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Abstract—This paper addresses the mitigation of spatial-
wideband (SW) and the resulting beam-split (B-SP) effects
in intelligent reflecting surface (IRS)-aided wideband systems.
The SW effect occurs when the signal delay across the IRS
aperture exceeds the system’s sampling duration, causing the
user equipment’s (UE) channel angle to vary with frequency.
This leads to the B-SP effect, wherein the IRS cannot coherently
beamform to a given UE over the entire bandwidth, reducing
array gain and throughput. We first show that partitioning a
single IRS into multiple smaller IRSs and distributing them
in the environment can naturally mitigate the SW effect (and
hence the B-SP effect) by parallelizing the spatial delays and
exploiting angle diversity benefits. Next, by determining the
maximum number of elements at each smaller IRS to limit B-SP
effects and analyzing the achievable sum-rate, we demonstrate
that our approach ensures a minimum positive rate over the
entire bandwidth of operation. However, distributed IRSs may
introduce temporal delay spread (TDS) due to the differences
in the path lengths through the IRSs and this may reduce the
achievable flat channel gain. To minimize TDS and maintain the
full array gain, we show that the optimal placement of the IRSs
is on an ellipse with the base station (BS) and UE as the focal
points. We also analyze the impact of the optimal IRS placement
on TDS and throughput for a UE that is located within a hotspot
served by the IRSs. Finally, we illustrate that distributed IRSs
enhance angle diversity, which exponentially reduces the outage
probability due to B-SP effects as the number of IRSs increases.
Numerical results validate the efficacy and simplicity of our
method compared to the existing solutions.

Index Terms—Distributed IRS, spatial-wideband effect, beam-
squint and beam-split effects, OFDM, angle diversity.

I. INTRODUCTION

Intelligent reflecting surfaces (IRS) are envisioned to im-
prove the performance of wireless systems by beamforming
signals in desired directions using independently reconfig-
urable passive phase shifters [2]-[4]. One of the key use cases
for IRSs is to create a virtual line-of-sight (LoS) path to
multiple user equipments (UEs) clustered in a hotspot area
when the LoS path between the hotspot and a base station
(BS) is obstructed. However, the cascaded link via the IRS
encounters a multiplicative path loss, and an IRS with a large
number of elements has to be used to achieve appreciable
benefits [5]. Large arrays cause the signal delay across the
aperture to be comparable to or even exceed the sampling
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duration. This results in spatial-wideband (SW) effects [6],
which manifests as the beam-squint (B-SQ) and beam-split (B-
SP) effects in the frequency domain, and severely degrades the
array gain and throughput at a UE. This paper addresses this
problem by using distributed IRSs which naturally mitigate
the SW and B-SP effects at almost no additional complexity.

A. Beam-Split: The Curse of the Spatial-Wideband Effect

In high-frequency millimeter wave (mmWave) bands, where
large bandwidths (BW) are used, the channel between two
nodes is typically directional because there are only a few
significant scatterers. These directions are independent of the
operating frequencies as long as the delay spread of the
channel is much smaller than the system sampling duration,
known as the narrowband condition. However, when an IRS
with a large number of elements is used, the spatial delay
spread across the aperture can easily exceed the sampling
period and violate the narrowband condition. This results in the
spatial-wideband effect, where even an LoS channel becomes
frequency-selective.

In this scenario, the main challenge is that the IRS fails
to coherently beamform across the entire BW allotted to a
UE in the system. Specifically, when the IRS is configured
as a phased array tuned to a specific frequency component
within the BW, e.g., the carrier frequency (which is typically
the case), the SW effect induces the B-SQ and B-SP effects
in the frequency domain, which severely degrades the array
gain at other frequencies within the BW. In the B-SQ effect,
the beam formed by the IRS squints at different angles across
frequencies, though the angular spread across the BW remains
within the main lobe of the beam. In contrast, the B-SP is a
more severe form of B-SQ and occurs when the number of IRS
elements or allotted BW (or both) further increases. In the B-
SP effect, the beam formed by the IRS at the tuned frequency
splits into distinct, resolvable beams on other frequencies
within the BW. Consequently, the IRS fails to beamform and
constructively combine signals at the UE over the full BW,
severely degrading the achievable channel gain and spectral
efficiency. While the SW effects can be circumvented by
reducing the number of IRS elements or the total BW, this also
lowers the achievable channel gain and system throughput.
Therefore, it is crucial to design efficient methods, preferably
with low complexity, to mitigate SW and the resulting B-SP
effects in IRS-aided wideband systems.

B. Related Work & Motivation

Most existing studies on IRS-aided systems overlook the
B-SP effects resulting from the SW effects and end up over-
estimating the achievable benefits of an IRS. Only a few works
address the wideband effects; we summarize them below.



In [7], [8], and [9], methods for channel estimation and
beam training were developed accounting for the SW effects.
Localization of UEs using SW effects was discussed in [10].
Optimization of IRS phases to maximize the sum-rate in
orthogonal frequency division multiplexing (OFDM) systems
with B-SQ effects was studied in [11]. In [12] and [13], joint
optimization of the IRS configuration and BS precoder was
explored for multiple-input multiple-output (MIMO) terahertz
systems. In [14], the achievable ergodic rate of a MIMO-
OFDM system with B-SQ effects was examined, and [15]
solved for optimal IRS configuration to maximize the signal-
to-interference-plus-noise ratio (SINR) with B-SQ effects.
Finally, [16] analyzes the coverage in the presence of B-SQ
effects, and [17] optimizes IRS configurations to control the
width of the beams in an OFDM-based multiple access system.

Along the lines of mitigating the SW (and hence the B-
SP effects), existing works often use true time-delay (TTD)
units at the IRS to compensate for the excess signal delay
across the aperture, thereby eliminating the SW effects [18].
In [19], a hardware-efficient design of TTD-enabled IRS was
investigated, and [20] used delay-phase units to eliminate the
B-SP effects in both far-field and near-field scenarios. In [21],
the TTDs and BS precoder were jointly optimized to maximize
the sum-rate of a multi-user system, and [22] used TTDs
to design an efficient IRS-aided cell-free wideband MIMO
system. Further, in [23], TTD units were proposed as a means
to mitigate B-SP effects in holographic RIS-assisted systems.
In contrast, [24] utilized TTD units to control the B-SP effect
for improving the accuracy of sensing multiple UEs in the
network. However, using TTD units at an IRS presents a
number of challenges: 1) the number of TTD units increases
with the number of IRS elements, requiring more hardware
and space; 2) high-resolution TTDs are necessary for precise
delay compensation, which increases power consumption, and
3) since the IRS elements continuously receive signals from
the BS, apply a delay, and then reflect the signal toward
the UE, the overall operation becomes full-duplex in nature.
This introduces self-interference (SI) at each IRS element,
and to alleviate it, sophisticated SI cancellation techniques
are required at each element of the IRS [25], which further
complicates the design and hardware requirements. These
issues can potentially undermine the hardware cost and energy
efficiency benefits of using IRSs. In particular, to the best
of our knowledge, no paper in the literature describes the
hardware implementation and demonstration of a TTD-enabled
IRS. Yet another approach is to virtually partition a single large
IRS into multiple sub-IRSs, with each sub-IRS optimized to
the channels over distinct frequency bands [26]. Although this
provides a flat response across the BW, the achievable array
gain scales only with the number of elements at a sub-IRS
and not with the total number of IRS elements. Finally, while
[27], [28] suggest that multiple IRSs can reduce the impact
of B-SQ, they do not analyze the performance of distributed
IRSs accounting for B-SQ or explicitly design a distributed
IRS architecture to mitigate these wideband effects.

To address the above issues, in this paper, we propose
an alternative approach without relying on TTDs and use a
distributed IRS design instead of a single large IRS. We show

that, when properly designed, a distributed IRS can inherently
overcome the SW effect without increasing complexity or
sacrificing performance.!

C. Contributions & Takeaways
We now list the key contributions of our paper.

1) SW effect reduction: We mathematically show that a
distributed IRS design naturally parallelizes the spatial
delays and mitigates the SW effect. (See Sec. III-A.)

2) Number of IRS elements: We determine the maximum
number of elements at each IRS so that the loss in the
array gain due to B-SP is within acceptable limits while
retaining the achievable peak gain. (See Theorem 1.)

3) Sum-rate and array gain: Next, we analyze the impact
of the temporal delay spread (TDS) caused by multiple
paths arriving at the UE through different IRSs. We show
that the achievable rate on every subcarrier (SC) scales log-
quadratically in the number of elements at each IRS and
at least log-linearly in the number of IRSs, thus effectively
mitigating deep nulls in the channel response due to the
B-SP effect. Further, when the TDS is zero, the sum-rate
across all the SCs spanning the BW grows log quadratically
in the total number of IRS elements. (See Theorem 2.)

4) Optimizing the IRS locations: Having noted that the value
of TDS is crucial in determining the achievable flat channel
gain, we next focus on optimizing the IRS locations:

a) Single UE: To minimize the TDS at a single UE, we
show that it is optimal to position the IRSs on an ellipse
with the locations of BS and UE as its foci. The optimal
TDS then becomes zero. (See Theorem 3.)

b) Multiple UEs: With multiple UEs located within a
hotspot, we position the IRSs over an ellipse whose
foci are given by the location of the BS and centroid
of the distribution of the UE locations. We derive the
achievable TDS at an arbitrary location and subsequently
characterize a lower bound on the achievable sum-rate
using the distributed IRSs. (See Prop. 1 and Theorem 4.)

5) Angle diversity gain: Finally, we reveal that multiple IRSs
additionally introduce angle diversity gain due to multiple
independent paths seen by the UE. In particular, we show
that the probability that the array gain equals the worst-
case acceptable value (due to the residual B-SQ) decreases
exponentially with the number of IRSs. On the other hand,
the outage probability of a centralized IRS for a target SNR
close to the peak array gain is bounded away from zero as
the number of IRS elements increases. (See Theorem 5.)

We numerically validate our results and illustrate the efficacy
of our solution in mitigating the SW and the resulting B-
SP effects. For instance, when the BW is 400 MHz around
fe = 30 GHz, with a total of 1024 IRS elements, if we use a
centralized large IRS, only 12.5% of the total BW gets an array
gain which is within 3 dB of the peak array gain. On the other
hand, if we deploy 8 distributed IRSs, each with 128 elements,

INote that B-SQ and B-SP effects can arise in both far-field and near-
field scenarios [20]. To illustrate our core idea, this paper will focus on the
case where the BS/UEs are in the far-field of IRS(s). Extensions to near-field
scenarios will be considered for future work.
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the entire 400 MHz BW obtains an array gain that is within the
3 dB margin of the peak array gain (see Fig. 6). As a result,
the difference in the sum-rate obtained with the distributed
IRS and the TTD-enabled IRS (which completely eliminates
the B-SP, albeit at a higher complexity) is less than 0.5 bps/Hz
(see Fig. 7.) Finally, even with finite TDS, distributed IRS still
procures a far superior performance over the centralized case,
with the sum-rate exhibiting log-quadratic growth in the total
number of IRS elements. (see Fig. 10.) Thus, distributed IRS
mitigates B-SP effects and provides the full array gain over
the entire BW at almost no added complexity.

Notation: |-], [-] denote the floor and ceil functions; U|a, b]
denotes a uniform distribution with support [a, b]; Pr(-) and
E[] stand for the probability measure and expectation opera-
() is the Landau’s
Big-O function; R, C stand for real and complex numbers.

II. SYSTEM MODEL
A. Channel Impulse Response and Spatial-Wideband Effect

Consider the system depicted in Fig. 1(a), where a BS
communicates with a UE, and is assisted by an N-element IRS
in the mmWave frequency band. For simplicity, and following
past work in the area, we assume that the IRS is implemented
as a uniform linear array (ULA) with inter-element spacing
denoted by d [7], [11], [20], [21]. The baseband impulse
response of the channel from the BS to the nth IRS element
is given by [19]?

hyn(t) = Vas <t 1)(n1)isin(7j})>

% eszwfcnm % efj27rfc(n71)%sin(w)’ (1)
where o, n1), f., and 1) represent the path-loss, propagation
delay in the hnk from BS to a reference element (either
the first or last element, depending on whether 1 is positive
or negative) of IRS, the carrier frequency, and the direction
of arrival (DoA) of the signal from the BS to the IRS,
respectively. Finally, ¢ = 3 x 108 m/s denotes the speed of
light, and 0(t) stands for the Dirac-delta function.

Similarly, the baseband impulse response of the channel
from the nth IRS element to the UE is

hon(t) = /70 (t —7® 4+ (n 1)% sin(w))

% e—j27rf”7(2) % ejQﬂfc(n—l)%sin(w)7 (2)

2We consider a single-antenna BS to specifically analyze the impact of
the IRS on system performance. In Sec. III-D, we explain how our results
can be extended to scenarios with multiple antennas at the BS.

where 7, 77(2), and w denote the path-loss, delay, and direction
of departure (DoD) from the IRS to the UE, respectively.
Hence, the effective channel from the BS to the UE is’

Za han(t) ® hy ()
N .
= 0nhyhyd (t == (n—1)= (sin(y) - sin(w)))

% e—j27rfu(n—l)% sin(qﬁ)’ (3)

where hy 2 \/ae*j%f”’(l), hy & \ﬁe*ﬂ”f“’@), and ®
stands for the linear convolution operator. Further, 6,,, n £
W +7®3) and ¢ £ sin(;l) (sin(¢)) — sin(w)) denote the phase
shift introduced by the nth IRS element, the total propagation
delay, and the effective cascaded angle at the UE, respectively.
Also, sin(_pl) (x) is defined so that € [—1,1), the principal
argument of the inverse sine function [29], [30, Eq. 32]. Thus,
the spatial delay spread of the channel through the IRS is

AT = (N - 1)% |(sin(¢)) — sin(w))] . )

When both N and the BW (denoted by W) are large, the
narrowband condition: AT¢ < 1 /W, ceases to hold. Then,
the spatial delay incurred by the signal while traversing across
the IRS aperture becomes comparable to or more than the
sampling duration, leading to the spatial-wideband effect [6].
Then, from (3), the frequency response of the channel is

N
(@) i Z 0n67j27r(n71)%{f(sin(w)fsin(w))+fc sin(¢)}

nl

i Za —jm(n—1) qln(¢){1+

H(f)

& VNRO  ay (sing ) {(L+ (/£ sin(@)}) s (5)

where, in (a), we absorbed 7 into receiver timing offset and
defined the cascaded channel coefficient as i 2 hihso; in ),
we set d = \./2, where )\, is the carrier wavelength and used
the definition of ¢; in (¢), we defined the IRS configuration
vector 8 £ [0%,...,60%]", where (-)* stands for complex
conjugation and ay(-) is the array steering vector given by

N(@) 2 1/VN |:17€*j7rsin(:c)7 L

Therefore, considering an OFDM system with K SCs, the
channel on the kth SC is

HIK 2 H(f) =VNRO" ay (sing) {1+ (fi/1.)) sin(9)} )

e*jﬂ(Nfl) sin(m):| T

(6)
where fj, is the baseband frequency of the kth SC, given by
w W W

B. The Beam-split Effect

Consider the setting where a BS provides service to a UE
over a wide bandwidth, W. Then, in the presence of a large

3The direct path from the BS to UE can be blocked/weak compared to
the channel via the IRS, so we do not account for direct path in our model [7].
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IRS, the channel coefficient on the kth SC is given in (6). So,
the physical angle ¢ of the cascaded channel manifests as

5, = sin, { (1 + ;’“) sin(¢)}

on the kth SC, which equals ¢ only if f = 0 or ¢ = 0. Thus, if
the frequency-independent phase shifters at the IRS are tuned
at the carrier frequency, fr = 0, i.e., @ = ay(¢), they can
only beamform to ¢ over a small BW around f; = 0 * (unless
¢ = 0.) This results in the beam-split effect, and it degrades
the array gain on SCs for which f; # 0. Further, the B-SP
effect is more pronounced at a UE whose cascaded angle is
¢ = 90°. For e.g., in Fig. 2, we plot the normalized channel
gain, |H[k]|? vs. the SC frequency, fx when the IRS is tuned
to fr = 0. We see that only a few SCs around fj, = 0 achieve
the full array gain of N2, while other SCs face a loss of at
least 13 dB. In particular, B-SP reduces the array gain to 0,
producing deep nulls in the channel gain of SCs at frequencies
WN
ol
Moreover, the B-SP effect is exacerbated when N increases
and further reduces the system throughput. In this view, to
mitigate the B-SP effect, in this paper, we propose a distributed
IRS design using S non-colocated M-element IRSs with
SM = N to limit the degradation in the array gain across
all SCs. Specifically, the number of IRS elements, M, can
be adjusted to control the B-SP effect, and the number of
IRSs, S, can be chosen to obtain an array gain of O(N?)
over the complete BW. Furthermore, in this case, unless the
IRSs are positioned appropriately, the signal from each IRS
experiences a different propagation delay and leads to a non-
zero temporal delay spread (TDS) in the overall channel, as
shown in Fig. 1(b). Then, we address the following questions.
1) Considering a TDS = 0 case, what combinations of (.S, M)
ensure that the worst-case B-SP results in a loss of no more
than (1—¢€)? in the channel gain compared to the peak IRS
array gain? That is, we wish to determine {(S, M)}, the
possible pairs (S, M), such that

in |H[K]|? > (1—€)?|H[K/2]2
krg[lfr{l]l K]| ¢S:900_( €)°|H[K/2]|%,

)

2f.
fau = %q, q=:i:1,:|:2,...,:|:{

®)

“This holds true even if the IRS is tuned at a different frequency, f]’C #0.

where ¢, denotes the cascaded angle via IRS-s and e € [0, 1)
dictates the acceptable loss in array gain relative to the
center SC. Here, ¢s = 90° captures the worst-case B-SP.
Note that the condition in (8) ensures that the array gain
is within a tolerable residual B-SQ controlled by e.

2) How does the solution perform when multiple IRSs cause
a non-zero TDS due to signals from each IRS arriving at
the UE at different sampling time instants?

Remark 1. The B-SP effect arises due to the interplay of
using phase shifters and SW effects at the IRS. In particular,
phase shifters are effective for compensating the differential
delays across the IRS aperture and form a beam only if the
narrowband condition, AT < 1/W, is met [31]. However, to
retain the low complexity phased array-based IRS architecture
for beamforming even in wideband systems, we enforce the
narrowband criterion by limiting the number of IRS elements.
Since defining the boundary between narrowband and wide-
band regimes is hard in the time domain, we resolve this
by examining the B-SP effect in the frequency domain and
ensuring that the narrowband condition is satisfied.

III. MITIGATING BEAM-SPLIT VIA DISTRIBUTED IRSS

As discussed, the B-SP effect in the frequency domain arises
due to the SW effect caused by the propagation delay across
the IRS aperture in the time domain. This can be circumvented
if A7C <« 1 /W is satisfied. Given the bandwidth W, this can
be ensured by reducing the number of IRS elements. However,
this also has the undesirable effect of decreasing the array gain
from the IRS and, hence, the throughput. This loss can be
avoided by a distributed IRS design, as explained below.

A. Parallelizing the Spatial Delays using Distributed IRSs

The advantage of a distributed design is that it parallelizes
the spatial delay across the aperture, which otherwise increases
serially in the number of elements in a large centralized IRS.
In particular, partitioning and distributing a single large IRS
into multiple non-colocated smaller IRSs reduces the delay
across each IRS, i.e., if an N-element IRS is split into .S IRSs
with M-elements, the delay across the aperture of sth IRS is

AT = (M —1) (d/c) |(sin(s) — sin(ws))| ~ ATC/S, (9)

where 1, and ws denote the DoA and DoD at the sth IRS,
respectively. Thus, the delay across the aperture of each IRS
is reduced approximately by a factor .S, as shown in Fig. 1(b),
decreasing the influence of the SW effect. Further, in Sec. V,
we also show that distributed IRSs provide angle diversity
gains, making it unlikely for the worst-case B-SP to happen
at every IRS, further reducing the impact of the B-SP effect.

B. Number of Elements per IRS

We now determine the number of elements per IRS, M,
which parallelizes the spatial delay and guarantees (8) for TDS
= 0 case, and extend it to TDS # 0 case in Corollary 1.

Theorem 1. Consider a system with S non-colocated M-
element IRSs with a total of N IRS elements (i.e., SM = N)



with TDS = 0. Then, the maximum M for which the array
gain due to all IRSs on every SC is at least (1 — €)>N? is

M*émin{max{yl\/&ch,l},N}, (10)
T W

€ [0,1) dictates the tolerable loss in array gain w.r.t. N2.

Proof. We begin the proof by noting that similar to (6), the
channel at the UE on SC-k due to S IRSs can be written as

S ~ .
=37 VMR6 an (pg,,0) 201

where ﬁs is the cascaded channel coefficient via the sth IRS,
ns,To refer to the propagation delay via the sth IRS, and
receiver timing offset, respectively; 8, € C is the phase
shift vector at the sth IRS, and ¢y, , is the cascaded angle at
the UE via the sth IRS on SC-k as given in (7) with ¢, being
the physical angle via the sth IRS. Since we consider that the
TDS is 0, (ns — 70)W < 1 holds, and hence, we drop the
exponential term in (11). Then, by tuning 8,, s=1,...,S5 to
the center SC at f; = 0, and by invoking the Cauchy-Schwarz
(CS) inequality, we obtain the optimal phase configurations:

0, = VMelheay (), Vs=1,...,5, (12)

where symbols are defined as above. Substituting (12) in (11),
2

we have
Z |ﬁ5|ag[(¢s)aM <¢fk,s) ) (13)

Now, to account for the worst-case B-SP effect, we use ¢; =
90° as in (8), and when M > 1, we can simplify the channel
gain as |H[k]|*=

| HIk]?

S i ]\4& 2
. o
Z |h\s|67f" (:) M2 SinC2 ( 2f},€ > |hé|
s=1 1—e 777 ¢
(14)

where, in (a), we use sin(z)~x for x = 7 fx/(2f.) < 1, and
sinc(z) £ sin(nz) /7. Clearly, at fj, = 0, the response in (14)
is maximum and decreases as f — £W/2. Now using (14),
the condition in (8) becomes

min{sian( 2]”;) k—1,2,...,K}2(1—e)2. (15)

A necessary condition for (15) to hold is not to have a null
response across the entire BW. Since sinc?(x) = 0 when = €
Z, the set of integers, from (15) we need to satisfy

MW/4f. <1 = M < M; = |[4f./W].  (16)

This ensures that the channel response across the BW lies
within the main lobe width of the beam formed by the IRS at
the center SC. Now, since sinc?(z) is a decreasing function
for = € [0, 1], a sufficient condition for (15) is

|H[0]*= [H[K]]* > (1 - ¢)*|H[K/2]]*, ie.,

a7)

where in (b), we used the 1st order Taylor’s approximation:
sinc(x) &1 — w222 /6, which is tight in the region of design

interest. Now, from (16), and (17), we get
M < M* & min{M;, M} = M;, (18)

where the last step follows because for € €0, 1), My <M.
Finally, since 1 < M < N, we modify (18) as

M < M} 4 = min{max{M;, 1}, N},
yielding the desired result in (10). ]
Therefore, if N is the total number of IRS elements, then

deploying at least S = N/M IRSs with M as per Theorem 1
will prevent the adverse impact of the B-SP effect.

C. Sum-Rate Analysis: Centralized vs. Distributed IRSs

In this section, we analyze the achievable sum-rate of the
distributed design and also analyze the achievable performance
when the channel experiences a nonzero TDS.

In general, the signal arriving at the UE through each IRSs
could be time-offset relative to the UE’s timing, giving rise to
a TDS in the signals arriving through the different IRSs. For
analytical tractability, we model the propagation delay via the
sth IRS as a random variable, 75 ~ U]0,Tp], independent
and identically distributed (i.i.d.) across IRSs. Here, T} is
the maximum TDS that the IRSs can introduce at the UE’s
location. We now characterize the achievable sum-rate across
SCs at a UE under centralized and distributed IRS scenarios.

Theorem 2. In an mmWave-OFDM system with K SCs
spanning a BW of W at carrier frequency f. and a total
of N IRS elements, the sum-rate at a UE with channel angle
¢ and @1, ..., ¢s under centralized and distributed IRS (with
M = M* as per Theorem 1) setups satisfy

> 1 bro h 2 Jr .
R 1 1 NZsinc? [ N =— ,
o~ FNE kz o (1422 Lsingo)

2D
and as glven in (19)-(20) on top of the next page, respectively,
where Uh— |h|2= |h1|2 .~ |hg|? is the channel gain via
the IRSs>, py, and o? are the transmit and noise power at the
kth SC, and N&p, N8y are the cyclic prefix (CP) lengths in the
centralized and distributed IRS setups,® which are respectively

N& = [(N — 1)‘}“ , N&» = [(M — 1)fE + WTOW , (22)

where T}y is the maximum TDS induced by the IRSs at a UE.
Proof. In an OFDM system with K SCs, the sum-rate is

Kchpélogz (1+ Bt )]

SWe consider equal path losses in the paths across all IRSs only for the
sake of analysis and to present how the performance scales with the number
of IRSs and IRS elements. Our solution is applicable even when path losses
are unequal among the cascaded links through each IRS.

%The CP in OFDM is used to (a) eliminate inter-symbol interference,
and (b) convert the linear convolution with a frequency-selective channel into
circular convolution, which diagonalizes the channel in the frequency domain.
However, this does not eliminate the SW effect itself. Specifically, large IRS
apertures cause significant delay spreads, which result in the B-SP effect with
SC-dependent channel variations as shown in Fig. 2. The gain on a given SC
is still governed by the time-domain channel’s impulse response via a Fourier
transform. Thus, while CP simplifies OFDM-based signal processing, it does
not mitigate the SW-induced B-SP effects inherent to large IRSs.

5 A
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_ 1
Rp > Ry 2 fran ng ;log2 (1 + pkah M? (1 (1- )2 [52 sian(fkTO) + S (1 — sincz(fkTo))]> , (19)
1
> Ran™ & ZIng <1 + PSR (1 ) , (20)
NCP k=1
(a) 1

Q0 1 §F Pr 2
~ K + Nep Zkzl log, (1 + O.QE [|H[k]| D , (23)

where in (a), we used the Jensen’s approximation. We next
compute E [|H[k]|?] for centralized & distributed IRSs below:

Centralized scenario: The channel gain for a centralized
scenario can be found using (14) with M = N, S = 1. Then,
Jr

E [|H[K]|*] = N?sinc? (NQfC sin((b)) E[|R]?],  (24)

— a2
=%k

and substituting the above into (23) yields (21).

Distributed scenario: Let s = 1, — 7o be the propagation
delay of the path via the sth IRS w.r.t the timing offset at the
UE. Since (ns—79)W < 1 may not hold in general, from (11),
the channel gain at a UE on SC-k is given by

S - 4 )
]|2: ‘MZS=1 |hs‘a]I\—I/[(¢s)aM ((bfk,s) e‘ﬂﬂfkns

Similar to (14), the expected channel gain is E [|H [k]|?] =
2

2
|H [k

e—]ﬂ'M Ik sin(¢s) ) ~
Z ] 927 frils (25)
s= 1 hs| _efjﬂ' E sin(¢s)
G s Tk S5 —jonfui ?
> M? sinc? Mﬁ E Zs_l|hs\e J2nfeiis| | (26)
; =

where in (b), we applied the result from Theorem 1. We now
simplify the above expectation term as

2
s . ) _ s -
E [‘281|h3|6]zﬂfk:ns ] _ 25:1“15‘2
+ 3 2 hlh E [ [ @)
s#£s’
Next, we compute E [e727/7:] as shown below.
To
T )27
]E[ejQﬂ'fkﬁs] _ i/ ’ szfkndn_ 1 ed2mfin
To Jo To J27Tfk
1 eI™fxTo (ej‘fffkTo —e J’TfkTO)
T 727 fi
. i T )
= I fTo . sm;}rk];'io 0) _ /™o sine (frTp) . (28)
Similarly, we can show that
E [e7727 /6] = e~ ™ Ix 0 gine (f, Tp) - (29)

Using (28) and (29) in (27), we get

S 2

st |e—j27rfk-ﬁs

s=1
= o7 (8% sinc?®(fTo) + S(1 — sinc?(fTp))) -

E = Sof + S(S — 1)of sinc? (f,Tp)

Now, using the above in (26), and by Theorem 1, we obtain
E [|H[K]]?] > (1 — €)* Mo} (5% sinc®(f,Tp)
+ S(1 — sinc?(fxTp))).

Substituting (30) in (23) and by the monotonicity of log(-),
(19) follows. We get (20) by the lower bound of the convex
combination, i.e., S?sinc?(fxTp) + S(1 — sinc?(f,To)) > S.
Next, note that the CP lengths should exceed the channel
delay spread. The delay spread, T under centralized and
distributed IRSs are A7 from (4), and maXe (s {ATE + ﬁs}
from (9), respectively. In particular, the CP length in the
distributed IRS case should account for the residual spatial
delay spread and the temporal delay spread introduced by the
multiple IRSs. Then, using these expressions in the length of
discrete-time channel taps: Ncp = [WT], we get

(30)

NG = [(N — 1);; ASCW , and
D W D
Nep = Lg{ggs {(M 3 o % WnsH ;

respectively, where ASC £ |sin(¢))—sin(w)|, ASP? =
|sin(1)s) —sin(ws)|. Now, to satisfy the CP requirements at any
UE, we upper bound the delays and set ASC = ASP = 2,
and 75 = T. Then the desired CP lengths in (22) follow. W

From Theorem 2, we observe that unlike a centralized sce-
nario, which results in zero rates on many SCs, the distributed
IRS provides a positive rate that scales at least as much as
O(log(SM?)) on all SCs which guarantees a lower bound
on the sum-rate given by RL-Pond in (20). Hence, distributed
IRSs can effectively mitigate the SW and the resulting B-SP
effects in the system under any circumstance. We also make

the following observations from this theorem:

1) Effect of nonzero TDS on the number of IRS elements,
M*: Even in the presence of non-zero TDS in the overall
channel at the UE, our design based on Theorem 1 ensures that
SW effect gets mitigated. We formalize this in the following.

Corollary 1. For a distributed IRS system having a finite TDS,
the value of M given by Theorem 1 still mitigates the B-SP in
the sense of procuring an array gain which is at least (1 — €)?
factor of the peak array gain obtained on SCs around fi, = 0.

Proof. When the TDS is non-negligible, we set ¢1 = ¢o =
. = ¢g = 90° in (25) to capture the worst case B-SP and
obtain the simplified channel gain on SC-k as

)

Next, using (31), the condition in (8) can be simplified as

() 20 S/

2

|h | —i2nfins| (31)

|H[k]|>= M?sinc? (

S 2

> lhs|

s=1

S

Z |ﬁs|e*j277fkﬁs

s=1




s 2
a g — hS

2o el s

S o= lhsl? !

where (a) follows by the CS inequality, and in (b), we define
h 2 [|hl,...,|hs|]T. Since |[h[; < v/S||/h2 [32], a sufficient
condition for (32) becomes that given in (15), and hence rest
of the proof follows similar to TDS = 0 case. ]

2
; (32)
2

Fundamentally, the TDS does not affect the value of M used
to mitigate the B-SP effects. This is because by controlling M,
we directly tune the tolerable spatial delay at each IRS, which
is independent of the presence and location of other IRSs.

2) Channel gain via distributed IRSs: Although the dis-
tributed IRSs provide (an almost) flat response over the entire
BW, this flat gain can go as low as O(SM?). In particular,

(a) From (19), the (flat) gain is dictated by M and the convex
combination, S%sinc?(fxTp) + S(1 — sinc?(fTp)):

o If Ty, <« 1/W, then sinc(fiTp) ~ 1 on all SCs,
ensuring a array gain of S2M?2 = N2 on all SCs.

o If Ty 2 1/W, then sinc(fxTp) ~ 0 around the band-
edge frequencies. Then, an array gain of at least SM?
is obtained over the BW of the operation.

o If fr =0, sinc(fxTo) = 1 for any Ty, and a full array
gain of N2 is obtained. This is because when the IRS is
tuned to the center frequency: fr = 0, for any T, there
exists a smaller BW around f; = 0, in which the IRS
phase shifts can always compensate for the differential
delays across the IRSs, yielding the array gain of N2,

(b) From the above, the locations of the IRSs are important:

« If the locations of IRSs are such that 7 < 1/W, then
TDS =~ 0, and the signals from IRSs can coherently
add at the UE, giving O(N?) gain on all SCs.

« If the IRSs are positioned such that they introduce a
finite TDS, then the IRSs whose propagation delays are
within the same sampling interval constructively add
the signals at the UE, and the IRSs whose propagation
delays fall at different sampling bins incoherently add
the signals at the UE. This gives rise to a channel gain
fluctuation between O(SM?) and O(N?).

« Finally, if the IRSs are positioned such that the propa-
gation delays of each IRS fall on distinct sampling bins,
giving rise to larger TDS, the signals from different
IRSs do not coherently superimpose at the UE, leading
to an incoherent channel gain that scales as O(SM?).

In summary, a distributed IRS design:

1) overcomes the SW effect in IRS-aided wideband systems
without any deep-nulls in the channel gain at the UE, and

2) results in an almost flat response whose gain varies as

Vk € [K]: O(SM?) < |H[K]]*’< O(§*M? = N?),
depending on the relative location of IRSs and the TDS.

Remark 2 (Choice of €). The parameter € in Theorems I, 2
which captures the tolerable loss in the array gain across SCs
is the designer’s choice; a few suggestions are given below.
1) The spatial range in the half-power beam width (HPBW)
procures most of the array gain of the IRS [33]. So, setting

e=1— % ensures that the HPBW of each IRS spans full

IRS

pi(t)

Precoding
Filter — 1

pa(t)

Precoding
Filter — 2

oo o o

Data = =
Stream

Fig. 3: System with multiple-antenna BS.

BW at a UE. Then, the signal lies within the HPBW of a
virtual array with N = SM elements if the TDS is small.

2) In the 5G NR setting, all SCs are alloted the same modula-
tion & coding scheme index (MCSI) [34]. Then, an ¢ that
maps the spectral efficiencies of all SCs to the same MCSI
can be chosen to reap the full achievable throughput.

Remark 3. Our solution to mitigate the SW effect applies to
any IRS geometry. In particular, the aperture length, measur-
ing the farthest distance between two IRS elements, determines
the impact of the SW effect. For instance, for a uniform planar
array (UPA) based IRS, the number of elements in Theorem 1
corresponds to the number of diagonal elements of the UPA.
We numerically illustrate the performance of our solution
under a UPA configuration in Fig. 7.

Further, when the number of IRSs increases, the number
of IRS controllers also increases in the system. On the other
hand, one can still use low-pilot overhead channel estimation
algorithms with multiple IRSs, as given in [35].

D. Extension to Multiple-antenna Systems

We now extend our solution to a multi-antenna BS scenario;
the approach can be easily adapted to the setup where the UEs
are also equipped with multiple antennas. We consider an ;-
element ULA at a BS serving a UE via an N-element IRS
over a bandwidth W, as shown in Fig. 3. Let p,,(¢) denote
the precoding filter at the mth BS antenna, and g,,(¢) be the
cascaded channel between the mth antenna and the UE, for
m € [Ny]. Following the same steps as in (3), we obtain

N - - d
gm(t) = Onhimhad (t — N — (n— 1)

C
x (sin(y) — sin(w)) )e—ﬂﬂfcm—”%“M@, (33)

where hy_, = e 32w with n'y) being the propagation
delay from the mth BS antenna to a reference IRS element,
and 7, (= 7)7(,1) +1®)) is the total propagation delay from the
mth antenna to the UE via the reference element of the IRS.
By using the properties of the ULA, we can express nﬁ) as
A =+ m— 1) sin(o), (34)
where n(1) is the delay from the reference BS antenna to
the reference IRS element, dgg is the inter-antenna spacing
at the BS, and p is the DoD of the signal at the BS. Then, we
simplify (33) and obtain the expression in (35), where 7 and
izl are defined as given in (3). From (35), the overall channel



N —j2m fe <(m—1)
gm(t) = Z 0nh1hod (t —n—=(m-— 1)% sin(o) — (n — 1)% (sin(y)) — sin(w))) e

d d
BS sin(g)+(n—1)— sin(¢)>
C C

(35)

) = 300 Buinhe 6 (10— (m = ) i) ~ (0= ) sin(w) —sin(e) - s

d
jor . <<m1> BS
C

d
sin(g)+(n—1)— sin(¢)
C

x ejd’rn,BS X e (38)

experiences a two-tier B-SP effect, one originating from the
IRS and the other from the BS array—due to SW effects
at both ends. However, since the BS is not as constrained
by power and hardware limitations, it is practically feasible
to equip each antenna with a TTD unit, enabling effective
compensation for the SW and the resulting B-SP effect at the
BS. Accordingly, the impulse response of the precoding filter
at the mth antenna is given by [20]

pm (t) — ejd"m,BS(s (t _ Tm,BS) ,

where ¢, s and 7,,, s denote the phase and delay applied at
the mth antenna. Then, the (precoded) effective channel is

M) =30 gt @ o)

Substituting g, (t) and p,, (t) from (35) and (36) into (37), we
obtain the effective channel expression in (38). To mitigate the
B-SP effect, we configure the TTD units as follows:

(36)

(37)

d
Tm,BS = To,Bs — (M — 1)? sin(p), and (39)

dgs .
Om.ps = 2mfe(m —1) =7 sin(e),

where 79 ps is a common delay applied at all the antenna
elements to ensure a causal implementation of the TTDs at
the BS array. As a result, the effective channel boils down to

(40)

d

N ~ ~
h(t) = Ney_  Ouhihod (t—n—Tops — (n— e

X (sin(y)) — sin(w))) x e~ I2mfe(n=1)Esin(9)  (47)

which is a scaled version of the channel with a single-antenna
BS (as in (3)), except for an extra timing offset of 7 gs, with
the scaling factor equal to the number of BS antennas.

Thus, the results developed in this paper identically hold
when the BS is equipped with multiple antennas also.

IV. OPTIMIZING THE LOCATIONS OF DISTRIBUTED IRSS

From the preceding discussions, we further make the fol-
lowing crucial observations. For a channel with a large TDS,
o The achievable channel gain flattens at O(SM?), with a

loss of 101og;,(S) dB from the maximum gain of O(N?),
o The required length of the CP increases linearly with the

TDS, increasing the OFDM overheads with many IRSs.

As a consequence, selecting arbitrary locations for the IRSs
results in diminished performance compared to the maximum
achievable performance (for e.g., the array gain that scales as
N?2 on all SCs), despite its benefit in alleviating the SW effect

and preventing deep nulls in the channel response. Thus, we
now shift our focus to optimizing the placement of the IRSs
to minimize the resulting TDS in the system.

Optimizing the locations of IRSs is critically dependent
on the positions of both the UE and the BS. Further, in
general, the BS serves multiple non-colocated UEs, especially
in densely populated hotspot scenarios where IRSs are used
to enhance service quality [36]. In such cases, determining
the IRS locations based on a single UE’s location may
be suboptimal. However, since the optimization of the IRS
locations with multiple UEs makes the problem intractable,
we first focus on optimizing IRS locations for a single UE,
gain insights; then analyze the scenario for multiple UEs.

A. Optimizing the Locations of IRSs For a Single User

Without loss in generality, let the BS be located at 0 £
[0,0]7 on the x-y plane. Let the location of the UE be
p = [p1,p2)T € R2, and the location of IRSs be Q =

{ai,q2,...,qs}, where g; € R?. Then, define the following:
CTmax(Q) = 11%135(5(”019“24’”137(19”2) /C; (42)
Toia(@) = win (241D~ aull) fe, (43)

the maximum and minimum propagation delays from BS to
the UE via the IRSs. The TDS in the BS-UE channel is

TdD(Q) £ TIH&X(Q) - Tmin(Q)-

Then, the locations of the IRSs can be found as

"2 {ai a3 oaz) = arg min TP(Q). ()

1yeees qa

We have the following result that solves the problem in (P1).

Theorem 3. When BS and UE are located at points 0 and p,

respectively, the optimal locations of IRSs (d7, ..., d%) as the
solution to (P1) satisfy the equation:
P |2
ot 2[R (a2 10w
A _1 (P2
where we define w = tan <> and
Y4
2 cos(w) 2sin(w)
A A A
R}, = 2sin(w) 2 cos(w) N CS)

Vi =Ipl; V2 —Ipl3

with \ € Ry being a constant satisfying A > ||p||2. Further,
when the points in Q satisfy (44), the optimal TDS is TdD T =0.



Proof. By their definitions, we note that Tp,.(Q) >

Twin(Q) > 0 for all Q € R £ R?*x...xR% In
S times
other words, 177 " = 0is the global minimum of the prob-
lem: minQC]R% Tlli) (Q), and is achieved by a Q* for which
Tinax(Q*) = Tinin(Q*). Thus, the possible global optimal set
of IRS locations, Q*, should be such that ||gs||2+||p— qs||2=
A for all s € [S] and M is some constant. In other words,
the sum-distance of the IRS from the BS and UE should be
constant across the IRS locations. Now, using [37, Page 2], it
can be shown that an ellipse with the focal points coinciding
with the locations of BS and UE satisfies this property. Hence,
the IRSs should lie on an ellipse constructed with the BS and
UE as foci. Particularly, the equation of the ellipse is

((q1 — q10) cos(w) + (g2 — g2o) sin(w))*

a2
. (a1~ quo) sin(w) ;2(612 — g20) cos(w))* _ 1, (46)
where q = [q1,¢2]" is a candidate IRS location, qo =

[q10, g20]" is the center of the ellipse, w is the angle made by
the major axis of ellipse with the x-axis, a and b are lengths of
the semi-major axis and semi-minor axis, respectively. Now,
with focal points given by 0 and p, the centre of the ellipse
is qo=p/2. Similarly, using the properties of the ellipse, we
can show a=\/2, b=+/)\2— ||p||§/2,7 and w=tan"!(p2/p1),
with p = [py, p2]?. Using these values in (46) and compactly
representing it through (44) completes the proof. ]

From Theorem 3, we note that for a point-point system,
the geometric locus of all optimal IRS locations belongs to
a family of confocal ellipses, with the BS and UE located at
their foci. Specifically, we can choose any A > ||p|2, as per
the required distance between the BS/UE and IRSs, and find .S
distinct solutions to (44); these provide a set of IRS locations
that solve (P1). Then, the TDS can be avoided entirely (i.e.,
Ty = 0 in (19)), in turn ensuring the maximum array gain
scaling of O(N?) on all SCs.

More intuitively, a centralized IRS leads to a non-negligible
spatial delay spread in the channel, causing the SW effects. On
the other hand, a distributed IRS splits a single IRS into several
non-colocated IRSs with fewer elements each that are placed
on the circumference of an ellipse, as described in Theorem 3.
This ensures that the IRSs do not cause significant spatial or
temporal delay spread, resulting in a nearly flat response over
the full BW at the peak array gain.

B. Performance with Multiple Users

Note that Theorem 3 cannot be used to determine the IRS

locations that are jointly optimal to multiple UEs because:

1) Unless the UEs are colocated, the locations given by (44)
are not optimal to all the UEs, i.e., no single solution
exists for IRS locations so that the TDS in the channels
at all UEs can simultaneously be minimized to 77 "=0.

2) Even if the optimization problem in (P1) is solved for
each scheduled UE, the solutions are not practically

"Note that, by applying the triangle inequality property to the triangle
formed by BS, UE, and an IRS, it holds that A > ||p||2.

IRS: 1

IRS: 2
9p(@) =0

IRS: S Hotspot region

dintdiz=dntdp=...=dagt+de=...=ds1+dsa=2A

Fig. 4: Geometric locus of IRS locations in the presence of multiple UEs.

realizable because the locations of IRSs are typically
fixed once deployed and do not change with time.

To that end, we adopt a reasonable choice of IRS locations
that minimize the TDS across all the UEs, as explained next.

We consider a scenario where the BS serves multiple UEs
located in a small square hotspot region, R,, assisted by
the distributed IRSs. In this case, a metric of interest is the
TDS computed using the propagation delays averaged over
the distribution of UE locations within the hotspot area. The
expected value of the propagation delay of a path from the BS
to UE via an IRS placed at q is

7(a) = Ep~g, [llallz+]lp —all2] /e,
where p and f;, denote the UE location and its distribution,
respectively. We now make the following observation:

Eps, [llall2+[lp — allz] = [[all2+[Ep~s, [P — all2,  47)
where we used the Jensen’s approximation over the convex
||z norm. Note that this approximation is accurate when the
sum-variance of the components of p is small, e.g., when the
UE:s are clustered in a hotspot region around a central point, as
is the case in typical IRS deployments [36]. Now, using (47)
yields propagation delays via the IRSs similar to (42) and (43),
except that the UE location, p, is replaced by the centroid
of the distribution of the UE locations, p = E,y, [p).
Thus, Theorem 3 can be re-used for multiple UEs also: when
multiple UEs are randomly distributed in a hotspot zone, a
pragmatic choice of IRS locations is to place them on an
ellipse with foci at BS and C = E[p], the centroid of the
UE distribution, f5(p),p € R., as shown in Fig. 4. Then,
a natural question is: what is the TDS at a UE arbitrarily
located in the hotspot area? We have the following result.

Proposition 1. Consider S distributed IRSs with M elements
each, such that the IRSs are positioned at qi,q2,...,qs
which lie on ellipse whose focal points are given by the
locations of the BS and the centroid, p (i.e., the IRS locations
satisfy gxs(d) = 0 in (44), for some X satisfying X > ||p||2.)
Then the TDS at a UE located within the hotspot at a distance
T (in meters) from the centroid, and at an angle p, measured
anticlockwise w.r.t. the major axis of the ellipse, is

2 S s . 5 S
AT = il sin [ ¢ + Vs tv sin Ys — Vs , (48)
c 2 2

where v, = sin™? (”qs|2 Sin(X5)>, c=3x10% m/s,
las — bl

gL N .

S = arg 1I£E§<Srcos(u5 +¢), §=arg 1glgsrcos(us + ),



and s £ tan~! <[q5]2) —tan~! <[E)b>
[qs]l [p]l

Proof. To measure the TDS at an arbitrary UE located at (say)

A(p), we first compute the total propagation delay of the

signal from the BS to A via the sth IRS. For convenience,

we label the locations of the BS, IRS-s, and centroid by Fi,

15, Fo, respectively, as shown in Fig. 5. For the triangle I;AFs,

we apply the cosine rule [38, Sec. 12.7] to obtain

d(I;, A)? = d(I,, F2)?+d(Fa, A)?>—2d(I,, F2)-d(Fa, A) cos(£2,),
49

where d(A,B) measures the distance between points A (anc)l

B, and 2, is the angle between the lines I;Fo and AFs.

Using (49), we make the following simplifications:

d(Is, A) = \/d(I,, Fa)2 + 72 — 2r - d(I,, Fy) cos(Q;)

r2 r

= \/d(IS,F2)2 <1 + d(l. Fa)? 2d(IS,F2) COS(QS)>

@d(l F2) 17LCOS(Q)+O o
- s, L'2 d(IS7F2) s d(IS,Fg)Q
(c)

b
2 d(Is,Fy) — rcos(Qs) = d(Is,Fa) + rcos(vs + ¢),

where in (a), we used Taylor’s expansion: v/1 + © = 14+x/2+
O(x?); in (b), we neglected higher order terms because the
UEs are clustered in a hotspot, i.e., r < d(I,Fz2); and in (c),
we used the fact ¢ + Qs +vs = 7 and cos(m — ) = — cos(6).
As a result, the total propagation delay in the channel at the
UE from BS via the sth IRS can be written as 72 =

d(Fy, L) +d(Is,A)  d(Fy, L) +d(Is, Fa) + 7 cos(vs + ¢)
c - c
Then, the TDS at the UE is given by A7 =

— min A=" _ _ .
min, 7 = = (cos(vg + ) — cos(vs + ¢)), (50)

max 72
1<s<S

where we used the constant sum-distance property of the
ellipse stated in Theorem 3, i.e., d(Fi,1;) + d(Is,Fa)
A Vs, and the definition of S, § as in the statement of the
Proposition. Using the trigonometric identity of the difference
between two cosines in (50), (48) follows. Finally, using
the sine rule [38, Sec. 12.7] in triangle F1I;Fy, we get
A .1 _ .
vs = sin” ({||qsl|2/[las — Pll2} sin(xs)), where X, can be
determined as ys = tan~!([qs]2/[as]1) — w (see Fig. 5.)
Collecting all these terms into (50) completes the proof. M

From Proposition 1, we see that the TDS at an arbitrary UE
scales at most linearly with the distance between the UE and
the centroid within the hotspot zone. In particular, if the UE
is located in a square hotspot zone with side length 2dy, the
maximum TDS experienced at a UE is A7 = MTMO and is
obtained when the UE is located at a corner of the hotspot
region and ¢ + (vg + v5)/2 = vs — vg = /2. The minimum
TDS is 0 and is obtained when the UE is at the centroid (r = 0)
or o+ (vg+vs)/2 is an integer multiple of . In the sequel,
for a given deployment of the IRSs, we model the TDS as a
random variable Ar A& U[0,2v/2dy/c] across UEs. Then,
similar to Theorem 2, we characterize the average sum-rate
obtained under a time-division multiple access (TDMA) of
UEs over the hotspot region in the following result.

< St )
. - Centroid
3 O(p/2)

x-axis

-~F,(0) BS
Fig. 5: Computing the TDS at an arbitrary UE.

Theorem 4. Consider an mmWave OFDM system with K
SCs where a BS serves UEs within a hotspot zone of radius
do using S distributed IRSs as shown in Fig. 4, each with
M = M™ elements as in Theorem 1. When the IRSs are placed
on an ellipse whose focal points are given by the locations of
BS and the centroid of the hotspot zone, the average achievable

sum-rate, RSF", within the hotspot region obeys

K
_ 1
RPF>R® & Y "log,
K + N&, ];

5?2 sinc? (2\/§jofk> + S {1 — sinc? <2\/550fk> }]) ;

where the parameters N5y, py, 02, of and € are the same as
defined in the statement of Theorem 2.

2
PO 2
(1 + U2hM2 (1—¢)

X

Proof. For a hotspot zone shaped in the form of a square with
semi-side length dj, the farthest distance a UE can be located
from the centroid is \/§d0. Then, using Proposition 1, the
proof follows by setting Ty = 2/2d/c in Theorem 2. |

Theorem 4 explicitly characterizes a lower bound on the
achievable sum-rate as a function of the parameters of the
hotspot region, unlike the characterization in Theorem 2,
which is for some value of the maximum TDS, T}, introduced
by the IRSs. Also, Theorem 2 characterizes the rate at a given
UE location when the IRSs are deployed such that the TDS
at the UE is [0, T]. To obtain Theorem 4, we deploy the
IRSs on an ellipse and consider a UE deployed in a small
hotspot region such that the TDS across the UE locations
is U[0,2v/2dy/c]. In particular, for smaller hotspot sizes,
sinc?(2v/2dy fi/c) ~ 1 —8n2d2 f2/3c?. As a result, the chan-
nel gain on each SC scales as S? — 872d3 f2 (S + S?) /3%
Thus, for a fixed M, S, the array gain at any UE within the
hotspot and not located at its centroid deviates away from the
full array gain of S2M? at no more than a rate of O(d3)
when the IRSs are placed on the circumference of an ellipse
as shown in Fig. 4. Further, an array gain of at least SM? is
obtained on all SCs, in line with the foregoing discussions.

V. DISTRIBUTED IRSS ENABLE ANGLE DIVERSITY

Thus far, we have discussed the advantages of a distributed
design in mitigating the SW effects by parallelizing the
spatial delays. Yet another useful characteristic of a distributed
implementation is the diversity benefits that multiple IRSs can
bring into the system [39]. In light of this, we now demonstrate



a different flavor of how distributed IRSs can aid in mitigating
the SW effects. Specifically, in the following, we evaluate the
p-outage probability on SC-k, k= 1,..., K, defined as

Py 2 Pr ({605 [HMP <p}), D

where H[k] is UE’s channel on SC-k. Our result shows that
as long as the target channel gain is below an upper bound
o, the outage probability decreases exponentially with the
number of IRSs. On the other hand, the outage probability of
a centralized IRS is bounded away from zero regardless of the
value of (a large) N, the number of IRS elements.

Theorem 5. Let the IRSs be tuned to match the cascaded
channel angle on the carrier frequency, i.e., at fi, = 0. Then,
on SC-k, the p-outage probability

1) of an M-element S-distributed IRSs obeys
_og( 1B } 2472 max
]P;; S e ({ SMET 2sz2 X

) .0 € (0,05), (52)

where pl & M?2S52%¢2(o min) 2 (1 — u’)”(axwzzjng’?), e 2
sin 2¢22) —sin 24)&1 1 2
s (15 )

the cascaded angular range of the area covered by the
sth IRS, o £ ming|hg|, and € € (0,1) is a constant.
of an N-element centralized IRS obeys

_i . 2fco—h f2ah
> 1o fsint (2N o> 2 )

where [—do, ¢o] C [—7/2,7/2] is the cascaded angular
range of the area covered by the IRS, and cy = sin(¢g).?

2)

]P)k

Proof. We prove the theorem in the same order as stated.

Distributed IRS: Using the expression for the channel gain
in (13), the p-outage probability in (51) is simplified as: IP”;

s
<;|ﬁs|cos(gs’k) sinc (J\;[J{

A
1S

: sin<¢s>)>2 ¥

5 2
<Z|ﬁs|sin(§syk) sinc <A24Jfk Sin(¢5)>> < p/M?
s=1 ¢

S 2
r (Z'Bscos(gs,k) sinc (]\;fk Sin(¢s)>> < p/M2 ’
s=1 ¢

where in (a), (s 1 = 7(M-1) fi, sin(¢s) /2 f.. By design, (s, <
7/2, so that cos((s x) >£ >0, for s€[S] and some constant .
Using the definition of oi"", we upper bound the above as

M fy
]P”; < Pr(Z sinc ( ]{
s=1 ¢

Now, by using the 1st order Taylor’s series, sinc(x) > 1 —

sin(s ) <Jp /M&;“““) . (54)

8We consider a symmetrical angular range for ease of presentation. The
approach easily extends to any arbitrary angular interval.

222 /6; so, we can further upper bound (54) as

S 2172 ¢2
& =M M fi
]P’ngr<§ {1 2472

s=1

6.} < v/ Mfc‘““’)

5
. P 24 f2
=Pr sin?(¢g) > {S — VP . } < . (55)
(; (¢) Méomin | w2M?2 f7
For s = 1,. d) U| (1), 22)] are independent across
L

IRSs, so that X (¢5) are also independent random
variables with mean px, £ E[sin?(¢s)] given by

sin (204) —sin (26{")

.= | () — L
X = =35
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Let ux 2 3% | jux.. Then, we simplify (55) as: P*
VP 2412
<p Xompx ) > 45— 4 - 56
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2

< 6723<{1755%%“}¥%g35 7
where in (b), we upper bounded the probability by lower
bounding the tail in (56) using pI* £ max,c[sjitx,; in
(c), since p € (pf, 1), the tail value in (57) is positive, and
we used the Hoeffding’s inequality for bounded random
variables [40], i.e., 0< X, <1 Vs € [S]. This completes the
proof of (52).

Centralized IRS: Consider the complementary probability

P2 pr({o: [H 2 p}) .

Upon simplifying (58) similar to the above, we get

IF”; =Pr (sinc (ka Sin(¢)/2fc) > \/E/Nah)

(d) e c
< Pr (|sin(¢)|§ 2fcah/ﬂ'fk\/f)) © % sinl(j}fkf/hﬁ)

where in (d), we used sinc(x) <1/7|z|, and this upper bounds
the probability in (59); and in (e), for the values of p as in
the statement of the theorem, with ¢ ~ U[—dy, Pg], we used
the cumulative distribution function of Y = |sin(¢)| given by

P %/ﬁ

with kK = 2f.oy / 7 fr+/p. Computing the complementary
probability completes the proof of (53) and the theorem. W

(58)

(59)

dy, if k € (0, ¢p),

Thus, with high probability, while a centralized IRS severely
degrades the achievable array gain under the SW effect, a
distributed IRS prevents the adverse impact of the B-SP effect.
The exponential fall of IP”; in S with distributed IRSs is due to
the angle diversity provided by multiple IRSs, i.e., each IRS
provides a path at the UE whose cascaded angle is independent
of other IRSs. This advantage is in addition to parallelizing
the spatial delays across the IRSs.



The upper bound on the target array gain, pk, is
the product of M?2S2¢2(oMn)2) the maximum array gain
obtainable from S IRSs with A elements each, and
(1 — (wg*m2M?2f2/24f?)), which captures the unavoidable
loss in array gain due to the spatial delay spread incurred
by an M-element IRS. The value of the 2nd term depends
on the angular range | gl), 22)] seen by the IRSs. If the
interval is narrow and concentrated about O, then this term
is nearly 1. Also, as p§** decreases, the outage probability
in (52) decreases and p’B increases, allowing for better channel
gains from the system. On the other hand, in the centralized
scenario, as N increases, the SW effect kicks in, and the
outage probability in (53) at any f; other than the central SC
remains bounded away from zero for all p = O(N?). Notably,
as the angular range widens, the outage probability becomes
high even at a moderate target SNR.

VI. NUMERICAL RESULTS AND DISCUSSIONS

We now illustrate our findings through Monte Carlo simu-
lations. Unless mentioned otherwise, the BS is positioned at
the origin 0, while the UE can be located within a rectangular
hotspot region R,, with diagonally opposite corners specified
by [90,30]7 and [110,50]. The multiple IRSs are located
on an ellipse with A = 140. The path loss for each link is
modeled as PL = Cy(drf/d)X, where Cy = —50 dB is the
reference distance path loss measured at d,f = 1 meter, d is
the link distance, and x is the path-loss exponent, set equal to
2 for both BS-IRS and IRS-UE links. We consider an OFDM
system with W = 400 MHz, K = 2000 SCs, and f. = 30
GHz, assisted by an IRS with N = 1024 elements [30], [41],
[42]. Further, we consider a transmit SNR of P/o? = 130 dB.

A. Results for Zero Temporal Delay Spread: Ty = 0

1) Channel gain: For the zero TDS scenario, we consider
that the UE is located at p = Ep.f,[p], the centroid of
the distribution of UE locations within the region R,. In
this case, since the IRSs are positioned as per Theorem 3,
the signals via the paths from all the IRSs arrive at the UE
simultaneously, leading to zero TDS. In Fig. 6, we plot the
channel gain (normalized by the path loss) at the UE vs. the
baseband SC frequency for different values of M, the number
of elements at each IRS. Each curve corresponds to the system
with S = N/M IRSs, where the IRSs are positioned on the
ellipse such that ¢ = 90° Vs, capturing the worst-case B-
SP effect. First, for M = 1024,S = 1, which denotes the
centralized IRS case, the channel obtains the full array gain of
N2 only at f;, = 0 (i.e., at f.) and decays by several dB on SCs
away from fj = 0, illustrating the B-SP effect. When M < N,
i.e., S > 1, the channel gain becomes flatter across the BW
and eventually achieves the full-array gain of N2 on all SCs,
illustrating the mitigation of the B-SP effect using multiple
distributed IRSs. We also validate Theorem 1 for ¢ ~ 0.3,
which ensures that the channel gain on all SCs is within the
HPBW of the IRS beam (note the 3 dB mark.) Using (10)
for e = 0.3, we get M = 128, and we plot the channel gain
for this system and benchmark it with the theoretical gain of
(1 —€)> N2 as in Theorem 1. The gain is clearly above the
benchmark on all SCs, in line with Theorem 1.

f
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—— M =128
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Fig. 6: Mitigating B-SP effects via distributed IRSs for N = 1024.

2) Sum-rate: Next, in Fig. 7, we plot the achievable sum-
rate vs. the transmit SNR P/o? for the distributed system
and contrast it with the centralized IRS setup, under uniform
transmit power allocation across the SCs. We consider systems
with M = 100, 175,250, which correspond to channel gains
that are at least 66%,20%, and 2% of the peak array gain
of N? over the entire BW. The sum-rate of the distributed
setup is better than the centralized version, and this gets more
pronounced as M decreases. The reasons for this are two-fold:

1) The B-SP effect reduces in the distributed setup due to
the smaller aperture delays and angle diversity effects
(Sec. III-A and Sec. V.) So, the per-SC rate and the overall
sum-rate increase as S (M) increases (decreases.)

2) The CP overheads are larger in the centralized case com-
pared to the distributed case. This is due to the paralleliza-
tion of aperture delays, resulting in a smaller channel delay
spread in the latter. Thus, the centralized IRS suffers a
further loss in the achievable sum-rate.

The plot also confirms that the scaling law derived in The-
orem 2 indeed lower-bounds the achievable rate for the dis-
tributed IRS scenario. Further, we compare the performance
of the distributed IRS solution against the existing approach
of using TTDs as described in [18]-[24]. TTDs apply an
additional delay at each IRS element and counteract the signal
delay across the IRS, thereby eliminating the SW and the
resulting B-SP effects. However, this comes at the cost of
additional complexities: 1) the number of TTDs scales with
N, requiring more hardware & space; 2) high-resolution TTDs
are needed for precise delay compensation, which consumes
power and 3) a sophisticated full duplex capability at the IRS
to simultaneously receive, delay and reflect signals toward the
UE, all of which defeat the energy-efficient nature of IRSs.
From Fig. 7, the distributed IRS achieves the same perfor-
mance obtained using TTDs without any extra complexity.
Finally, we demonstrate that our approach achieves better
performance than an N/4 X 4 uniform planar array (UPA)
in place of the ULA. Although a UPA-based IRS outperforms
its ULA counterpart with the same N owing to the reduced
impact of the B-SP effect in the former [27], it does not fully
eliminate the B-SP effect. In contrast, our approach is IRS
geometry-agnostic and effectively mitigates the B-SP effect to
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deliver superior performance.

B. Results for Non-zero Temporal Delay Spread: Ty > 0

We now analyze how distributed IRSs can alleviate the B-
SP effect even when the IRSs introduce non-zero TDS in the
channel at the UE placed at an arbitrary location within the
hotspot zone R, of radius dy, as illustrated in Fig. 4.

1) Amount of TDS: We first assess the amount of TDS
experienced by a UE located away from the centroid. In
Fig. 8, we plot TDS versus dy for different S, the number
of IRSs, considering two distributions for the UE locations:
1) a uniform distribution within R, and 2) a 2-dimensional
truncated Gaussian distribution with mean p and standard
deviation oy = dp/3, with its support being Sy = {p €

2. |lp — Plloo< do}. We observe that both the average
TDS and the maximum TDS increase as dy increases. This
is because the IRS placements are optimized to achieve zero
TDS only at the centroid of the location distribution within
R, and the TDS increases as we move away from the centroid
(see Proposition 1). Furthermore, since the truncated Gaussian
distribution is more concentrated around the centroid than the
uniform distribution, the TDS in the former is smaller than that
in the latter, but both are well upper-bounded by the maximum
TDS predicted by Proposition 1.

2) Channel gain: In Fig. 9, considering the worst-case B-
SP effect, we plot the channel gain vs. the SC frequency for
different values of Tj. The sampling time is 75 = 1/W =
2.5 x 1079 seconds. We also plot the following equations:

p1:gi(fx) = N?; fr € [-W)/2,W)/2].
0z ga(fir) = (1=¢)*M?[S*h* (107 45 (1-R*(107))]
0y g3(fr) = (1 —€)2M? [S?h%(107)+S (1 — h2(1072))]
P2 ga(fe) = SM?; fi. € [-W/2,W/2].

fa 2 g5(fi) = (1= *M? [S2h*(107%)+ (1 — h2(107%))]
Lot (o) = (- 9PME [SR200°0) 48 (1~ 4210

where h2(t) £ sinc?(Wt/2). The lines /1, {2, {3, {, represent
the minimum channel gains in non-zero TDS scenarios, unlike
the zero gains that occur from the B-SP effect. As long as
Ty < Ts (i.e., when the paths from all IRSs arrive within

x1078
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Fig. 8: TDS vs. dp for different number of IRSs, S.
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Fig. 9: Mitigating B-SP effects with finite TDS for A = 3 dB.

the same sampling interval), the IRS phase configurations can
compensate for differential delays across the IRSs, and provide
a full array gain of S2M? = N? on all SCs, with only a minor
loss due to the permissible B-SQ (here, it is 3 dB.) However,
when Ty > T and as Tj increases, the array gain over the SCs
decreases and flattens below N2, as described in Theorem 4.
For large Tp (e.g., 107 s), the channel gain flattens at around
approximately O(SM?), with a 3 dB residual B-SQ loss. This
is because, in this case, the gain at the UE is obtained only
via the incoherent superposition of signals from the IRSs.
However, at the SC where f;, = 0, since the IRSs’ phase
shifts can fully compensate for any differential path delay,
the channel gain still scales as N 2, Thus, the distributed IRS
effectively mitigates the B-SP effect and ensures a flat response
across the BW, even after accounting for the nonzero TDS.
3) Average sum-rate: In Fig. 10, we evaluate the average
sum-rate of the distributed IRS system, designed for ¢ ~ 0.3,
by plotting it against the transmit SNR, P/o?, for N = 1024
and 4096. The results are averaged over multiple UE locations
within a hotspot defined by p = [80,80]%, dy = 12 meters,
and the IRSs placed on an ellipse with A = 160. For
N = 1024, the distributed IRS significantly outperforms
the centralized IRS, even after accounting for the nonzero
TDS in the former setup. Further, the curve obtained based
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on Theorem 4 (labeled Dist. IRS Theorem 4) lower-
bounds the empirical sum-rate, confirming the accuracy of our
analysis. Additionally, we show the worst-case lower bound
on the rate that scales as O(log(SM?)) on the plot. The gap
between the achievable sum-rate and this lower bound is high,
showing that our solution can, in fact, perform much better
than the incoherent gain of O(log(SM?)) on all SCs. Finally,
when the number of IRS elements quadruples from N = 1024
to N = 4096, the rate improves by 4 bps/Hz, demonstrating
that our method achieves the full array gain of O(N?) (since
log,((4N)?) = 4+log,(N?)). In contrast, the sum-rate using
a centralized IRS marginally reduces due to the B-SP effect.

4) Jain’s index: Next, in Figure 11, we demonstrate the
flatness in the channel gain across SCs by plotting the Jain’s
index as a function of Tj. The Jain’s index is calculated using
the channel gains on different SCs as

L (S ame)
KT HE

It is known that - < J < 1, with J = 1 achieved when
the channel gains are equal on all SCs. In Fig. 11, we depict
Jain’s index for both the centralized and distributed IRS setups
for different values of N. For any given NV, the index J
for a distributed IRS is approximately 1 for small 7j, then
decreases below 1 for moderate T}, and returns to 1 for large
Ty. This behavior can be explained as follows. For small Tj,
the channel gain uniformly scales as O(N?) on all SCs within
the HPBW of the main lobe, yielding J ~ 1. As Tp increases,
the channel gain fluctuates between O(SM?) and O(S?M?)
across different SCs as illustrated in Fig. 9, causing J to drop
below 1. When T becomes high, J increases again to 1
because the channel exhibits an almost flat response within
3 dB of the peak gain of O(SM?) due to the incoherent
addition of signals from the IRSs. Since S increases with [NV
(M remains constant since we design the system for € ~ 0.3),
the gap between SM? and S2M? increases as N increases,
leading to larger fluctuations in the channel gain at moderate
To. This results in a lower Jain’s index J for intermediate T}
as N is increased. Importantly, the Jain’s index obtained using
a distributed IRS is much higher than in the corresponding
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centralized IRS scenario, showing that the distributed IRS can
effectively flatten the channel frequency response even after
accounting for the nonzero TDS.

C. Diversity Benefits of Distributed IRSs

We next showcase how distributed IRSs can also lever-
age diversity benefits to further mitigate the B-SP effects
in Fig. 12. To this end, we simulate the B-SP induced
outage probability IP”; as a function of S for various UE
location realizations. The plot clearly shows that IP”; decreases
exponentially with the number of IRSs, in line with Theo-
rem 5. Multiple IRSs provide independent paths with different
channel angles, and the resulting angle diversity makes it
unlikely that all IRSs experience the worst-case spatial delay
spread. Further, ]P”; decreases as p decreases, in line with
the inferences from Theorem 5. Note that p = NZ207/2°
corresponds to an allowed loss of 3¢ dB relative to the peak
array gain of N?2. Thus, larger degradation in the array gain
due to the B-SP is less likely to happen with distributed IRSs.
Similarly, since the B-SP effects are less pronounced near the
center SC, P% reduces as | f;| is near 0, in line with Theorem 5.
Thus, distributed IRSs also provide instantaneous benefits to
minimize the SW and the resulting B-SP effects.



=1024, Tp =10 0 s
— = N =2048, T) =100 s
—-Q---N =1024, TH =10 s
(=N =2048, TH =107 s
seasferns N = 1024, Centralized IRS
weofAr N = 2048, Centralized IRS
=~ = Line {;: O(N?)

“Line : N=1024, O(SM2)
«Line ¢3: N=2048, O(SM?)

..........n{,::

Normalized channel gain (in dB)
do
o

TPy LY

-2 -1 0 1 2
Sub-carrier frequency in baseband (in Hz) x108

Fig. 13: Channel gains in centralized vs. distributed IRSs.

D. Array Gain Using Distributed vs. Centralized IRS

Finally, in Fig. 13, we summarize a big picture of the
solution by comparing the channel gain obtained using a
distributed IRS with the conventional centralized IRS. We
observe that distributed IRSs can completely combat the B-SP
effect and provide a significantly better array gain on all SCs.
Although the channel gain with distributed IRSs concentrates
about O(SM?) when the TDS is arbitrarily large and is less
than O(N?), this still avoids deep nulls, ensuring that the IRS
can focus on the desired UE on all SCs. In fact, even the
reduced gain with distributed IRSs due to large TDS is much
better than the array gain using a centralized IRS over all SCs
other than the center SC. Thus, the distributed IRSs effectively
mitigate the SW effect (and hence the B-SP) and outperform
the centralized IRS at almost no additional complexity.

VII. CONCLUSIONS

We tackled the issue of SW and the resulting B-SP effects
in IRS-aided wideband systems by identifying that the SW
effect primarily stems from the linear increase of spatial delay
spread across the IRS aperture. In this view, we proposed a
distributed IRS design that a) parallelizes spatial delay and b)
utilizes angle diversity, which collectively mitigates the SW
and B-SP effects. In particular, we detailed how to determine
the number of elements at each IRS, the number of IRSs, and
the placement of the IRSs that can eliminate the SW effects
while procuring the optimal array gain over the entire BW for
a given total number of IRS elements. Our solution provides
uniformly positive benefits over the full BW at any UE with no
significant complexity compared to existing methods. Potential
future work can include extending the solutions to account for
near-field effects and UE mobility scenarios.
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