
Received XX September 2021; revised ; accepted XX October 2021; Date of publication XX November 2021; date of current version
XX November 2021.

Digital Object Identifier 10.1109/OJCSYS.2021.Doi Number

State and Sparse Input Estimation in
Linear Dynamical Systems using
Low-Dimensional Measurements

RUPAM KALYAN CHAKRABORTY1, GEETHU JOSEPH1 (Senior Member, IEEE),
CHANDRA R. MURTHY2 (Fellow, IEEE)

1Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Delft 2628 CD, The Netherlands; emails:
{R.K.Chakraborty,G.Joseph}@tudelft.nl

2Department of Electrical Communication Engineering, Indian Institute of Science (IISc), Bangalore 560012, India; email: cmurthy@iisc.ac.in

R.K. Chakraborty’s work was initiated while at IISc, Bangalore. This work was presented in part in [1].

ABSTRACT Sparsity constraints on the control inputs of a linear dynamical system naturally arise in
several practical applications such as networked control, computer vision, seismic signal processing, and
cyber-physical systems. In this work, we consider the problem of jointly estimating the states and sparse
inputs of such systems from low-dimensional (compressive) measurements. Due to the low-dimensional
measurements, conventional Kalman filtering and smoothing algorithms fail to accurately estimate the
states and inputs. We present a Bayesian approach that exploits the input sparsity to significantly improve
estimation accuracy. Sparsity in the input estimates is promoted by using different prior distributions on
the input. We investigate two main approaches: regularizer-based maximum a posteriori estimation and
Bayesian learning-based estimation. We also extend the approaches to handle control inputs with common
support and analyze the time and memory complexities of the presented algorithms. Finally, using numerical
simulations, we show that our algorithms outperform the state-of-the-art methods in terms of accuracy and
time/memory complexities, especially in the low-dimensional measurement regime.

INDEX TERMS Kalman filtering and smoothing, sparsity-promoting regularizer, joint sparsity, ADMM,
`1 minimization, reweighted `2 minimization, sparse Bayesian learning, variational Bayesian methods.

I. Introduction
Sparse actuator control of linear dynamical systems (LDSs)
has recently gained considerable interest in the literature [2]–
[5]. This new research area deals with LDSs with sparsity
constraints on the control inputs, i.e., each input vector con-
tains only a small number of nonzero entries. An LDS with
sparse control inputs models several practical applications
such as networked control systems [2], [3], opinion dynamics
manipulation [6], [7], computer vision [8], seismic signal
processing [9], [10], and cyber-physical systems [11], [12].
In such applications, an important goal is to jointly estimate
the states and sparse inputs of the LDS from its measure-
ments or output. For example, malicious attacks on cyber-
physical systems can be modeled as sparse inputs [11], [12].
Recovery of these sparse attacks is crucial to detecting and
mitigating the attacks, as demonstrated in applications such
as aircraft engine [13]–[15] and power system network [16].

Motivated by the above applications, this paper focuses
on developing joint state and input recovery algorithms for
observable LDSs with sparse control inputs. Specifically, we
consider a discrete-time LDS, with state transition matrix
Ak ∈ Rn×n, input matrix Bk ∈ Rn×m, measurement
matrices Ck ∈ Rp×n and Dk ∈ Rp×m at time instant k,
whose dynamics are governed by

xk+1 = Akxk +Bkuk +wk (1)
yk = Ckxk +Dkuk + vk. (2)

Here, uk ∈ Rm is the input, xk ∈ Rn is the state, and
yk ∈ Rp is the measurement at time k. Also, wk and vk
are the process noise and measurement noise, respectively.
The noise wk ∼ N (0,Qk) and vk ∼ N (0,Rk) are
independent, where Qk ∈ Rn×n and Rk ∈ Rp×p are posi-
tive definite matrices. Here, N (µ,Σ) denotes the Gaussian
distribution with mean vector µ and covariance matrix Σ.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 00, 2021 1

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2025.3624615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

R. K. CHAKRABORTY ET AL.: STATE AND SPARSE INPUT ESTIMATION IN LINEAR DYNAMICAL SYSTEMS

We aim to simultaneously estimate the states and sparse
inputs {xk,uk : ‖uk‖0 � m}Kk=1 from the low dimensional
measurements {yk}Kk=1 with p < m, for a given K > 0.
Here, ‖ · ‖0 denotes the `0 norm. We emphasize that our
focus is not on the design of sparse control inputs, but on
recovering the states and sparse inputs of the system.

A. Related Work
Joint recovery of states and input without assuming any
specific structure on the inputs or states has been studied
extensively [17]–[21], but these works ignore any underlying
sparsity structure that may exist in the system. Exploiting
sparsity can facilitate the recovery of states and inputs with
far fewer measurements than conventional approaches. The
existing studies on the recovery of states and inputs in
sparsity-constrained LDS consider one of three problems:

1) Estimation of sparse initial state x1

Estimating the sparse initial state of an LDS is equivalent
to the standard sparse recovery problem, and can be solved
using algorithms like LASSO, orthogonal matching pursuit,
or sparse Bayesian learning (SBL) [22]–[24]. Theoretical
results on the recoverability of a sparse initial state from
low dimensional linear measurements of the states when the
sparsity is exploited have been derived in [23]–[27]. These
works focus on estimating the sparse initial state, assuming
complete knowledge of the inputs applied to the system.

2) Estimation of sparse states {xk}Nk=1

The sparse state estimation of an LDS without the knowledge
of inputs has been studied in diverse applications. Sparsity-
aware Kalman filtering was proposed in [28] to track abrupt
changes in the sequence of sparse states of an LDS. Further,
sparse state estimation was discussed in [29], where an
SBL-based algorithm was used under the assumption of
jointly sparse states. Another approach for jointly sparse
state recovery algorithms imposed an `1-regularizer in the
Kalman smoothing cost, followed by the alternating direction
method of multipliers (ADMM) method [30]. Furthermore,
the recovery of sparse states without the joint sparsity
assumption was studied via `1-regularization-based dynamic
filtering [31] and via a variational form of SBL in [32].
Additionally, [33] considered a general non-linear state space
model with linear measurements of sparse states and devel-
oped an SBL-based dynamic filtering algorithm. However,
these works assume the system matrices and inputs are
restricted to ensure that xk+1 in (1) is sparse.

3) Joint estimation of states and sparse inputs {xk,uk}Nk=1

In [34], the problem of jointly recovering the state and
sparse input sequences as an `1-minimization using con-
vex optimization methods was considered, i.e., minimiz-
ing

∑K
k=1 ‖uk‖1. Necessary and sufficient conditions for

observability of sparse control inputs and the initial state
for a noiseless LDS have been investigated in [35], [36].
These methods involve solving for a large-dimensional un-
known sparse vector obtained by stacking the input vectors

and do not exploit the temporal correlation in the state
evolution. Consequently, the resulting algorithms have high
computational complexity and memory requirements. To
address these literature gaps, we presents new sparsity-driven
estimators with better performance and lower complexities.

B. Contributions
We address the joint estimation of states and sparse inputs
from (1) and (2) using p observations per time step over
K time steps. With K(n + m) unknowns and only Kp
observations with p � n + m, the system is highly under-
determined. We solve the problem by enforcing sparsity via
fictitious priors from the exponential family and integrating
the resulting Bayesian framework with Kalman smoothing
to exploit temporal correlations, yielding different estimation
methods. Our contributions are as follows:

1) Regularizer-based approach: We integrate the sparsity-
promoting priors in the maximum a posteriori (MAP) estima-
tor of the system’s state and inputs leading to `1-regularized
and reweighted `2-regularized algorithms. (See Section III.)

2) Bayesian learning-based approach: We develop two
techniques that use hierarchical Gaussian priors to induce
sparsity. First, we rely on type-II maximum likelihood (ML)
estimation combined with Kalman smoothing to determine
the states and sparse inputs. Second, we develop a variational
Bayesian (VB) algorithm that groups the prior parameters
and unknown states and inputs as unobserved variables, and
infers their posterior distributions. (See Section IV.)

3) Comparison and extension: We analyze and derive
the time and memory complexities of both approaches in
Section IV.C. Our empirical studies in Section V show
that Bayesian learning-based algorithms outperform the
regularizer-based approach and have lower complexity. We
also extend the two approaches to the case of jointly sparse
control inputs and present a similar analysis.

The key innovation in this work is seamlessly integrat-
ing advanced sparse recovery techniques with the Kalman
smoothing framework. Unlike most control algorithms that
exploit sparsity using basic `1-norm regularization, often ne-
glecting the temporal evolution of the state process, our work
bridges the gap between sparse signal processing and control
theory by introducing sophisticated Bayesian sparse signal
recovery methods within the Kalman smoothing framework.

This work significantly extends the conference paper [1]
in several key aspects: we present a family of regularizer-
based approaches, convergence analysis of the algorithms,
and more comprehensive simulation results along with com-
parisons to extended versions of state-of-the-art algorithms.

Notation: The ith entry of vector a is a(i) and the (i, j)th
entry of matrixA isA(i, j). We denote a sequence of vectors
{a1,a2, . . . ,aN} by AN

1 . The `1-norm is denoted by ‖ ·
‖1, and ‖ · ‖ denotes the induced `2-norm for matrices and
Euclidean norm for vectors. Also, AS denotes the submatrix
of A with the columns indexed by set S, and xS denotes
the subvector of x with entries indexed by S. If P is a
nonsingular matrix, we define ‖x‖P = xTP−1x.

2 VOLUME 00 2021

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2025.3624615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

II. MAP Estimation of States and Sparse Inputs
In this section, we introduce the generalized framework
for Bayesian estimation of initial state and sparse inputs
via sparsity-promoting priors. Specifically, we consider the
estimation of the states and inputs {xk,uk}Kk=1 using mea-
surements Y K

1 , {yk}Kk=1 in (2) using a Bayesian frame-
work, exploiting the sparsity of the inputs and the temporal
correlation across the states dictated by (1).

The MAP estimates x̂k|K , ûk|K of the states and inputs
are computed using the joint distribution of all the states
and inputs {xk,uk}Kk=1 given all observations Y K

1 , subject
to the system dynamics in (1) and (2), i.e.,{

x̂k|K , ûk|K
}K
k=1

= arg max
xk,uk

k=1,...,K

p
(
{xk,uk}Kk=1 | Y

K
1

)

= arg max
xk,uk

k=1,...,K

K∏
k=1

p(yk|xk,uk)p(uk)

×
K∏
k=2

p(xk|xk−1,uk−1)× p(x1), (3)

where we use the Markov structure implied by (1), and
assume the input uk is independent of the inputs. We
note that the control inputs applied to the LDS need not
be independent of the initial state. However, we make no
assumptions about any prior knowledge of such relation-
ships. Instead, we treat the inputs as unknown parameters
and impose a fictitious prior to enforce sparsity (which we
discuss later) to develop our algorithms.

Further, we do not make any assumptions about the initial
state x1 and assume p(x1) to be a (an improper) uniform
prior. So, from (1) and (2), and using Gaussianity of the
process and measurement noise, the optimization problem
in (3) reduces to

{
x̂k|K , ûk|K

}K
k=1

= arg min
xk,uk

k=1,...,K

1

2

K∑
k=1

‖yk−Ckxk−Dkuk‖2Rk

+
1

2

K−1∑
k=1

‖xk+1 −Akxk−Bkuk‖2Qk
−

K∑
k=1

ln(p(uk)). (4)

Since the input is known to be sparse, we encode this
information into the estimation model via suitable priors
on the inputs. Based on different sparsity-promoting priors,
we develop two approaches: (a) regularized robust Kalman
smoothing (RKS) and (b) Bayesian RKS, presented next.

III. Regularized Robust Kalman Smoothing
Inspired by the convex optimization-based sparse signal
recovery algorithms [22], [37], we use the following prior to
induce sparsity:

p (uk) =

m∏
i=1

χ exp
[
−τk

2
|uk(i)|l

]
,

where χ is the normalizing constant and τk, l > 0 are known
distribution parameters. Here, τk controls the sparsity of

the control inputs, i.e., a large value of τk leads to sparser
solutions. This parameter is often chosen by cross-validation.
The choice of l determines the properties of the optimization
problem in (4), leading to different estimators as given below.

A. `1-regularized Robust Kalman Smoothing
Motivated by the `1 norm-based Laplacian prior, the most
popular choice is l = 1. With l = 1, the optimization
problem in (4) becomes

{
x̂k|K , ûk|K

}K
k=1

= arg min
xk,uk

k=1,...,K

K∑
k=1

‖yk−Ckxk−Dkuk‖2Rk

+

K−1∑
k=1

‖xk+1 −Akxk −Bkuk‖2Qk
+

K∑
k=1

τk ‖uk‖1 . (5)

The convex optimization problem in (5) has no closed-form
solution. So, we use the ADMM algorithm [38] to solve
it. ADMM decomposes the convex optimization problem in
(5) into simpler optimization problems. We reformulate (5) to
another equivalent optimization problem using auxiliary vari-
ables {tk ∈ Rm}Kk=1. We define the augmented Lagrangian
function as

L
(
{xk,uk, tk,λk}Kk=1

)
=

K∑
k=1

‖yk−Ckxk−Dkuk‖2Rk

+

K−1∑
k=1

‖xk+1 −Akxk −Bkuk‖2Qk

+

K∑
k=1

[
τk ‖tk‖1 + λT

k (tk − uk) + c ‖tk − uk‖2
]
, (6)

where {λk ∈ Rm}Kk=1 are the Lagrangian multipliers that
arise from the K constraints tk = uk. Also, c > 0 is
a scalar. ADMM is an iterative algorithm that alternately
solves subproblems of (6), each focusing on a specific block
of variables. The rth iteration updates are{
x
(r)
k ,u

(r)
k

}K
k=1

= arg min
{xk,uk}Kk=1

L
({
xk,uk, t

(r−1)
k λ

(r−1)
k

}K
k=1

)
(7)

t
(r)
k =arg min

tk
L
({
x
(r)
k ,u

(r)
k , tk,λ

(r−1)
k

}K
k=1

)
(8)

λ
(r)
k = λ

(r−1)
k + 2c

(
u
(r)
k − t

(r)
k

)
, (9)

for k = 1, 2, . . . ,K. Further, (7) can be simplified as{
x
(r)
k ,u

(r)
k

}K
k=1

= arg min
xk,uk

k=1,...,K

K∑
k=1

∥∥∥y`1k −C̃kxk−D̃kuk

∥∥∥2
R

`1
k

+

K−1∑
k=1

‖xk+1 −Akxk −Bkuk‖2Qk
. (10)

VOLUME 00 2021 3

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2025.3624615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

R. K. CHAKRABORTY ET AL.: STATE AND SPARSE INPUT ESTIMATION IN LINEAR DYNAMICAL SYSTEMS

Here, we define the new matrices

y`1k =

[
yk

t
(r−1)
k − c−1λ(r−1)

k

]
, R`1

k =

[
Rk 0
0 c−1I

]
(11)

C̃k =
[
CT
k 0

]T
, D̃k =

[
DT
k I

]T
. (12)

To solve (10), we next extend Kalman filtering and smooth-
ing, laying the foundation for our algorithms in this paper.

Theorem 1:
Consider the MAP estimates of the states and inputs of the

linear system in (1) and (2) with the assumption that Dk’s
have full column rank and without any prior information on
the inputs, given by

arg min
xk,uk

k=1,...,K

K∑
k=1

‖yk −Ckxk −Dkuk‖2Rk

+

K−1∑
k=1

‖xk+1 −Akxk −Bkuk‖2Qk
. (13)

This problem can be solved recursively using the prediction,
filtering, and smoothing steps, using the robust Kalman
smoothing (RKS) algorithm summarized in Algorithm 1.

Proof: See Appendix A.
We note that the statement of Theorem 1 requires p ≥ m,

which implies that, in the absence of additional structural
information about the inputs uk, a necessary condition for
obtaining MAP estimates is that the number of measurements
must be at least as large as the input dimension.

In Algorithm 1, we determine the statistics of the joint
Gaussian posterior distribution of xk and uk given Y k

1 . We
know for any t and k the posterior distribution of the state
xt and input ut given measurements Y K

1 is given by

p
(
xt,ut|Y k

1

)
= N

([
x̂t|k
ût|k

]
,

[
P xt|k P xut|k(
P xut|k

)T
Put|k

])
. (14)

Here, x̂t|k ∈ Rn and ût|k ∈ Rm are the estimates of
xt and ut given Y k

1 with associated covariances P xt|k ∈
Rn×n and Put|k ∈ Rm×m, respectively, and cross-covariance
P xut|k ∈ Rn×m. Then, defining ξTt =

[
xT
t uT

t

]
, we get

p
(
ξt|Y

k
1

)
∼ N

(
ξ̂t|k,P

ξ
t|k

)
, where ξ̂t|k and P ξt|k are the

mean and covariance of the distribution in (14).
Since (10) has the same form as (13), its solution follows

the RKS algorithm with the measurement model in (11) and
(12). Further, from (8), the auxiliary variable update is

t
(r)
k = arg min

tk
τk ‖tk‖1 + c

∥∥∥tk − c−1λ(r−1)
k − u(r)

k

∥∥∥2
= Sc−1τk

(
u
(r)
k + c−1λ

(r−1)
k

)
, (15)

where the last step follows from the LASSO solution. Also,
S(·) is the entry-wise soft thresholding function, Sb(a) =
Sgn(a) max {|a| − b, 0}. Combing (9), (10) with Theorem 1,
and (15), `1-regularized RKS is summarized in Algorithm 2.

Algorithm 1 Robust Kalman Smoothing

Inputs: {yk,Ak,Bk,Ck,Dk,Qk,Rk}Kk=1

Initialization: ξ̂0|0 = 0 ∈ Rn+m, P ξ0|0 ∈ R(n+m)×(n+m)

and Q0 = 0 ∈ Rn×n

1: ξk =
[
xT
k uT

k

]T
, Ãk =

[
Ak Bk

]
and T =[

I 0
]T
∈ R(n+m)×n

2: Jk =
(
DT
kR
−1
k Dk

)−1
DT
kR
−1
k for k = 1, . . .K

3: for k = 1, 2, . . . ,K do
#Prediction:

4: x̂k|k−1 = Ãk−1ξ̂k−1|k−1

5: P xk|k−1 = Ãk−1P
ξ
k−1|k−1Ã

T

k−1 +Qk−1

#Filtering:

6: Lk = P xk|k−1C
T
k

(
Rk +CkP

x
k|k−1C

T
k

)−1
7: Gk =

[
(I −LkDkJkCk)−1Lk(I −DkJk)

(I − JkCkLkDk)−1Jk(I −CkLk)

]
8: ξ̂k|k = T x̂k|k−1 + Gk

(
yk −Ckx̂k|k−1

)
9: P ξk|k=(T−GkCk)P xk|k−1(T−GkCk)T+ GkRkGT

k

10: Compute x̂k|k and P xk|k from ξ̂k|k and P ξk|k
11: end for

#Smoothing:
12: for k = K − 1,K − 2, . . . , 1 do
13: Kk = P ξk|kÃ

T

k

(
P xk+1|k

)−1
14: P ξk|K = P ξk|k +Kk

(
P xk+1|K − P

x
k+1|k

)
KT
k

15: ξ̂k|K = ξ̂k|k +Kk

(
x̂k+1|K − Ãkξ̂k|k

)
16: Compute x̂k|K and P xk|K from ξ̂k|K and P ξk|K
17: end for
Outputs: {x̂k|K}Kk=1 and {ûk|K}Kk=1

In Algorithm 2, the full column rank requirement of Theo-
rem 1 holds for D̃k =

[
DT
k I

]T ∈ R(p+m)×m.
Since (5) is convex, ADMM is guaranteed to converge

to the global solution. A general limitation of `1-based
regularization, however, is that it may yield biased estimates
for large coefficients, thereby necessitating careful tuning of
the penalty parameters [39].

B. Reweighted `2-regularized Robust Kalman Smoothing
When 0 < l < 2, an alternative algorithm, similar in spirit
to the iterative reweighting-based sparse recovery [37], can
be derived. Then, the optimization problem (13) changes to{
x̂k|K , ûk|K

}K
k=1

= arg min
xk,uk

k=1,...,K

K∑
k=1

‖yk−Ckxk−Dkuk‖2Rk

+

K−1∑
k=1

‖xk+1−Akxk−Bkuk‖2Qk
+

K∑
k=1

τk

m∑
i=1

|uk(i)|l. (16)

4 VOLUME 00 2021

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2025.3624615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 2 `1-regularized Robust Kalman Smoothing

Inputs: {yk,Ak,Bk,Ck,Dk,Qk,Rk}Kk=1

Parameters: c, rmax, and τk for k = 1, 2, . . . ,K, r = 1,
ε = 2εthres

Initialization: t(0)k = λ
(0)
k = 0, for k = 1, 2, . . . ,K

1: Compute R`1
k , C̃k, D̃k using (11) and (12)

2: while (r < rmax) or (ε > εthres) do
3: Compute y`1k using (11)
4: Compute x(r)

k and u
(r)
k via Algorithm 1 replacing

yk, Ck, Dk, and Rk with y`1k , C̃k, D̃k, and R`1
k

, respectively
5: for k = 1, 2, . . . ,K do
6: Using (15), t(r)k = Sc−1τk

(
u
(r)
k + c−1λ

(r−1)
k

)
7: λ

(r)
k = λ

(r−1)
k + 2c

(
u
(r)
k − t

(r)
k

)
8: end for

9: ε =
K∑
k=1

∥∥∥ξ(r)k − ξ(r−1)k

∥∥∥2
2

where ξ(r)k =

[
x
(r)
k

u
(r)
k

]
10: r = r + 1

11: end while
Outputs:

{
x
(r)
k

}K
k=1

and
{
u
(r)
k

}K
k=1

We use the majorization minimization (MM) technique to
solve (16). In MM, the cost function is upper-bounded
around the current iterate by a tractable function that is easy
to optimize, and we minimize that upper bound to get the
new iterate. Here, we bound the regularizer term by noting
that the function |u|l = (|u|2)l/2 is a concave function of
|u|2. Therefore, the function is bounded above by its first-
order Taylor approximation, and for any u ∈ R,(
|uk(i)|2

)l/2
≤
(
|u|2
)l/2

+
l

2

(
|u|2
)l/2−1

(|uk(i)|2−|u|2).

With u = u
(r−1)
k (i), we get(

|uk(i)|2
)l/2
≤ l

2

∣∣∣u(r−1)
k (i)

∣∣∣−(2−l) |uk(i)|2

+

(
1− l

2

) ∣∣∣u(r−1)
k (i)

∣∣∣l . (17)

We now iteratively solve (16) by optimizing the upper bound
in each iteration. So, the rth iteration computes{

x
(r)
k ,u

(r)
k

}K
k=1

= arg min
xk,uk

k=1,...,K

K∑
k=1

‖yk −Ckxk −Dkuk‖2Rk

+

K−1∑
k=1

‖xk+1 −Akxk −Bkuk‖2Qk
+
l

2

K∑
k=1

τk ‖uk‖2W (r)
k

.

(18)

Here, the diagonal weight matrix W (r)
k ∈ Rm×m is

W
(r)
k = diag

{∣∣∣u(r−1)
k

∣∣∣}(2−l)
,

with |·| representing the element-wise modulus. When an
entry of u(r−1)

k become close to zeros, W (r)
k can potentially

become non-invertible. To avoid numerical instabilities, we
prune the entries of u(r−1)

k falls below some small threshold
κ (e.g., κ = 10−6) in magnitude. Now, (18) modifies to{
x
(r)
k , ũ

(r)
k

}K
k=1

= arg min
xk,ũk

k=1,...,K

K∑
k=1

∥∥∥y`2k −C`2
k xk−D

`2
k ũk

∥∥∥2
R

`2
k

+

K−1∑
k=1

∥∥∥xk+1 −Akxk −B`2
k ũk

∥∥∥2
Qk

, (19)

where we define

y`2k =
[
yT
k 0|Ik|

]T
, B`2

k = (Bk)Ik (20)

C`2
k =

[
CT
k 0n×|Ik|

]T
, D`2

k =
[
(Dk)

T
Ik I |Ik|

]T
,

(21)

where ũ(r−1)
k ∈ R|Ik| is the vector obtained after removing

the entries of u(r−1)
k whose absolute values are less than κ,

and Ik is the set of indices corresponding to the entries of
u
(r−1)
k which have absolute value at least κ. Also, we define

R`2
k =

[
Rk 0

0 2
τkl

diag
{∣∣∣ũ(r−1)

k

∣∣∣}(2−l)

]
. (22)

Here, (19) takes the same form as (5) and can be solved via
RKS in Algorithm 1. Finally, we reconstruct u(r)

k as(
u
(r)
k

)
Ik

= ũ
(r)
k and

(
u
(r)
k

)
I{k

= 0. (23)

The pseudocode for the overall reweighted `2-regularized
RKS is summarized in Algorithm 3.

Algorithm 3 Reweighted `2-regularized Robust Kalman
Smoothing

Inputs: {yk,Ak,Bk,Ck,Dk,Qk,Rk}Kk=1

Parameters: l, rmax, κ, and τk for k = 1, 2, . . . ,K, ε =

2εthres

Initialization: u(0)
k = 1, for k = 1, 2, . . . ,K

1: while (r < rmax) or (ε > εthres) do
2: Determine Ik for each u(r−1)

k and compute ũ(r−1)
k

3: Compute y`2k , B`2
k , C`2

k , D`2
k , R`2

k using (20), (21)
and (22)

4: Compute x(r)
k and ũ(r)

k via Algorithm 1 replacing yk,
Bk, Ck, Dk, and Rk with y`2k , B`2

k , C`2
k , D`2

k , and
R`2
k respectively

5: Construct u(r)
k using (23)

6: ε =
K∑
k=1

∥∥∥ξ(r)k − ξ(r−1)k

∥∥∥2
2

where ξ(r)k =

[
x
(r)
k

u
(r)
k

]
7: end while

Outputs:
{
x
(r)
k

}K
k=1

and
{
u
(r)
k

}K
k=1

VOLUME 00 2021 5

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2025.3624615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

R. K. CHAKRABORTY ET AL.: STATE AND SPARSE INPUT ESTIMATION IN LINEAR DYNAMICAL SYSTEMS

Next, we show that iteratively optimizing the surrogate
function in (18) via Algorithm 3 either decreases the value of
the cost function in (16) or leaves it unchanged, and that the
sequence of cost function values over iterations converges.

Proposition 1:
For a given set of inputs, let

{
x
(r)
k ,u

(r)
k

}K
k=1

be the
sequence generated by Algorithm 3. Then, the corresponding
sequence of cost function values in (5) is monotonically non-
increasing and converges to a limit in R.

Proof:
For brevity, we define x = XK

1 and u = UK
1 . Let the

cost function in (16) be denoted by f(x,u) = f1(x,u) +
f2(u), where f1(x,u) denotes the first two quadratic terms
and f2(u) =

∑K
k=1 τk

∑m
i=1 |uk(i)|l is the regularizer term.

Also, let the upper bound in (17) be g(u|u(r−1)) ≥ f2(u)
and equality holds when u = u(r−1). Hence, we derive

f(x(r−1),u(r−1)) = f1(x(r−1),u(r−1))+ g(u(r−1)|u(r−1))

≥ f1(x(r),u(r)) + g(u(r)|u(r))

≥ f1(x(r),u(r)) + f2(u(r))

= f(x(r),u(r)).

The first inequality holds because, in the rth itera-
tion, (x(r),u(r)) the RKS algorithm minimizes the cost
function in (18), which is equivalent to minimizing
f1(x,u)+g(u|u(r−1)). The second inequality holds because
g(u|u(r)) ≥ f2(u) for any u. Hence, the sequence of the
cost function values is monotonically non-increasing. Fi-
nally, f(x,u) is lower bounded by 0. Thus, by the monotone
convergence theorem, the cost function sequence converges.

The above result guarantees that cost function derived from
the iterates converges to a limit, but the iterates may oscillate,
cycle, or converge to a local minimum or a saddle point.

Iterative reweighted `2 regularization provides stronger
sparsity promotion than `1-based regularizer, since 0 < l < 1
offers a closer approximation to the `0 norm than `1.
However, for 0 < l < 1 the problem becomes non-convex,
and a key drawback is that the algorithm may get trapped in
local minima, as indicated by Proposition 1.

C. Extension to Jointly Sparse Inputs
We can extend `1-regularized RKS to estimate jointly sparse
inputs by modifying (5) as follows:

{
x̂k|K , ûk|K

}K
k=1

= arg min
xk,uk

k=1,...,K

K∑
k=1

‖yk −Ckxk −Dkuk‖2Rk

+

K−1∑
k=1

‖xk+1−Akxk−Bkuk‖2Qk
+τ

m∑
i=1

√√√√K∑
k=1

u2
k(i), (24)

where regularizer τ
∑m

i=1

√∑K
k=1 u

2
k(i) is inspired by the

LASSO type regularization [40]. As τ > 0 increases, the
common support output by the algorithm shrinks, making
the inputs sparser. Now, using auxiliary variables tk’s, we
reformulate (24) and solve the following using ADMM:

{
x̂k|K , ûk|K

}K
k=1

= arg min
xk,uk

k=1,...,K

K∑
k=1

‖yk −Ckxk −Dkuk‖2Rk

+

K−1∑
k=1

‖xk+1 −Akxk −Bkuk‖2Qk
+ τ

m∑
i=1

√√√√ K∑
k=1

t2k(i)

+

K∑
k=1

λT
k (tk − uk) + c

K∑
k=1

‖tk − uk‖2 , (25)

where {λk ∈ Rm}Kk=1 are the Lagrangian multipliers that
arise from the equality constraints tk = uk and c > 0 is a
positive scalar. Since (25) is identical to (6) except for the
terms in tk, our modified `1-regularized RKS is identical to
Algorithm 2 except for Step 6, which changes to [40],

t(r)(i, :) =
u(r)(i, :) + c−1λ(r−1)(i, :)∥∥∥u(r)(i, :) + c−1λ(r−1)(i, :)

∥∥∥
× Sc−1τ

(∥∥∥u(r)(i, :) + c−1λ(r−1)(i, :)
∥∥∥) ,

where function S is defined in (15), and t(r)(i, :), u(r)(i, :),
λ(r−1)(i, :) follow the definition,

a(i, :) =
[
a1(i) a2(i) . . . aK(i)

]T ∈ RK , (26)

for any set {ak ∈ Rm}Kk=1 and i = 1, 2, . . . ,K. This
modified version is referred to as group `1-regularized RKS.

IV. Bayesian Robust Kalman Smoothing
In this section, we present an alternative approach, called
Bayesian RKS, to estimate the states and sparse inputs
{xk,uk}Kk=1 using measurements {yk}Kk=1 in (2). Unlike
the regularized RKS that assumes the knowledge of the
parameters of the sparse input prior, the Bayesian approach
uses hierarchical priors which account for the uncertainty
in the prior distribution. Specifically, we use a hierarchical
Gaussian prior on the inputs to promote sparsity:

p(uk;γk) =

m∏
i=1

1√
2πγk(i)

exp

(
−uk(i)2

2γk(i)

)
, (27)

where γk ∈ Rm is the unknown hyperparameter of the
distribution. The Bayesian RKS learns the hyperparameters
from the measurements, unlike the regularized RKS. We
present two Bayesian RKS variants: SBL-RKS and VB-RKS.

A. Sparse Bayesian Learning-based RKS
In the SBL framework, we first compute the ML estimate
γ̂ML
k of the hyperparameter as

{γ̂ML
k }Kk=1 = arg max

γk∈R
m×1
+

k=1,...,K

p
(
Y K

1 ; {γk}Kk=1

)
. (28)

6 VOLUME 00 2021

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2025.3624615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Using the estimate γ̂ML
k , we can estimate the states and

inputs using the Kalman filtering and smoothing algorithm.
For this, we note that (1) and (2) are equivalent to

ξk+1 =

[
Ãk

0

]
ξk +

[
wk

zk

]
and yk =

[
Ck Dk

]
ξk + vk,

(29)
where ξk is defined as

ξk =
[
xT
k uT

k

]T
, (30)

and zk = uk+1 is an auxiliary variable. From (27), we get[
wk

zk

]
∼ N

(
0,

[
Qk 0
0 Diag

{
γk+1

}]) .
Given {γ̂ML

k }Kk=1, estimating the states and inputs reduces
to estimating {ξk}

K
k=1 using Y K

1 via Kalman filtering and
smoothing, due to the Gaussian assumptions.

Since optimization problem in (28) lack a closed-form
solution, we employ expectation-maximization (EM), an iter-
ative method with the expectation (E) and maximization (M)
steps. In the rth iteration, the E-step computes the expected
log-likelihood function Q(r) of {γk}

K
k=1 with respect to

{ξk}
K
k=1 given data Y K

1 and the current estimate γ(r−1)
k

of the hyperparameter γk obtained in the previous iteration.
The M-step maximizes the expected log-likelihood to obtain
the new estimate of γk. Further, from the state space model
in (29), the distribution of the data is given by

p
(
Y K

1 , {ξk}
K
k=1 ; {γk}

K
k=1

)
=

K∏
k=1

p(yk|ξk)p
(
ξk|ξk−1;γk

)
,

where ξ0 = 0. Thus, the E-step is given by

Q(r)

(
{γk}

K
k=1 |

{
γ
(r−1)
k

}K
k=1

)
=

K∑
k=1

E
ξk,ξk−1|Y K

1 ;γ
(r−1)
k

{
log p(yk|ξk)

× p
(
xk | ξk−1

)
p (uk;γk)

}
.

From the above relation, the M-step that maximizes Q(r)

with respect to {γk}
K
k=1 is separable, and ignoring the terms

independent of γk, the M-step reduces to

γ
(r+1)
k = arg max

γk

E
uk|Y K

1 ;γ
(r−1)
k

{p (uk;γk)} .

Using (27), we derive the M-step as

γ
(r+1)
k = arg min

Γ=Diag{γk}
log |Γ|+Tr

{
Γ−1(ûk|Kû

T
k|K+Puk|K)

}
= Diag

{
ûk|Kû

T
k|K + Puk|K

}
.

Further, ûk|K and Puk|K can be computed by applying
Kalman filtering and smoothing on the modified state space
model in (29). The overall SBL-RKS algorithm is summa-
rized in Algorithm 4.

Next, we establish a result similar to Proposition 1 for
SBL-RKS. We show that the EM updates in Algorithm 4

are guaranteed to monotonically increase (or maintain) the
data log-likelihood in each iteration. Hence, the sequence of
objective function values over iterations converges.

Algorithm 4 RKS with Sparse Bayesian Learning

Inputs: {yk,Ak,Bk,Ck,Dk,Qk,Rk}Kk=1

Parameters: rmax, εthres
Initialization: γ(0)

k = 1 for k = 1, 2, . . . ,K, r = 1, ε =
2εthres

1: Āk =

[
Ak Bk

0 0

]
∈ R(n+m)×(n+m) and C̄k =[

Ck Dk

]
2: while (r < rmax) or (ε > εthres) do

#E-Step:
3: ξ̂0|0 = 0, P ξ0|0 = I
4: for k = 1, 2, . . . ,K do

5: Q̄k−1 =

[
Qk−1 0

0 Diag {γk}

]
#Prediction:

6: ξ̂k|k−1 = Āk−1ξ̂k−1|k−1
7: P ξk|k−1 = Āk−1P

ξ
k−1|k−1Ā

T
k−1 + Q̄k−1

#Filtering:

8: Gk = P ξk|k−1C̄
T
k

(
Rk + C̄kP

ξ
k|k−1C̄

T
k

)−1
9: ξ̂k|k = ξ̂k|k−1 +Gk

(
yk − C̄kξ̂k|k−1

)
10: P ξk|k =

(
I −GkC̄k

)
P ξk|k−1

11: end for
#Smoothing:

12: for k = K − 1,K − 2, . . . , 1 do
13: Kk = P ξk|kĀ

T
k

(
P ξk+1|k

)−1
14: P ξk|K = P ξk|k +Kk

(
P ξk+1|K − P

ξ
k+1|k

)
KT
k

15: ξ̂k|K = ξ̂k|k +Kk

(
ξ̂k+1|K − Ākξ̂k|k

)
16: P ξk+1,k|K =

[
P xk+1|K P xuk+1|K

]T
KT
k

17: Compute ûk|K and Puk|K using (30) from ξ̂k|K and
P ξk|K

18: end for
#M-step:

19: γ
(r)
k =Diag

{
ûk|Kû

T
k|K+Puk|K

}
, for k = 1, 2, . . . ,K

20: ε =
K∑
k=1

∥∥∥γ(r)
k − γ

(r−1)
k

∥∥∥2
2

21: r = r + 1
22: end while
23: Compute

{
x̂k|K , ûk|K

}K
k=1

using (30) from ξ̂k|K
Outputs: {x̂k|K}Kk=1 and {ûk|K}Kk=1

Proposition 2:
For a given set of inputs, let {γ(r)

k : k = 1, . . . ,K}∞r=1 be
the sequence generated by Algorithm 4 such that

∥∥∥γ(r)
k

∥∥∥
2
<

∞. Then, the sequence {log p(Y K
1 | {γk}Kk=1}∞r=1 is mono-

tonically nondecreasing and converges to a finite limit in R.

VOLUME 00 2021 7

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2025.3624615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

R. K. CHAKRABORTY ET AL.: STATE AND SPARSE INPUT ESTIMATION IN LINEAR DYNAMICAL SYSTEMS

Proof:
For notational brevity, we denote the observations by y =
Y K

1 , the hidden variables by z = {XK
1 ,U

K
1 }, and the

hyperparameters by γ = {γk}K1 . In the rth iteration of the
SBL algorithm, we derive

γ(r+1) = arg max
γ
Q(γ | γ(r))

= arg max
γ

Ez∼p(z|y,γ(r))[log p(y, z | γ)].

Then, by the properties of the EM algorithm [41, Section
3.2], the ML objective function in (28) is monotonically
increasing,

log p(y | γ(r)) ≤ log p(y | γ(r+1)).

Further, (1) and (2), we derive

ỹK = f̃(z,WK−1
1) + ṽK ,

where ỹK =
[
yT
1 yT

2 . . . yT
K

]T ∈ RKp denotes the
concatenated measurement vector. Likewise, ṽK ∈ RKp
stacks the measurement noise. It is Gaussian with zero
mean and covariance R = Blkdiag(R1, . . . ,RK), where
the operator Blkdiag(·) denotes a block diagonal matrix
with its arguments as its block diagonal entries. The term
f̃(z,WK−1

1) is a linear function of the initial state, inputs,
and process noise. It is also Gaussian distributed with zero
mean and covariance denoted by ∆(γ) ∈ RKp×Kp, i.e., it
is a function of γ. Then, we derive

log p(y | γ(r)) = −Kp
2

log(2π)− 1

2
log |∆(γ) +R|

− 1

2
ỹT
K (∆(γ) +R)

−1
ỹK

≤ −Kp
2

log(2π)− 1

2
log |R| ,

since ∆(γ) is positive semi-definite and bounded. Moreover,
since R is positive definite, the monotonically nondecreasing
sequence {log p(Y K

1 | {γk}Kk=1}∞r=1 is bounded from above
and the sequence converges to a finite limit point.
Remark: When all the inputs are jointly sparse, we can use
a common prior uk ∼ N (0,Diag {γ}), i.e., γk = γ for
k = 1, 2, . . . ,K. Then, the SBL-RKS for joint sparse input
recovery is identical to Algorithm 4 except for Steps 5 and
19. The noise covariance in Step 5 changes to

Q̄k =

[
Qk 0
0 Diag {γ}

]
, k = 1, 2, . . . ,K.

Similarly, the M-step in Step 19 is modified as

γ(r+1) =
1

K

K∑
k=1

Diag
{
ûk|Kû

T
k|K + Puk|K

}
.

The modified SBL-RKS for jointly sparse inputs is referred
to as multiple measurement vector SBL-RKS (MSBL-RKS).

The advantage of SBL is that the hierarchical Gaussian
priors together with EM updates automatically learn the
penalty weights associated with the relevant nonzero entries
of the sparse vector. In contrast, regularization-based ap-
proaches require manual tuning of penalty parameters [42].

B. Variational Bayesian Robust Kalman Smoothing
In the variational Bayesian inference (VBI) approach, we
employ a two-stage hierarchical prior. Specifically, we as-
sume βk(i) ∼ Gamma(a, b), where the precision hyperpa-
rameter βk(i) = 1/γk(i) in (27), and Gamma(a, b) is the
Gamma distribution with shape parameter a > 0 and rate
parameter b > 0, i.e.,

p(βk) =

m∏
i=1

Γ−1(a) ba(βk(i))a−1 exp(−bβk(i)). (31)

The VB-RKS algorithm estimates the set of unknown pa-
rameters Z =

{
XK

1 ,U
K
1 , {βk}Kk=1

}
as the mean of their

posterior distribution. However, the posterior distribution
computation is intractable, and we approximate it using a
family of factorized distributions:

p(Z|Y K
1) ≈ q(Z) =

K∏
k=1

qxk (xk)quk (uk)qβk (βk),

where qxk (·), quk (·), and qβk (·) are the marginal distributions
of the latent variables xk,uk, and βk, respectively.

We seek the optimal distribution q(Z) that minimizes the
Kullback-Leibler (KL) divergence

F(q(Z)) = KL(q(Z)‖p(Z | y)).

Now, the optimal marginal distribution is given by [43]

ln qxk (xk) ∝ Eq(Z\xk)

{
ln p

(
Z,Y K

1

)}
ln quk (uk) ∝ Eq(Z\uk)

{
ln p

(
Z,Y K

1

)}
,

where ∝ denotes the equality up to an additive constant
and Eq(Z\xk){·} and Eq(Z\uk){·} are the expectations with
respect to all the latent variables except xk and uk, respec-
tively. Further, we recall that

p(Z,Y K
1)=

K∏
k=1

p(yk|xk,uk)p(xk|xk−1,uk−1)

× p(uk|βk)p(βk),

where p(uk|βk) and p(βk) are given by (27) with βk(i) =
1/γk(i), and (31), respectively. Consequently, we arrive at

ln qxk (xk) ∝ ‖yk −Ckxk −Dk〈uk〉‖2Rk

+ ‖〈xk+1〉 −Akxk −Bk〈uk〉‖2Qk

+ ‖xk −Ak−1〈xk−1〉 −Bk−1〈uk−1〉‖2Qk−1
,

where 〈·〉 denotes the mean of a random variable following
the marginal distribution q(·). Hence, the marginal distri-
bution qxk (xk) is Gaussian. Its mean can be computed by
setting the gradient with respect to xk to 0, leading to

〈xk〉 = P xk

[
CT
kR
−1
k yk +Q−1k−1Bk−1〈uk−1〉

−
(
CT
kR
−1
k Dk +AT

kQ
−1
k Bk

)
〈uk〉

+Q−1k−1Ak−1〈xk−1〉+AT
kQ
−1
k 〈xk+1〉

]
, (32)

8 VOLUME 00 2021

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2025.3624615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

where we define

P xk =
(
CT
kR
−1
k Ck +Q−1k−1 +AT

kQ
−1
k Ak

)−1
. (33)

Similarly, the marginal distribution of uk is computed as

ln quk (uk) ∝ Eq(Z\uk)

{
ln p

(
Z,Y K

1

)}
∝ ‖yk −Ck〈xk〉 −Dkuk‖2Rk

+ ‖xk+1−Ak〈xk〉−Bkuk‖2Qk
+

m∑
i=1

uk(i)2〈βk(i)〉.

The mean of the Gaussian distribution quk (xk) is

〈uk〉 = Puk

[
DT
kR
−1
k yk −

(
DT
kR
−1
k Ck +BT

kQ
−1
k Ak

)
× 〈xk〉 +BT

kQ
−1
k 〈xk+1〉

]
, (34)

where the matrix Puk is

Puk =
(
DT
kR
−1
k Dk +BT

kQ
−1
k Bk + 〈diag {βk}〉

)−1
.

We use xK+1 = 0 for k = K and x0 = 0 for k = 1 in
(32) and (34). Finally, q(βk) =

∏m
i=1 q(βk(i)) is a Gamma

distribution with mean

〈βk(i)〉 =
a+ 0.5

b+ 0.5〈u2
k(i)〉

=
a+ 0.5

b+ 0.5 [〈uk(i)〉2 + Puk (i, i)]
.

(35)
Using (32), (34), and (35), the marginal distribution pa-
rameters are iteratively updated until convergence to obtain
the approximate posterior distribution. The pseudocode is
summarized in Algorithm 5.

Algorithm 5 Variational Bayesian RKS

Inputs: {yk,Ak,Bk,Ck,Dk,Qk,Rk}Kk=1

Parameters: rmax and r̃max

Initialization: 〈xk〉 = 0, 〈uk〉 = 0, 〈βk〉 = 1 for k =

1, 2, . . . ,K

1: for r = 1, 2, . . . , rmax do
2: for r̃ = 1, 2, . . . , r̃max do
3: Compute x(r,r̃)

k = 〈xk〉 using (32) for k = 1, . . . ,K

4: Compute u(r,r̃)
k = 〈uk〉 using (34) for k = 1, . . . ,K

5: end for
6: Compute β(r)

k = 〈βk〉 using (35) for k = 1, . . . ,K

7: end for
Outputs:

{
x
(r,r̃)
k

}K
k=1

and
{
u
(r,r̃)
k

}K
k=1

The following result shows that Algorithm 5 monotoni-
cally decreases the KL divergence F(Z) at each iteration.

Proposition 3:
For a given set of inputs, the sequence {F (r)}∞r=1 of KL
divergence generated by Algorithm 5 is monotonically non-
increasing and converges to a limit in R.

Proof:

From Algorithm 5, let the rth iterate be Z(r) =
(x(r,r̃max),u(r,r̃max),β(r)). Algorithm 5 proceeds by updat-
ing one set of parameters at a time, implying

F (r) = F(Z(r)) ≥ F(x(r+1,1),u(r,r̃max),β(r))

≥ F(x(r+1,1),u(r+1,1),β(r))

≥ F(x(r+1,r̃max),u(r+1,r̃max),β(r))

≥ F(x(r+1,r̃max),u(r+1,r̃max),β(r+1)) = F (r+1).

Thus, the sequence {F (r)}∞r=1 decreases monotonically, and
since KL divergence is bounded below by 0, it converges.

We note that our result does not establish that the KL
divergence converges to zero, but rather that it converges to
a stable value. This indicates that the estimated state and
input distributions have stabilized at the closest achievable
approximation to the true distribution, though not necessarily
identical to it.

Also, when all the inputs are jointly sparse, similar to
SBL-RKS, we use a common prior uk ∼ N (0,Diag{β}),
i.e., βk = β for k = 1, 2, . . . ,K. In that case, the VB-RKS
for joint sparse input recovery is identical to Algorithm 5
except that (35) in Step 6 changes as follows.

〈β(i)〉 =
a+ 0.5

b+ 0.5
K

∑K
k=1〈u2

k(i)〉
.

We refer to this algorithm as multiple measurement vector
VB-RKS (MVB-RKS).
Remark: A special case of our problem is the conventional
KF problem when uk = 0 ∀k. The update steps consist of
only two equations (32) and (33) with Bk = 0, Dk = 0.
The state update equation is given by,

〈xk〉 = P xk

[
CT
kR
−1
k yk +Q−1k−1Ak−1〈xk−1〉

+AT
kQ
−1
k 〈xk+1〉

]
.

VB-RKS allows for simple updates of both states and inputs,
whereas the other algorithms typically require running a
Kalman filter or an RKS subroutine. Consequently, each
iteration of VB-RKS (Step 3, 4, and 6) is computationally
faster than those of the other iterative algorithms. However,
in simulations (see Section V) we observe that VB-RKS
requires significantly more iterations to converge, making
it overall slower.

C. Complexity Comparisons
All four algorithms, `1-regularized RKS, reweighted `2-
regularized RKS, SBL-RKS, and VB-RKS are iterative and
uses the RKS algorithm in every iteration. Also, the RKS
step is the most computationally complex step in these
algorithms and dominates the overall complexity, leading
to per-iteration time complexity of all the algorithms as
O(K(n3 + m3 + p3)) for the versions with and without
the joint sparsity assumption. Since the sparsity-driven algo-
rithms consider low-dimensional measurements where m ≥
p, the time complexity further reduces to O(K(n3 +m3)).

VOLUME 00 2021 9

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2025.3624615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

R. K. CHAKRABORTY ET AL.: STATE AND SPARSE INPUT ESTIMATION IN LINEAR DYNAMICAL SYSTEMS

Further, we have observed from our simulation results
that the other algorithms require a larger number of iter-
ations and a longer time to converge than SBL-RKS (see
Table 1). In particular, VB-RKS takes a longer run time
owing to the large number of iterations required for con-
vergence. For comparison, we consider the state-of-the-art
`1 minimization-based algorithm, referred to as basis pursuit
(BP)-RKS (group BP-RKS for the joint support case). BP-
RKS is a non-iterative algorithm whose complexity scales
as O(K

7
2m

3
2 p2 +K(n3 + p3)) due to the convex program-

ming optimization using the interior point method. So, our
algorithms have low complexity order when the number of
iterations is small. The auxiliary space (memory) complexity
of all the algorithms is O(p2 +K(n2 +m2)). The total time
complexities of all the algorithms are summarized in Table 2
for comparison.

V. Simulation Results
In this section, we present empirical results to demonstrate
the superior performance of the algorithms that exploit
sparsity. We choose the state dimension n = 30, the input
dimension m = 100, the output dimension p = 20, and the
number of time steps K = 30. The sparsity level of the input
is s = 5, and the locations of s nonzero entries are chosen
uniformly at random from the set {1, 2, . . . ,m}. Further,
the nonzero entries are drawn independently from a normal
distribution N (0, σ2

u) with σu = 5. For the time-varying
support case, we independently choose different supports
for each time instant k, and for the jointly sparse case, we
use the same support for all values of k. The entries of
the time invariant system matrices A,B,C, and D and the
initial state x1 are independently drawn from the standard
normal distribution. Also, the process noise covariance Q
and the measurement noise covariance R are the identity
matrix and σ2

vI, respectively. Finally, σv is computed from
the measurement SNR via the relation SNR = sσ2

u/σ
2
v .

For the above setting, we compare the performance of our
algorithms: `1-regularized RKS, reweighted `2-regularized
RKS, SBL-RKS, and VB-RKS for the time-varying support
and jointly sparse cases. We also consider two benchmark
approaches: basis pursuit (BP)-RKS and group BP-RKS,
which are adapted from the algorithm in [34] (see Ap-
pendix B for details), and the RKS algorithm (Algorithm 1).
The following metrics are used for comparison: normalized
mean squared error (NMSE) in the state and input estimation,
false support recovery rate (FSRR) for input estimation,
and run time. The FSRR is the sum of the false alarm
and missed detection rates of the support estimation. The
results in Figs. 1 to 3 and Table 1 compare the algorithms’
performance as a function of the measurement dimension p.

1) Comparison with RKS and an oracle baseline
Fig. 1 shows different algorithms’ NMSE and FSRR perfor-
mance for the joint sparsity case. We omit the time-varying
support case due to space limitations; it can be found in [44,
Fig. 1]. From Fig. 1, we infer that the conventional RKS

TABLE 1: Run time comparison of algorithms when n = 30,
p = 20, m = 100, K = 30, s = 5 and SNR is 20 dB

Support Algorithm Runtime

Time
Varying

RKS 1.2 s
BP-RKS 73.94 s

`1-regularized RKS 33.76 s
reweighted `2-regularized RKS 44.5 s

SBL-RKS 14.5 s
VB-RKS ∼5 min

Jointly
sparse

Group BP-RKS 52 s
Group `1-regularized RKS 34.6 s

MSBL-RKS 13.5 s
MVB-RKS ∼5 min

TABLE 2: Complexity comparison of algorithms

Type Algorithm Complexity
Non RKS O(K(n3 +m3 + p3))

Iterative BP-RKS O(K
7
2m

3
2 p2 +K(n3 + p3))

`1-RKS O(rmaxK(n3 +m3 + p3))
Iterative `2-RKS O(rmaxK(n3 +m3 + p3))

SBL-RKS O(rmaxK(n3 +m3 + p3))
VB-RKS O(rmaxr̃maxK(n3 +m3 + p3))

algorithm has poor NMSE performance compared to the
sparsity-driven approaches. This underscores the importance
of exploiting sparsity to achieve low NMSE. RKS requires
p > m for the inverse to exist in Step 2 of Algorithm 1.
Naturally, the algorithm fails in the low-dimensional mea-
surement regime. Also, the NMSE of RKS is comparable to
that of the sparsity-driven algorithms only when p > m, but
the latter outperform RKS even in that regime.

We also compare performance against an oracle RKS
baseline that assumes the knowledge of input supports. With
the support set Sk of uk known, the system can be repre-
sented with reduced matrices Ak,Bk, (Ck)Sk , and (Dk)Sk ,
driven by non-sparse inputs (uk)Sk . Then, oracle RKS
estimates (uk)Sk

. As expected, oracle RKS outperforms all
other algorithms in both state and input NMSE performance,
as shown in Fig. 1a and Fig. 1b, respectively. However,
SBL-RKS and VB-RKS approach oracle-level performance
in state estimation in the high-p regime.

2) Comparison of Sparsity-driven Algorithms
Fig. 1 and Table 1 show that the SBL-RKS and VB-RKS
algorithms outperform BP-RKS and regularized RKS in
terms of NMSE in both states and input estimation, FSRR,
and run time, in line with our arguments in Section IV.C.
VB-RKS performs similar to SBL-RKS, except for runtime,
which is much higher for the former algorithm.

3) Time-varying Support and Joint Sparsity
Fig. 2 and Table 1 show different algorithms’ performances
for the time-varying support and joint sparsity cases. Fig. 2

10 VOLUME 00 2021

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2025.3624615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

0 50 100 150 200

Measurement dimension (p)

10
-4

10
-3

10
-2

10
-1

10
0

S
ta

te
 N

M
S

E
RKS

Group l
1

-RKS

l
1

-RKS

l
2

-RKS

MSBL-RKS

MVB-RKS

Group BP-RKS

Oracle RKS

(a) NMSE in state estimation

Oracle RKS

0 50 100 150 200

Measurement dimension (p)

10
-3

10
-2

10
-1

10
0

In
p

u
t

N
M

S
E

RKS

Group l
1

-RKS

l
1

-RKS

l
2

-RKS

MSBL-RKS

MVB-RKS

Group BP-RKS

(b) NMSE in input estimation

0 50 100 150 200
Measurement dimension (p)

0

0.5

1

1.5

2

2.5

3

3.5

F
S

R
R

RKS
l
2

-RKS

l
1

-RKS

Group l
1

-RKS

MSBL-RKS
MVB-RKS
Group BP-RKS

(c) Percentage false support recovery rate

FIGURE 1: Performance comparison of our sparse recovery algorithms and RKS as a function of measurement dimension
p when the control inputs are jointly sparse with n = 30, m = 100, K = 30, s = 5, and SNR = 20 dB.

0 5 10 15 20 25 30 35
Sparsity Level (s)

10

20

30

40

50

60

70

M
ea

su
re

m
en

t d
im

en
si

on
 (

p)

l
2

-RKS

l
1

-RKS

RKS-SBL
RKS-VB
Group l

1
-RKS

RKS-BP
RKS-MSBL
RKS-MVB
RKS-MBP

FIGURE 2: Phase transition diagram
for our sparse recovery algorithms
with n = 30, m = 100, K = 30,
and SNR = 20 dB.

0 20 40 60 80 100
-30

-20

-10

0

10

20

30

40

50
True
RKS-SBL

(a) Time tracking of state

0 20 40 60 80 100
-2

0

2

4

6

8

10
True
RKS-SBL

(b) Time tracking of input

FIGURE 3: Time domain tracking performance of SBL-RKS with n = 30, m =
100, p = 20, K = 100, s = 5, and SNR = 20 dB.

plots the minimum value of the number of measurements p
required for 90% recovery accuracy (i.e., successful recovery
of the sparse signals in 90% of the random experiments).
Here, a sparse vector is said to be successfully recovered
if the normalized mean square error between the original
signal and the recovered signal is below 0.05. For the
same number of measurements p, the NMSE in input es-
timation is better for the joint sparsity-aware algorithms:
group BP-RKS, group `1-regularized RKS, MSBL-RKS,
and MVB-RKS. This behavior is because of the additional
joint sparse structure exploited by these algorithms. Clearly,
the Bayesian RKS algorithms require the least number of
measurements, followed by group BP-RKS and group `1-
regularized RKS. The joint sparsity-aware algorithms are
followed by Bayesian-RKS, BP-RKS, and regularized RKS.
The regularized RKS algorithms have similar phase tran-
sition curves, but SBL-RKS and VB-RKS require fewer
measurements than the regularized RKS.

Finally, Table 1 indicates that joint sparsity-aware al-
gorithms have a shorter run time than their counterparts
for the time-varying support case because they have fewer
parameters to estimate.

4) Time domain tracking of states and inputs
The time domain state and input tracking performance of
SBL-RKS is shown in Fig. 3 for visual comparison. Here,
the estimate of one entry in the state and input vectors across
time obtained using SBL-RKS are depicted in Fig. 3a and
in Fig. 3b, respectively. It is clear from Fig. 3b that SBL-
RKS is able to recover the spikes in the entries of input
vectors accurately. Also, Fig. 3a shows that SBL-RKS tracks
the state tightly. We observe similar results for all the other
sparsity-aware algorithms, and hence, we omit plotting them
to avoid clutter.

VI. Conclusion
In this paper, we studied the joint estimation of states and
sparse inputs as an observer design problem in an LDS.
We developed novel algorithms using fictitious sparsity-
promoting priors, integrating sparse signal recovery tech-
niques within the Kalman smoothing framework to create
sparsity-aware Kalman smoothers. Our methods include a
regularization-based MAP estimation approach and a hierar-
chical Bayesian learning framework built on Gaussian priors.
Empirical results show that exploiting sparsity improves
estimation and enables recovery with fewer measurements

VOLUME 00 2021 11

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2025.3624615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

R. K. CHAKRABORTY ET AL.: STATE AND SPARSE INPUT ESTIMATION IN LINEAR DYNAMICAL SYSTEMS

than conventional methods. Among the proposed methods,
SBL-RKS is preferred for its low complexity and superior
accuracy. We also extended our approaches for the jointly
sparse input case and demonstrated the efficacy of exploit-
ing additional structures with sparsity. We also guarantee
convergence of the cost functions of our algorithms to a
local minimum or saddle point. However, convergence of
the iterates is not ensured due to the combined Kalman
smoothing and ADMM, EM, or VBI framework, which
needs future study. Investigating the fundamental limits of
sparse recovery in LDS is an interesting direction for further
research. Future work can also extend our algorithms to
handle system identification and estimation of the system
matrices.

Appendix A
Proof of Theorem 1: The Kalman Filtering and Smoothing
Steps
A. Prediction and Filtering steps
For detailed derivation of step 2-11 see [44]. The filtered
estimates of states and inputs are mathematically equivalent
to the estimator derived in [20]; hence, we omit it for brevity,
although the approach in [44] differs from that in [20].

B. Smoothing steps
We develop the smoothing updates for the case of unknown
inputs along the lines of the Kalman smoothing in [45]. The
smoothed posterior distribution p

(
xk,uk | Y K

1

)
is Gaussian

with mean x̂k|K , ûk|K and covariance P ξk|K as derived
below. The joint posterior distribution is

p
(
ξk+1, ξk | Y

K
1

)
= p

(
ξk | ξk+1,Y

k
1

)
p
(
ξk+1 | Y

K
1

)
(36)

=
p
(
ξk+1 | ξk,Y

k
1

)
p
(
ξk,Y

k
1

)
p
(
ξk+1,Y

k
1

) p
(
ξk+1 | Y

K
1

)

=
p
(
ξk+1 | ξk

)
p
(
ξk | Y

k
1

)
p
(
ξk+1 | Y

k
1

) p
(
ξk+1 | Y

K
1

)
, (37)

where (36) follows since {yk+1, . . . ,yK} are linear combi-
nations of ξk+1 and other random variables

(
UK
k+1 , WK

k+1,
V K
k+1

)
which are independent of ξk+1. Also, (37) follows

due to the Markovian nature of the dynamics in (29).

p
(
ξk+1, ξk | Y

K
1

)
=
p (xk+1 | xk,uk) p (uk+1) p

(
ξk | Y

k
1

)
p
(
xk+1 | Y k

1

)
p (uk+1)

p
(
ξk+1 | Y

K
1

)
(38)

=
p (xk+1 | xk,uk) p

(
ξk | Y

k
1

)
p
(
xk+1 | Y k

1

) p
(
ξk+1 | Y

K
1

)
. (39)

Here, (38) follows since uk+1 is assumed to be independent
of xk, xk+1, uk and all past observations {y1, . . . ,yk}.

Taking the logarithm of each term in (39), we have

log p (xk+1 | xk,uk) = −1

2
‖xk+1 −Akxk −Bkuk‖2Qk

= −1

2
‖Tξk+1 − Ãkξk‖2Qk

,

where we used xk+1 = Tξk+1 with T and Ãk defined in
Algorithm 1. Similarly, we can show that

log p
(
xk+1 | Y k

1

)
= −1

2
‖xk+1 − x̂k+1|k‖2Px

k+1|k

= −1

2
‖T
(
ξk+1 − ξ̂k+1|k

)
‖2Px

k+1|k

log p
(
ξk | Y

k
1

)
= −1

2
‖ξk − ξ̂k|k‖2P ξ

k|k

log p
(
ξk+1 | Y

K
1

)
= −1

2
‖ξk+1 − ξ̂k+1|K‖2P ξ

k+1|K
.

Using the above four relations in (39), we derive

log p
(
ξk+1, ξk | Y

K
1

)
= −1

2
ξTk+1

[
T TQ−1k T

− T T
(
P xk+1|k

)−1
T +

(
P ξk+1|K

)−1]
ξk+1

+
1

2
ξTk+1T

TQ−1k Ãkξk +
1

2
ξTk Ã

T

kQ
−1
k Tξk+1

− 1

2
ξTk

[
Ã

T

kQ
−1
k Ãk +

(
P ξk|k

)−1]
ξk + ξTk

(
P ξk|k

)−1
ξ̂k|k

+ linear and constant terms.

Next, we follow the proof technique for deriving the smooth-
ing updates in [45], and we use same notation S11, S12, S21,
S22 and F 11 as given in the reference which indicate same
variables in our context. In our case, S−122 is

S−122 =

(
Ã

T

kQ
−1
k Ãk +

(
P ξk|k

)−1)−1
= P ξk|k − P

ξ
k|kÃ

T

k

(
Qk + ÃkP

ξ
k|kÃ

T

k

)−1
ÃkP

ξ
k|k

= P ξk|k − P
ξ
k|kÃ

T

k

(
P xk+1|k

)−1
ÃkP

ξ
k|k

= P ξk|k −KkP
x
k+1|kK

T
k ,

where we define

Kk = P ξk|kÃ
T

k

(
P xk+1|k

)−1
.

Similarly, S21 = −ÃT

kQ
−1
k T , and S−122 S21 simplifies to

S−122 S21 = −
(
P ξk|k − P

ξ
k|kÃ

T

k

(
Qk + ÃkP

ξ
k|kÃ

T

k

)−1
ÃkP

ξ
k|k

)
Ã

T

kQ
−1
k T

= −P ξk|kÃ
T

k

(
In −

(
Qk + ÃkP

ξ
k|kÃ

T

k

)−1
ÃkP

ξ
k|kÃ

T

k

)
Q−1k T

= −P ξk|kÃ
T

k

(
Qk + ÃkP

ξ
k|kÃ

T

k

)−1
T

= −P ξk|kÃ
T

k

(
P xk+1|k

)−1
T = −KkT .

12 VOLUME 00 2021

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2025.3624615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Hence, the covariance update is given by (see (19) of [45]),

P ξk|K = S−122 + S−122 S21F
−1
11 S12S

−1
22

=
(
P ξk|k −KkP

x
k+1|kK

T
k

)
+ (−KkT)P ξk+1|K (−KkT)

T

= P ξk|k +Kk

(
P xk+1|K − P

x
k+1|k

)
KT
k ,

where we used TP ξk+1|KT
T = P xk+1|K in the last step.

Hence, we prove Step 14 of Algorithm 1.
Finally, we can compute P ξk+1,k|K as (see (20) in [45])

P ξk+1,k|K = −F−111 S12S
−1
22 = −P ξk+1|K (−KkT)

T

=

 P xk+1|KK
T
k(

P xuk+1|K

)T
KT
k

 .
We can find the smoothed posterior estimate using [45,
Equation (23)], which leads to ξ̂k|K = −S−122 S21ξ̂k+1|K +

S−122

(
P ξk|k

)−1
ξ̂k|k and simplifies to

ξ̂k|K = Kkx̂k+1|K +
(
In+m −KkÃk

)
ξ̂k|k.

Thus, we prove Step 15 of Algorithm 1, and it completes
proof of all the steps in the algorithm.

Appendix B
Derivation of BP-RKS and Group BP-RKS
In this section, we derive two benchmark algorithms inspired
by [34], namely BP-RKS for the time-varying support case,
and its extension to the joint sparsity case. To derive BP-
RKS, we first consider the problem of estimating the initial
state x1 and inputs UK

1 for the linear system defined in (1)
and (2), which can be written as

ỹK = OKx1 + ΓKũK +MKw̃K−1 + ṽK , (40)

where ỹK =
[
yT
1 yT

2 . . . yT
K

]T ∈ RKp denotes
the concatenated measurement vector. Likewise, ũK ∈
RKm, w̃K−1 ∈ R(K−1)n, and ṽK ∈ RKp are obtained
by concatenating the inputs, process noise terms and mea-
surement noise terms, respectively. The system matrices,
OK ∈ RKp×n, ΓK ∈ RKp×Km and MK ∈ RKp×(K−1)n
in (40) are given by

OK =


C
CA

...
CAK−1

, MK =


0 0 · · · 0
C 0 · · · 0
...

...
. . .

...
CAK−2 CAK−3 · · · C


(41)

ΓK =


D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

...
...

. . .
CAK−2B CAK−3B CAK−4B · · · D

 .
(42)

For notational simplicity, we present (41) and (42) for the
constant system matrices case, i.e., Ak = A, Bk = B,
Dk = C, and Dk = D, k = 1, 2, . . . ,K. However, the
extension to time-varying matrices is straightforward.

Similar to the approach in [34], we first eliminate the
initial state term in (40) by multiplying it with Π, the
projection matrix onto the orthogonal complement of the
column space of the observability matrix OK , to get

ΠỹK = ΠΓKũK + ΠñK , (43)

where the noise term ñK = MKw̃K−1 + ṽK and the
projection matrix is

Π = I −OK(OT
KOK)−1OT

K , (44)

where OK is assumed to have full rank n.
Now, we estimate the states and inputs in two steps, using

a Laplacian prior on inputs to encourage sparsity. We first
solve for inputs ũK using (43). Substituting the estimate
ũ∗K into (40), we then compute the weighted least square
estimate x∗1 as

x∗1 = (OT
KQ

−1
ñ OK)−1OT

KQ
−1
ñ (ỹK − ΓKũ

∗
K). (45)

Here, Q̃K is the covariance of the noise ñ in (40), given by

Q̃K = MK Blkdiag(Q1, . . . ,QK)MT
K

+ Blkdiag(R1, . . . ,RK). (46)

Having estimated the initial state and inputs, the states XK
2

can be reconstructed using the Kalman smoothing algorithm.
To estimate the sparse inputs ũK from (43), we note

that the projection step makes ΠΓK rank deficient. This
is because from (44), we get rank(Π) = Kp − n as
rank(OK) = n. We further reduce the system in (43) to
get linearly independent measurements. Denote the singular
value decomposition of the matrix ΠΓK by

ΠΓK =

[
Ψ1

Ψ2

]H [
Λ ∈ RR×R 0

0 0

] [
Φ1

Φ2

]
= ΨH

1 ΛΦ1, (47)

where Ψ =
[
ΨH

1 ΨH
2

]H
is an orthonormal matrix and R is

the rank of ΠΓK . When the system matrices have full rank,
we have R = min{Kp− n,Km}. From (43), we derive

ΨΠỹK =

[
Ψ1ΠỹK
Ψ2ΠỹK

]
=

[
ΛΦ1

0

]
ũK +

[
Ψ1ΠñK
Ψ2ΠñK

]
. (48)

Hence, the reduced system of equations is

Ψ1ΠỹK = Ψ1ΠΓKũK + Ψ1ΠñK , (49)

where the covariance of the noise component Ψ1ΠñK is

Q̄K = Ψ1ΠQ̃KΠTΨH
1 . (50)

Finally, we multiply the reduced measurements in (49) with
the prewhitening matrix Q̄−

1
2

K to make the noise uncorre-
lated. Hence, the new system of equations is

ȳK = Q̄
− 1

2

K Ψ1ΠỹK = Γ̄KũK + n̄K , (51)

VOLUME 00 2021 13

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2025.3624615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

R. K. CHAKRABORTY ET AL.: STATE AND SPARSE INPUT ESTIMATION IN LINEAR DYNAMICAL SYSTEMS

Algorithm 6 Basis Pursuit Robust Kalman Filtering

Inputs: {yk,Ak,Bk,Ck,Dk,Qk,Rk}Kk=1

1: Compute ỹK ,OK , MK , ΓK from (40), (41), (42) and
Π using (44)

2: Determine Φ1 using the singular value decomposition
of ΠΓK as given in (47)

3: Compute Q̄K using (46) and (50)
4: Compute ȳK and Γ̄K from (51)

5: Set parameter ε =

√
R
(

1 + 2
√

2
R

)
6: Solve for inputs UK

1 using the convex optimization
problem (52)

7: Calculate the initial state estimate x1 using (45)
8: Set x1|K = x1|1 = x1

Kalman Smoother
9: for k = 2, . . . ,K do

#Prediction:
10: x̂k|k−1 = Ak−1x̂k−1|k−1+Bkuk−1

11: P xk|k−1 = Ak−1P
x
k−1|k−1A

T
k−1 +Qk−1

#Filtering:

12: Gk = P xk|k−1C
T
k

(
Rk +CkP

x
k|k−1C

T
k

)−1
13: x̂k|k = x̂k|k−1 +Gk

(
yk−Dkuk −Ckx̂k|k−1

)
14: P xk|k = (I −GkCk)P xk|k−1
15: end for

#Smoothing:
16: for k = K − 1,K − 2, . . . , 2 do
17: Kk = P xk|kA

T
k

(
P xk+1|k

)−1
18: P xk|K = P xk|k +Kk

(
P xk+1|K − P

x
k+1|k

)
KT
k

19: x̂k|K = x̂k|k +Kk

(
x̂k+1|K −Akx̂k|k

)
−P xk|k(I −KkAk)AT

kQ
−1
k Bkuk

20: end for
Outputs:

{
x̂k|K

}K
k=1

and {uk}Kk=1

where matrix Γ̄K = Q̄
− 1

2

K Ψ1ΠΓK and the noise term
n̄K = Q̄

− 1
2

K Ψ1ΠñK follows the standard Gaussian distri-
bution N (0, I). Under a Laplacian prior on ũK to promote
sparsity, the corresponding MAP estimate is obtained by
solving a LASSO problem [46, Section 3.4.3] given by

ũ∗K = arg min
ũK

‖ũK‖1 s.t. ‖ȳK − Γ̄KũK‖2 ≤ ε. (52)

Here, ε > 0 is typically chosen as
√

var(n̄K)R

√
1 + 2

√
2
R

which is slightly larger than
√

var(n̄K)R (in our case
var(n̄K) = 1) [47].

In the second step, we compute the state estimates using
the optimal solution ũ∗K obtained by solving (52). Treating

these inputs as the true ones, uk = u∗k, we compute the
MAP estimate of the states x̂k using the Kalman smoothing
algorithm applied to the system (1) and (2). The resulting
BP-RKS algorithm is summarized in Algorithm 6.

When control inputs share a common support, we
can rearrange ũK into a block-sparse vector ûK =[
u(1, :)T u(2, :)T . . .u(m, :)T

]T ∈ RKm with block
length K, where u(i, :) as defined in (26). The corresponding
columns of Γ̄K are also rearranged, which we denote as Γ̂K ,
leading to the system of equations ȳK = Γ̂KûK + n̄K . We
can now exploit the block sparsity structure by imposing an
`1/`2 type penalty [48] on ûK to arrive at the following
optimization problem:

û∗K = arg min
ûK

m∑
i=1

‖u(i, :)‖2 s.t. ‖ȳK−Γ̂KûK‖2≤ε. (53)

The problem (53) can be solved by rewriting it as a second-
order cone program using an auxiliary variable t as

min
t∈Rm

ûK∈RKm

m∑
i=1

ti s.t. ti ≥ ‖u(i, :)‖2 for i = 1, . . . ,m

and ‖ȳK − Γ̂KûK‖22 ≤ ε. (54)

The resulting group BP-RKS algorithm is identical to Algo-
rithm 6 except that in Step 6 we solve (54) instead of (52).

REFERENCES
[1] R. K. Chakraborty, G. Joseph, and C. R. Murthy, “Bayesian learning-

based kalman smoothing for linear dynamical systems with unknown
sparse inputs,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Pro-
cess., 2024, pp. 13 431–13 435.

[2] A. Olshevsky, “Minimal controllability problems,” IEEE Trans. Con-
trol Network Syst., vol. 1, no. 3, pp. 249–258, Sep. 2014.

[3] M. Siami, A. Olshevsky, and A. Jadbabaie, “Deterministic and ran-
domized actuator scheduling with guaranteed performance bounds,”
IEEE Trans. Autom. Control, vol. 66, no. 4, pp. 1686–1701, Jun. 2020.

[4] G. Joseph and C. R. Murthy, “Controllability of linear dynamical
systems under input sparsity constraints,” IEEE Trans. Autom. Control,
vol. 66, no. 2, pp. 924–931, Apr. 2020.

[5] G. Joseph, “Controllability of a linear system with nonnegative sparse
controls,” IEEE Trans. Autom. Control, vol. 67, no. 1, pp. 468–473,
May 2021.

[6] N. Wendt, C. Dhal, and S. Roy, “Control of network opinion dynamics
by a selfish agent with limited visibility,” IFAC-PapersOnLine, vol. 52,
no. 3, pp. 37–42, 2019.

[7] G. Joseph, B. Nettasinghe, V. Krishnamurthy, and P. K. Varshney,
“Controllability of network opinion in Erdös-Rényi graphs using
sparse control inputs,” SIAM J. Control Optim., vol. 59, no. 3, pp.
2321–2345, 2021.

[8] M. Raptis, K. Wnuk, and S. Soatto, “Spike train driven dynamical
models for human actions,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2010, pp. 2077–2084.

[9] H. L. Taylor, S. C. Banks, and J. F. McCoy, “Deconvolution with the
`1 norm,” Geophys., vol. 44, no. 1, pp. 39–52, Jan. 1979.

[10] M. S. O’Brien, A. N. Sinclair, and S. M. Kramer, “Recovery of a
sparse spike time series by L1 deconvolution,” IEEE Trans. Signal
Process., vol. 42, no. 12, pp. 3353–3365, 1994.

[11] A. A. Cárdenas, S. Amin, and S. Sastry, “Research challenges for the
security of control systems,” HotSec, vol. 5, p. 15, Jul. 2008.

[12] J. Slay and M. Miller, “Lessons learned from the Maroochy water
breach,” in Proc. Int. Conf. Crit. Infrastruct. Prot., Mar. 2007, pp.
73–82.

[13] R. Ma, P. Shi, and L. Wu, “Sparse false injection attacks reconstruction
via descriptor sliding mode observers,” IEEE Trans. Autom. Control,
vol. 66, no. 11, pp. 5369–5376, 2021.

14 VOLUME 00 2021

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2025.3624615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

[14] H. Yang and R. Ma, “Sparse attack reconstruction for cyber–physical
systems via descriptor reduced-order observer,” Nonlinear Anal.: Hy-
brid Syst., vol. 50, p. 101380, 2023.

[15] Z. Zhao, Y. Xu, Y. Li, Y. Zhao, B. Wang, and G. Wen, “Sparse
actuator attack detection and identification: A data-driven approach,”
IEEE Trans. Cybern., vol. 53, no. 6, pp. 4054–4064, 2023.

[16] L. An and G.-H. Yang, “Secure state estimation against sparse sensor
attacks with adaptive switching mechanism,” IEEE Trans. Autom.
Control, vol. 63, no. 8, pp. 2596–2603, 2018.

[17] B. Friedland, “Treatment of bias in recursive filtering,” IEEE Trans.
Autom. Control, vol. 14, no. 4, pp. 359–367, Aug. 1969.

[18] P. K. Kitanidis, “Unbiased minimum-variance linear state estimation,”
Automatica, vol. 23, no. 6, pp. 775–778, Nov. 1987.

[19] S. Gillijns and B. De Moor, “Unbiased minimum-variance input and
state estimation for linear discrete-time systems,” Automatica, vol. 43,
no. 1, pp. 111–116, Jan. 2007.

[20] ——, “Unbiased minimum-variance input and state estimation for
linear discrete-time systems with direct feedthrough,” Automatica,
vol. 43, no. 5, pp. 934–937, May 2007.

[21] G. Gakis and M. C. Smith, “A limit Kalman filter and smoother for
systems with unknown inputs,” Int. J. Control, vol. 97, no. 3, pp. 532–
542, 2024.

[22] S. Foucart and H. Rauhut, A Mathematical Introduction to Compres-
sive Sensing. Birkhäuser, 2013.

[23] G. Joseph and C. R. Murthy, “On the observability of a linear system
with a sparse initial state,” IEEE Signal Process. Lett., vol. 25, no. 7,
pp. 994–998, May 2018.

[24] ——, “Measurement bounds for observability of linear dynamical
systems under sparsity constraints,” IEEE Trans. Signal Process.,
vol. 67, no. 8, pp. 1992–2006, 2019.

[25] W. Dai and S. Yüksel, “Observability of a linear system under sparsity
constraints,” IEEE Trans. on Autom. Control, vol. 58, no. 9, pp. 2372–
2376, Mar. 2013.

[26] M. B. Wakin, B. M. Sanandaji, and T. L. Vincent, “On the observability
of linear systems from random, compressive measurements,” in Proc.
IEEE Conf. Decis. Control, Dec. 2010, pp. 4447–4454.

[27] B. M. Sanandaji, M. B. Wakin, and T. L. Vincent, “Observability with
random observations,” IEEE Trans. Autom. Control, vol. 59, no. 11,
pp. 3002–3007, Aug. 2014.

[28] N. Vaswani, “Kalman filtered compressed sensing,” in Proc. IEEE Int.
Conf. Image Process., Oct. 2008, pp. 893–896.

[29] R. Prasad, C. R. Murthy, and B. D. Rao, “Joint approximately sparse
channel estimation and data detection in OFDM systems using sparse
Bayesian learning,” IEEE Trans. Signal Process., vol. 62, no. 14, pp.
3591–3603, Jun. 2014.

[30] D. Angelosante, G. B. Giannakis, and E. Grossi, “Compressed sensing
of time-varying signals,” in Proc. IEEE Int. Conf. Digit. Signal
Process., 2009, pp. 1–8.

[31] A. S. Charles, A. Balavoine, and C. J. Rozell, “Dynamic filtering of
time-varying sparse signals via `1 minimization,” IEEE Trans. Signal
Process., vol. 64, no. 21, pp. 5644–5656, Jul. 2016.

[32] C. Kurisummoottil Thomas and D. Slock, “Gaussian variational Bayes
Kalman filtering for dynamic sparse Bayesian learning,” in Proc. IEEE
Intl. Conf. Time Ser. Forecast., Mar. 2018.

[33] M. R. O’Shaughnessy, M. A. Davenport, and C. J. Rozell, “Sparse
Bayesian learning with dynamic filtering for inference of time-varying
sparse signals,” IEEE Trans. Signal Process., vol. 68, pp. 388–403,
2020.

[34] S. Sefati, N. J. Cowan, and R. Vidal, “Linear systems with sparse
inputs: Observability and input recovery,” in Proc. IEEE Am. Control
Conf., 2015, pp. 5251–5257.

[35] K. Poe, E. Mallada, and R. Vidal, “Necessary and sufficient conditions
for simultaneous state and input recovery of linear systems with sparse
inputs by `1-minimization,” in Proc. IEEE Conf. Decis. Control, 2023,
pp. 6499–6506.

[36] ——, “Invertibility of discrete-time linear systems with sparse inputs,”
in Proc. IEEE Conf. Decis. Control, 2024, pp. 6095–6101.

[37] D. Wipf and S. Nagarajan, “Iterative reweighted `1 and `2 methods
for finding sparse solutions,” IEEE J. Sel. Top. Signal Process., vol. 4,
no. 2, pp. 317–329, Feb. 2010.

[38] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, pp. 1–122, 2010.

[39] H. Zou, “The adaptive lasso and its oracle properties,” J. Am. Stat.
Assoc., vol. 101, no. 476, pp. 1418–1429, 2006.

[40] D. Angelosante, S. I. Roumeliotis, and G. B. Giannakis, “Lasso-
Kalman smoother for tracking sparse signals,” in Proc. Asilomar, Nov.
2009, pp. 181–185.

[41] G. McLachlan and T. Krishnan, The EM algorithm and extensions,
2nd ed., ser. Wiley series in probability and statistics. Hoboken, NJ:
Wiley, 2008.

[42] D. Wipf and B. Rao, “Sparse Bayesian learning for basis selection,”
IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2153–2164, 2004.

[43] D. Nguyen, “An in-depth introduction to variational Bayes note,”
SSRN, 2023.

[44] R. K. Chakraborty, G. Joseph, and C. R. Murthy, “Joint state and
input estimation for linear dynamical systems with sparse control,”
2023. [Online]. Available: https://arxiv.org/abs/2312.02082

[45] M. Y. Byron, K. V. Shenoy, and M. Sahani, “Derivation of Kalman
filtering and smoothing equations,” in Technical report. Stanford
University, 2004.

[46] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed. New York,
NY: Springer, 2009.

[47] E. J. Candès and J. Romberg, “`1-MAGIC: Recovery of sparse signals
via convex programming,” 2005, MATLAB routines package.

[48] Y. C. Eldar and M. Mishali, “Robust recovery of signals from a
structured union of subspaces,” IEEE Trans. Inf. Theory, vol. 55,
no. 11, pp. 5302–5316, 2009.

Rupam Kalyan Chakraborty received a
B.Tech. in Electronics and Communication
Engineering from West Bengal University of
Technology in 2016, and M.Tech. degrees in
Microwave Engineering from the University of
Calcutta and Signal Processing from the Indian
Institute of Science, Bangalore in 2018 and
2021, respectively. From 2021–2023, he worked
as an Algorithm Design Engineer at Signalchip
Innovations on GNSS tracking. Currently, he is a

Ph.D. student in the signal processing systems group at the Delft University
of Technology, Netherlands. His research interests include statistical signal
processing and compressive sensing.

Geethu Joseph received the Ph.D. degree in
electrical communication engineering from the In-
dian Institute of Science, Bangalore, in 2019. She
is currently an assistant professor in the signal
processing systems group at the Delft University of
Technology, Delft, Netherlands. Her research inter-
ests include statistical signal processing, network
control, and machine learning.

Chandra R. Murthy (S’03–M’06–SM’11–F’23)
received Ph.D. degree in Electrical and Computer
Engineering from UC San Diego in 2006. He
worked at Qualcomm (2000–2002) on WCDMA
and 802.11b receivers, and at Beceem Communi-
cations (2006–2007) on 802.16e WiMAX. Since
2007, he has been with the Department of Electri-
cal Communication Engineering at IISc Bangalore,
where he is now a Professor. His research interests
are in the areas of energy harvesting communi-

cations, 5G/6G technologies and compressed sensing. He is a recipient
of the MeitY Young Faculty Fellowship from the Govt. of India and the
Prof. Satish Dhawan state award for engineering from the Karnataka State
Government. He is a fellow of the IEEE.

VOLUME 00 2021 15

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2025.3624615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

