies directly

apply CS-based recovery techniques (with or without an initial COMP stage) to the ob-

servation model in (5.2). Certain CS-based algorithms like Linear Absolute Shrinkage and

Selection Operator (LASSO) are known to yield the optimal solution even in the non-linear

regime, under certain conditions [198, 199]. In particular, the authors in [198] show that

when the entries of the pooling matrix are drawn i.i.d. from ∼ N (0, 1), the performance

of LASSO with non-linear measurements characterized by a non-linear mapping g(·) is

asymptotically the same as if the measurements were of the linear form ci = µAT
i x + σεi,

where µ , E[γ̄g(γ̄)], σ , E[(g(γ̄)− µγ̄)2] and γ̄ ∼ N (0, 1). Similarly, the authors in [199]

derive upper and lower bounds for the MSE under a Poisson measurement model and when

the entries of the pooling matrix satisfy certain boundedness conditions. The simulation

results in this sub-section shows that our approach is better under the non-asymptotic

regime with a deterministic binary pooling matrix. Note that, in order to use (5.2) di-

rectly with CS-based algorithms, one needs to assume a nominal value of q to compute

the left hand side of the measurement equation of the observed CT values [88]. We also

mention that one can use cross-validation to choose the value of q, instead of assuming a

nominal value.

We demonstrate the robustness of the ADMM-CT algorithm in the following two aspects.

The �rst one is the robustness to the CT measurement noise. The second aspect is the

robustness to the unknown e�ciency factor, q. In addition, the performance of the best

quantitative group testing algorithm from Chapter 4, i.e., GD-CT is also shown. We

denote the e�ciency factor used for the CT-to-viral-load conversion by qconv, which could

be di�erent from the actual q of the PCR process. We consider the minimum sparsity
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Table 5.2: Comparison of ke Across Recovery Algorithms at Various Noise Variances

Noise σε 0 (Noiseless) 0.1 0.5 1.0

NN-LASSO 3 1 1 1

NN-LS 3 1 1 1

NN-LAD 4 2 1 1

NN-OMP 4 1 1 1

SBL 8 4 2 1

COMP 2 2 2 2

DD 2 2 2 2

GD-CT 4 4 4 4

ADMM-CT 4 4 4 4

percentage (denoted by ke) at which the recovery algorithm makes at least one FP or FN

out of 10, 000 experiments as our metric for comparison. Table 5.2 summarizes the values

of ke for each of the recovery algorithms considered, at di�erent noise (σε) levels.

In CS-based algorithms, a threshold is �xed, below which the estimates are set to 0. We

�x the threshold to balance out the FP and FN errors. Further, the hyper-parameters

(regularization constants etc.) required by the CS based algorithms are chosen via cross-

validation [88, S.III]. We compare against the non-negative LASSO (NN-LASSO), NN

least squares (NN-LS), NN least absolute deviation (NN-LAD), NN orthogonal matching

pursuit (NN-OMP) and sparse Bayesian learning (SBL) algorithms proposed for RT-PCR

based pool testing for Covid-19 in the literature [88, 165]. In addition, we include the

performance of the binary group testing algorithms like COMP and DD. From Table 5.2,

we note that as the noise level increases, ke obtained by CS-based algorithms degrades.

In particular, at practical noise levels [177], ADMM-CT has a clear advantage over the

CS-based algorithms, even though SBL outperforms ADMM-CT in the noiseless case.
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On the other hand, COMP and DD show similar performance across the noise variances

under consideration, but perform worse than our algorithms. Recall from (4.6) that the

binary pooled test outcome is set to unity if a �nite pooled-CT value is observed in that

pooled test and is set to zero otherwise. Note that an additive noise with variance can not

make a �nite pooled-CT value in�nity or vice-versa. Thus, the precise pooled-CT values,

noisy or otherwise, is lost in the binary test outcomes. Therefore, the performances of

COMP and DD are una�ected by the noise levels.

Finally, the performance of the GD-CT algorithm is similar to that of the ADMM-CT

algorithm across the noise levels. Recall that GD-CT solves the sub-problem involving

the estimation of u in Algorithm 5 and uses the value of q as the input. As we shall see

below, the advantage of ADMM-CT over the GD-CT algorithm arises in more practical

case when q is unknown.

Next, we summarize the e�ect of mismatch between the q and qconv in Table 5.3. Similar

to the noise performance analysis, we use the metric ke to demonstrate the robustness of

di�erent algorithms. For this purpose, we �x the qconv = 0.95 as in [88] and vary the actual

q ∈ {0.99, 0.95, 0.9, 0.8, 0.65, 0.5} of the RT-qPCR process [166, 177]. From Table 5.3, we

note that as the mismatch between q and qconv increases, the performance of the CS-based

algorithms and the GD-CT algorithm degrades. The ADMM-CT algorithm estimates

both u and q, and hence, the parameter qconv is not used by it. The performance of the

binary group testing algorithms, namely, COMP and DD remains same across the range

of q using which the data is generated. This is due to the fact that the pooled binary

test outcomes are obtained using (4.6) which do not depend on the value of q. However,

the performance of COMP and DD in terms of ke is worse than that of our algorithms.
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Table 5.3: Comparison of ke Across Recovery Algorithms at Various Process E�ciency
Factors, q, at Noise σε = 0.1 and qconv = 0.95

q 0.99 0.95 0.9 0.8 0.65 0.5

NN-LASSO 1 1 1 1 1 1

NN-LS 1 1 1 1 1 1

NN-LAD 1 2 1 1 1 1

NN-OMP 1 1 1 1 1 1

SBL 4 4 4 3 3 3

COMP 2 2 2 2 2 2

DD 2 2 2 2 2 2

GD-CT 3 4 3 2 2 2

ADMM-CT 4 4 4 4 4 4

Although SBL is robust to mismatch in q, the ADMM-CT still has an advantage over the

existing algorithms. We also observed that the NMSE in the CT values returned by SBL

are of the order 0.5, while that for ADMM-CT are of the order 0.01−0.04 at q = 0.99 and

ke = 4. Thus, the SBL algorithm performs poorer than ADMM-CT in terms of estimating

the individual CT values. Similar observations hold for GD-CT, where its NMSE is of the

order 0.38 at q = 0.5 and ke = 4. The ADMM-CT algorithm is robust across the values

of PCR e�ciency factors observed in practice, and outputs the individual CTs with low

NMSE.

In summary, our algorithms are robust to the CT measurement noise levels observed in

practical RT-qPCR. Also, they do not require knowledge of the machine-speci�c parame-

ters, and the performance is similar across the spectrum of PCR (ampli�cation) e�ciency

factors seen in practice.
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5.5 Pool Testing Case Study: Covid-19

The discussion in this section presents empirical results from the case study. The discus-

sion aims at bridging the gap between the theoretical results, their implications etc. and

the needs of the practitioners like lab technicians, committee and government bodies which

takes decisions on the state/ province/ country's testing protocols and strategies, work-

force health-monitoring and screening committees in any public or private organizations,

to name a few. In particular, we address the following two questions:

1. Is group testing (or pool testing) useful in practice? in Section 5.5.1.

2. How do one read the theoretical results and use them in practice? in Section 5.5.2.

5.5.1 Advantage of Pool Testing: An Empirical Evaluation Using

Covid-19 Data

We start by showing the advantage of using pool testing from the publicly available his-

tory of Covid-19 test numbers. Although we focus on non-adaptive pool testing with

quantitative measurements in this work, in this experiment, we include one adaptive

pool testing and two non-adaptive settings: a binary model and our quantitative model.

We consider data from six Indian states: Karnataka, Kerala, Tamil Nadu, Maharashtra,

Delhi, and Uttar Pradesh. The data used are primarily sourced by the Indian Council of

Medical Research (ICMR), New Delhi, India,3 and aggregated by a third-party website:

https://www.covid19india.org/. As stated in Section 4.1, the symptomatic percent-

age is set equal to 20%. The number of primary contacts per symptomatic individual

are considered to be 4. These estimates can be further re�ned using population density

3ICMR: https://www.icmr.gov.in/

https://www.covid19india.org/
https://www.icmr.gov.in/
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information, data collected from contact tracing applications, etc. Further, the primary

contacts of the symptomatic individuals are assumed to be more likely (by a factor of

4) to have the disease. In our analysis, following the standard protocols and triage pro-

cesses, pool-testing is applied only on asymptomatic individuals and non-primary contacts;

symptomatic individuals and primary contacts are tested individually. Dorfman adaptive

testing with optimum pool size requires 2
√

(n′k′) tests, where n′ represents the number of

non-symptomatic and non-primary contacts tested, and k′ denotes the number of positive

cases who are non-symptomatic and non-primary contacts [7]. In addition, we compute

the counting bound, which is a lower bound on the number of tests under a binary testing

model, as CB = k′ log2(n
′

k′
) [7]. From [7], the DD algorithm with near-constant column

weight pooling matrix design requires roughly CB
0.45

tests for identifying all the sick individ-

uals.

Finally, the total number of tests required by the non-adaptive pool-testing method

using deterministic matrix designs like Kirkman and Euler with quantitative measurements

is computed empirically, as follows. A set of pooling matrix designs are compiled in

M = {Euler − (15 × 25), . . . ,Kirkman − (45 × 285), . . . ,Kirkman − (93 × 1240),Euler −

(361 × 6859), . . .}. We consider 26 Kirkman and 26 Euler-based design matrices. Thus,

the cardinality of the set is |M| = 52. The set is further extended as follows: Denote the

testing rate of a pooling matrix of size R×C as ξ = R/C where, C denotes the number of

individuals tested, and R denotes the number of tests. Smaller column-truncated matrices

are constructed by dropping the last few columns [88] to obtain matrices with rates [ξround :

0.1 : 0.9] where ξround is the value obtained by rounding up 10ξ to the next integer and

then dividing by 10. That is, if ξ = 0.33, ξround = 0.4. In this way, we obtain a total of
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474 deterministic test matrices.

For each pooling matrix in the setM, a 1000 Monte Carlo run experiment determines

the maximum prevalence rate post which our ADMM-CT recovery algorithm makes either

a FP or a FN error. This maximum prevalence rate is denoted by ke for the given pooling

matrix and is added into a look-up table. The non-symptomatic and non-primary contact

prevalence rate is computed using the parameters described above. The best rate matrix

design is the matrix with the lowest rate whose ke exceeds the given prevalence rate.

The rate thus obtained multiplied by n′ gives the number of tests needed if non-adaptive

pool-testing with our recovery algorithms and the optimum test matrix from the setM is

used.

We then add the individual tests conducted on symptomatic and on primary contacts

to obtain the total number of tests required by each of the three methods: Dorfman with

optimal pool size (Optimized Dorfman), DD with the near-constant column weight design

(Achievable, DD) and our approach (the ADMM-CT algorithm). The comparison of the

cumulative number of tests from April 2020 till July 2021 is shown in Figure 5.7 for all

the 6 Indian states, along with the prevalence rate trend over the same duration.

From Figure 5.7, the cumulative number of tests required by using non-adaptive pool

testing with quantitative measurements and the ADMM-CT algorithm for recovery (blue

curve in Figure 5.7) is lower than that obtained by using non-adaptive pool testing with

binary measurements (black curve), and this is further better than the adaptive testing

numbers (green curve). Finally, pool testing methods have signi�cant advantage compared

to individual testing (red curve) when the prevalence rates are low (also see Figure 5.9

and the associated discussion.) The total number of tests saved translates to (resource)
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Figure 5.7: The prevalence rate trend and the comparison of the cumulative number of
tests required by Optimized Dorfman, Achievable, DD and ADMM-CT algorithms for 6

Indian states along with actual cumulative tests conducted from April 2020 till July 2021.

cost and time saving. For instance, using the numbers for the state of Karnataka, the

cumulative number of tests saved over the past 1.5 years, if a pool testing method (e.g.,

the ADMM-CT approach) is used compared to the individual testing is ∼ 21.6 million

tests. Using the nominal cost per RT-qPCR test as ≈ 14 USD, we obtain a cost-saving

of ∼ 302.46 million USD. Therefore, pool testing methods have a signi�cant advantage

as compared to individual testing. Further, our ADMM-CT approach requires ∼ 1.55

million, and ∼ 0.93 million fewer tests than the optimized Dorfman and the achievable

tests required by DD approaches, respectively. Under the above-mentioned RT-qPCR

cost estimate, the cost savings obtained by using the ADMM-CT approach instead of

optimized Dorfman and the tests required by DD are ∼ 21.78 million and ∼ 13.05 million

USD, respectively. Thus, our approach is better in terms of the cost savings among the

other pool testing methods considered.
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5.5.2 A Practical Pool Test Protocol

Based on the previous discussion about the bene�ts of non-adaptive group testing with

quantitative measurements, in this sub-section, we address the following aspects:

1. We demonstrate that using the local prevalence rates to design the tests is useful in

practice, by using the actual testing numbers and positivity rates from 6 di�erent

states of India during di�erent stages of the pandemic. The advantage of the using

local prevalence rates was also discussed in [200].

2. We empirically characterize the testing rates achievable using deterministic pooling

matrices for di�erent prevalence rates. That is, we provide an insight into the ques-

tion of which deterministic pooling matrix should be chosen to guarantee a near-zero

errors at each prevalence rate.

3. We also collect empirical results on the prevalence rates at which adaptive, non-

adaptive binary measurements-based, and non-adaptive quantitative measurements-

based group testing perform the best, in terms of the testing rates achieved.

The authors in [200] give a lower bound on the number of tests required given the hetero-

geneity pro�le (i.e., prevalence rate, risk pro�le, contact maps etc.) of the local population.

In particular, they focus on the two-stage group testing algorithms like Bernoulli sampling,

Dorfman, constant tests per sample, the doubly constant algorithm etc., with random pool-

ing matrices. Our work complements this approach, since we focus on single-stage group

testing with deterministic pooling matrices.

To this end, �rst, we empirically show that using the local (e.g., state-wise) prevalence

rate to select the pooling matrix is advantageous over using the global prevalence rate
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Figure 5.8: Comparison of the cumulative number of tests required by our approach using
the local prevalence rates versus using the aggregated numbers across 6 states to estimate
a global prevalence rate, along with actual cumulative tests conducted and the variation
of aggregated positivity rate over time from April 2020 till July 2021.

using actual testing data. The total number of tests conducted across the 6 states are

aggregated to obtain the total number of individual tests conducted and the total number

of tests required if our algorithm is used. Also, using the raw aggregated data from these

6 states, a global prevalence rate is computed. Finally, the number of tests required by

our method using the global prevalence rate information is also computed.

The comparison of the cumulative number of tests required under individual testing and

when the local/global prevalence rates are used is shown, along with the global prevalence

rate from April 2020 till July 2021 in Figure 5.8. It can be observed from Figure 5.8 that

there is a clear advantage of using local prevalence rate information. Usage of the local

prevalence rate to design the pool test saves ∼ 11.44 million tests and hence, a cost-saving

of ∼ 160.21 million USD, compared to the global prevalence rate based design.

Next, we illustrate how choosing the test matrix based on the prevalence rate helps.
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Figure 5.9: Comparison of two-stage Dorfman testing rate with single-stage rates and
optimum choice of deterministic matrices: Kirkman and Euler types available across the
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Figure 5.9 shows the testing rate achieved by selecting the best member of the Euler and

Kirkman family of matrices at each prevalence rate. The �gure also shows the testing rate

achieved by the Dorfman method with the optimum pool size for each prevalence rate and

the rate achieved by the DD algorithm, computed approximately from the counting bound

as mentioned earlier.

From Figure 5.9, we can make several interesting observations. First, pool testing is

bene�cial compared to individual testing when the prevalence rate is < 25%. Second, non-

adaptive pool testing methods have an advantage over the adaptive Dorfman style testing

when the prevalence rate is < 13.5%. Third, the quantitative (or CT) measurement-based

method has an advantage over DD, a binary model-based approach, when the prevalence

rate ∼ 1.6 − 17.5%. Fourth, the adaptive Dorfman and the quantitative measurement

methods provide similar testing rates when the prevalence rate ∼ 0.25 − 1.6%. Further
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from Figure 5.9, we note that the testing rates shown in the blue and red curves, corre-

sponding to Euler and Kirkman designs, respectively, overlap at some prevalence rates.

Thus, it indicates the existence of multiple non-adaptive deterministic pooling strategies.

5.6 Chapter Summary

In this chapter, we developed two iterative algorithms: 1) ADMM-CT and 2) BCD-

CT for jointly estimating the PCR e�ciency factor and the individual-sample CTs. Our

algorithm's performance was compared across di�erent noise levels and the PCR e�ciency

factors. Numerical simulations showed that the ADMM-CT algorithm performs better

than the BCD-CT variants, namely BCD-CT-G and BCD-CT-I. Among the BCD-CT

variants, the BCD-CT-G performs better than the BCD-CT-I algorithm.

In Algorithm 3, the BCD iterations are not tied together since each block is optimized

by independently solving the sub-problems in a cyclic manner (see (5.4) and (5.5)). In

contrast, the iterates are better coupled in the ADMM-CT algorithm. In Algorithm 5, 1)

an auxiliary variable, wk, similar in behavior to the individual-sample CTs, uk, is used; 2)

the sub-problem that solves for uk uses a previous value of qk, whereas, the sub-problem

which solves for wk uses the updated qk ← qk+1; and 3) the auxiliary variables wk and

uk are tied together using a dual variable, µk, in the ADMM-CT algorithm. Due to these

reasons, the ADMM-CT outperforms the BCD-CT algorithm.

The ADMM-CT algorithm was shown to be robust to uncertainty in the PCR e�ciency

factor, i.e., usage of an incorrect conversion factor in the model does not a�ect the per-

formance of the ADMM-CT algorithm. In contrast, the performance of the CS-based
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methods degrades as the uncertainty in q increases, showing the necessity and e�ective-

ness of our method. Further, the robustness of our algorithm, as the measurement-noise

level is increased, is illustrated. The CS-based algorithms' performance degrades rapidly

as the noise level increases. In contrast, our algorithms are not signi�cantly a�ected by

the noise level.

We presented empirical results related to the Covid-19 pandemic testing numbers to show

when group testing is useful. In summary, the quantitative measurement-based approaches

are more cost-e�ective than the binary outcome-based methods. We then demonstrated

that using the local prevalence rates to design the tests is helpful in practice by using the

actual testing numbers and positivity rates from 6 di�erent states of India during di�erent

stages of the Covid-19 pandemic. We empirically characterized the testing rates achievable

using deterministic pooling matrices for di�erent prevalence rates. That is, we provided

insight into which deterministic pooling matrix should be chosen to guarantee a near-zero

error at each prevalence rate. Finally, we presented empirical results on the prevalence

rates at which adaptive group testing, non-adaptive binary measurements-based group

testing, and non-adaptive quantitative measurements-based group testing method gives

the best testing rate.



6 Conclusions and Future Work

Chapter Highlights

In this chapter, we summarize the thesis, including the key contributions and observations made

along the way. We have addressed two aspects of group testing: 1) theoretical analysis of group

testing algorithms and 2) development of novel iterative recovery algorithms with an application

to Covid-19 detection. We �rst set the stage for the theoretical analysis by viewing the non-

adaptive group testing problem as a function learning problem. In particular, this connection

enabled us to apply PAC analysis to derive novel su�ciency bounds on the number of tests for

well-known Boolean non-adaptive group testing algorithms. The derived bounds are a function

of the number of items and defective items along with two additional parameters, namely, 1)

the approximation error tolerance probability and 2) the con�dence level. We showed that the

derived bounds are tight and provided deeper insights into their behavior through order-wise

analysis. Thus, this thesis provides a common framework for analyzing non-adaptive group

testing algorithms accommodating both exact and approximate recovery and simultaneously

accounts for the randomness in the test matrix. Next, we developed novel iterative recovery

algorithms for Covid-19 detection using the pooled RT-qPCR model. Our algorithms overcome

the performance degradation of the existing algorithms when the PCR model e�ciency parameter

is unknown. Further, we demonstrated the resource and cost savings achievable using quantitative

measurements in a non-adaptive pool test setting.

139
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This thesis has, on the whole, focused on studying theoretical aspects of group testing

and applying group testing to pooled RT-qPCR-aided Covid-19 disease detection. Through

our theoretical analysis, our primary contribution is developing a PAC-based framework

for deriving su�ciency bounds on the number of tests as a function of both the con�dence

level and the approximation error tolerance. On the application of group testing, we moti-

vated the necessity of using quantitative measurements in non-adaptive group testing for

decoding the Covid-19 infected samples. We then developed two iterative algorithms for

decoding the set of infected samples using the pooled RT-qPCR outcomes. The challenges

that arise from the RT-qPCR model include non-linearity/multiplicative noise (which we

addressed by reformulating the problem in the log domain, making the noise additive

but the model non-linear), and the presence of in�nities in the feasible set. Further, we

extended the decoding algorithms to function even when the PCR e�ciency factor is un-

known. The e�ectiveness of the proposed algorithms is demonstrated in comparison with

the Boolean group testing and CS-based algorithms.

Below, we present a chapter-wise summary of our key �ndings.

6.1 Summary of the Thesis

In Chapter 2, we set the stage for theoretical analysis of non-adaptive group testing

algorithms using a PAC learning-based framework. In particular, the PAC learning view

of the non-adaptive group testing problem was introduced in Section 2.2, where Lemma 2.1

establishes the equivalence of notions of exact recovery under the group testing and the

PAC learning framework.

Next, we applied PAC analysis for deriving su�ciency bounds on the number of tests
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for well-known Boolean group testing algorithms, namely, COMP (under Bernoulli and

near-constant row-weight test designs, denoted by COMP-B and COMP-R, respectively)

and DD (under Bernoulli design), in Chapter 3. The derived PAC bounds are a function

of the con�dence parameter, δ, and the approximation error probability tolerance, ε, in

addition to the number of items, n, and the number of defective items, k. In Section 3.2

and Section 3.3, we derived the PAC bounds for the COMP algorithm (see Theorem 3.1

and Theorem 3.2) and for the DD algorithm (see Theorem 3.3), respectively.

In the case of COMP-B and DD algorithms, our bound matches with the bound from the

literature when we set ε = 0. On the other hand, our COMP-R bound is tighter compared

to the one in the literature at ε = 0. The order-wise analysis shows that the bound is

∝ log(Cd/δ) and ∝ log(1/ε) + 1/ε for large n and k, where Cd = 1 for COMP-B and DD

and Cd = 2 for the COMP-R algorithm. We empirically showed that our bounds are tight,

and allowing a small number of error allows one to obtain a signi�cantly higher con�dence

for a given number of tests. The visualization methods, namely, testing rate surface and

su�cient tests contour provide insights into the behavior of the bounds across various

values of δ and ε. Finally, we observed that the log-testing rate, log ρR, in the sub-linear

regime, i.e., k = Θ(nβ) for β ∈ (0, 1), is approximately linearly decreasing with log n with

slope β − 1 for large n.

We then switched gears to discuss an application of group testing in Chapter 4 and Chap-

ter 5 for Covid-19 detection using pooled RT-qPCR. A brief introduction to the RT-qPCR

process can be found in Section 4.1.1 and the RT-qPCR system model in Section 4.2. We

discussed COMP and DD in the context of Covid-19 detection in Section 4.3 and pre-

sented our GD-CT algorithm in Section 4.4.1 (see Algorithm 1) and IMHT-CT algorithm
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in Section 4.4.2 (see Algorithm 2). Numerical simulations in Section 4.5 showed that the

GD-CT algorithm, in balance, performs the best under various settings.

In Chapter 5, we developed the BCD-CT algorithm in Section 5.3.1 and the ADMM-

CT algorithm in Section 5.3.2. Numerical simulations in Section 5.4 showed that the

ADMM-CT algorithm, in balance, performs the best under various settings. The numerical

experiments were performed with a deterministic pooling matrix design (for motivation,

see Section 4.1.2). However, the algorithms are applicable to any pooling matrix design.

In Section 5.5, we empirically showed that the non-adaptive protocol with quantitative

measurements is bene�cial in terms of cost savings when the prevalence rate is between

1.6−17.5% and that local prevalence rate-aided test design choice o�ers even higher bene-

�ts. Also, we empirically characterized the testing rates achievable for di�erent prevalence

rates and group testing protocols.

In summary, the key take-home messages from this thesis are as follows:

1. The PAC formulation of the group testing problem serves as a universal framework

to analyze various group testing algorithms. Unlike the classical PAC model, our

formulation accommodates exact and approximate recovery settings. Further, the

data distribution can be chosen based on the hypothesis space containing the tar-

get function. Our PAC analysis also enables characterizing a lower bound on the

cumulative distribution of the approximation errors.

2. The PAC formulation of the group testing problem can be used to derive novel

su�ciency bounds on the number of tests for non-adaptive group testing algorithms.

The new su�ciency bounds account for both the randomness of the test matrix and

the approximation error probability. The derived bounds are tight and agree with
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the existing bounds in the exact recovery scenario.

3. Our work on Covid-19 detection using pooled RT-qPCR led to the development of

novel quantitative measurements-based group testing algorithms. We empirically

demonstrated the advantage of non-adaptive group testing algorithms using quan-

titative measurements, compared to the CS-based and binary group-testing algo-

rithms, under di�erent noise levels and when the PCR e�ciency factor is unknown.

4. Although group testing has gained a renewed interest due to the recent Covid-19

pandemic, the theoretical progress often does not reach the intended audience, i.e.,

the practitioners. The visualization aids like testing rate surface and su�cient tests

contours along with our case study on when group testing is bene�cial, advantages of

di�erent protocols, and, in particular, considerations on how to design an optimum

test protocol serves as a starting point in bridging this gap.

6.2 Future Work

As with most research, there is always room for further studies and improvement. We

catalog a few promising directions.

1. Extension of the PAC framework presented in Chapter 2 to noisy models can pave the

way for deriving su�ciency bounds for noisy group testing algorithms that account

for both approximation error tolerance and con�dence requirements.

2. A useful extension to Chapter 3 could involve analysis of group testing algorithms

under di�erent test matrices like (near-) constant column-weight and doubly-regular

design, other group testing algorithms like the SSS and LiPo decoder.
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3. The PAC formulation presented in this work di�ers from the classical PAC analysis

since the data distribution can be chosen based on the hypothesis space containing

the target function. This aspect could lead to novel results on PAC-learnability.

4. Continuing on the lines of the case study conducted in Chapter 5 along with the

compilation of the testing rates for di�erent testing protocols, it would be interesting

to design di�erent decision logic (e.g., list decoding-based, clustering-based, etc.) and

study its e�ect on the testing rate in greater depth.

5. Finally, studying the sensitivity of the PAC bounds to variation in the design param-

eters (e.g., Bernoulli parameter, Row-weight parameter etc.) using domain adapta-

tion techniques [201] could be an exciting direction to further harness the power of

the PAC formulation of the group testing problem.



A Appendix to Chapter 2

For the de�nitions of the notations used in the below proof, the readers can refer to Chap-

ter 2.

A.1 Proof of Lemma 2.1

Proof. We �rst show that if K̂ = K, then x̂(a) = x(a) with probability one. Note that

there is a one-to-one mapping between any k-literal OR-ing function x̂ and a corresponding

k-sized set K̂ containing the elements participating in the OR-ing function represented by

x̂. Hence, as long as the distribution D is such that PD(aj = 1) ∈ (0, 1), j ∈ [n] and ajs

are independent,

K̂ = K =⇒ Pa∼D (x̂(a) = x(a)) = 1. (A.1)

We show the converse by contrapositive. To this end, it su�ces to show that if K̂ 6= K,

then ∃ a that occurs with nonzero probability when a ∼ D, such that x̂(a) 6= x(a). In

other words, we need to show that

K̂ 6= K =⇒ e(x̂(·), x(·)) = Pa∼D (x̂(a) 6=x(a)) > 0. (A.2)

Starting with K̂ 6= K, we argue that the above claim holds under the following covering

cases:
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1. When K̂ \ K 6= ∅, consider any a ∼ D such that

aj =

 1, j ∈ K̂ \ K

0, j /∈ K̂ \ K.

Then, for such an a, which occurs with nonzero probability when a ∼ D, we have

x̂(a) = 1 whereas x(a) = 0.

2. When K \ K̂ 6= ∅, consider any a ∼ D such that

aj =

 1, j ∈ K \ K̂

0, j /∈ K \ K̂.

Then, for such an a, which occurs with nonzero probability when a ∼ D, we have

x̂(a) = 0 whereas x(a) = 1.

Noting that the distribution D obeys PD(aj = 1) ∈ (0, 1), j ∈ [n] and that the ajs are

independent, we get Pa∼D(x̂(a) 6= x(a)) > 0 as required in (A.2) in both the cases, thereby

proving the converse part. �



B Appendix to Chapter 3

For the de�nitions of the notations used in the below proofs, the readers can refer to Chap-

ter 2 and Chapter 3.

B.1 Proof of Lemma 3.1

Proof. Recall that the probability with which an item can participate in a test is p. A non-

defective item will remain hidden in a group test under two mutually exclusive conditions:

1) the test outcome is positive or 2) the test outcome is negative but the item does not

participate in the test. It then follows that the probability that g items will be hidden,

denoted by Phg , can be written as

Phg = P[positive test] + P[negative test and g items excluded]

= (1− (1− p)k) + (1− p)g+k.

Since the tests are independent, the probability that g items will remain hidden in m tests

is given by

Phg(m) = (1− (1− p)k + (1− p)g+k)m, (B.1)

as required. �
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B.2 Proof of Theorem 3.1

Proof. If we allow at most gε non-defective items to remain hidden, an error occurs if some

subset of gε+1 non-defective items remains hidden. Using the union bound

P(e(x̂, x) > ε) = P(G > gε) ≤
(
n− k
gε + 1

)
Phgε+1(m), (B.2)

where the �rst equality holds since COMP algorithm only makes false positive errors.

Using Lemma 3.1 in (B.2), we get

P(e(x̂, x) > ε) ≤
(
n− k
gε + 1

)(
1− (1− p)k + (1− p)gε+1+k

)m
. (B.3)

Using P(e(x̂, x) > ε) = P(G > gε) ≤ δ in (B.3) and rearranging the terms, we get the

desired result. �

B.3 Proof of Lemma 3.2

Proof. (a) Let T denote the number of draws needed to collect w − g distinct coupons,

and let Ti denote the number of draws needed to collect the ith coupon after i−1 coupons

have been collected. Then, T1 = 1 and T =
∑w−g

i=1 Ti. Now, the probability of collecting

a new coupon in a single draw after i − 1 coupons have been collected is pi = w−(i−1)
w

,

so that Tis are independent Geometrically distributed random variables with expectation

1/pi. Therefore, the expected stopping time is

E[T ] =

w−g∑
i=1

E[Ti]

=

w−g∑
i=1

1

pi
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=
w

w
+

w

w − 1
+ · · ·+ w

w − (w − g − 1)

= w

[(
1

w
+

1

w − 1
+ · · ·+ 1

g + 1
+

1

g
+ · · ·+ 1

1

)
−
(

1

g
+ · · ·+ 1

1

)]
= w [Hw −Hg] ,

whereHw denotes wth Harmonic number as de�ned earlier. Using a well known asymptotic

approximation for Hw ≈ logw+ γ, where γ ≈ 0.5772 is the Euler�Mascheroni constant as

mentioned in Section 3.2.2,1 we get E[T ] ≈ w [logw + γ −Hg], the required result.

(b) Let Zr
i denote the event that the ith coupon was not picked in the �rst r trials (draws).

Then,

P(Zr
i ) =

(
1− 1

w

)r
≤ e−r/w.

Let Zr
i1,i2

denote the event that the i1 and i2th coupons, i1 6= i2, were not picked in the

�rst r trials. Then,

P(Zr
i1,i2

) =

(
1− 1

w

)r
·
(

1− 1

w − 1

)r
≤ e−r/w · e−r/(w−1).

Continuing in this manner, the probability that i1, i2, . . . igth coupons were not picked in

the �rst r trials is given by

P(Zr
{il}gl=1

) =

g−1∏
i=0

(
1− 1

w − i

)r
≤

g−1∏
i=0

e−r/(w−i)

1For e.g., for w = 500, the error in the approximation is about 0.015%.
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= e−r
∑g−1
i=0 1/(w−i)

= e−r[Hw−Hw−g ].

When we want to collect only w − g coupons, the event of interest occurs when g + 1

coupons are missed in �rst r = χw [logw + γ −Hg] trials. Note that,

P(Zr
{il}g+1

l=1

) ≤ e−χw[logw+γ−Hg ][Hw−Hw−(g+1)]

≤ e−χ[logw+γ−Hg ](g+1)

= w−(g+1)χe(g+1)χ[Hg−γ], (B.4)

where we use the fact that Hw−Hw−(g+1) =
∑g

i=0 1/(w−i)≥ (g+1)/w in the penultimate

step.

Since any g + 1 coupons out of the w coupons can be missed, taking the union bound

over
(
w
g+1

)
sets, and using the inequalities

(
w
q

)
≤ wq/q!, q ≤

√
w and q! ≥ qq/eq−1, q ≥ 1

with q = g + 1 to simplify the upper bound, we obtain

P(T > χE[T ]) = P

( w
g+1)⋃
i=1

Zr
{il}g+1

l=1


≤
(

w

g + 1

)
P
(
Zr
{il}g+1

l=1

)
≤ w(g+1)

(g + 1)!
P(Zr

{il}gl=1
)

≤ w(g+1)(−χ+1) e
(g+1)χ[Hg−γ]+g

(g + 1)(g+1)
, (B.5)

as required. �
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B.4 Proof of Theorem 3.2

Proof. In order to obtain the tail bound on m for s-length test vector designs, we start by

modifying (3.11) as follows. Right-hand side is modi�ed to χ(n−k) [log(n− k) + γ −Hgε ].

This is because all the distinct non-defectives excluding gε have been collected if χ(n −

k) [log(n− k) + γ −Hgε ] total non-defective items have been collected. From Lemma 3.2(b),

the probability that the stopping time is more than χ times the expected stopping time

is at most (n− k)(gε+1)(−χ+1) e(gε+1)χ[Hgε−γ]+gε

(gε+1)(gε+1) .

The left-hand side of (3.11) is multiplied with (1− η), where η is a design parameter to

be speci�ed by the Cherno� bound. Then, the probability that the actual number of items

in the negative tests is smaller than (1 − η) times the expected number, ms((n − k)/n)s

is at most [6]

exp

(
−η2m

(
n− k
n

)s)
. (B.6)

Taking the union bound over the above two low probability events, we have that

(1− η)ms

(
n− k
n

)s
≥ χ(n− k) [log(n− k) + γ −Hgε ] (B.7)

does not hold with probability

exp

(
−η2m

(
n−k
n

)s)
+(n−k)(gε+1)(−χ+1) e

(gε+1)χ[Hgε−γ]+gε

(gε+1)(gε+1)
. (B.8)

From (B.7), we have

m ≥ χ(n− k)

(1− η)s
(
n−k
n

)s [log(n− k) + γ −Hgε ] . (B.9)
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Substituting (B.9) in (B.8), Pe is upper bounded by

Pe ≤ e−η
2m(n−kn )

s

+
e(gε+1)(−χ+1) log(n−k)+(gε+1)χ[Hgε−γ]+gε

e(gε+1) log(gε+1)

≤ exp

(
−η2χ(n−k)

(1−η)s
[log(n−k)+γ−Hgε ]

)
+ e−χ(gε+1)[log(n−k)+γ−Hgε ]+(gε+1) log( n−kgε+1)+gε

(B.10)

Since Pe = P (G > gε) ≤ δ ∈ (0, 1) and each term in the RHS of (B.10) is greater than 0,

we choose a design parameter c ∈ (0, 1) such that

(a) exp
(
−η2χ(n−k)

(1−η)s
[log(n− k) + γ −Hgε ]

)
≤ (1− c)δ, and

(b) e−χ(gε+1)[log(n−k)+γ−Hgε ]+(gε+1) log( n−kgε+1)+gε ≤ cδ.

Simplifying (b), we get

χ ≥

[
log( 1

cδ )
gε+1

+ gε
gε+1

+ log
(
n−k
gε+1

)]
log(n− k) + γ −Hgε

. (B.11)

Substituting (B.11) in (a), we get

η2

1− η

(
n− k
s

)[
log
(

1
cδ

)
gε + 1

+
gε

gε + 1
+ log

(
n− k
gε + 1

)]
≥ log

(
1

(1− c)δ

)
η2

1−η
≥ C ,

log
(

1
(1−c)δ

)
(
n−k
s

) [ log( 1
cδ )

gε+1
+ gε
gε+1

+log
(
n−k
gε+1

)] . (B.12)

Noting that C > 0, the bound on η is obtained by solving the inequality η2 +Cη−C ≥ 0

subject to η ∈ (0, 1) to get

η ≥ −C +
√
C2 + 4C

2
. (B.13)

Finally, (B.9), with (B.11) and (B.13), gives the required bound for the su�cient number

of tests. �
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B.5 Proof of Corollary 3.1

Proof. We follow on similar lines as [6] and simplify (3.13) at s = s∗, to get

m ≥ χ

1−η
n−k(
n−k
n

)s∗ log

(
n

n−k

)
[log(n− k)+γ−Hgε ]

≥ χ

1−η

(
n

n−k

)s∗(
k− k2

2(n−k)

)
[log(n−k)+γ−Hgε ] (B.14)

≥ χk

1−η

(
n

n−k

)s∗
[log(n−k)+γ−Hgε ] . (B.15)

where (B.14) is obtained by using log(1 + x) ≥ x − x2/2 with x = k/(n−k) and (B.15)

holds because increasing the RHS of (B.14) can only make the error probability in (B.8)

smaller. �

B.6 Proof of Lemma 3.3

Proof. Part (a) follows because the marginals are binomial, so it only remains to show

parts (b) and (c).

(b) A non-defective item will be in the PDS if it does not participate in any of the negative

tests. If there are B− negative tests, the probability that any given item among the n− k

non-defective items will be in the PDS is (1 − p)B− . Since the tests are independent,

denoting the number of hidden non-defectives by the random variable G, it is easy to see

that

G|B− ∼ Bin(n− k, (1− p)B−). (B.16)
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Using E[G|B− = r] = (n− k)(1− p)r , 0 ≤ r ≤ m, we get

ḡ =
n−k∑
g=0

gP(G = g)

=
n−k∑
g=0

g
m∑
r=0

P(B− = r)P(G = g|B− = r)

=
m∑
r=0

P(B− = r)
n−k∑
g=0

gP(G = g|B− = r)

=
m∑
r=0

P(B− = r)E[G|B− = r]

=(n− k)
m∑
r=0

(
m

r

)
(q−(1− p))r(1− q−)m−r

=(n− k)(1− p(1− p)k)m,

where the last step follows by using part (a) of this lemma and the binomial expansion for

(a+ b)m along with q− = (1− p)k.

(c) P(∩di=1{Li = 0}|G = g) denotes the probability that the set output by the DD

algorithm misses d of the defective items, conditioned on g hidden non-defective items

being present in the PDS. In a single test, a defective item will not be missed, i.e., it will

be identi�ed as a de�nite defective, if it is the sole item among the PDS participating

in that test; this occurs with probability p(1 − p)k−1(1 − p)g. Since the d items being

classi�ed as de�nite defectives are mutually exclusive events, the probability that none

of the d defective items are correctly classi�ed as a de�nite defective in a single test is

1− dp(1− p)k−1(1− p)g. Finally, this event should happen across all the m independently

drawn tests. Thus, we have that

P(∩di=1{Li = 0}|G = g) = (1− dp(1− p)k−1+g)m,
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which completes the proof. �

B.7 Proof of Theorem 3.3

Proof. The error event will occur if more than dε defective items remain unidenti�ed, i.e.,

∩dε+1
i=1 {Li = 0} occurs. Using Lemma 3.3(c) and the union bound, we get

P(e(x̂, x) > ε|G = g)≤
(

k

dε + 1

)
(1− (dε+1)p(1−p)k−1+g)m, (B.17)

and hence

P(e(x̂, x)>ε) ≤
n−k∑
g=0

(
k

dε+1

)
(1−(dε+1)p(1−p)k−1+g)mP(G = g). (B.18)

Now, in order to characterize P(G = g), note that since the tests are drawn independently,

B− ∼ Bin(m, q−), where q− = (1 − p)k. Using this along with the fact that G|B− ∼

Bin(n− k, (1− p)B−) (see (B.16)), we get

P(G = g) =
m∑
b=0

P(G = g|B− = b)P(B− = b)

=
m∑
b=0

[(
n− k
g

)
(1− p)bg(1− (1− p)b)n−k−g ×

(
m

b

)
(1− p)kb(1− (1− p)k)m−b

]
=

(
n− k
g

) m∑
b=1

[(
m

b

)
(1− p)b(g+k) × (1− (1− p)b)n−k−g(1− (1− p)k)m−b

]
.

(B.19)

Note that, in (B.19), we sum the terms from b = 1 since 1− (1− p)b = 0 when b = 0. It is

easy to see that m
(
n−k
g

)(
m
m/2

)
(1− p)(g+k) is a loose upper bound on P(G = g). Clearly, for

any given m and large enough g, P(G = g) becomes negligible. Using this to replace g by
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ḡ + g̃ for some non-negative g̃ (with ḡ as given by of Lemma 3.3(b)), we get

P(e(x̂, x) > ε) ≤
(

k

dε+1

) n−k∑
g=0

(1−(dε+1)p(1−p)k−1+g)mP(G = g) (B.20)

=

(
k

dε+1

){ ḡ+g̃∑
g=0

(1−(dε+1)p(1−p)k−1+g)mP(G=g)

+
n−k∑

g=ḡ+g̃+1

(1−(dε+1)p(1−p)k−1+g)mP(G=g)

}
(B.21)

≤
(

k

dε+1

)
(1−(dε+1)p(1−p)k−1+̄g+g̃)m

ḡ+g̃∑
g=0

P(G=g) (B.22)

≤
(

k

dε+1

)
(1− (dε + 1)p(1− p)k−1+ḡ+g̃)m, (B.23)

where g̃ ≥ 0 is a tuning parameter chosen such that the inequality in (B.22) holds. �



C Appendix to Chapter 4 and

Chapter 5

For the de�nitions of the notations used in this appendix, the readers can refer to Chap-

ter 4.

C.1 Kirkman Matrix Designs

Consider m = 15 schoolgirls who walk out three abreast for seven days in succession. Is

it possible to arrange them daily, so that no two girls walk abreast twice? This problem is

called Kirkman's schoolgirl problem. Reverend T. P. Kirkman posed this question in 1850

and wondered about the existence of the solution [192, Example 2.76]. The answer to this

problem is known as the Kirkman Triple System of order m, KTS(m), or more generally

as a Steiner triple system of order m, or STS(m). An STS(m) consists of
(
m
2

)
/3 m-length

Boolean column vectors such that each member vector has exactly three 1s and the dot

product of any two vectors is ≤ 1. The KTS(m) satis�es these conditions and in addition,

possess resolvability property i.e., the member vectors can be arranged such that the sum

of vectors from i to i+m/3−1 equals 1 ∈ Rm for every i ≡ 1 modulo m/3. This property

of KTS ensures that any l such group of vectors can be chosen from KTS to form an m×n

Kirkman matrix, n > m with n = lm/3, 3 < l ≤ (m− 1)/2, while keeping the number of

1s in each row �xed.

157
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In addition, KTS and STS are solutions for other problems like social golfer problem [192].

For smaller m, the construction of Kirkman matrices can be done via greedy methods. For

more information about Kirkman-based designs, see [88, 192]. A Kirkman matrix can be

used for exact recovery of up to 3 positive samples [88]. From our simulations, we observe

that the usage of quantitative measurements enable us to do better.

C.2 Euler Matrix Designs

The Euler matrix designs considered in this paper are based on generalized Euler squares

(GES) [193]. In particular, we consider the following construction: let p be a prime; let

n ≥ 1 and k ≤ pn denote the number of tests that an item participates in. If R is the

number of items allowed in each test and d is a theoretical bound on the identi�able

number of defective items, i.e., the d-disjunctness property is satis�ed, then it is possible

to construct a binary matrix of dimension pnk× pn(r+1), with R = pnr and d = bk−1
r
c+ 1,

for r ∈ {1, 2} and coherence at most r/k [193].

C.3 NP-Hardness of (4.7)

In this sub-subsection, we show the NP-hardness of (4.7). We note that solving the

optimization problem with `0 norm as given in (4.7) entails enumeration of all the candidate

solutions and evaluating the cost function to �nd the solution.

We present a formal proof of NP-hardness below. First, we transform the cost function

in (4.7) as

û = arg min
u

1

2
‖ε‖2

2 + ψ
∥∥(1 + q)−u

∥∥
0
. (C.1)
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The above uses the fact that τ > 0 and ψ , κ̄τ . Using (4.5), solving (C.1) is equivalent

to solving

min
u

∥∥(1 + q)−u
∥∥

0
s.t.

∥∥∥∥c +
log (A(1 + q)−u)

log(1 + q)

∥∥∥∥
2

≤ ν. (C.2)

We de�ne ν ′ , ν log(1 + q), x̄ , (1 + q)−u and ȳ , (1 + q)−c and rewrite (C.2) to get

min
x̄
‖x̄‖0 s.t. ‖− log(ȳ) + log(Ax̄)‖2 ≤ ν ′. (C.3)

It su�ces to show the NP-hardness of (C.3) for, say, ν ′ = 0 and the Kirkman pooling

matrix. Therefore, we get

min
x̄
‖x̄‖0 s.t. ȳ = Ax̄. (C.4)

We are now ready to use the proof steps similar to [178, Theorem 2.17 in Section 2.3]

in the noiseless case. The overall idea is to transform a known NP-hard problem (e.g.,

exact cover by 3-set problem) to the problem in (C.4) in polynomial time. To this end, we

start by taking ȳ = [1, 1, . . . , 1]T . Then, using the constraint in (C.4), we get ‖Ax̄‖0 = m.

From Appendix C.1, we use n = lm/3, 3 < l ≤ (m − 1)/2 to note that n ≤ m(m −

1)/6 <
(
m
3

)
, for m ≥ 3. Therefore, the pooling matrix construction can be done in

polynomial time. Further, Kirkman matrices emerge from KTS which are the solutions

to the Kirkman's schoolgirls problem. Hence, the column sums of Kirkman matrices are

equal to 3, implying that ‖Ax̄‖0 ≤ 3 ‖x̄‖0.

In conclusion, we get ‖x̄‖0 ≥ m/3. We can run the `0 normalization problem for the

two cases: ‖x̄‖0 = m/3, and ‖x̄‖0 > m/3, to conclude that solving the `0 minimization

problem enables one to solve the exact cover by 3-sets problem [178]. Therefore, the

problem in (C.4) and hence, the original problem in (4.7) is NP-hard in general.
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C.4 Convergence of Gradient Descent [185]

Given a function of x ∈ Rn denoted by f(x) ∈ R, recall that the kth gradient descent

step is given by xk+1 = xk − η∇f(xk), where η denotes the step size. De�ne a gradient

map g(x) , x− η∇f(x). A point x∗ is a critical point of a function f if it is a �xed point

of the gradient map g(x∗) = x∗, or equivalently ∇f(x∗) = 0. A critical point is a local

minimum if there is a neighborhood U around x∗ such that f(x∗) ≤ f(x) for all x ∈ U ,

and a local maximum if f(x∗) ≥ f(x). Further, a critical point is a saddle point if for all

neighborhoods U around x∗, there are x,y ∈ U such that f(x) ≤ f(x∗) ≤ f(y). A critical

point can be either a local minimum, a local maximum, or a saddle point.

De�ne a global stable setW s(x∗) of a critical point x∗ as a set of initial conditions (points)

of gradient descent that converge to x∗, i.e., W s(x∗) = {x : limk g
k(x) = x∗}, where gk(x)

denotes a k-fold composition of the gradient map g(x). Similarly, given a neighborhood

U around x∗, a local stable set is de�ned as W s
loc(x

∗) , {x : limk g
k(x) = x∗,x ∈ U}.

We start by noting that the gradient descent step is designed to move in the negative

direction of the gradient. This eliminates the possibility of reaching a local maximum

unless our initial condition, x0, is a local maximum. However, for an f with a countable

number of local maxima, there is a zero probability of choosing such an initial condition,

when it is uniformly distributed over the domain of f .

The argument that the gradient descent never converges to a saddle point, and, hence,

only to a local minimum, is as follows. The local stable set W s
loc(x

∗) can be approximated

by the span of the Eigenvectors corresponding to positive Eigenvalues of the Hessian H of

f . Whenever there is a negative Eigenvalue, since x0 is uniformly randomly distributed

in a neighborhood U around x∗, by Taylor's theorem, we conclude that the probability
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of initializing in the span of the Eigenvectors corresponding to the positive Eigenvalues

is zero. That is, W s
loc(x

∗) is of measure zero. Further, if there is a convergence to a

critical point, for some su�ciently large k, any initial condition enters a local stable set.

In other words, the global stable set is given by ∪∞k=0 g
−k(W s

loc(x
∗)). Since W s

loc(x
∗) is of

measure zero, the global stable set W s(x∗) is also of measure zero. In conclusion, gradient

descent never converges to a saddle point and instead to a local minimum, almost surely,

if 0 < η < 1/L, where ∇f is L-Lipschitz.

C.5 �ojasiewicz Gradient Inequality

Given a real analytical function, f , the �ojasiewicz gradient inequality gives an upper

bound for the di�erence between f(x) and f(x∗), where x is any point in the open neigh-

borhood of a critical point, x∗, of f . More formally, a critical point x∗ of function, f

satis�es the �ojasiewicz gradient inequality if there exists a neighborhood V , 0 ≤ a < 1,

and m, ε > 0 such that ‖∇f(x)‖ ≥ m|f(x) − f(x∗)|a ∀ x in {x ∈ V : f(x∗) < f(x) <

f(x∗)+ ε} [185]. This gradient inequality is useful in proving the global linear convergence

of gradient descent-based algorithms [185,202].
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