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Abstract

Recent studies have shown that brain signals often show oscillatory bursts of short durations, whichhave been linked to various aspects of computation and behavior. Traditional methods often use directspectral estimators to estimate the power of brain signals in spectral and temporal domains, from whichbursts are identified. However, direct spectral estimators are known to be noisy, such that even stable os-cillationsmay appear bursty. We have previously shown that theMatching Pursuit (MP) algorithm, whichuses a large overcomplete dictionary of basis functions (called “atoms”) to decompose the signal directlyin the time domain, partly addresses this concern and robustly finds long bursts in synthetic as well asreal data. However, MP is a greedy algorithm that can give non-optimal solutions and requires a large-sized dictionary. To address these concerns, we extended two other algorithms – orthogonal MP (OMP)and OMP using Multiscale Adaptive Gabor Expansion (OMP-MAGE), to perform burst duration estima-tion. We also develop a novel algorithm, called OMP using Gabor Expansion with Atom Reassignment(OMP-GEAR). These algorithms overcome the limitations of MP and can work with a significantly smallerdictionary size. We find that, in synthetic data, OMP, OMP-MAGE and OMP-GEAR converge faster thanMP. Also, OMP-MAGE and OMP-GEAR outperform both MP and OMP when the dictionary size is small.Finally, OMP-GEAR significantly outperforms OMP-MAGE when the bursts are overlapping. Importantly,the burst durations obtained usingMP andOMPwith a very large-sized dictionary are comparable to thatobtained using OMP-MAGEwith amuch smaller-sized dictionary in real data obtained from twomonkeyspassively viewing static gratings which induced gamma bursts in the primary visual cortex. OMP-GEARyields slightly smaller burst durations, but all the estimated burst durations are still significantly largerthan the duration estimated using traditional methods. These results suggest that gamma bursts arelonger than previously reported. Raw data from two monkeys, as well as codes for both traditional andnew methods, are publicly available as part of this toolbox.
Keywords: Burst detection, Gamma, Local field potential, Matching Pursuit, Compressed sensing, Over-complete representations

1 Introduction
Oscillations in different frequency bands such as beta (13-26 Hz) and gamma (30-80 Hz) in brain signals arelinked to various brain functions (Buzsáki, 2006). For example, both actual and imagery movements areassociated with beta desynchronization (Mcfarland et al., 2000). Different regions of the brain, such as thefrontal cortex, multiple parts of the motor system, and basal ganglia exhibit changes in beta power whenvarious motor functions are performed (Kühn et al., 2004; Swann et al., 2009, 2011, 2012; Wessel, 2020;Wessel et al., 2016). Likewise, gamma rhythms can often be induced in visual areas (such as the primaryvisual cortex (V1)) by presenting specific visual stimuli such as gratings, and both the power and centerfrequency of the gamma bursts depend on the properties of the visual stimuli (Jia et al., 2013; Murty et al.,2018; Ray &Maunsell, 2015) as well as cognitive factors such as attention (Bosman et al., 2012; Chalk et al.,2010; Das & Ray, 2018; Ferro et al., 2021; Vinck et al., 2013).
The gamma rhythm is hypothesized to provide a mechanism for communication across brain areas (Fries,2015) or provide a temporal reference for the spiking activity that codes information relative to the rhythm (Frieset al., 2007), for which the rhythm should be sustained for behaviorally relevant timescales. However, sev-eral studies have shown that beta and gamma oscillations occur as bursts of small durations of the orderof 100-200 ms (S. Burns et al., 2011; Feingold & et al., 2015; Lundqvist, 2016; Rols et al., 2001; Xing et al.,
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2012). Some studies have suggested that gamma bursts spontaneously arise with matched timing and fre-quency to facilitate information flow on a cycle-by-cycle basis (Palmigiano et al., 2017). In some cases, evensustained rhythms may appear bursty in noisy data (van Ede et al., 2018).
Traditional methods for detecting bursts include spectral methods which use the time-frequency powerspectrum of the signal computed using methods such as the Continuous Gabor Transform (CGT) (S. P.Burns et al., 2010; Xing et al., 2012) or Wavelet Transform (Rols et al., 2001; Roux et al., 2007). In thesemethods, bursts are detected as epochs in the time-frequency plane where the power (in the gamma fre-quency range) exceeds a particular threshold. In addition, some constraints on phase consistency maybe imposed (S. P. Burns et al., 2010). Recently, a spectral estimator has been proposed that uses a set ofwavelets (superlets) with increasingly constrained bandwidths that are geometrically combined in order tomaintain good temporal resolution of single wavelets and gain frequency resolution in upper bands (Mocaet al., 2021). However, these spectral estimation-based methods have a fundamental limitation since, inmany cases, the spectral estimator follows an exponential distribution (Brillinger, 1972; Jarvis & Mitra,2001), due to which the estimated power is low most of the time, with occasional time points with highpower. This causes even sustained oscillations to appear bursty (Subhash et al., 2018). Another class ofmethods uses filtering-based techniques, where the signal is bandpass filtered in the frequency range ofinterest and smoothed with a window of suitable length. Then, the burst onset and duration is estimatedby finding the time points where the estimated amplitude exceeds a particular threshold (Feingold & et al.,2015). Another method used the Hilbert transform to estimate the instantaneous power (Lundqvist, 2016).Although these methods do not involve direct spectral estimation, the power estimation and threshold-ing step is mathematically equivalent to spectral estimation, which makes the output of power-dependentestimation to appear fundamentally bursty in nature.
We have previously shown that in data with synthetically injected gamma bursts of known lengths, tradi-tional methods failed to pick up long gamma bursts, especially when the gamma power is low (Subhash etal., 2018). We then proposed a method based on the Matching Pursuit (MP) algorithm, which finds burstscompletely in the time domain and is able to pick up longer bursts in synthetic data. MP decomposes asignal into a linear combination of functions (called atoms) taken iteratively from a large, overcomplete dic-tionary and identifies bursts based on the parameters of the chosen atoms. We found that MP based burstestimation was much more robust to the choice of threshold. In real data recorded from two monkeyswho passively viewed achromatic gratings, the median gamma burst lengths were about 300 ms (threetimes longer than traditional methods), although the mode gamma burst length was 100 ms, suggestingthat gamma oscillations tend to occur in short bursts with occasional long bouts (Subhash et al., 2018).Similar results were obtained for the gamma oscillations induced by hue patches (Krishnakumaran & Ray,2023).
In addition to burst detection, MP based decomposition of neurophysiological data offers several advan-tages. First, brain signals such as local field potentials (LFP) often have transient responses related to stimu-lus onset, eye movements, or an action potential, which are not well described using sinusoids but insteadresemble a Gaussian (see (Krishnakumaran & Ray, 2023; Ray & Maunsell, 2015) for a detailed discussion).In particular, spikes are associated with a typical “spike-related-transient” in the LFP that can be well ap-proximated by a negative Gaussian with a width of a few milliseconds (see (Ray et al., 2008, Figure 2) forMP-based decomposition of the spike-triggered-average of the LFP). This Gaussian has energy over a broadfrequency range. Its energy is masked out by the “1/f” noise at lower frequencies but is visible at frequen-cies in the high-gamma range (>80 Hz). Since MP uses such Gaussians as basis functions, we found thatthe MP-based time-frequency spectrogram accurately tracked the multiunit firing rate in the high-gammarange (see (Ray & Maunsell, 2011; Ray et al., 2008) for more details).
In spite of these advantages over traditional methods, MP has some limitations. While convergence of MPis guaranteed, it is asymptotic, which means that for a finite-sized dictionary and a finite number of itera-tions, the residual error still may be large (Mallat & Zhang, 1993). Further, the residue (difference betweenthe original signal and the reconstructed signal from the selected atoms) at each iteration is only orthog-onal to the previously selected atom and may be correlated with other selected atoms, which means thatresidue can still be represented in terms of previously selected atoms (Mallat & Zhang, 1993). One wayto address this issue is to make the residue orthogonal to all previously selected atoms, which is achievedusing Orthogonal Matching pursuit (OMP). The residual error in OMP converges faster than MP, and it andhas been shown to provide better performance in high precision applications (Pati et al., 1993). Both MPand OMP perform well if the dictionary has a large number of atoms, so that a small subset of the atomshas a high correlation with the signal to be decomposed. Hence, their performance improves with the
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dictionary size. However, when a large dictionary size is used, these algorithms are very slow. Recently,Canolty and Womelsdorf proposed a Multiscale Adaptive Gabor Expansion (MAGE) algorithm where a pa-rameter reassignment step is used to refine the selected atom, which they used along with MP to estimatebursts (Canolty & Womelsdorf, 2018).
In this paper, we present a Matlab-based toolbox called Burst estimation using Atomic decomposition(BEAD), which implements four algorithms: MP, OMP, OMP-MAGE, and a new method called OMP-GEAR,which performs parameter reassignment using a different approach as compared to OMP-MAGE. In addi-tion, this toolbox implements the traditional methods discussed above. While MP (Subhash et al., 2018)and MP-MAGE (Canolty & Womelsdorf, 2018) have been implemented previously, OMP, OMP-MAGE andOMP-GEAR are implemented for the first time for gamma burst duration estimation. Methods to generatesynthetic data containing gamma bursts of known durations are included. Raw data from the twomonkeysused in Chandran et al. (Subhash et al., 2018) is also provided. This comprehensive toolbox will allow re-searchers to test various burst estimationmethods on synthetic and real data and quantify their respectivecomplexity-performance tradeoffs.

2 Materials and Methods

2.1 Dataset Description
The dataset used in the study (Subhash et al., 2018) consists of the Local Field Potential (LFP) collected fromtwo adult female bonnet monkeys (macaca radiata), aged 13 and 17 years. The LFP signals were recordedby a 10 × 10 microelectrode array (96 active platinum electrodes; Utah array; Blackrock Microsystems)surgically implanted under general anesthesia. The Utah array was placed in each monkey’s primary visualcortex (area V1) of the right cerebral hemisphere (approximately 15 mm from the occipital ridge and 15 mmlaterally from the midline). The receptive fields of neurons recorded from the microelectrodes were cen-tered in the lower left quadrant of the visual field with eccentricities between 1.3 and 4.5 degrees.
The LFP signals were recorded while the monkeys performed a reward-based task where they fixated ona small spot in the center of the LED screen (BenQ XL2411, 1280 × 720 resolution, 100 Hz Refresh rate,linearized for contrast), while a large static grating of radius 4.8 degrees covering all the receptive fieldswas shown on screen. These grating were shown at five contrast levels: 0, 25, 50, 75, 100.
2.2 Synthetic LFP Model
Synthetic LFP is generated by injecting a random number of Gabor atoms (Subhash et al., 2018) of therequired duration (burst length) into the spontaneous LFP (denoted by ϵ). The spontaneous LFP is thesignal, ϵ, recorded from the monkey brain when no stimulus (a blank screen) is shown to it. The samplingfrequency of 250 Hz and an observation time of ≈ 4 s, so that the signal length is L ≈ 1000; it acts asadditive noise. The model is given by

f = K

[
B∑
i=1

αigγi

]
+ ϵ, (1)

gγ(t) =
1√
s
g

(
t− u

s

)
eiξt (2)

where gγi
is aGabor atom (the construction of gγi

is explained in Sec. 2.3.1)with parametersγi = (si, ui, ξi).The number of injected bursts, denoted by B, is drawn from a Poisson distribution with a mean equal tothe ratio of stimulus period duration to the burst length injected. Thus, the average number of bursts in-jected is inversely proportional to the burst length. The value of ui is sampled from a uniform distributionover the range of the burst time. If any pair of bursts overlap in time, one of them is deleted. The value of
si is set as si = burst length

4 . Note that, for Gabor atoms, si denotes the standard deviation of the Gaussianwindow, and the burst duration is well approximated by four times the standard deviation. Hence, thischoice of si results in bursts of the desired length. The value of ξi is sampled from a uniform distribution ingamma range (40-60 Hz). The value of αi is sampled from a normal distribution with a certain mean andstandard deviation. Themean is set equal to the difference inmagnitude of the average FFT of the stimulusand the standard deviation of the spontaneous LFP standard deviation and the standard deviation is set to
10 percent of the difference. Finally, the burst signal ([∑B

i=1 αigγi

]) is scaled with a constant, K, such
that the spectrum of the overall synthetic LFP matches that of the real LFP in the gamma range.
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2.3 Burst Duration Estimation using Pursuit Algorithms
The procedure of burst estimation using pursuit algorithms attempt to solve the sparse approximationproblem: min

x
∥x∥0 subject to f = Dx. This problem is NP-hard and is computationally infeasible even for

moderate dictionary sizes. Pursuit algorithms such as MP and OMP solve this problem suboptimally, andis explained below. First, we explain the construction of the dictionary,D.
2.3.1 Dictionary

All the sparse recovery algorithms require a dictionary towork. Before discussing the algorithms, wediscusshow the dictionary is formed. Dictionaries constructed using orthogonal bases such as the Fourier basisprovide a poor representation of functions well localized in time, while wavelet bases are not well suited torepresent functions whose Fourier transform have narrow high-frequency support (Mallat & Zhang, 1993).Therefore, dictionaries with waveforms well localized in both time and frequency are needed to representnonstationary signals. Functionswell localized in both time and frequency are called time-frequency atoms.A general family of time-frequency atoms can be generated by scaling, translating and modulating a singleGaussian window function g(t) satisfying the constraint ∥g(t)∥ = 1. These time-frequency atoms can beparameterized by γ = (s, u, ξ), where s, u, ξ represent the scale, position, and frequency parameters,respectively. For a given γ ∈ Γ = R+ ×R2, recall that gγ(t) can be written as (2). A dictionary containinga large number of atoms is constructed by gridding the parameter space Γ, and selecting an atom in thatgrid. We note that the parameter γ completely specifies the atom. From practical considerations, we limitthe range of values of the scale, position, and frequency (s, u, ξ) parameters as s ∈ [1, L], u ∈ [0, L]and ξ ∈
[
0, Fs

2

], where L is the observation duration of the LFP signal f in seconds and Fs is the samplingfrequency of f . The dictionary is constructed by dividing the parameter spaceΓ into a grid, and, if required,subsampling the grid to obtain the desired number of atoms.
Dyadic Dictionary: The most common approach is to form a grid in the dyadic scale, so that
γ =

(
2j , p2j∆u, k2−j∆ξ

), ∆u = 1
2 ,∆ξ = Fs

2 , and j, k and p are integers spanning 0 < j < log2 Z,
0 ≤ p < Z2j+1 and 0 ≤ k < 2j+1, where Z = LFs. A dyadic dictionary hasO(Z logZ) atoms (Mallat &Zhang, 1993).
Stochastic Dictionary: Using a dyadic dictionary introduces a bias because the scale parameter s is apower of 2 (Durka et al., 2001). An alternative approach is to form a finely spaced uniform grid and sam-ple the required number of atoms uniformly at random from this dictionary. This results in the so-calledstochastic dictionary (Durka et al., 2001). We have empirically observed that, on average, a stochasticdictionary produces better results than a dyadic dictionary.
2.3.2 Matching Pursuit (MP)

Given a signal f , dictionary D, and sparsity level M , the MP algorithm (Mallat & Zhang, 1993) producesthe following sparse approximation afterM iterations:
f =

M−1∑
n=0

⟨R(n)f, gγn
⟩gγn

+R(M)f (3)
At each iteration,MP selects the atom gγn ∈ Dwithmaximummagnitudeof correlationwith the residue:

gγn
= argmax

gγ∈D

∣∣∣〈gγ , R(n)f
〉∣∣∣ (4)

The residue in the first iteration is set as the signal itself. At each subsequent iteration, the residue is de-composed recursively: R(n)f =
〈
R(n)f, gγn

〉
gγn +R(n+1)f . Due to (4),R(n+1)f is orthogonal to gγn butnot all previously selected atoms. Hence, the residue is correlated to the previous n− 1 atoms and can berepresented in terms of these atoms also. Thus, an atom can be selectedmultiple times. As a consequence,MP does not make the best use of the selected atoms, and its convergence is only asymptotic.

2.3.3 Orthogonal Matching Pursuit

OMP (Pati et al., 1993) is also an iterative algorithm that selects an atom at each iteration with the largestmagnitude correlation with the residue. To obtain the best approximation of the signal with the selected
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atoms, at the kth iteration, OMP constructs an (L× k)-sized submatrixDk of the (L×N)-sized originaldictionary D formed using the k atoms selected till iteration k, where L is the length of the signal to bedecomposed into its atoms andN is the total number of atoms in the dictionary. The vectorx(k) containingcoefficients corresponding to the selected atoms is computed by solving the least-squares problem
x(k) = argmin

x∈Rk

∥Dkx− f∥2 . (5)
The solution to the above problem is x(k) = (DT

k Dk)
−1DT

k f , and the residue is updated as R(k)f =
f −Dkx

(k). This makes the residue orthogonal to all the previously selected atoms, and we get the leastmean squared error approximation of the signal with the selected atoms. Note that x(k) contains thecoefficients of the N -length vector x corresponding to the k atoms selected till the kth iteration of OMP.OMP converges in a finite number of iterations; in fact, it converges in at mostm iterations, where m is thelength of the signal (Pati et al., 1993).
Phase correction: To properly account for the phase of the real-valued signal, we must construct twodictionaries: one with the Gabor atom formed using the cosine function and the other with Gabor formedusing the sine function. Consider a signal f = g(t) cos(ξmt + ϕ) + η, where η is white gaussian noise,
m = 1 or 2 are two potential frequencies. Suppose we have two dictionaries with two atoms each,Dcos = [g(t) cos(ξ1t), g(t) cos(ξ2t)] and Dsin = [g(t) sin(ξ1t), g(t) sin(ξ2t)]. Then, detecting the correctfrequency is equivalent to non-coherent detection of frequency. It can be shown thatwhenϕ ∼ Unif[0, 2π],the minimum probability of error is achieved when we choose the frequency ξm such that

m = argmax
i=1,2

| ⟨f, g(t) cos(ξit)⟩ |2 + | ⟨f, g(t) sin(ξit)⟩ |2 (6)

The phase of the signal is then estimated as
ϕ∗ = arctan

(
⟨f, g(t) sin(ξmt)⟩
⟨f, g(t) cos(ξmt)⟩

)
. (7)

This phase estimate is the maximum likelihood estimate if the noise η is uncorrelated with the selectedGabor atom.
To adapt the OMP algorithm for real signals with unknown phase, we must thus start with two dictionaries
containing the signals gγic

(t) = 1√
si
g
(

t−ui

si

)
cos(ξit) and gγis

(t) = 1√
si
g
(

t−ui

si

)
sin(ξit). We normalize

these functions to have unit norm while forming the dictionary. At iteration k, we select the parameter γkusing the residueR(k−1) from the previous iteration such that
k = argmax

i
| ⟨R(k−1), gγic⟩ |2 + | ⟨R(k−1), gγis⟩ |2, (8)

and the phase is estimated as
ϕk = arctan

(
⟨R(k−1), gγks

⟩
⟨R(k−1), gγkc

⟩

)
(9)

These two steps are necessary to represent signals using real-valued Gabor atoms.
2.3.4 OMP-MAGE

MP and OMP select the atom with the largest correlation, but the selected atom is typically not the trueatom (depending on the dictionary, it may be close to the true atom). This is because the parameterspace used to represent the atoms is continuous valued, and we sample this space to construct the atoms(columns) of the dictionary. Hence, the dictionary does not contain all possible atoms. Multiscale adaptiveGabor expansion (MAGE) (Canolty & Womelsdorf, 2018) is a method in which the atom detected at eachiteration is treated as an initial estimate. This estimate is further refined to move closer to the true atom.In MAGE, an atom is rewritten as
gk(t) =

4
√
2 exp

(
−sk

4
− π(t− uk)

2e−sk + 2πiξk(t− uk)
)
, (10)

which is mathematically equivalent to (2). If we set sk = 2 loge s, the mapping is one-to-one, so for every
s, there is a corresponding sk. The approach used in MAGE is one of curve fitting: the atom selected gp is
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refined to a new atom gt such that gt fits the residue better at that iteration. Since gt has three degrees offreedom s, u and ξ, we need three equations to update it. We explain the update equations below.
An analytical expression for the inner product between two atoms is given by

⟨gt, gp⟩ = Aρ exp[iθρ] (11)
where

Aρ =

√
sech

[s∆
2

]
exp

[
−πe−spu2

∆

1 + es∆
− πespξ2∆

1 + e−s∆

]
(12)

θρ = − 2πu∆ξ∆
1 + e−s∆

− 2πξpu∆ (13)
and u∆ = ut − up, ξ∆ = ξt − ξp, s∆ = st − sp. Using the chain rule, the derivative of the inner productwith respect to a parameter xp can be written as

∂⟨gt, gp⟩
∂xp

= ζxp
⟨gt, gp⟩. (14)

We can calculate ∂⟨gt,gp⟩
∂xp

for all the three parameters sp, up, ξp and ⟨gt, gp⟩ from the data. Also, we can
obtain an analytical expression for ζxp

by differentiating (11) with respect to sp, up, ξp. By equating theanalytical expression to the value calculated from the data, we arrive at the following closed-form analyticalexpressions for the parameters of the new atom:
s∗t = sp + log

[
2πesp

esp(espR[ζup
]2 − 4πR[ζsp ] + π)−R[ζξp ]

2
− 1

]
(15)

ξ∗t = ξp +
(e−sp + e−s∗t )R[ζξp ]

2π
(16)

u∗
t = up +

(esp + es
∗
t )R[ζup

]

2π
. (17)

The above update equations are used as follows. At the nth iteration of the algorithm, suppose gγn,0
is theestimate of an atom that we get fromMP or OMP using the residue computed at the start of that iteration,and suppose the true atom to be found (for example, the atom present in the signal that is closest to gγn,0

)be gγn
. We can write the dot product between the residue at iteration n and the atom gγn

as
⟨Rnf, gγn

⟩ =
〈
Rnf, gγn,0

〉 〈
gγn,0

, gγn

〉
+

〈
Rn+1f, gγn

〉
. (18)

If gγn,0 coincides with gγn , the interference term 〈
Rn+1f, gγn

〉
= 0. Using this, MAGE reassignmentproceeds by neglecting the interference termand using (18) to reassign the atomparameters. This is furtherexplained in Sec. 2.3.5.

OMP-MAGE vsMAGE: The original MAGE algorithm (Canolty &Womelsdorf, 2018) was based on the useofMP to find the initial atom, whereas, in this work, we propose to use OMP to find the initial atom(s). Em-pirically, it is known thatOMPhas a better convergence rate thanMP (Pati et al., 1993); see also Sec. 4. How-ever, the use ofMAGE in conjunctionwith OMP instead ofMP requires us to form the dictionary differently.Specifically, we formonedictionarywith the cosine function, gkc(t) = 4
√
2 exp

(
− sk

4 − π(t− uk)
2e−sk

)
cos (2πiξk (t− uk))and the other with the sine function gks(t) = 4

√
2 exp

(
− sk

4 − π(t− uk)
2e−sk

)
sin (2πiξk (t− uk)). Thisallows us to use the real-valued update equations (15)–(17) to perform atom reassignment.

2.3.5 Gabor expansion with atom reassignment (GEAR)

As discussed above, MAGE (Canolty & Womelsdorf, 2018) finds a new atom gt that is best matched withthe residue at the current iteration by differentiating the inner product between the residue and the initialatom estimate rather than directly solving for the atom parameters. In effect, MAGE relies on a first-orderTaylor series approximation of the atoms around the selected atom, and the resulting approximation error(see the note after (18)) can result in suboptimal parameter estimates. We now present a novel alternativeapproach, where, instead of using a first-order Taylor approximation, we directly fit the residue to a new
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atom, gt, using the magnitude of the inner product between the residue and the initial atom, gp, found byOMP. The magnitude of the inner product between two Gabor atoms is given by
| ⟨gt, gp⟩ |=

√
sech

[s∆
2

]
exp

[
−πe−spu2

∆

1 + es∆
− πespξ2∆

1 + e−s∆

]
. (19)

Suppose we want to fit the residue R at any iteration to a Gabor atom gt and we have an initial estimate
gp with parameters (sp, ξp, up). We take another atom gp1 with parameters (sp1, ξp1, up1) where up1 =
up + ∆u and ξp1 = ξp + ∆ξ. Since we wish to fit a true atom gt to the residue, we take the ratio of themagnitude of the inner products ofR with gp and gp1, and simplify to get

b
[(
ξ2p1 − ξ2p

)
− e−2sp

(
u2
p1 − u2

p

)]
+ 2e−2sp (πesp − b)ut (up − up1) + 2bξt [ξp − ξp1]

= log

[
| ⟨R, gp⟩ |
| ⟨R, gp1⟩ |

]
− πe−sp

(
u2
p1 − u2

p

) (20)

where b = −πesp∆u2

1+e−∆s . Defining intermediate variablesBu = 2e−2sp (πesp − b)ut andBξ = 2bξt, we geta linear equation in three variables b, Bu, Bξ:
b
[(
ξ2p1 − ξ2p

)
− e−2sp

(
u2
p1 − u2

p

)]
+Bu (up − up1) +Bξ [ξp − ξp1]

= log

[
| ⟨R, gp⟩ |
| ⟨R, gp1⟩ |

]
− πe−sp

(
u2
p1 − u2

p

) (21)
The right-hand side of (21) can be calculated from residue, initial estimate, and test atom gp1. Since the left-hand side has three unknowns, we need three equations. This can be obtained by taking two more testingatoms gp−1 with parameters (sp, up−1, ξp−1) and gp1−1 with parameters (sp, up1, ξp−1), up−1 = up−∆uand ξp−1 = ξp −∆ξ: (

ξ2p1 − ξ2p
)
− e−2sp

(
u2
p1 − u2

p

)
(up − up1) (ξp − ξp1)(

ξ2p−1 − ξ2p
)
− e−2sp

(
u2
p−1 − u2

p

)
(up − up−1) (ξp − ξp−1)(

ξ2p−1 − ξ2p
)
− e−2sp

(
u2
p1 − u2

p

)
(up − up1) (ξp − ξp−1)

 b
Bu

Bξ



=


log

[
|⟨R,gp⟩|
|⟨R,gp1⟩|

]
− πe−sp

(
u2
p1 − u2

p

)
log

[
|⟨R,gp⟩|

|⟨R,gp−1⟩|

]
− πe−sp

(
u2
p−1 − u2

p

)
log

[
|⟨R,gp⟩|

|⟨R,gp1,−1⟩|

]
− πe−sp

(
u2
p1 − u2

p

)


(22)

Using the system of equations above, we solve for the three variables b, Bu, Bξ. Then, we can reassign theatom parameter values as
st = sp − log

[π
b
esp − 1

] (23)
ut =

Bu

2e−2sp (πesp − b)
(24)

ξt =
Bξ

2b
. (25)

Note that, in order to obtain the system of equations in (22), we perturb only time and frequency parame-ters, i.e., we skip taking a finite difference with respect to the scale parameter. This is a pragmatic choice,as it allows us to obtain the above closed-form expressions for the atom reassignment. The parameters
∆u and ∆ξ must be chosen to be of a small value for the algorithm to converge; we use ∆u = 0.1

L and
∆ξ = 0.1

Fs
, where L is the number of samples in the signal and Fs is the sampling rate. For signals withdifferent parameters like sampling rate and number of samples, the parameters∆u and∆ξ can be tunedto get better results. We call this reassignment method used in conjunction with our implementation ofOMP the OMP-GEAR algorithm.

From the sparse approximation of the signal using any of the three methods, we obtain a set of atoms,equivalently, a set of parameter tuples that can be used to represent the signal. These parameters areused to estimate burst duration (Subhash et al., 2018). Atoms with frequency in the gamma range (40-60 Hz) and position parameters in the stimulus period (0-2 s) are selected as candidate gamma bursts.Finally, atoms whose coefficients exceed a threshold are included in the final estimate of the bursts. Thethreshold is set as a fraction (called threshold fraction in this paper) of the mean of the largest coefficientobtained in the spontaneous period. The burst duration is set as four times the atom’s standard deviation,and the median of all these bursts across all trials is taken as the estimated burst duration. Burst durationsexceeding 2 s are discarded as gamma bursts are typically more abrupt than the slow decay of a Gaussianwindow.
7



2.4 MP, OMP and OMP-MAGE Implementation
We use the implementation of MP by Piotr Durka et al. (Durka et al., 2001), which uses a stochastic dictio-nary instead of a dyadic dictionary as used in the original implementation by Mallat and Zhang (Mallat &Zhang, 1993). This implementation is entirely written in C, with various optimizations to reduce computa-tional time, making MP much faster than OMP and OMP-MAGE.
Our implementation of OMP, outlined above, has three major differences from conventional implementa-tions of the algorithm. First, the (large) dictionary is not constructed in advance; a stochastic dictionaryis formed on the fly using the dictionary size and sampling rate as inputs, inspired by (Durka et al., 2001).Second, unlike conventional OMPwhere the inner product is computed with all atoms in the dictionary theatom with the highest magnitude correlation is selected, we form two Gabor dictionaries with the sameparameters: one constructed using the cosine function and the other constructed using the sine function.Then we compute the inner product with all the atoms in the two dictionaries and choose the parameterthat has the largest sum of squared of inner products of corresponding cosine and sine Gabor atoms. Third,we add a phase correction step by setting the phase of the sinusoid as the inverse tangent of the ratio ofthe inner products of the Gabor atom with sine and cosine functions. These enhancements are necessaryfor the correct representation of the signal.
2.5 Limitations of OMP and OMP-MAGE
The main limitation of OMP and OMP-MAGE is that these methods are slower than MP. There are two rea-sons for this: first, OMP andOMP-MAGE are both implemented inMatlabwhereasMP is implemented in C,making the latter faster. Second, theMP implementation computes and stores inner products between dic-tionary atoms in advance, which speeds up the algorithm. However, in Matlab, the memory requirementfor such a pre-computation is too large for practical implementation. To elaborate, in MP, atoms are com-puted when needed and only the atom parameters are stored, which requires multiple nested loops whenimplemented inMatlab, whichmakes theMatlab implementation of the same algorithmmuch slower thanthe C implementation.
There are faster ways to implement OMP, for example, using the inverse Cholesky factorization. Whenimplemented in C, this can make our method much faster. As we saw earlier, OMP-MAGE offers compa-rable performance as OMP even with a much smaller sized dictionary (about 10x smaller). Hence, with abetter implementation, the computational time of OMP-MAGE can be reduced, making it computationallysuperior to the MP-based method.
2.6 Burst Duration Estimation using the Hilbert Tranform
The analytical signal is formed from the given signal f as

Af = f + jH[f ], (26)
whereH denotes the Hilbert Transform operator. This signal is band pass filtered in the gamma frequencyrange (40-60 Hz), and the envelope is found by taking |Af |2. A burst is registered when the power exceedsthree times themedian power. The start and end of the burst are taken as the times when |Af |2 falls below1.5 times its median power.

3 Results
The generation of synthetic data has been explained in detail in our previous study (Subhash et al., 2018);we briefly describe it in Sec. 2.2. We injected multiple non-overlapping gamma bursts of known durationsin the spontaneous LFP data while ensuring that the total power in the gamma range was similar to thegammapower observed in real data. Each trial of the spontaneous LFP datawas recorded at a sampling rateof 250 Hz for about 4 s duration from amonkey when a blank screen was displayed to it. When the gammapower was high, methods based on Hilbert Transform and Wavelet transform performed well, althoughCGT based method failed even in this condition (see (Subhash et al., 2018, Figure 3C)). However, whenthe injected gamma bursts had low power, even Hilbert and Wavelet-based methods failed, and only theMP-based method was able to estimate the duration of long bursts properly (see (Subhash et al., 2018,Figure 3I)).
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Figure 1: Comparison of gamma duration estimators. A. Injected vs. estimated burst lengths, whenthe injected burst has one-fourth the power of the real LFP in the gamma range. The bursts are non-overlapping, and the injected bursts are of duration 0.05 s,0.075 s and 0.1 to 1 s in steps of 0.1 s. Thethreshold fraction (see Sec. 2.3.5 for the definition) is set to 0.5. B. Injected burst vs. median burst lengthswhen the power of the injected burst matches that of the real LFP in the gamma range. Overlap of bursts isallowed, and the injected bursts are of duration 0.05 s, 0.075 s, and 0.1 to 1 s in steps of 0.1 s. The thresholdfraction is set to 0.5.
Figure 1A shows the median of the estimated burst duration across 102 trials as a function of the injectedburst lengths. All four atomic decomposition-based methods estimate the burst duration with high accu-racy. For example, for an injected burst length of 300 ms, the estimated burst lengths were 306±3.8 ms,306±5.7 ms, 306±3.7 ms and 308±2.8 ms using MP with 5 million atoms (MP-5M), OMP with 1.5 millionatoms (OMP-1.5M), OMP-MAGE with 1.5 million atoms (OMP-MAGE-1.5M) and OMP-GEAR with 1.5 mil-lion atoms (OMP-GEAR-1.5M), respectively. In contrast, Hilbert based method performed poorly, with anestimated burst duration of 84±4.6ms.
The only exception was when 50 ms bursts were injected. Because the total number of bursts was veryhigh in this case (the number of bursts injected was increased in inverse proportion to the burst dura-tion), two nearby bursts sometimes tended to get estimated as a single longer burst. Further, the suffi-cient conditions for sparse recovery are not met in this case (see Sec. 4.1), so it is not surprising that theatomic decomposition-based methods fail. However, the four atomic methods performed comparably inthis condition, with estimated burst lengths of 185±22.8ms, 252±24.2ms, 240±28.1 ms, and 195±21.3 msusing MP with 5 million atoms (MP-5M), OMP with 1.5 million atoms (OMP-1.5M), OMP-MAGE with 1.5million atoms (OMP-MAGE-1.5M), and OMP-GEAR with 1.5 million atoms (OMP-GEAR-1.5M), respectively.Although it appears that, in this case, the Hilbert method overestimated the burst length the least (at100±3ms), the curve for Hilbert was almost horizontal, which means that it outputs the same burst dura-tion for any injected burst duration.
To make burst estimation even more challenging, we removed the requirement that the bursts be non-overlapping. Figure 1B shows the results for this case. All four atomic methods continued to perform well,while the Hilbert-based method gave poor results.
In figure 1, OMP, OMP-MAGE and OMP-GEAR offer no improvement over MP, simply because we used alarge dictionary (5 million atoms) and a large number of iterations, as determined in our previous study,to ensure that MP performed well for the synthetic data. However, such large dictionaries and iterationsput severe constraints on the processing system and may not be desirable when memory or processingcapacity needs to be minimized (for example, for real-time applications). Therefore, we tested the perfor-mance of the three atomic methods as a function of the number of iterations and dictionary size. For this,we simulated synthetic LFP data and injected bursts of 300 ms. Figure 2A shows the percentage reduction
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Figure 2: A. Convergence analysis of methods: Residue energy (percentage relative to the signal energy)vs. iteration number. B. Performance of atomic methods as a function of the dictionary size: Estimatedburst durations for the three methods for various dictionary sizes when bursts of duration 300 ms areinjected (shown as a dashed line with label Ref).
in the energy of the residue (the as-yet unexplained portion of the signal) as a function of the number ofiterations. To obtain the curves, a single trial was taken and the residue percentage was plotted for eachmethod across 1000 iterations. Note that the curves are shown down to a residue percentage of 10−10

or lower simply to highlight the relative convergence behavior of the different algorithms; in practice, aresidue percentage of 10−5 or so is sufficient to ensure that the useful features of the signal are extracted.As expected, OMP, OMP-MAGE and OMP-GEAR converge much faster than MP, showing that if there is aconstraint on the number of iterations, these methods can outperformMP. Figure 2B shows the estimatedburst length as a function of the dictionary size. Here, 300 ms bursts were injected into the spontaneousLFP, and each point in the figure corresponds to the median of 102 trials. As the size of the dictionaryreduces, OMP-MAGE and OMP-GEAR continue to perform well while MP and OMP significantly overesti-mate the burst duration. This illustrates the advantage of OMP-MAGE and OMP-GEAR relative to previousmethods.
We tested the effect of increasing the extent of overlap between the bursts (see Fig. 3A). For this, weincreased the number of overlapping bursts of 300 ms duration. To obtain each point in the graph, weinjected a fixed number of 300ms bursts, and found themedian of the absolute error across 102 trials. Werepeated this experiment 6 times, and plotted the average of the median absolute errors obtained fromthe 6 experiments. OMP-MAGE and OMP-GEAR were able to resolve multiple bursts better than MP andOMP. OMP-GEAR yielded lower error than OMP-MAGE when the number of bursts is high, showing that itis the best-performing algorithm. The new class of methods, namely, OMP-MAGE and OMP-GEAR, not onlyoutperformMP and OMP, but also show an even greater resilience at low threshold fractions (See Fig. 3B).Here, we injected a single 300 ms burst and found the mean number of bursts detected across 102 trialsfor different values of the threshold fraction. The reason for this improved performance stems from thefact that, for classical methods, noise in the power estimate (either due to noise in the spectral estimatoror in the data) leads to an abrupt termination of the burst, which is more pronounced when the thresholdfraction is low. BEAD-based methods use the overall signal structure in the time domain to estimate thebursts, which makes them less sensitive to noise in the power/spectral domains.
To visually illustrate the bursts detected by the atomic methods and the Hilbert method, in the first columnof Fig. 4, we plot the LFP overlaid with detected atoms in case of atomic methods, and LFP overlaid withdetected burst length in case of the Hilbert method. In the second column, we show Wigner-Ville time-frequency plots for atomic methods and the power plot overlaid with detected burst length for the Hilbertmethod. For this plot, we used a threshold fraction of 0.75 and a dictionary size of 2.5M for MP and 1.5Mfor OMP, OMP-MAGE, and OMP-GEAR. We see that all the atomic methods effectively capture the shapeof gamma oscillation, while the Hilbert method tends to approximate a single large gamma oscillation with
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Figure 3: A. Performance of atomic methods as a function of number of bursts injected: Normalized ab-solute error for increasing number of bursts when bursts of duration 300 ms are injected. B. Performance
of methods with varying threshold fractions: Mean number of bursts detected across 102 trials when thethreshold fraction is varied between 0.06 and 0.9.
multiple smaller gamma oscillations.
Finally, we estimated the burst durations from real LFP data recorded from two monkeys. Results arepresented (see Fig. 5) in the same format as (Subhash et al., 2018, Figure 7). We set the threshold frac-tion 0.5 and used a dictionary size of 2.5M for MP and 1.5M for OMP, OMP-MAGE and OMP-GEAR, as be-fore. MP, OMP andOMP-MAGE performed comparably, yieldingmedian burst durations of 248.9±2.97ms,248.9±4.52 ms and 246.5±2.33 ms for monkey 1 and 287.2±9.97 ms, 300.0±4.85 ms and 302.9±7.85 msfor monkey 2, respectively. These durations were not significantly different from each other (p = 0.173,
χ2 = 3.51 and p = 0.39, χ2 = 1.86 for monkey 1 and 2, Kruskal-Wallis test when MP, OMP, and OMP-MAGE were considered). OMP-GEAR yielded slightly smaller durations (227.5±1.27 ms for monkey 1 and253.6±9.8 ms for monkey 2) compared to OMP-MAGE (p = 3.1×10−6, χ2 = 21.75 and p = 2.84×10−6,
χ2 = 21.92 for monkey 1 and 2, pairwise Kruskal-Wallis test). The burst durations returned by the Hilbert-based method were much shorter (152±1.45 ms and 120±2.16 ms for monkey 1 and monkey 2, respec-tively).

4 Discussion
We implemented three methods for burst duration estimation: OMP, OMP-MAGE, and OMP-GEAR. TheOMPmethod is a modified version of the original method (Pati et al., 1993), where we incorporate a phasecorrection step to enableOMP to identify a suitable (orthogonal) pair of atoms alongwith the correct phasein each iteration. OMP-MAGE combines the MAGE approach (Canolty &Womelsdorf, 2018) with OMP andincorporates the phase correction step mentioned above. Finally, we implemented a new method calledOMP-GEAR.We found that whenmultiple bursts were presented, OMP-GEAR performed better than othermethods in terms of correctly recovering the burst durations from synthetic data. All these methods gavelonger median burst durations than traditional methods, validating the previous observation (using MP)that real data exhibits long burst durations (Subhash et al., 2018). The source codes and data are availableat https://github.com/avianand8/GammaLengthProjectCodes.
4.1 Comparative Performance of MP, OMP, OMP-MAGE and OMP-GEAR
MP and OMP are greedy approaches for decomposing a signal as a linear combination of atoms from adictionary. At each iteration, an atom is selected such that the energy in the residual signal decreases the
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Figure 4: Visual illustration of the bursts detected by the different methods. Left: LFP overlaid with thedetected atoms (LFP overlaid with the detected burst length for the Hilbert method); Right: Wigner-Villetime-frequency plots for atomic methods (power plot overlaid with detected burst length for the Hilbertmethod.)
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Figure 5: Gamma duration estimation from real LFP data. A.Median gamma duration for each electrodeas a function of the change in the gamma power relative to spontaneous activity for monkey 1, for the fourmethods. B. Histogram of the gamma durations from all sites for monkey 1. C. Median gamma durationreturned at each unique frequency by MP, OMP, OMP-MAGE, and OMP-GEAR, for monkey 1. D. Mediangamma duration per site as a function of the change in power relative to the mean gamma power fromspontaneous activity at that site for monkey 2. E.Histogram of gamma duration from all sites for monkey 2.
F.Median gamma duration returned at each unique frequency by MP, OMP, OMP-MAGE, and OMP-GEAR,for monkey 2. G. Violin plots embedded with box plots of median burst lengths for all algorithms, formonkey 1. H. Violin plots embeddedwith box plots ofmedian burst lengths for all algorithms, formonkey 2.
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most. The difference betweenMP and OMP lies in the least squares step in OMP, which makes the residueorthogonal to all the previously selected atoms. In turn, this results in the residual energy decreasingmuchfaster in OMP compared to MP. There are other approaches for atomic decomposition such as basis pur-suit (S. Chen&Donoho, 1994), which pose atomic decomposition as a convex optimization problem.
We note that, in order to generate a dictionary of a given size, we first divide the parameter space into a finedyadic grid, and generate atoms of the dictionary by sampling the grid points uniformly at random till therequired number of unique atoms has been selected (see Sec. 2.3.1). The reason for using such a stochasticdictionary rather than a purely dyadic dictionary (which is generated by dividing the parameter space intoa dyadic grid with the grid size such that the number of grid points equals the desired dictionary size, seeSec. 2.3.1) is because the latter introduces bias since the burst lengths are dyadic multiples of a base length.With OMP-MAGE and OMP-GEAR, we are not limited to the dictionary; the dictionary refinement stepallows the algorithm to adjust the parameters of the atom to better explain the observation. Therefore, bycarefully designing a fixed dictionary, OMP-MAGE and OMP-GEAR can yield better results even with smalldictionary sizes.
From Fig. 1, we see that all four methods perform similarly for burst durations exceeding about 0.1 s inthe non-overlapping bursts case, and for burst durations exceeding about 0.2 s in the overlapping burstscase. This is because the number of bursts injected is small relative to the size of the dictionary.1 Dueto this, all sparse recovery-based methods perform nearly the same. For shorter burst durations (around0.1 s), the number of injected bursts becomes large, causing the algorithms to slightly overestimate theburst duration, especially in the overlapping bursts case, since bursts in close proximity with similar phasescould get merged as a single longer burst. At very low burst durations (around 50 ms), the number ofbursts injected becomes too large (the mean number of bursts is 40) for sparse recovery techniques towork well, given the large size of the dictionary. A rule-of-thumb from the compressed sensing literatureis that to recover an N -length, k-sparse vector using anm-dimensional linear observation obtained fromnoisy linear projections using anm×N measurementmatrix,m = O(2k logN) is required. This conditionfails when N = 1.5 × 106, k = 40, since our measurements are m = 1024-dimensional vectors. Thus,all sparse recovery algorithms fail, as expected. Overall, this is an artifact of the way we have scaled thenumber of injected bursts as we reduce the injected burst length, but it helps to bring out the conditionsunder which the algorithms perform well and when they may fail.
Figure 2 shows that the orthogonal projections involved in the OMP-based algorithms allow them to picksufficiently different atoms in subsequent iterations, resulting in a faster decay in the energy in the residue.Thus, OMP, OMP-MAGE and OMP-GEAR converge much faster than the original MP algorithm. Also, for agiven dictionary size, OMP-MAGE and OMP-GEAR are not limited to the atoms in the dictionary. If theinitially selected atom is sufficiently close to a true atom, OMP-MAGE and OMP-GEAR are able to refinethe dictionary itself and replace the atom with one that is much closer to the true atom. Hence, as thedictionary size is reduced (consequently, the algorithm speeds up), OMP-MAGE and OMP-GEAR continueto return an estimated burst length that is close to the injected burst length (300ms in this case), while bothMP andOMP significantly overestimate the burst length. Additionally, from Fig. 5, we see that, on real data,MP performs comparably to the other three algorithms. This is because of the larger dictionary size (5 M)used with MP compared to the dictionary size (1.5 M) used with OMP and OMP-MAGE. OMP-GEAR yieldsslightly shorter burst durations, which could be because it is able to better resolve overlapping bursts, butthese durations are still much longer than the ones obtained using Hilbert-based methods. Overall, atomicdecomposition methods far outperform spectral methods such as the Hilbert transform-based method,showing that estimating the burst duration in the time domain itself is better than frequency domain basedmethods.
It must be noted that although atomic methods seemingly overestimate the burst durations occasionally,this is not necessarily incorrect, as there is ambiguity in the definition of a burst. If there are two nearbybursts that have a consistent phase and frequency relationship, they may be better represented by a singlelonger burst. Such a situationmay arise physiologically if a sustained rhythm has an amplitudemodulation,or if an underlying generator oscillates at a low frequency and generates bursts periodically (for example,see (van Ede et al., 2018, Figure 1)). Indeed, the power of atomic methods is that they can potentiallycapture rich dynamics containing multiple bursts that are phase-aligned.
The regime where OMP-MAGE and OMP-GEAR outperform MP and OMP is when the number of injectedbursts ismoderately large (> 10) and the dictionary size is relatively small (about 1M). Formuch larger dictio-

1The number of bursts is a Poisson distributed random variable whose mean equals the stimulus period (2 s in our case) dividedby the burst duration.
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nary sizes (> 5M), the parameter reassignment used in OMP-MAGE and OMP-GEAR offers only a marginaladvantage over OMP, as the dictionary already has sufficiently many atoms to represent the signal.
It is unclear why OMP-GEAR is able to better estimate the burst lengths than OMP-MAGE when multipleoverlapping bursts are present. In both methods, we start with an initial estimate of an atom and subse-quently refine it. OMP-MAGE uses a differentiation step (see Sec. 2.3.4) while OMP-GEAR (see Sec. 2.3.5)uses a different approach that skips the differentiation step. It is possible that skipping the differentiationstep, which is prone to error or noise amplification, results in the improvement. In real data, we observethat the histograms in Figures 5B and 5E have a slightly lower fraction of bursts of durations around 500-600ms and a slightly higher fraction around 200ms compared toOMP-MAGE, suggesting that some burststhat were estimated as a single long burst by OMP-MAGE were instead resolved as two shorter bursts byOMP-GEAR. These observations lead us to believe that OMP-GEAR is a slightly better algorithm than OMP-MAGE, as it is able to resolve the bursts better.
4.2 Gamma bursts in the primary visual cortex
As discussed above, the BEAD algorithms perform very well in the presence of overlapping bursts. In ourdataset, we observed such overlapping bursts frequently, with 78%of bursts showing at least a 50%overlapwith another burst in the gamma range. The ability to identify overlapping bursts is especially importantfor gamma oscillations, since they are thought to be generated due to the interaction of excitatory andinhibitory neurons, with different inter-neuronal classes giving rise to gamma rhythms in slightly differentfrequency ranges; see (G. Chen et al., 2017; Veit et al., 2017). These oscillations are also hypothesized tointeract (Veit et al., 2023; Wagatsuma et al., 2022), and the ability to capture these overlapping rhythmsis important to study the nature of their interaction. For example, we found that the slow and fast gammawaves, thought to be generated by Somatostatin and Parvalbumin positive interneurons (G. Chen et al.,2017; Veit et al., 2017), respectively, form independent travelling waves even when they are overlapping intime (Gautham & Ray, 2024).
As discussed previously, MP based decomposition leads to a better characterization of the fluctuationsin the LFP when spikes are recorded. In particular, each component of the spike-related-transient is wellrepresented by a negative Gaussian, and removing it prior to the estimation of the phase of the rhythmto which the spikes may be phase locked allows better estimation of the phase at which spikes occur (Ray& Maunsell, 2015; Ray et al., 2008). This also helps in improving the computation of phase-amplitudecoupling, where theta-gamma coupling observed in the primary visual cortex of monkeys was drasticallyreduced once the negative Gaussian was removed, suggesting that at least part of this coupling could be anartifact due to the spike-related-transient (Prabhu & Ray, 2024). Characterization of such transients usingovercomplete methods could potentially be useful to dissociate other structures in brain signals which alsohave high-frequency content, such as hippocampal sharp waves, which have distinct features (see (Liu etal., 2022) for a detailed discussion).
While MP converges slowly compared to other methods (Fig 2A), the difference in the rate of convergenceis significant only after one or two orders of magnitude. However, the energy in brain signals falls withincreasing frequency according to a power law, with the power in the high-gamma range and beyond beingonly a small fraction of the total signal energy. Due to this, to adequately capture the signal energy at highfrequencies (up to a few hundred Hz), convergence down to a low residual energy is needed, and theconvergence rate becomes important in these situations.
4.3 Burst estimation in neurophysiological data
In neurophysiological data, there are several issues that need to be addressed to properly identify burstevents. For example, event-related potentials (ERPs) have sufficient power at low frequencies, which maybe mistaken as oscillatory bursts, and hence need to be removed prior to burst estimation (Neymotin etal., 2022). More importantly, it is well known that the neural power spectra exhibit a “1/f” decay withfrequency, and this aperiodic component needs to be separated from the oscillatory events that appearas bumps or spikes in the PSD. Brady and Bardouille developed an algorithm called periodic/aperiodicparametrization of transient oscillations (PAPTO) that disambiguates the aperiodic activity from the tran-sient rhythmic bursts and showed that their approach captures more variance in the resting-state occur-rence rate of beta events in a largeMEG dataset compared to more conventional transient event detectionalgorithms. Similarly, Szul et al. (Szul et al., 2023) used the superlet transform (Moca et al., 2021) to gener-ate single-trial time-frequency plots, to which they applied an iterative procedure to identify bursts based
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on an adaptive threshold for each iteration. Since our method works directly in the time domain, it is non-trivial to remove the aperiodic (1/f) component, which is estimated in the spectral domain. However, asshown in Figure 3B, BEADmethods are able to accurately identify the burst at even low threshold fractions,unlike classical methods (see (Subhash et al., 2018, Figure 4) for a comparison with other methods). Thereason for this improved performance stems from the fact that, for classical methods, noise in the estimateof power (either due to noise in the spectral estimator or in the data) leads to an abrupt termination ofthe burst, which is more pronounced when the threshold fraction is low. For BEAD based methods, how-ever, the overall time domain signal structure is used to extract the burst, which naturally alleviates suchissues.
Another issue is that the burst waveforms are not sinusoidal to begin with, but instead have stereotypicalshapes. These shapes can be identified using techniques such as empirical mode decomposition (Quinnet al., 2021) or quantification of an individual oscillatory cycle by its amplitude, period, and waveformsymmetry (Cole & Voytek, 2019). Even in the case of gamma oscillations, the waveform has a typical arch-shape with sharper troughs and smoother peaks (Krishnakumaran & Ray, 2023). Thus, bursts need nothave Gabor-like structures. One way to address this is to modify the dictionary such that the basis func-tions better represent the signal structure. For example, noting that beta bursts have a wavelet-like shape,Neymotin et al. (Neymotin et al., 2022) used 7-cycle Morlet wavelets on nonoverlapping 10 s windows,with linearly spaced frequencies between 0.25 to 250 Hz with 0.25 Hz resolution. Subsequently, they nor-malized the power time-series of each wavelet transform by the median power across the full recordingduration and applied a local maximum filter to detect peaks that exceeded a threshold. Szul et al. (Szul etal., 2023) also applied principal component analysis (PCA) on the identified burst waveforms to define a setof motifs that best explained the variance in these burst waveforms. Power et al. (Power et al., 2023) usedconvolutional dictionary learning (CDL) to detect transient bursts in a data-driven way and identified sev-eral task-related motifs that resembled bursts in beta, mu, and alpha ranges. These methods also capturesignal structures related to artifacts such as eye movements or ECG, and therefore are useful for cleaningthe data as well.
These methods contrast against our approach, where the dictionary is highly parametrized with only afew parameters describing the basis functions. Such parametrization has several benefits. Although non-parametrized application-specificmethods can represent the signalswith fewer atoms, their time-frequencyanalysis is not straightforward. On the other hand, the time-frequency representation of Gabor atoms iswell known. More importantly, parameterized dictionaries allow us to develop methods like OMP-MAGEand OMP-GEAR, which have low computational complexity and come with strong theoretical convergenceguarantees. Further, Gabor atoms have the advantage that their Wigner-Ville distribution can be easilycomputed, and they have an optimal time-frequency trade-off. Parametrized dictionaries provide a simpleway to extract features from a given data: Once an atom is found, its parameters immediately provide thefeatures (position, frequency, and scale) of the atom, which would require post-processing in the case ofnon-parametrized methods. Due to this, the resulting identified atoms can potentially provide additionalinsights, for example, if the parameters have interesting relationships. Finally, a parametrized representa-tion leads to efficient storage of the signals; for example, since Gabor atoms are completely determined bytheir parameters, we need to store only three parameters per atom.
Expanding parameterized dictionaries by including atoms that resemble non-sinusoidal structures (chirps,artifacts, atoms obtained in a data-driven fashion) is a worthwhile direction for future work.
4.4 Pros and Cons of Atomic Decomposition-based Methods
As seen previously, atomic decomposition-based methods can capture relationships between multiplebursts if they have some phase alignment. Also, depending on the signal characteristics, we can includeother types of atoms in the dictionary such as chirp signals. Gamma oscillations are known to start witha high frequency on onset, which decays and stabilizes after some time. This transient behavior can po-tentially be better represented with chirps. Gamma oscillations may end more abruptly than the Gaussianwindow decay. One can include sinusoids multiplied by a rectangular window to capture these abruptchanges. The use of atomic decomposition and estimating the burst duration in the time domain providesthe flexibility to include such atoms in the dictionary.
In terms of limitations, in our synthetic experiments, the injected bursts are Gabor waveforms and thedictionary that we used was also formed of Gabor atoms. The results could be different if injected burstswere generated using other waveforms but the dictionary was constructed using Gabor atoms. The greedy
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methods we have explored in this work have the limitation that if an incorrect atom is selected in a givenstep, the algorithms have no way of undoing the selection. Subsequent iterations that use a potentiallyincorrect residue may continue to pick incorrect atoms, cascading the error and resulting in a suboptimalsignal representation. OMP-MAGE and OMP-GEAR alleviate this issue due to the dictionary refinementstep, whereby these algorithms can correct for an incorrectly selected atom to some extent. However, itmust be noted that even these algorithms require the initially selected atom to be sufficiently close to thetrue atom for the dictionary refinement to be effective. In turn, this means that the initial dictionary shouldsample the parameter space sufficiently finely to ensure that the dictionary contains an atom that is closeto the true atoms. Finally, due to the large dictionary size requirement, thesemethods are computationallymore expensive than traditional spectral decomposition-based methods.
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Author Contributions
Conceptualization: AA, CM, SR. Methodology: AA, CM, SR. Software: AA, CM, SR. Formal analysis: AA, CM,SR. Writing- original draft: AA, Writing- Review and editing: AA, CM, SR. Visualization: AA. Supervision:CM, SR. Funding acquisition: CM, SR.

Funding
• Pratiksha Trusts Grant to SR and CM.
• DBT-Wellcome Senior Fellowship (IA/S/18/2/504003) to SR.

Declaration of Competing Interests
None

Acknowledgements

Supplementary Material
No supplementary material

References
Bosman, C. A., Schoffelen, J.-M., Brunet, N., Oostenveld, R., Bastos, A. M., Womelsdorf, T., Rubehn, B.,Stieglitz, T., De Weerd, P., & Fries, P. (2012). Attentional stimulus selection through selective syn-chronization between monkey visual areas. Neuron, 75(5), 875–888. https://doi.org/10.1016/j.neuron.2012.06.037Brillinger, D. (1972). The spectral analysis of stationary interval functions. Proceedings of the 6th Berkeley

Symposium on Mathematical Statistics and Probability, 1. https://doi.org/10.1007/978-1-4614-1344-8_4Burns, S. P., Xing, D., Shelley, M. J., & Shapley, R. M. (2010). Searching for autocoherence in the corticalnetworkwith a time-frequency analysis of the local field potential. Journal of Neuroscience, 30(11),4033–4047. https://doi.org/10.1523/JNEUROSCI.5319-09.2010Burns, S., Xing, D., & Shapley, R. (2011). Is gamma-band activity in the local field potential of v1 cortex a“clock” or filtered noise? Journal of Neuroscience: The Official Journal of the Society for Neuro-
science, 31, 9658–9664. https://doi.org/10.1523/JNEUROSCI.0660-11.2011Buzsáki, G. (2006). Rhythms of the brain.

17

https://github.com/avianand8/GammaLengthProjectCodes
https://github.com/avianand8/GammaLengthProjectCodes
https://doi.org/10.1016/j.neuron.2012.06.037
https://doi.org/10.1016/j.neuron.2012.06.037
https://doi.org/10.1007/978-1-4614-1344-8_4
https://doi.org/10.1007/978-1-4614-1344-8_4
https://doi.org/10.1523/JNEUROSCI.5319-09.2010
https://doi.org/10.1523/JNEUROSCI.0660-11.2011


Canolty, R. T., &Womelsdorf, T. (2018).Multiscale adaptive gabor expansion (mage): Improved detection oftransient oscillatory burst amplitude and phase. bioRxiv, 369116. https://doi.org/10.1101/369116Chalk, M., Herrero, J. L., Gieselmann, M. A., Delicato, L. S., Gotthardt, S., & Thiele, A. (2010). Attentionreduces stimulus-driven gamma frequency oscillations and spike field coherence in v1. Neuron,
66(1), 114–125. https://doi.org/10.1016/j.neuron.2010.03.013Chen, G., Zhang, Y., Li, X., Zhao, X., Ye, Q., Lin, Y., Tao, H. W., Rasch, M. J., & Zhang, X. (2017). Distinctinhibitory circuits orchestrate cortical beta and gamma band oscillations. Neuron, 96(6), 1403–1418.e6. https://doi.org/https://doi.org/10.1016/j.neuron.2017.11.033Chen, S., & Donoho, D. (1994). Basis pursuit. Proceedings of 1994 28th Asilomar Conference on Signals,
Systems and Computers, 1, 41–44 vol.1. https://doi.org/10.1109/ACSSC.1994.471413Cole, S., & Voytek, B. (2019). Cycle-by-cycle analysis of neural oscillations [PMID: 31268801]. Journal of
Neurophysiology, 122(2), 849–861. https://doi.org/10.1152/jn.00273.2019Das, A., & Ray, S. (2018). Effect of stimulus contrast and visual attention on spike-gamma phase relationshipin macaque primary visual cortex. Frontiers in Computational Neuroscience, 12, 66.Durka, P., Ircha, D., & Blinowska, K. (2001). Stochastic time-frequency dictionaries for matching pursuit.
IEEE Transactions on Signal Processing, 49(3), 507–510. https://doi.org/10.1109/78.905866Feingold, J., & et al. (2015). Bursts of beta oscillation differentiate postperformance activity in the striatumand motor cortex of monkeys performing movement tasks. Proceedings of the National Academy
of Sciences, 112, 13687–13692. https://doi.org/10.1073/pnas.1510249112Ferro, D., van Kempen, J., Boyd,M., Panzeri, S., & Thiele, A. (2021). Directed information exchange betweencortical layers in macaque v1 and v4 and its modulation by selective attention. Proceedings of the
National Academy of Sciences, 118(12), e2022097118. https://doi.org/10.1073/pnas.2022097118Fries, P. (2015). Rhythms for cognition: Communication through coherence. Neuron, 88, 220–235. https://doi.org/10.1016/j.neuron.2015.09.034Fries, P., Nikolić, D., & Singer, W. (2007). The gamma cycle. Trends in Neurosciences, 30, 309–316. https://doi.org/10.1016/j.tins.2007.05.005Gautham, B., & Ray, S. (2024). Simultaneously induced slow and fast gamma waves travel independentlyin primate primary visual cortex. bioRxiv. https://doi.org/10.1101/2024.11.06.622198Jarvis, M. R., & Mitra, P. P. (2001). Sampling properties of the spectrum and coherency of sequences of ac-tion potentials.Neural Computation, 13(4), 717–749. https://doi.org/10.1162/089976601300014312Jia, X., Xing, D., & Kohn, A. (2013). No consistent relationship between gamma power and peak frequencyin macaque primary visual cortex. Journal of Neuroscience: The Official Journal of the Society for
Neuroscience, 33(1), 17–25.Krishnakumaran, R., & Ray, S. (2023). Temporal characteristics of gamma rhythm constrain properties ofnoise in an inhibition-stabilized network model. Cerebral Cortex, 33(18), 10108–10121. https://doi.org/10.1093/cercor/bhad270Kühn, A., Williams, D., Kupsch, A., Limousin, P., Hariz, M., Schneider, G.-H., Yarrow, K., & Brown, P. (2004).Event-related beta desynchronization in human subthalamic nucleus correlates with motor per-formance. Brain : a journal of neurology, 127, 735–46. https://doi.org/10.1093/brain/awh106Liu, Y., Nour, M. M., Schuck, N. W., et al. (2022). Decoding cognition from spontaneous neural activity.
Nature Reviews Neuroscience, 23, 204–214. https://doi.org/10.1038/s41583-022-00570-zLundqvist, M. (2016). Gamma and beta bursts underlie working memory. Neuron, 90, 152–164. https://doi.org/10.1016/j.neuron.2016.02.028Mallat, S. G., & Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on
Signal Processing, 41(12), 3397–3415. https://doi.org/10.1109/78.258082Mcfarland, D.,Miner, L., Vaughan, T., &Wolpaw, J. (2000).Mu and beta rhythm topographies duringmotorimagery and actual movements. Brain topography, 12, 177–86. https : / / doi . org / 10 . 1023 / A :1023437823106Moca, V., Bârzan, H., Nagy-Dăbâcan, A., & Mures,an, R. (2021). Time-frequency super-resolution with su-perlets. Nature Communications, 12. https://doi.org/10.1038/s41467-020-20539-9Murty, D., Shirhatti, V., Ravishankar, P., & Ray, S. (2018). Large visual stimuli induce two distinct gammaoscillations in primate visual cortex. Journal of Neuroscience: The Official Journal of the Society for
Neuroscience, 38(11), 2730–2744. https://doi.org/10.1523/JNEUROSCI.2270-17.2018Neymotin, S. A., Tal, I., Barczak, A., O’Connell, M. N., McGinnis, T., Markowitz, N., Espinal, E., Griffith, E.,Anwar, H., Dura-Bernal, S., Schroeder, C. E., Lytton, W. W., Jones, S. R., Bickel, S., & Lakatos, P.(2022). Detecting spontaneous neural oscillation events in primate auditory cortex. eNeuro, 9(4).https://doi.org/10.1523/ENEURO.0281-21.2022

18

https://doi.org/10.1101/369116
https://doi.org/10.1016/j.neuron.2010.03.013
https://doi.org/https://doi.org/10.1016/j.neuron.2017.11.033
https://doi.org/10.1109/ACSSC.1994.471413
https://doi.org/10.1152/jn.00273.2019
https://doi.org/10.1109/78.905866
https://doi.org/10.1073/pnas.1510249112
https://doi.org/10.1073/pnas.2022097118
https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.1016/j.tins.2007.05.005
https://doi.org/10.1016/j.tins.2007.05.005
https://doi.org/10.1101/2024.11.06.622198
https://doi.org/10.1162/089976601300014312
https://doi.org/10.1093/cercor/bhad270
https://doi.org/10.1093/cercor/bhad270
https://doi.org/10.1093/brain/awh106
https://doi.org/10.1038/s41583-022-00570-z
https://doi.org/10.1016/j.neuron.2016.02.028
https://doi.org/10.1016/j.neuron.2016.02.028
https://doi.org/10.1109/78.258082
https://doi.org/10.1023/A:1023437823106
https://doi.org/10.1023/A:1023437823106
https://doi.org/10.1038/s41467-020-20539-9
https://doi.org/10.1523/JNEUROSCI.2270-17.2018
https://doi.org/10.1523/ENEURO.0281-21.2022


Palmigiano, A., Geisel, T., Wolf, F., et al. (2017). Flexible information routing by transient synchrony. Nature
Neuroscience, 20, 1014–1022. https://doi.org/10.1038/nn.4569Pati, Y. C., Rezaiifar, R., & Krishnaprasad, P. S. (1993). Orthogonal matching pursuit: Recursive function ap-proximation with applications to wavelet decomposition. Signal Processing, 40(1), 9–27. https ://doi.org/10.1016/0165-1684(93)90079-7Power, L., Allain, C., Moreau, T., Gramfort, A., & Bardouille, T. (2023). Using convolutional dictionary learn-ing to detect task-related neuromagnetic transients and ageing trends in a large open-accessdataset. NeuroImage, 267, 119809. https : / /doi .org /https : / /doi .org / 10. 1016/ j .neuroimage .2022.119809Prabhu, P., & Ray, S. (2024). Slow and fast gamma oscillations show phase-amplitude coupling with distincthigh-frequency bands in macaque primary visual cortex. bioRxiv. https://doi.org/10.1101/2024.11.20.624422Quinn, A., Lopes dos Santos, V., Huang, N., Liang, W.-K., Juan, C.-H., Yeh, J.-R., Nobre, A., Dupret, D., &Woolrich, M. (2021). Within-cycle instantaneous frequency profiles report oscillatory waveformdynamics. Journal of Neurophysiology, 126. https://doi.org/10.1152/jn.00201.2021Ray, S., Hsiao, S. S., Crone, N. E., Franaszczuk, P. J., & Niebur, E. (2008). Effect of stimulus intensity on thespike–local field potential relationship in the secondary somatosensory cortex. Journal of Neuro-
science, 28(29), 7334–7343. https://doi.org/10.1523/JNEUROSCI.1588-08.2008Ray, S., &Maunsell, J. H. R. (2011). Network rhythms influence the relationship between spike-triggered lo-cal field potential and functional connectivity. Journal of Neuroscience, 31(35), 12674–12682. https://doi.org/10.1523/JNEUROSCI.1856-11.2011Ray, S., & Maunsell, J. H. (2015). Do gamma oscillations play a role in cerebral cortex? Trends in Cognitive
Sciences, 19(2), 78–85. https://doi.org/10.1016/j.tics.2014.12.002Rols, G., Tallon-Baudry, C., Girard, P., Bertrand, O., & Bullier, J. (2001). Cortical mapping of gamma oscil-lations in areas v1 and v4 of the macaque monkey. Visual Neuroscience, 18(4), 527–540. https ://doi.org/10.1017/s0952523801184038Roux, S. G., Cenier, T., Garcia, S., Litaudon, P., &Buonviso, N. (2007). Awavelet-basedmethod for local phaseextraction fromamulti-frequency oscillatory signal. Journal of NeuroscienceMethods, 160(1), 135–143. https://doi.org/10.1016/j.jneumeth.2006.09.001Subhash, C. K., Seelamantula, C. S., & Ray, S. (2018). Duration analysis using matching pursuit algorithmreveals longer bouts of gamma rhythm. Journal of Neurophysiology, 119(3), 808–821. https://doi.org/10.1152/jn.00154.2017Swann, N., Cai, W., Conner, C., Pieters, T., Claffey, M., George, J., Aron, A., & Tandon, N. (2012). Roles forthe pre-supplementary motor area and the right inferior frontal gyrus in stopping action: Elec-trophysiological responses and functional and structural connectivity. NeuroImage, 59, 2860–70.https://doi.org/10.1016/j.neuroimage.2011.09.049Swann, N., Poizner, H., Houser,M., Gould, S., Greenhouse, I., Cai,W., Strunk, J., George, J., & Aron, A. (2011).Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibitionin the beta frequency band: A scalp eeg study in parkinson’s disease. The Journal of neuroscience :
the official journal of the Society for Neuroscience, 31, 5721–9. https://doi.org/10.1523/JNEUROSCI.6135-10.2011Swann, N., Tandon, N., Canolty, R., Ellmore, T.M.,McEvoy, L. K., Dreyer, S., DiSano,M., & Aron, A. R. (2009).Intracranial eeg reveals a time- and frequency-specific role for the right inferior frontal gyrus andprimary motor cortex in stopping initiated responses. Journal of Neuroscience, 29(40), 12675–12685. https://doi.org/10.1523/JNEUROSCI.3359-09.2009Szul, M., Papadopoulos, S., Alavizadeh, S., Daligaut, S., Schwartz, D., Mattout, J., & Bonaiuto, J. (2023).Diverse beta burst waveform motifs characterize movement-related cortical dynamics. Progress
in neurobiology, 228, 102490. https://doi.org/10.1016/j.pneurobio.2023.102490van Ede, F., Quinn, A., Woolrich, M., & Nobre, A. (2018). Neural oscillations: Sustained rhythms or transientburst-events? Trends in Neurosciences, 41(7), 415–417. https://doi.org/10.1016/j.tins.2018.04.004Veit, J., Hakim, R., Jadi, M., et al. (2017). Cortical gamma band synchronization through somatostatin in-terneurons. Nature Neuroscience, 20, 951–959. https://doi.org/10.1038/nn.4562Veit, J., Handy, G., Mossing, D. P., Doiron, B., & Adesnik, H. (2023). Cortical vip neurons locally controlthe gain but globally control the coherence of gamma band rhythms. Neuron, 111(3), 405–417.e5.https://doi.org/10.1016/j.neuron.2022.10.036Vinck, M., Womelsdorf, T., Buffalo, E. A., Desimone, R., & Fries, P. (2013). Attentional modulation of cell-class-specific gamma-band synchronization in awake monkey area v4. Neuron, 80(4), 1077–1089.https://doi.org/10.1016/j.neuron.2013.08.019

19

https://doi.org/10.1038/nn.4569
https://doi.org/10.1016/0165-1684(93)90079-7
https://doi.org/10.1016/0165-1684(93)90079-7
https://doi.org/https://doi.org/10.1016/j.neuroimage.2022.119809
https://doi.org/https://doi.org/10.1016/j.neuroimage.2022.119809
https://doi.org/10.1101/2024.11.20.624422
https://doi.org/10.1101/2024.11.20.624422
https://doi.org/10.1152/jn.00201.2021
https://doi.org/10.1523/JNEUROSCI.1588-08.2008
https://doi.org/10.1523/JNEUROSCI.1856-11.2011
https://doi.org/10.1523/JNEUROSCI.1856-11.2011
https://doi.org/10.1016/j.tics.2014.12.002
https://doi.org/10.1017/s0952523801184038
https://doi.org/10.1017/s0952523801184038
https://doi.org/10.1016/j.jneumeth.2006.09.001
https://doi.org/10.1152/jn.00154.2017
https://doi.org/10.1152/jn.00154.2017
https://doi.org/10.1016/j.neuroimage.2011.09.049
https://doi.org/10.1523/JNEUROSCI.6135-10.2011
https://doi.org/10.1523/JNEUROSCI.6135-10.2011
https://doi.org/10.1523/JNEUROSCI.3359-09.2009
https://doi.org/10.1016/j.pneurobio.2023.102490
https://doi.org/10.1016/j.tins.2018.04.004
https://doi.org/10.1038/nn.4562
https://doi.org/10.1016/j.neuron.2022.10.036
https://doi.org/10.1016/j.neuron.2013.08.019


Wagatsuma, N., Nobukawa, S., & Fukai, T. (2022). A microcircuit model involving parvalbumin, somato-statin, and vasoactive intestinal polypeptide inhibitory interneurons for the modulation of neu-ronal oscillation during visual processing. Cerebral Cortex, 33(8), 4459–4477. https://doi.org/10.1093/cercor/bhac355Wessel, J. R. (2020). Beta-bursts reveal the trial-to-trial dynamics of movement initiation and cancellation.
Journal of Neuroscience, 40(2), 411–423. https://doi.org/10.1523/JNEUROSCI.1887-19.2019Wessel, J. R., Ghahremani, A., Udupa, K., Saha, U., Kalia, S. K., Hodaie,M., Lozano, A.M., Aron, A. R., & Chen,R. (2016). Stop-related subthalamic beta activity indexes global motor suppression in parkinson’sdisease.Movement Disorders, 31(12), 1846–1853. https://doi.org/10.1002/mds.26732Xing, D., Shen, Y., Burns, S., Yeh, C.-I., Shapley, R., & Li, W. (2012). Stochastic generation of gamma-bandactivity in primary visual cortex of awake and anesthetized monkeys. Journal of Neuroscience:
The Official Journal of the Society for Neuroscience, 32, 13873–13880. https://doi.org/10.1523/JNEUROSCI.5644-11.2012

A Appendix: Toolbox functions
1. Omp_v1

Implements the OMP algorithm. Required inputs: input signal (analogData), time values (timeVals),dictionary size (N1), and maximum number of iterations (itermax). Outputs: an array containingGabor atom parameters (batoms), metadata about the signal and algorithm (header), signal recon-structed using the detected atoms (YFIT).
2. Omp_gear

Implements the OMP-GEAR algorithm. Required inputs: input signal (signal), dictionary size (dict-Size), sampling rate (sRate), maximum number of iterations (itermax). Outputs: an array containingGabor atom parameters (batoms), metadata about the signal and algorithm (header), signal recon-structed using the detected atoms (YFIT).
3. reassign_gear

Implements the GEAR reassignment function. Required inputs: initial Gabor atom parameters foundbyOMP (params_in), residual signal after the previous iteration ofOMP (R), and sampling rate (sRate).Output: refined parameters (params_out).
4. Omp_mage

Implements the OMP-MAGE algorithm. Required inputs: input signal (signal), dictionary size (dict-Size), sampling rate (sRate), maximum number of iterations (itermax). Outputs: an array containingGabor atom parameters (batoms), metadata about the signal and algorithm (header), signal recon-structed using the detected atoms (YFIT).
5. mageAtom_real and mageAtom_real

Used for separating the real and imaginary parts of the Gabor atom defined by (10). Required inputs:time (t), frequency (v), scale (s), phase, sampling rate (sRate), and output signal length (L).
6. makeDictionary_mage

Generates a dictionary of Gabor atoms defined by (10). Required inputs: dictionary size (dictSize),sampling rate (sRate); input signal (signal) used to determine the length of the dictionary atoms.
7. getStochasticDictionary_all

Wrapper function to perform signal decomposition using any of the four algorithms: MP, OMP, OMP-MAGE, and OMP-GEAR. Inputs: a matrix whose rows contain the signals corresponding to each trial(data), a vector representing time values (timeVals), the maximum number of iterations to be usedfor the decomposition (maxIteration), and the size of the dictionary(dictionarySize). An adaptivedictionary parameter is only used by MP algorithm (adaptiveDictionaryParam). The algorithm to beused is specified using the parameter (algName). For example, for OMP, algName = “OMP”. Out-puts: a matrix containing the extracted Gabor atoms parameters (gaborInfo) and amatrix containingmetadata (header).
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8. getBurstLength_all
The function extracts features such as burst length, burst frequencies, burst time from the given data.Required inputs: amatrix whose rows contain the time series corresponding to the signal recorded ineach trial (analogData), a vector representing time values atwhich the signalwas recorded (timeVals),threshold fraction (thresholdFactor), stimulus period (stimulusPeriodS), baseline period (baselinePe-riodS), burst frequency range (burstFreqRangeHz), maximum number of iterations (maxIteration),dictionary size (dictionarySize), and the algorithm to be used (algName). Outputs: arrays containingburst duration estimated (lengthList), frequencies of the detected atoms (freqList), and burst timecentres (timeList), a matrix containing parameters of detected atoms (gaborInfo), and a matrix con-taining metadata (header).

9. testPerformanceSynthData_all

Evaluates the performance of various burst detection algorithms on synthetic data. Inputs: A list con-taining threshold fractions used to compare algorithms (thresholdFractionList), the electrode num-ber from which spontaneous LFP data is recorded (electrodeNum), mean number of bursts to beinjected (numMeanBursts), dictionary size to be used (dictionarySize), algorithms to be compared(algNames). For example, algNames = [“MP” “OMP-MAGE” “HILBERT”].
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