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Abstract—This paper addresses the high overheads associated
with intelligent reflecting surface (IRS) aided wireless systems.
By exploiting the inherent spatial correlation among the IRS
elements, we propose a novel approach that randomly samples
the IRS phase configurations from a carefully designed dis-
tribution and opportunistically schedules the user equipments
(UEs) for data transmission. The key idea is that when IRS
configuration is randomly chosen from a channel statistics-aware
distribution, it will be near-optimal for at least one UE, and upon
opportunistically scheduling that UE, we can obtain nearly all
the benefits from the IRS without explicitly optimizing it. We
formulate and solve a variational functional problem to derive the
optimal phase sampling distribution. We show that, when the IRS
phase configuration is drawn from the optimized distribution,
it is sufficient for the number of UEs to scale exponentially
with the rank of the channel covariance matrix, not with the
number of IRS elements, to achieve a given target SNR with
high probability. Our numerical studies reveal that even with
a moderate number of UEs, the opportunistic scheme achieves
near-optimal performance without incurring the conventional
IRS-related signaling overheads and complexities.

Index Terms—Intelligent reflecting surfaces (IRS), spatial cor-
relation, opportunistic scheduling, multi-user diversity.

I. INTRODUCTION

An intelligent reflecting surface (IRS) comprises multiple
passive elements that can be independently configured

to reflect signals in required directions, thereby controlling
the overall channel and improving the spectral efficiency (SE)
of next-generation wireless systems [1]. However, optimally
configuring the IRS entails three-fold control overheads: 1)
acquisition of channel state information (CSI), 2) optimization
of IRS phase angles, and 3) phase transportation from the base
station (BS) to the IRS via control links. These overheads
can easily undermine the professed benefits of an IRS when
the number of IRS elements is large. This paper overcomes
this bottleneck by leveraging a spatial correlation-aware oppor-
tunistic beamforming framework that reaps optimal IRS gains
without optimization/three-fold overheads, as described above.

In the pursuit of reducing the complexity while maximizing
the IRS-aided performance, [2] leverages correlation among
different user equipments (UEs) to minimize the pilot over-
heads, and [3] proposed to use only the partial CSI of the
channel. In [4], a blind BF approach without CSI estimation
is proposed; however, it suffers from high time complexity.
In this view, [5] and [6] utilize opportunistic scheduling tech-
niques to mitigate both time and computational complexity.
However, they consider independent fading channels and need
a very large number of UEs to achieve optimal gains.
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In this paper, we progress upon this problem by exploiting
the inherent spatial correlation at the IRS and show that the
performance of the opportunistic scheme can be significantly
improved even with a small number of UEs at very low time
and computational complexities. Our key contributions are:
1) We pose and solve a variational functional problem to ob-

tain the optimal sampling distribution for the random IRS
phases, as a function of the channel statistics. (Sec. IV-C.)

2) We show that, when the derived spatial-correlation-aware
distribution is used, it is sufficient for the number of UEs
to scale exponentially in the rank of the channel covariance
matrix, to obtain near-optimal SNR in every slot. (Sec. V.)

3) In the process, we derive the tail probability of the Rayleigh
quotient of a heteroscedastic complex Gaussian random
vector, which may be of independent interest. (Lemma 3.)

We empirically illustrate the efficacy of the opportunistic
scheme when the IRS phase is randomly sampled from the
optimal distribution. For example, with N = 32 IRS elements,
the sum-SE is only 0.7 bps/Hz (5%) away from that achieved
via IRS optimization with just K = 25 UEs (see Fig. 2a).

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

We consider an N -element IRS-aided downlink scenario
where a BS serves K UEs in a time-division multiple-access
fashion. Let the small-scale channel from the BS to IRS be
h1∈CN, and from IRS to UE-k be h2,k∈CN. Since the BS
and IRS are envisioned to be deployed at fixed positions, we
model h1 as a deterministic vector, with entries [7]

[h1]n = exp (j2πdn/λ) , n = 1, 2, . . . N, (1)

where dn is the distance between the BS antenna and nth IRS
element. The channel from IRS to UE can be random; so, we
model h2,k ∼ CN (0,Σk), where Σk is the spatial correlation
matrix at the IRS for UE-k. The overall channel at UE-k is

hk =
√
βd,khd,k +

√
βr,kh

T
2,kΘ̃h1,

where hd,k ∼ CN (0, 1) is the direct channel from BS to UE-
k, Θ̃ ∈ CN×N is a diagonal matrix containing the IRS phase
shifts, and βd,k, βr,k denote the path loss of the direct path
and cascaded path via the IRS, respectively. We now write

hk =
√
βd,khd,k +

√
βr,k θ̃

T
(h2,k ⊙ h1) ≜ θHhf,k, (2)

where ⊙ is the hadamard product, θ≜
[
1, θ̃

∗T ]T
∈CN+1 is the

effective IRS vector and θ̃∈CN has the diagonal elements of
Θ̃, and hf,k ≜ [

√
βd,khd,k,

√
βr,kh

T
r,k]

T is the fading vector
with hr,k≜h2,k⊙ h1. The system is illustrated in Fig. 1.

Let P , σ2 be the transmit and noise power, respectively.
Configuring the IRS to UE-k with the SE-optimal phase:

θopt = argmax
θ

log2

(
1 + |θHhf,k|2P/σ2

)
, (P1)

s.t. [θ]1 = 1, |[θ]n| = 1, n = 2, . . . , N + 1, (C1-1)
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Fig. 1: System model for one UE.

incurs inordinate overheads (see Sec. III.) So, we answer:
1) Can we leverage the spatial correlation to randomly config-

ure θ (without determining θopt), opportunistically sched-
ule the best UE, and thereby obtain benefits from the IRS?

2) For the above scheme, what is the probability that a random
IRS phase procures a target near-optimal SE as in (P1)?

To this end, we first analyze the benchmark SE obtained under
IRS optimization with round-robin (RR) scheduling of UEs.

III. THE BENCHMARK: SUM-SE VIA IRS OPTIMIZATION

Under RR scheduling, the BS sequentially schedules UEs
using a pre-defined ordering. Considering that the IRS is
configured as per (P1) in every time slot, the achievable beam-
forming (BF) sum-SE is characterized in the following [6].
Lemma 1. With K-UEs, under RR scheduling, the BF sum-
SE obtained when the BS optimizes the IRS to the channel of
the scheduled UE in every time slot is given by Ropt

K =

1

K

K∑
k=1

log2

1 +

∣∣∣∣∣√βd,k |hd,k|+
√

βr,k

N∑
n=1

|[hr,k]n|

∣∣∣∣∣
2

P

σ2

 ,

and is achieved with the optimal IRS configurations given by

[θopt]n=exp
{
j (∠[hr,k]n−1−∠hd,k)

}
, n = 2, . . . , N+1. (3)

Remark 1. Achieving Ropt
K as in Lemma 1 incurs compu-

tationally expensive three-fold overheads in every time slot:

1) Channel estimation: The BS acquires the CSI of all the
links; this potentially requires O(N) pilot transmissions.

2) Phase optimization: The BS must optimize the IRS to
achieve the best SE during data transmission.

3) Phase transportation: The BS transports the optimal phase
of each IRS element to the IRS controller via an error-free
control link, and its overhead scales as O(N).

IV. SPATIAL CORRELATION-AWARE OPPORTUNISTIC BF
A. The Proportional-fair Scheduler

In each slot, the PF scheduler selects a UE with the
highest instantaneous-to-average SE ratio [8], thereby oppor-
tunistically enhancing throughput via the multi-user diversity
effect while ensuring fairness in UE scheduling. Let Rk(t)≜
log2(1+|hk(t)|2P/σ2) be the achievable SE of UE-k at time
t. The PF scheduler selects the k∗(t)th UE, where

k∗(t) = argmaxk∈{1,...,K} Rk(t)/Tk(t),

where Tk(t) is the exponentially weighted moving average
(EWMA) SE seen by UE-k till time t, which is parameterized
by the EWMA factor τ [8]. Smaller (larger) values of τ favor
short (long)-term fairness in UE scheduling. We will refer to
Rk(t)/Tk(t) as the PF metric of UE-k at time t.

B. Opportunistic Communication using an IRS

The proposed opportunistic communication (OC) scheme
has two steps per slot: 1) the IRS configuration is randomly
chosen from an appropriate sampling distribution, and 2) the
BS opportunistically selects a UE using the PF scheduler. In
this view, we next state a lemma, proved similar to [8].

Lemma 2. In a K-UE system, using a PF scheduler with
τ →∞, when the IRS configurations are randomly sampled
from a spatial correlation-aware distribution, the sum-SE of
the IRS-aided OC scheme, denoted by Ropp

K obeys

lim
K→∞

(
Ropp

K −Ropt
K

)
= 0,

where Ropt
K is the optimal sum-SE as given in Lemma 1.

From Lemma 2, we deduce that with a large number of
UEs, the PF scheduler selects the UE for which the random
IRS phase is close to its BF configuration and procures the
BF benefits without explicitly optimizing the IRS [8]. This
is called opportunistic beamforming. We next characterize the
IRS phase sampling distribution that satisfies Lemma 2 from a
variational perspective, which is one of our key contributions.

C. Optimal Distribution for Sampling the Random IRS Phases

We observe that the optimal IRS vector in (3) is obtained
as the deterministic map F : CN+1−→{1}×UN , given by

F : hf,k 7−→
[
1,
(
exp
{
j (∠hr,k − ∠hd,k)

})T]T
, (4)

where UN ≜
{
z ∈ CN

∣∣∣|zi| = 1, i = 1, . . . , N
}

. As a conse-
quence, the design of the random distribution is coupled with
the statistics of the channels to the UEs. We can write the
small-scale channel between the IRS and UE-k as

h2,k = Σ
1/2
k h̃2,k

(a)
≈ Σ1/2h̃2,k, (5)

where h̃2,k ∼ CN (0, IM ), M = rank(Σ), Σ1/2
k contains the

first M columns of a square root of Σk, and in (a), we used
Σk = Σ, ∀k. This corresponds to a Kronecker channel model
where the correlation is induced by local spatial scattering at
the IRS elements or a scenario where many UEs are located
in a hotspot area [5], [9].1 Since R(Σ1/2) = R(Σ), where
R(A) is the range space of A, from (5), we get h2,k ∈ R(Σ).
Thus, h2,k lies in an M -dimensional subspace of CN . Let
Σ = UΛUH be the spectral decomposition of Σ; Λ contains
the non-zero eigenvalues of Σ. Then, for every h2,k ∈ R(Σ),
by the Karhunen–Loève Theorem, there exists {αk,i}Mi=1 s.t.

h2,k =
∑M

i=1
αk,iui, and αk,i = ⟨h2,k,ui⟩, (6)

with ui being the ith orthonormal eigenvector of Σ. Hence, the
channel at each UE is uniquely determined by the UE-specific
coefficients {αk,i}Mi=1 along with the basis vectors {ui}Mi=1.

Conversely, with a large number of UEs, for any given
{αk,i ∈ C}Mi=1, there exists a UE whose channel corresponds
to the chosen coefficients via (6). Since h2,k is a Gaussian

1To serve UEs with different covariance matrices at the IRS, we first cluster
UEs sharing similar covariance matrices as in [10]. Then, we select a cluster
in an RR manner, and within the slots allocated for the selected cluster, a UE
is served via the opportunistic BF scheme considered in this paper.
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Scheme 1: Spatial Correlation-aware Opportunistic BF
Input: Correlation values: U, Σα; BS-IRS link: h1.

1 for time slot t = 1, 2, 3, . . . do
/* Random sampling of IRS configurations */

2 Sample the random vectorβ ∼ CN (0,Σα).

3 Set θrand = F
([

1, (h1 ⊙Uβ)
T
]T)

, as per (4).

/* Towards identifying the best UE */

4 BS broadcasts a common pilot signal to every UE.
5 All UEs compute their PF metrics & feedback

their identities to BS using timer schemes [11].
/* Proportional-fair scheduling of UEs */

6 The BS identifies and schedules UE-k∗(t) for data
transmission with k∗(t) = argmax

k∈{1,...,K}
Rk(t)/Tk(t).

vector, αk,i ∼ CN (0, [Σα]i,i), with [Σα]i,i = E[|uH
i h2,k|2] =

uH
i Σui, i.e., Σα=UHΣU=Λ. We have the following result.

Theorem 1. The probability density function for drawing the
random samples of the IRS vector in every time slot to ensure
that a PF scheduler achieves the BF-SE as in Lemma 2 is

fopt
θ (θ′) =

∫
F−1(θ′)

δ
(
h−F−1(θ′)

)
phf

(h)dh,

where F−1(θ′) denotes the set-inverse under the F(·) map-
ping, i.e., F−1(θ′) ≜ {h ∈ CN+1 : F(h) = θ′}, and phf

(h)

is the probability density function of hf =
[
hd, (h1 ⊙ h2)

T
]T

with hd ∼ CN (0, 1), h1 as given in (1), and h2 ∼ CN (0,Σ).

Proof. Suppose the IRS-UEs channel process is jointly sta-
tionary and ergodic. With PF scheduling, the optimal sampling
distribution at the IRS so that a scheduled UE obtains the BF-
SE as K→∞ is the solution to the variational problem:

argmaxfθ(θ′)R̄ ≜Eθ,hf,k

[
log2

(
1+|θ′Hhf,k|2P/σ2

)]
, (P2)

s.t.

∫
θ′∈UN∪{1}

fθ(θ
′)dθ′ = 1, (C2-1)

and

∫
[θ′]2

. . .

∫
[θ′]N+1

fθ(θ
′)dθ′ = δ([θ′]1 − 1), (C2-2)

where in (P2), we seek to maximize the achievable throughput
with expectation taken over the joint distribution of the UEs,
and (C2-1), (C2-2) account for the constraints of a density
function and the structure of θ′ as per (2), respectively. We
begin by solving the unconstrained version of (P2) and then
assess its feasibility under (C2-1), (C2-2). So, the problem is

max
fθ(θ′)

Ehf,k

[
Eθ|hf,k

[
log2

(
1 +

∣∣∣θ′Hhf,k

∣∣∣2 P

σ2

) ∣∣∣hf,k

]]
(a)
= max

gθ(θ′)

∫
h

(∫
θ′
log2

(
1+
∣∣∣θ′Hhf,k

∣∣∣2 P
σ2

)
gθ(θ

′)dθ′
)
phf

(h)dh,

where in (a), gθ(θ′) ≡ gθ|hf
(θ′) is the conditional density

function of the IRS configurations given the channel realiza-
tion. It is related to fθ(θ′) via the law of total probability:

fθ(θ
′) =

∫
h

gθ(θ
′)phf

(h)dh. (7)

Then, an equivalent functional optimization problem is

I ≜ max
gθ(θ′)

∫
θ′
log2

(
1 + |θ′Hhf,k|2P/σ2

)
gθ(θ

′)dθ′. (8)

Using the Hölder inequality: |θ′Hhf,k| ≤ ∥hf,k∥1∥θ′∥∞
along with the fact that ∥θ′∥∞ = 1, we upper bound (8) as

I ≤ IU ≜ log2

(
1+∥hf,k∥21 P/σ

2
)
max
gθ(θ′)

∫
θ′
gθ(θ

′)dθ′︸ ︷︷ ︸
=1

.

From Lemma 2, since the PF scheduler achieves the BF-SE,
gθ(θ

′) must satisfy the following lower bound:

I ≥ IL≜ max
gθ(θ′)

∫
θ′
log2

(
1+
{
∥hf,k∥21+o(K)

} P

σ2

)
gθ(θ

′)dθ′.

Now, letting K → ∞ and using the sandwich theorem,
limK→∞ I = IL = IU, and the upper bound is achieved if
and only if θ′=F (hf,k). So, the optimal conditional density
for a given channel at scheduled UE-k is

goptθ (θ′) = δ
(
θ′ −F(hf,k)

)
. (9)

Substituting (9) in (7), we get

fopt
θ (θ′)

(b)
=

∫
h

δ
(
θ′ −F(h)

)
phf

(h)dh

(c)
=

∫
F−1(θ′)

δ
(
h−F−1(θ′)

)
phf

(h)dh, (10)

where, in (b), we dropped the index k from (9) as F(hf,k) are
i.i.d. across k ∈ [K] ≜ {1, . . . ,K}; and in (c), we used the
definition F−1(·) and the sifting property of the Dirac-delta
function. By construction, since fopt

θ (·) in (10) is a valid prob-
ability density function obtained via the F(·) mapping, (C2-1)
and (C2-2) are trivially satisfied. This completes the proof. ■

Remark 2. The IRS-aided OC scheme achieves the BF-SE
without incurring the overheads discussed in Remark 1:
1) The OC scheme requires just one pilot symbol, as the UEs

only need to estimate the composite channel.
2) No phase optimization: The phase optimization procedure

is absent since the IRS phases are randomly chosen.
3) No phase transportation: The IRS autonomously samples

a random phase configuration in every slot, so phase
transportation is obviated.

Further, to help the BS identify the best UE that yields
the highest PF metric, efficient and low-complexity feedback
schemes like timer/splitting-based methods can be used [11].

Using Theorem 1, we present the overall protocol of spatial-
correlation-aware OC in Scheme 1 on top of this page.2

V. HOW MANY USERS ARE SUFFICIENT IN PRACTICE?
We now consider the success rate of scheme 1 for a practical

system with a finite number of UEs. Let Eδ
k denote the (1 −

δ)N2-success event that the channel gain at UE-k is at least
a (1− δ) factor of the BF gain obtained via the IRS, i.e.,

Eδ
k ≜

{
|θHhf,k|2 ≥ (1− δ) ∥hf,k∥21

}
, δ ∈ (0, 1). (11)

2We absorb the overall phase in the F -mapped channel vectors due to the
angle of the direct channel into the randomness in the angle of the cascaded
channel. So, the 1st entry in the input to F -map in line 3 equals 1. We also
assume that the spatial correlation matrix Σ is known, as in [2], [10].
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In the sequel, we evaluate the probability of Eδ
k . To that

end, we require a characterization of the Rayleigh quotient
of heteroscedastic Gaussian random vectors, discussed next.

Lemma 3. Let A ∈ CL×L be a Hermitian rank-1 matrix, and
α ∈ R be such that 0 < α < ∥A∥F . If x ∈ CL ∼ CN (0,R)
and R has full rank, the Rayleigh quotient of A w.r.t. x obeys

Pr

(
xHAx

xHx
≥α

)
≥

L∏
l=1

(
1

/{
1 +

α

(∥A∥F − α)
· λx,l

λx,L

})
,

where λx,1 ≥ . . . ≥ λx,L are the ordered eigenvalues of R.

Proof. We note that the required probability can be written as

Pα ≜ Pr
(
xHAx ≥ αxHx

)
= Pr

(
xH (A− αIL)x ≥ 0

)
.

Let B ≜ A − αIL; B is a full-rank, Hermitian matrix. Its
spectral decomposition can be written as B = VΓVH . Then

Pα
(a)
= Pr

(
x̃HΓx̃ ≥ 0

) (b)
= Pr

(∑L

l=1
γl |[x̃]l|2 ≥ 0

)
,

where in (a), x̃ ≜ VHx ∼ CN (0,VHRV); in (b), γl is the
lth largest eigenvalue of B. Since A has rank 1, A = aaH for
some a ∈ CL. Then, the eigenvalues of B are γ1 = ∥a∥22−α >
0, and γ2 = γ3 . . . = γL = −α < 0. Using this, we have

Pα = Pr

(
|[x̃]1|2 ≥ α

∥a∥22 − α

L∑
l=2

|[x̃]l|2
)

= E{[x̃]l}L
l=2

[
Pr

(
|[x̃]1|2≥

α

∥a∥22−α

L∑
l=2

|[x̃]l|2
∣∣∣∣∣[x̃]2, . . . , [x̃]L

)]
.

Now, we decompose x = R1/2x′, where R1/2 ∈ CL×L is a
square root of R, and x′ ∼ CN (0, IL). In particular, we can
write R1/2 = UxΛ

1/2
x so that x̃ = WHΛ1/2

x x′, where W ≜
UH

x V = [w1, . . . ,wL] ∈ CL×L is a unitary matrix. We then
have [x̃]1 ∼ CN (0,

∑L
l=1 λx,l|[w1]l|2). Since ∥A∥F = ∥a∥22,

and
∑L

l=1 λx,l|[w1]l|2 ≥ λx,L, we can lower bound Pα as

Pα ≥ E[x̃]2,...,[x̃]L

[
e
−
(
α
/
((∥A∥F−α)λx,L)

) L∑
l=2

|[x̃]l|2]
. (12)

Define x̃(1) ≜ [[x̃]2, . . . , [x̃]L]
T , W(1) ≜ [w2, . . . ,wL]. Then,

L∑
l=2

|[x̃]l|2=
∥∥x̃(1)

∥∥2
2
=x′HΛ1/2

x W(1)W
H
(1)Λ

1/2
x x′

(c)

≤
∥∥∥Λ1/2

x x′
∥∥∥2
2
,

where in (c), we first noted that W(1)W
H
(1) is an orthogonal

projector with eigenvalues either 0 or 1 and then used the
Rayleigh-Ritz Theorem. So, we further bound (12) as

Pα ≥ E[x′]2,...,[x′]L

[
e
−
(
α
/
((∥A∥F−α)λx,L)

) L∑
l=2

λx,l|[x′]l|2]
(d)

≥
∏L

l=1
E[x′]l

[
e
−
(
α
/
((∥A∥F−α)λx,L)

)
λx,l|[x′]l|2]

(e)
=
∏L

l=1

(
1

/{
1 +

α

(∥A∥F − α)
· λx,l

λx,L

})
,

where in (d), we used the independence of {[x′]l}Ll=1 and in-
cluded λx,1|[x′]1|2 term; in (e), we used the moment generating
function of the exponential random variables{[x′]l}, l∈ [L]. ■

We are now ready to state the main theorem of this section.

Theorem 2. The probability of the (1−δ)N2-success event at
a scheduled UE (as defined in (11)) using a PF scheduler over
K UEs, denoted by Psucc, with the spatial correlation-aware
random IRS configuration as in Theorem 1 is bounded as

Psucc ≥ 1−

(
1−

M∏
m=1

1

1 + 1−δ
δ · λm

λM

)K

, (13)

where M = rank(Σ) and λ1 ≥ . . . ≥ λM are the ordered
non-zero eigenvalues of the channel covariance matrix, Σ.

Proof. With a PF scheduler used over K UEs, the probability
of at least one UE witnessing the (1− δ)N2-success event is

Psucc = Pr
(
∪K
k=1Eδ

k

) (a)
= 1−

∏K

k=1

(
1− Pr

(
Eδ
k

))
, (14)

where (a) follows the independence of channels across UEs.
Let f ′ ≜h1⊙ f , where f =UΛ1/2f̃ with f̃ ∼CN (0, IM ). So,
θ = [1, ej∠[f ′]1 , . . . , ej∠[f ′]N ] is a candidate random IRS phase
vector as per Theorem 1. For simplicity, we ignore the BS-
UE direct path. Then, in (11), θ=[ej∠[f ′]1 , . . . , ej∠[f ′]N ], and
hf,k=

√
βr,k[[hr,k]1, . . . , [hr,k]N ]T . Now, we have Pr

(
Eδ
k

)
=

Pr

(∣∣∣∣∑N

n=1
e−j∠[f ′]n [hr,k]n

∣∣∣∣2 ≥ (1− δ)

∣∣∣∣∑N

n=1
|[hr,k]n|

∣∣∣∣2
)

= Pr

(∣∣∣∣∑N

n=1
e−j∠[f ]n [h2,k]n

∣∣∣∣2 ≥ (1− δ) ∥h2,k∥21

)
,

where we used the form of f ′ and |[h1]n| = 1. From the
decomposition h2,k = UΛ1/2h̃2,k, f = UΛ1/2f̃ , since the
channel and IRS vectors are generated using the same basis
U, and their distributions are invariant to left multiplication
by a unitary matrix, we let U = [e1, . . . , eM ] without loss in
generality, where em is mth column of IN . Thus, Pr

(
Eδ
k

)
=

Pr

(∣∣∣∣∑M

m=1
e−j∠[f̃ ]m

√
λm[h̃2,k]m

∣∣∣∣2≥ (1− δ)
∥∥∥Λ1/2h̃2,k

∥∥∥2
1

)

≥ Pr

(∣∣∣∣∑M

m=1

√
λm[h̃2,k]m

∣∣∣∣2 ≥ (1− δ)M
∥∥∥Λ1/2h̃2,k

∥∥∥2
2

)
,

where we dropped e−j∠[f̃ ]m because ∠[f̃ ]m is uniformly
distributed in [0, 2π) and independent of ∠[h̃]m, which does
not alter the distribution of [h̃]m. We also used the property:
∥x∥1 ≤

√
M∥x∥2. Now, the above can be rewritten as

Pr
(
Eδ
k

)
≥ Pr

(
ĥH
k Eĥk

/
(ĥH

k ĥk) ≥ (1− δ)M
)
,

where ĥk ≜ Λ1/2h̃2,k, and E ≜ 1M1H
M with 1M being an M -

length all ones vector. Note that ∥E∥F = M > (1−δ)M > 0,
and that E[ĥkĥ

H
k ] = Λ has full-rank. Then, using Lemma 3,

Pr
(
Eδ
k

)
≥
∏M

m=1

(
1
/{

1 +
1− δ

δ
· λm

λM

})
. (15)

Substituting (15) in (14), we get (13) as desired. ■
The following result is a consequence of Theorem 2.
Corollary 1. Let δ ∈ (0, 1). With Scheme 1, if K is at least

K∗ ≜ − log (1− Psucc)
∏M

m=1
1 +

[(
(1− δ)

/
δ
)(

λm

/
λM

)]
∼ O

(
−[log (1− Psucc)]/δ

M
)
, (16)

then, with probability Psucc, the channel gain using a randomly
configured IRS exhibits a (1−δ)N2 success in every time slot.
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(a) Sum-SE vs. K for different N at ρ = 0.9. (b) Sum-SE vs. K for different ρ at N = 16. (c) Success probability vs. M .

Fig. 2: Performance of spatial correlation-aware opportunistic beamforming in IRS-aided systems.

Corollary 1 shows that a sufficient number of the UEs for
(1 − δ)N2-success grows exponentially with the rank of the
channel covariance matrix and not with the number of IRS
elements. Thus, if the UE’s channel lies in a fixed-dimensional
subspace, the number of UEs needed to reap the benefits from
the IRS is fixed even if the number of IRS elements grows.

VI. NUMERICAL RESULTS

We numerically evaluate our results for a setup with the
BS at (0, 0) (in meters), an IRS at (1000, 1000), and up to
K = 1000 UEs distributed in [900, 1100] × [900, 1100]. The
path loss is β = C0(d/d0)

κ, with κ = 2, 2, 4 for the BS-IRS,
IRS-UE, and BS-UE links, respectively [12]. A PF scheduler
with τ = 5000 is used. The IRS covariance matrix is Σ =
Toeplitz

([
1, ρ, . . . , ρN−1

])
, where Toeplitz(x) is a hermitian

Toeplitz matrix with x as the 1st row, and ρ is the correlation
coefficient between adjacent elements. Since Σ is full-rank
when ρ ̸= 1, we use the effective rank [13] for Scheme 1.

In Fig. 2a, we plot the sum-SE vs. the number of UEs, K,
for N = 16 and 32, at ρ = 0.9. For both values of N , the sum-
SE with the spatial correlation-aware OC grows with K and
approaches the SE obtained by optimizing the IRS in every slot
using an RR scheduler. Thus, we leverage multi-user diversity
and achieve the BF sum-SE in Lemma 1 without incurring the
overheads of optimizing the IRS. We also compare the sum-
SE with the method in [5], [6], which samples the IRS phases
using an i.i.d. uniform distribution. While the SE improves
with K, it is much smaller than the BF-SE, underscoring the
importance of sampling IRS phases based on channel statistics.
Our scheme also outperforms a system without an IRS.

In Fig. 2b, we plot the sum-SE vs. K for N = 16 and
different correlation values ρ. For a fixed K, the gap between
the BF-SE and OC-SE decreases as ρ increases. This is
because the effective rank of the channel decreases with ρ,
making it easier for the IRS to achieve a near-BF configuration
with fewer UEs, in line with Corollary 1. Conversely, with
uniformly sampled IRS phase, the SE gap is large since the
configuration spans the full N -dimensional space, while the
channels lie in a lower M -dimensional subspace. So, as ρ in-
creases, the mismatch between the IRS phase and the channel
phase distribution increases, widening the performance gap.

In Fig. 2c, we plot the success probability, Psucc (see (11))
vs. M = rank(Σ). For fixed K, Psucc decreases with M be-
cause the effective dimension grows with M . Also, Theorem 2
is a valid lower bound and succinctly captures the scaling with

M . Finally, we verify that Psucc = 1 for any M, δ if K = K∗

(see Corollary 1), and Psucc < 1 when K =
√
K∗ < K∗,

validating that the scaling we derived is tight.

VII. CONCLUSIONS

We developed a low-complexity, spatial-correlation-aware
opportunistic BF scheme for IRS-aided multi-user systems.
Exploiting multi-user diversity, we showed that randomly
sampling the IRS phases from an appropriate distribution
yields optimal array gains. Interestingly, achieving near BF-
SE requires the number of UEs to scale exponentially with the
rank of the spatial covariance matrix, rather than the number
of IRS elements. Future work could account for UE mobility.
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