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Abstract

Intelligent reflecting surface (IRS), also referred to as reconfigurable intelligent surface
(RIS), is an emerging technology aimed at dynamically controlling the propagation envi-
ronment of next-generation wireless systems. An IRS comprises a large array of passive
phase shifters whose configurations can be adaptively adjusted to co-phase the reflected
signals at the receiver, thereby mitigating the channel impairments such as fading and
shadowing. Despite its promising benefits, the practical deployment of IRS entails several
signal processing challenges that require careful investigation. This thesis addresses three
fundamental problems in this context, with an emphasis on low-complexity solutions and
rigorous performance analysis of IRS-assisted wireless systems.

The first part of this thesis focuses on developing a low-complexity approach to harness
the full potential of IRS-aided systems. Conventionally, optimizing the IRS phase con-
figuration involves a three-stage procedure: (i) estimating the channels of all the links,
(ii) computing the optimal phase shifts, and (iii) transporting the phase angles from the
base station (BS) to the IRS, resulting in a three-fold overhead. To circumvent this, we
develop an alternative scheme wherein, in every time slot, the IRS phases are randomly
sampled, and a user equipment (UE) is scheduled opportunistically for data transmission.
The central idea is that, with a sufficiently large number of UEs, a randomly chosen IRS
configuration is likely to be near-optimal (i.e., beamforming-aligned) for at least one UE.
Scheduling such a UE, for e.g., using a proportional-fair (PF) scheduler, for data trans-
mission allows us to obtain most of the IRS gains without explicitly optimizing the IRS,
thereby eliminating the associated overheads. Moreover, it is easy to find the UE that ex-
periences the highest SNR (or PF metric) for a given randomly chosen phase configuration
using one of several splitting or timer-based methods. We perform an in-depth analysis
of this scheme under various channel models and frequency bands. For example, we show
that the number of UEs required to attain a spectral efficiency (SE) close to the beam-
forming SE grows exponentially with the rank of the IRS spatial covariance matrix. We
also propose alternative strategies that improve this scaling. Furthermore, we extend the
scheme to frequency-selective channels using orthogonal frequency-division multiplexing
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Abstract iv

(OFDM) and characterize the resulting performance tradeoffs.

The second part of this thesis explores the impact of IRS deployment in a multi-operator
wireless system, where each operator serves its UEs over non-overlapping frequency bands.
Given that IRSs are inherently passive and lack active RF components such as band-pass
filters, they cannot selectively reflect signals confined to specific frequency bands. This
raises a key question: if an IRS is deployed and controlled by one operator, how does it
affect the performance of out-of-band (OOB) operators operating in adjacent frequency
bands? To address this, we first analyze a two-operator scenario where one operator con-
trols a single IRS. Our findings reveal that, although the IRS introduces random phase
shifts to the OOB signals, the IRS elements collectively enhance the OOB UE performance,
albeit with lower gains than those experienced by the controlling operator. Specifically,
in sub-6 GHz bands, the IRS induces rich scattering for the OOB UEs, while in mmWave
bands, it increases the likelihood of virtual line-of-sight (LoS) paths. We further show
that deploying multiple IRSs amplifies these benefits for OOB users due to spatial diver-
sity. Further, for ease of implementing a multiple-IRS setup, we propose a low-complexity
channel estimation technique tailored for distributed IRS deployments, which notably
maintains constant pilot overhead when the number of IRSs does not exceed a threshold.
Lastly, we generalize our analysis to multi-operator networks where each operator con-
trols its own IRS, and investigate the limits of inter-operator cooperation gains in realistic
wireless environments.

The final part of this thesis investigates the performance of wideband beamforming with
IRS, where the IRS configuration is designed to beamform wideband signals. A fundamen-
tal challenge in this case arises due to the frequency-flat nature of phase shifters, which
limits their ability to focus energy uniformly across a wide frequency band. This results
in a spatial-wideband effect at the UE, leading to the beam-squint or beam-split (B-SP)
effect in the frequency domain, causing a degradation of the array gain and the achievable
throughput. To address this issue, we propose two low-complexity mitigation strategies.
First, we introduce a distributed IRS architecture in which multiple smaller IRSs are
strategically deployed. This architecture reduces the severity of the spatial-wideband ef-
fect by parallelizing the spatial delay spread and exploiting the angle diversity. However,
it may introduce temporal delay spread (TDS) unless signals from different sub-IRSs ar-
rive within the same sampling bin. In this view, we formulate and solve an optimization
problem to determine the optimal placement of IRSs that minimizes TDS over a set of
all possible UE locations. In the second approach, we leverage the law of energy con-
servation to show that, under the B-SP effect, the IRS must inherently form different
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beams across different frequency components. Exploiting this insight, we propose an op-
portunistic OFDMA framework that assigns different subbands to different UEs, enabling
the system to harness full array gain across the entire bandwidth through multi-user di-
versity. Lastly, we observe that in sub-6 GHz bands, frequency selectivity is dominated by
rich multipath effects rather than the B-SP phenomenon. Accordingly, we develop a joint
IRS phase optimization strategy using a majorization-minimization framework tailored for
OFDM systems that maximizes the overall sum-rate at a given UE.

In summary, this thesis explores three core aspects of IRS-aided wireless systems: oppor-
tunistic user scheduling, performance of IRS-aided multi-operator systems, and wideband
beamforming strategies. It demonstrates how even a randomly configured IRS can extract
most of its benefits and improve the performance of wireless communication systems. The
major takeaways are as follows:

• We develop novel opportunistic scheduling schemes that employ randomly selected
IRS phase configurations and leverage multi-user diversity. These schemes deliver
near-optimal IRS gains without explicit optimization of the IRS phase configurations
or incurring the associated signaling overheads.

• We analyze the impact of the IRS in multi-operator environments, particularly on
the OOB users. A key finding is that IRSs, despite being controlled by one operator,
can enhance the performance of OOB operators by improving their effective channels.

• Finally, we develop low-complexity techniques to enable wideband beamforming us-
ing phase-shifter-based IRSs. In particular, we show that a distributed IRS archi-
tecture inherently mitigates the B-SP effect, while an opportunistic OFDMA strategy
exploits it to enhance system throughput under a randomly configured IRS phase.

By benchmarking the proposed techniques in this thesis against other existing methods,
we show that our solutions can achieve superior performance while maintaining low time
and computational complexities.
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General Mathematical Notation

Vectors and matrices are denoted by boldface small and capital letters, respectively. Sets
are denoted by calligraphy letters. The rest of the notation is listed below.

Field

R,R+ : Field of real numbers, positive real numbers
C : Field of complex numbers

Set

[N ] : Set of truncated natural numbers: {1, 2, . . . , N}
|A| : Cardinality of the set A
A ∪ B : Union of the set A and B
A ∩ B : Intersection of the set A and B
A\B : Set difference: set of elements in A that are not in B
Ac : Complement of the set A
A ⊆ B : A is subset of B

Vectors

[a]i : ith element of vector a

⟨a,b⟩ : Inner product between two vectors a and b

∥a∥p : lp norm of a vctor a:
(∑N

n=1 |[a]n|
p
)1/p

ei : ith column of identity matrix
0N : All zero vector of length N
1N : All one vector of length N
diag(a) : Diagonal matrix with entries of a along its diagonal
supp(a) : Support of the vector a
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Matrices

IN : Identity matrix of dimension N ×N
0M×N : All zero matrix of dimension M ×N
A = [a1, . . . , aN ] : A matrix A whose columns are a1, . . . , aN
[A]m,n : (m,n)th entry of A
[A]:,n : nth column of A
[A]m,: : mth row of A
AT : Transpose of a matrix A

A−1 : Inverse of a matrix A

A† : Pseudo-inverse of a matrix A

A∗ : Conjugation of a matrix A

AH : Conjugate transpose (Hermitian) of a matrix A

A⊗B : Kronecker product of matrices A and B

A ⋄B : Khatri-Rao product of matrices A and B

A⊙B : Hadamard product of matrices A and B

A⊘B : Element-wise division of matrices A and B

diag(A) : Vector containing the diagonal entries of the matrix A

vec(A) : Column-wise vectorized version of matrix A

∥A∥F : Frobenius norm of matrix A

A ⪰ B : A−B is a positive semi-definite matrix

Standard Symbols

RN×M : The set of real-valued N ×M matrices
CN×M : The set of complex-valued N ×M matrices
|x|, x∗ : Absolute value/complex conjugate of a complex scalar/vector x/x
̸ x, arg(x) : Phase of a complex scalar/vector x/x
O(·),Ω(·), o(·) : Landau’s Big-O, Omega, Small-O notations
∗,⊛ : Linear convolution operator
x! : Factorial of x
∀x : The statement holds for all x (in the set that x belongs to)
ℜ(x),ℑ(x) : Real part and imaginary part of x
F(FH) : DFT (IDFT) matrix (unless otherwise mentioned.)
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Functions

Υ
(L)
2 (· ; · ; ) : Confluent Lauricella function

FN(x) : Nth order Fejér Kernel evaluated at x
Γ(x) : Gamma function
Γ (α, x; b) : Generalized upper incomplete Gamma function
Γ (α, x) : Upper incomplete Gamma function
Kn(x) : nth order modified Bessel function of second kind
sgn(x) : sign of x
1{·} : Indicator function
⌈·⌉, ⌊·⌋ : Ceil and floor functions
δ(x) : Dirac-delta function
δ{x,y} : Kronecker delta function
W (·) : Lambert-W function
▽,▽2 : Gradient and Hessian operators
a(ϕ) : Array steering response vector at angle ϕ

Probability

Pr(·) : Probability measure of an event
E [·] : Expectation of a random variable/vector
var (·) : Variance of a random variable/vector
CN (µ,Σ) : Circularly symmetric complex normal distribution with

mean µ, covariance Σ

N (µ,Σ) : Real normal distribution with mean µ, covariance Σ

U [ϕ0, ϕ1] : Uniform distribution over support [ϕ0, ϕ1]

exp(λ) : Exponential distribution with parameter λ
Ber(p) : Bernoulli distribution with parameter p
Bin(n, p) : Binomial distribution with parameters n, p
i.i.d. : independent and identically distributed
d−→ : Convergence in distribution
a.s−→ : Convergence in almost sure sense
X >st Y : Random variable X stochastically dominates the variable Y
X

d
= Y : Random variables X and Y are equal in distribution

FX(x) : Cumulative distribution function (CDF) of random variable X
fX(x) : Probability density function (PDF) of random variable X
Φ(x) : CDF of a real standard normal Gaussian variable
Q(x) : The regular Q-function obtained as 1− Φ(x)
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1 Intelligent Reflecting Surfaces: A
Game Changer for 5G & Beyond

With the rapid advancement of communication technologies, the wireless industry is in-

creasingly prioritizing the delivery of high-speed, highly reliable, and ubiquitous connectiv-

ity services. Wireless cellular communication began in the 1980s with the first generation

(1G), and since then, a new generation of cellular technology has emerged approximately

every decade, leading to the current deployment of fifth-generation (5G) networks, known

as “5G-New Radio” (5G NR). Looking ahead, next-generation wireless systems are ex-

pected to support an even broader range of applications across various sectors, including

enhanced broadband, the Internet of Things (IoT), healthcare, and smart vehicles. 5G

is envisaged to cater to three key use cases [1]: 1) enhanced mobile broadband (eMBB),

2) massive machine-type communications (MMTC), and 3) ultra-reliable and low-latency

communications (URLLC). The success of 5G networks in meeting the requirements of

these use-cases is quantified using a diverse range of key performance indicators (KPIs.)

However, meeting these growing demands necessitates a fundamental shift in how wireless

systems are designed. A key breakthrough in this evolution has been the introduction of

multiple-antenna array systems, which have significantly enhanced performance (such as

higher data rates) without consuming additional scarce resources like time, bandwidth,

and energy. We next briefly outline the fundamental contributions of antenna array signal

processing to wireless communication, laying the groundwork for the necessity of intelli-

gent reflecting surfaces (IRSs) for next-generation wireless systems, which is the central

focus of this thesis.

1
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1.1 Array Signal Processing for Wireless Communica-
tions: Benefits and Limitations

With the integration of antenna arrays at both the base station (BS) and user equipment

(UE), significant performance improvements have been achieved on several fronts. The

key advantages of using antenna arrays include:

1. Beamforming (or) array gain,

2. Spatial diversity gain,

3. Spatial multiplexing gain.

Beamforming gain: It is the ability of multiple antennas to collectively form a beam, con-

centrating the transmitted signal’s energy towards the receiver. This technique enhances

the signal-to-noise ratio (SNR) at a UE, which significantly improves the communication

rate. At its core, beamforming is a form of spatial filtering, where multiple antennas

sample the signal in the spatial domain and selectively transmit/receive signals within a

specific range of spatial frequencies, corresponding to a specific physical direction or angle.

Since beamforming relies on antenna arrays, it is also known as array gain. Depending

on the application, different beamforming techniques can be employed, including maximal

ratio transmission (MRT), zero-forcing (ZF) precoding, and minimum mean-square error

(MMSE) precoding, each offering unique trade-offs in performance and complexity.

Spatial diversity gain: Wireless channels are prone to fading, which can lead to deep

fade events, which are periods when the signal strength drops significantly. These events

can increase packet error rates at the receiver, making reliable communication challenging.

In this context, diversity serves as a fundamental technique to mitigate the effects of

fading by enabling signals to propagate through multiple independent wireless paths. The

core principle is that while some channels may undergo deep fades, others are likely to

remain strong, thereby preserving the overall link reliability. When multiple antennas

are deployed, the channel independence across these antennas introduces spatial diversity,

which significantly improves robustness and minimizes the detrimental effects of fading.
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Spatial multiplexing gain: In a multiple-input multiple-output (MIMO) system, we

can leverage the additional spatial degrees of freedom to transmit multiple data streams

simultaneously over independent channels without requiring additional bandwidth or time

resources. This enables us to efficiently use the spectrum, leading to higher throughput

and network performance.

Although antenna array systems provide significant advantages, fully harnessing their

potential requires the implementation of advanced and efficient array signal processing

algorithms. As a result, these systems also come with many challenges and overheads, like

1. Higher energy consumption due to multiple antennas, radio-frequency (RF) chains,

and amplifiers

2. Larger time complexity incurred for channel estimation and beamforming

3. Pilot contamination and need for more robust interference mitigation hardware

4. Higher cost of implementation/larger form factors of the antenna array

5. Sophisticated data decoding procedures, costly feedback/control overheads, etc.

Therefore, unless low-complexity and efficient array signal processing techniques are de-

ployed, the overheads mentioned above can easily undermine the advantages of using

antenna arrays in a system. Moreover, a fundamental characteristic of multiple-antenna

systems is that they enhance data transmission by adapting the transmitted signal to the

propagation environment, rather than directly controlling the wireless channel itself. This

limitation, along with the need for low-complexity solutions, serves as the motivation for

the development of intelligent reflecting surfaces (IRSs).

Unlike traditional antenna arrays, IRSs provide a means to shape and control the wireless

channel while remaining nearly passive. Thus, integrating IRS technology enables next-

generation antenna array systems to jointly control and adapt to the wireless channel. We

next explore the innovative IRS technology in detail and subsequently remark on how IRS
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further enhances the beamforming, spatial diversity, and spatial multiplexing capabilities,

which helps to place the contributions of this thesis in context.

1.2 Intelligent Reflecting Surfaces: Working Principle
and State-of-the-Art

Intelligent reflecting surface, also referred to as reconfigurable intelligent surface (RIS),

consists of an array of passive elements capable of manipulating an incident electromag-

netic wave to steer its reflection in a required direction. A prominent technique to imple-

ment an IRS involves the use of metamaterials, which are artificially engineered structures

with reconfigurable electromagnetic properties [2]. These materials allow the effective

refractive index of each element to be dynamically adjusted, thereby enabling precise con-

trol of the reflection coefficient at the point of incidence. Consequently, by tuning the

IRS elements to induce specific phase shifts and amplitude responses, it becomes feasi-

ble to reconfigure the wireless environment as per our requirement. In particular, this

capability facilitates the intelligent control of the wireless channels between any pair of

transceivers in the network, opening new avenues for enhancing spectral efficiency (SE),

reliable communication, mitigating interference, etc.

To make the discussion more concrete, a simplified schematic of an IRS-assisted wireless

communication system is illustrated in Fig. 1.1. This example considers a single BS and a

single UE, each equipped with a single antenna. An IRS consisting of N passive reflecting

elements is deployed at an appropriate location within the environment, and as described

above, the reflection coefficient of each element of the IRS is independently programmable.

As a consequence, the overall channel at a UE, say, indexed by k, can be expressed as

hk =
√
βr,kh

T
2,kΘh1 +

√
βd,khd,k, (1.1)

where hd,k is the small-scale fading channel from BS to UE-k in the direct link, h1,h2,k ∈
CN are the small-scale fading channels from BS to IRS, and IRS to UE-k respectively, and

βd,k, βr,k denote the large-scale path loss of direct and cascaded channels via the IRS at



Chapter 1. 5

Figure 1.1: An IRS-assisted wireless system.

UE-k. Further, Θ ∈ CN×N is a diagonal matrix that contains the reconfigurable reflection

coefficients of the IRS elements and is modeled as Θ = diag
([
ζ1e

jϕ1 , ζ2e
jϕ2 , . . . , ζNe

jϕN
]T),

where ζn ∈ [0, 1] and ϕm ∈ [0, 2π) denote the amplitude and phase of the reflection

coefficient at nth IRS element. If we design our IRS circuit elements such that the reflection

coefficients have equal magnitude, then, we can set ζn = 1 for all n ∈ [N ] ≜ {1, 2, . . . , N}
without loss of generality, and the IRS reflection coefficient matrix, Θ becomes a phase

shift matrix: Θ = diag
([
ejϕ1 , ejϕ2 , . . . , ejϕN

]T).
It is evident from (1.1) that the overall wireless channel can be effectively manipulated

using the phase-shift array at the IRS, even when both the BS and the UE are equipped

with just a single antenna. Extending this idea further, when multiple active antennas are

employed at the BS and/or UE in conjunction with a large array of passive reflecting ele-

ments at the IRS, the system acquires substantial flexibility. Specifically, the IRS enables

us to shape the channel, and the transmitter array at the BS adapts the transmission to

channel conditions, thereby allowing for fine-tuned optimization of the end-to-end wireless

link in accordance with specific performance objectives.

1.2.a Integrating IRSs into Next-Generation Wireless Systems

We now shift our focus toward understanding the different protocols involved in integrat-

ing IRSs into next-generation wireless communication systems. As previously discussed,

the IRS modifies the channel by imparting a carefully designed phase shift at each of

its elements. However, to apply the desired configuration at the IRS, it is essential to

implement a structured three-phase protocol, as described below:
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1. Channel estimation: The first step involves acquiring knowledge of the underlying

channel coefficients, also called channel state information (CSI), between the BS and

the UE. Specifically, from (1.1), it can be observed that in the presence of an IRS

comprising N elements, the total number of channel coefficients is 2N + 1, including

the direct BS–UE path, BS–IRS link, and IRS–UE link. However, since the knowledge

of the cascaded channel, denoted as hr,k ≜ h2,k ⊙ h1, where ⊙ represents the element-

wise (Hadamard) product, is sufficient for optimizing the IRS phase shifts [2], we need

to estimate N + 1 coefficients, which in turn requires the use of at least N + 1 known

pilot signals, unless these parameters are significantly correlated.

2. Channel feedback & phase optimization:

(a) The goal of the channel feedback step is to enable the BS to acquire the CSI

estimated in the previous step. In the case of frequency division duplexing (FDD),

the estimated CSI is fed back to the BS via a dedicated feedback link, after the UE

performs channel estimation in the downlink. However, in time-division duplexing

(TDD) systems, by leveraging channel reciprocity, the BS can directly estimate

the uplink channel and infer the corresponding downlink CSI from it. This, in

turn, enables efficient signaling strategies that eliminate the need for explicit CSI

feedback from UE to BS, thereby reducing the signaling overheads.

(b) In the phase optimization step, the BS computes the optimal IRS phase configura-

tion based on the acquired CSI. This typically involves formulating and solving an

optimization problem aimed at enhancing a specific performance metric, such as

received signal power, spectral efficiency, or signal-to-interference-plus-noise ratio,

while satisfying the unit-modulus constraint imposed by the IRS phase shifts.

3. IRS phase transportation: This is the final step in configuring an IRS. Owing to the

passive nature of the IRS, the BS is responsible for performing the phase optimization

process. Once the optimal phase shifts are determined, these phase angles are trans-

ported from the BS to the IRS controller through a dedicated control link. The IRS

controller then programs each reflecting element with its respective phase shift, thereby
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Figure 1.2: Control signaling steps in configuring an IRS. The left-hand figure shows the exchange
of information among different nodes, and its timing diagram is shown on the right.

realizing the intended manipulation of the wireless channel.

Figure 1.2 provides a schematic illustration of the complete procedure for configuring an

IRS and integrating it into a wireless communication system.

1.2.b Use-cases and Deployment Scenarios: The State-of-the-Art

Integrating an IRS into a wireless system enables overall channel optimization and can

enhance system performance in multiple ways [3–8]. Below, we briefly summarize several

approaches proposed in the literature for configuring the IRS and harnessing its benefits:

In [9], the authors demonstrate that an IRS can create a virtual line-of-sight (LoS) path

between the BS and UEs, leading to improved SNR and spectral efficiency (SE). Simi-

larly, [10] shows that optimizing IRS phase shifts for a given channel increases the received

SNR quadratically with the number of IRS elements. In [11], the authors focus on maxi-

mizing the energy efficiency, while works in [12–14] propose joint active and passive beam-

forming algorithms that underscore the adaptability and controllability of IRS-enabled

systems, as discussed in Sec. 1.1. Moreover, IRS phase optimization in MIMO and or-

thogonal frequency division multiplexing (OFDM) systems has been addressed in [15–20].
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However, realizing the benefits of an IRS requires accurate CSI; accordingly, several works

have investigated channel estimation with various guarantees and complexities [21–35].

Coverage enhancement via IRS is explored in [5, 36], the effect of IRSs on inter-BS in-

terference in [37], and IRS-based interference nulling in [38]. Additionally, physical layer

security improvements using IRSs are discussed in [39], and the role of IRS in integrated

sensing and communications is demonstrated in [40].

A few studies have also investigated randomly configured IRSs. Blind beamforming

and diversity analysis with random IRS phases are reported in [41–44], although these

methods incur high time complexity. Also, [45] employs randomized IRSs to protect

against wireless jammers. For wideband systems, methods for channel estimation and

beam training accounting for spatial wideband effects have been developed in [46–48],

Localization of UEs is addressed in [49], while [50, 51] leverage wideband phenomena

to enhance cell coverage and the performance of OFDM-based multiple access. Finally,

several works [52–55] use true time-delay (TTD) units at the IRS to enable coherent

beamforming over the entire operational bandwidth.

Regarding deployment scenarios, IRS technology is envisioned for indoor environments,

where it can enhance throughput and coverage for IoT applications [56], as well as for

outdoor scenarios, as discussed in the previous paragraph.

Beyond academic research, several industrial bodies are also actively advancing through

the IRS technology. The European Telecommunications Standards Institute (ETSI) has

dedicated study items on IRS [57], the Telecommunications Standards Development So-

ciety (TSDSI), an standards development organization of India has proposed interface

design options and implementation methods for IRS-aided systems [58, 59], and industry

leaders such as Qualcomm and ZTE routinely host workshops, underscoring the growing

interest in practical IRS implementation.

Despite these advances, the key challenges remain. Incorporating an IRS into a wireless

system introduces substantial overheads. Without the development of low-complexity,

high-performance schemes, the real-time deployability of IRS becomes a challenge. Also,

the fundamental performance limits of many IRS use cases are still not well understood.
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Addressing these issues is crucial for fully realizing the benefits of IRSs in practical systems.

1.3 Scope of this Thesis

This thesis primarily investigates two key aspects of IRS-aided wireless systems:

1. Design of IRS-aided wireless systems with particular emphasis on low-complexity,

2. Performance analysis of IRS-aided systems under practical deployment constraints.

Accordingly, the thesis is organized into three main parts, each addressing a distinct, yet

interconnected class of problems. In the following, we provide an overview of the research

questions tackled in each part and discuss the key contributions of this thesis.

1.3.a PART - 1: Low-Complexity Methods for Optimal Benefits

The first part of this thesis delves into the fundamental principles governing the operation

of the IRS, as outlined in Section 1.2.a. We first recognize that incorporating an IRS into

a wireless communication system leads to incurring the following three-fold overheads:

1. CSI estimation overheads: As detailed in Section 1.2.a, the first step involves es-

timating the CSI of all the links. Notably, the required pilot overhead scales linearly

with the number of reflecting elements at the IRS. Even when advanced estimation

techniques are employed to reduce this complexity, the system still suffers from channel

estimation errors, which again scale with the number of IRS elements [60].

2. Optimization overheads: To determine the optimal phase angles, the BS must first

acquire the CSI estimated in the first step. In scenarios where CSI is obtained via

feedback, this process introduces its own overheads [61]. Once the CSI is acquired at the

BS, it solves an optimization problem to jointly determine the IRS phase configuration

along with other relevant system parameters. In general, this optimization problem is

inherently non-convex, making it computationally intractable to solve optimally. As a

result, significant computational resources must be allocated to obtain a near-optimal

IRS phase configuration, particularly when the system dimensions are large.
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3. Transportation overheads: Finally, since the phase information of every element

has to be transported from BS to IRS (see the phase transportation step in Sec. 1.2.a),

this overhead also potentially scales linearly in the number of IRS elements, N . For

e.g., if the resolution of the phase shifter at an IRS element is d, then N log2(d) bits

have to be conveyed to the IRS every time the IRS is reconfigured.

Clearly, when compared to a system without an IRS, an IRS-aided system can incur a

significant amount of additional time and computational complexity. These added com-

plexities reduce the time and power available for data transmission, thereby undermining

the professed benefits of incorporating an IRS. This observation raises a crucial question,

which forms the central focus of PART 1 of this thesis.

Problem for PART - 1

How can we obtain optimal IRS benefits without optimizing the IRS and
without incurring the three-fold overheads?

We provide an affirmative answer to this question using the following idea:

Solution for the problem of PART - 1

Configure the IRS phases randomly and adopt opportunistic scheduling!

The core concept underlying an opportunistic communication (OC) framework is to allo-

cate system resources to those UEs that experience the most favorable channel conditions

within a given resource element. For instance, in a time-division multiple access (TDMA)

system employing single-carrier transmission, the BS schedules, in each time slot, the UE

witnessing the strongest instantaneous channel conditions for data transmission. Within

this context, the central premise of our approach is as follows:

Premise of the idea in PART - 1: Random IRS becomes optimal IRS

With multiple UEs, a random IRS phase is near-optimal to at least one UE;
opportunistically scheduling that UE reaps optimal gain without optimization!

While the effectiveness of this approach is inherently tied to scenarios involving a large
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number of UEs, such conditions are generally anticipated in next-generation wireless net-

works to support dense user populations [62]. Consequently, the proposed strategy is

well-aligned with the characteristics and requirements of advanced wireless systems.

Within the scope of this framework, PART 1 of the thesis addresses the following key

research questions:

Q1: What performance guarantees can be established for different opportunistic schedul-

ing policies when the IRS configurations are randomly selected?

Q2: What is the appropriate sampling distribution from which random IRS phase con-

figurations should be drawn to achieve (near-)optimal system performance?

Q3: What is the minimum number of UEs required to attain a specified opportunistic

scheduling gain from the IRS?

Q4: How does the proposed scheme perform under various channel models, including

sub-6 GHz and mmWave propagation environments?

Q5: Finally, how does system performance vary between narrowband and wideband chan-

nel conditions?

In Sec. 1.4.a (and in Sec. 1.4.c.ii for mmWave bands), we summarize the answers to

the above questions and outline the key contributions of this part of the thesis. Our

main finding is that an opportunistic scheduling framework can achieve near-optimal IRS

performance without relying on complex optimization procedures while maintaining low

time and computational overheads, and even when there are only a moderate number of

UEs in the system.

1.3.b PART - 2: Does an IRS Degrade Out-of-Band Performance?

This part of the thesis investigates a critical concern associated with the deployment of

IRSs in practical wireless systems. In real-world network environments, it is common for

multiple wireless service providers (or mobile operators) to offer services within the same

geographical region. Each operator is typically allocated a distinct yet closely spaced
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frequency band for serving its subscribers. In such a setting, consider a scenario where

one operator (called the in-band operator) deploys and controls an IRS to optimize service

for its own users. Then, a natural question is: How does the deployment of this IRS impact

the channel characteristics and performance of users served by a different operator, referred

to as the out-of-band (OOB) operator that operates in a nearby but non-overlapping band?

This question is of practical relevance due to the passive and frequency-agnostic nature of

IRSs, as discussed in Section 1.2. Unlike active devices, IRSs are not equipped with band-

pass filters capable of selectively reflecting signals of the operator who deployed the IRS.

As a result, an IRS reflects all incident electromagnetic signals, thereby unintentionally al-

tering the wireless propagation environment for OOB users as well. For instance, consider

the n78 band in 5G New Radio (NR), which spans the frequency range of 3300–3800 MHz,

corresponding to a total bandwidth of 500 MHz. Since the maximum carrier bandwidth

permitted in 5G NR is 100 MHz, this band can simultaneously accommodate five different

operators even if the full 100 MHz is allotted to each operator. In such a deployment

scenario, although each operator transmits within a non-overlapping portion of the spec-

trum, the IRS will reflect signals from all operators with comparable efficiency, given that

they operate within the same frequency range. This creates the possibility of unintended

channel modifications for OOB users.

Thus, PART 2 of the thesis is dedicated to rigorously addressing the pivotal question:

Problem for PART - 2

How does an IRS deployed by a mobile operator affect the performance of an OOB
operator providing services in the same geographical area?

We find that the answer to this question is as follows:

Solution for the problem of PART - 2

The OOB channel gain improves due to the presence of an uncontrolled
IRS. In sub-6 GHz bands, the gain improves monotonically (O(N)) with the

number of IRS elements, N . In mmWave bands, the gain dramatically improves
(O(N2)) with a probability whose value decreases as O(1/N).
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To arrive at the above conclusion, we consider a wireless system comprising two operators,

wherein only one of them deploys and controls an IRS. Through this setup, we aim to

systematically answer the following key research questions:

Q1: How does the ergodic spectral efficiency scale for both the in-band and OOB oper-

ators in the presence of an IRS controlled only by the in-band operator?

Q2: What is the behavior of the outage probability of UEs associated with both the

in-band and OOB operators?

Q3: How does performance vary for sub-6 GHz and mmWave propagation environments?1

Q4: How do the performance trends differ between single-IRS and multiple-IRS deploy-

ments for both operators?

Q5: How can we design efficient CSI estimation algorithms for multi-IRS setups that

incur minimal pilot overhead at the in-band operator?

Q6: To what extent does the OOB performance depend on the choice of scheduling

algorithms employed by the OOB operator?

Q7: Finally, focusing specifically on the mmWave regime, if each operator independently

deploys and controls its own IRS, what are the individual performance gains or losses

arising from the presence of OOB IRSs, and what additional benefit, if any, can be

realized through inter-operator cooperation?

The answers to these questions are summarized in Section 1.4.b. Our finding reveals

that each mobile operator can independently deploy and manage its own IRS infrastruc-

ture without significant cooperation with other operators, thereby maintaining network

autonomy while benefiting from the advantages of IRS technology.

1We consider scenarios where both operators operate in the same frequency regime—either sub-6 GHz
or mmWave; but exclude cases where one operator uses sub-6 GHz and the other mmWave bands.
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1.3.c PART - 3: IRS-aided Wideband Beamforming

In this final part of the thesis, we turn our focus to a critical and largely open challenge:

enabling IRSs to effectively beamform wideband signals, and we propose viable solutions

to address this issue. This study encompasses both sub-6 GHz and mmWave communi-

cation bands. The core challenge arises from the fundamental limitations of using phase

shifters at the IRS for beamforming. Specifically, wideband signals generally experience

frequency-selective fading, where the channel response differs across frequency compo-

nents. In contrast, IRS phase shifters exhibit a frequency-flat response over the entire

bandwidth, limiting their ability to adapt to the frequency-dependent variations of the

channel. Consequently, the IRS cannot perfectly align its reflection phases with the de-

sired channel across all frequency subbands, thereby degrading its beamforming efficiency

in wideband settings. This issue can be better understood in the context of classical array

signal processing theory [63], where the canonical structure for wideband beamforming is

the delay-and-sum architecture using true-time delay (TTD) units. Under the narrowband

assumption, this architecture simplifies to a phase shift-and-sum beamformer, which mir-

rors the operational design of typical IRS implementations. However, incorporating TTD

units at the IRS is impractical due to their bulkiness, power consumption, and complexity,

which defeat the low-cost and passive design philosophy of IRSs. Motivated by this gap,

we explore and develop low-complexity, hardware-friendly techniques to enable wideband

beamforming of IRSs, which constitutes the central focus of this part of the thesis.

mmWave bands: In this frequency range, the frequency selectivity of the channel is

attributed to the spatial-wideband effect—a phenomenon where the signal propagation

delay across the aperture of a large IRS becomes comparable to, or even exceeds, the

sampling duration. This leads to the so-called beam-split (B-SP) effect, wherein the

IRS focuses its reflected energy toward a given UE only over a portion of the operating

bandwidth. As a result, both the array gain and throughput degrade significantly in

wideband scenarios.

Motivated by the above considerations, we aim to address the following core problem:
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Problem for PART - 3

How to handle/control beam-split effects using low-complexity techniques?

To tackle this challenge, we pursue two complementary approaches:

• In the first approach, the B-SP effect is treated as an impairment. Accordingly, we

develop a low-complexity mitigation strategy to suppress its adverse impact on the

achievable array gain and throughput at a UE.

• In the second approach, we take a different perspective wherein the B-SP effect can be

exploited to enhance system throughput from a network-level viewpoint.

Then, the key ideas behind these approaches are outlined as follows.

Premise of the idea in PART - 3

1. Partitioning a large IRS into multiple smaller, distributed IRSs allows
for effective control and mitigation of the B-SP effect at a given UE.

2. Adopting an opportunistic OFDMA approach exploits the B-SP effect to yield
the full array gain across the entire bandwidth from a network perspective.

In particular, we address the following specific questions:

Mitigating beam-split effect

Q1: What is the maximum permissible number of IRS elements required to effectively

control the B-SP effect?

Q2: How does the delay spread introduced by distributed sub-IRSs impact the achievable

data rate at a given UE?

Q3: What is the optimal choice of locations of the sub-IRSs?

Q4: Can multiple IRSs offer diversity benefits to further mitigate the B-SP effect?

Q5: How does the complexity of the proposed approach compare with existing methods?
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We address these questions in Sec. 1.4.c.i and summarize the key contributions related to

mitigating the B-SP effect.

Exploiting beam-split effect

Q1: What is the precise nature of the frequency selectivity induced by the B-SP effect?

Q2: What is the rationale behind employing an opportunistic OFDMA strategy with

multiple UEs to achieve full beamforming gain over the bandwidth?

Q3: What is the success rate of the scheme for achieving a target SNR across the BW?

Q4: How many UEs are necessary to achieve a target success rate with high probability?

Q5: What is the achievable throughput of the system using the proposed opportunistic

OFDMA strategy?

In Sec. 1.4.c.ii, we briefly answer these questions and highlight the key contributions

concerning the exploitation of the B-SP effect.

Sub-6 GHz bands: Here, the channel frequency selectivity primarily arises due to the

rich scattering induced by multipath propagation through the IRS. As a result, in multi-

carrier communication systems such as OFDM, each subcarrier experiences a distinct

channel gain. This variation poses a fundamental challenge to IRS-based beamforming

in wideband systems, where the phase configuration of the IRS cannot be simultaneously

optimal across all subcarriers.

Motivated by this observation, we pose the following research question:

Q1: What is the optimal IRS phase configuration that maximizes the OFDM system’s

sum-rate while maintaining low complexity and high performance?

In the next section, we summarize the key contributions of this thesis, addressing the

key questions and challenges discussed above.
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1.4 Outline and Contributions of this thesis

As mentioned earlier, this thesis is organized in three parts. We outline the contributions

of these parts in the following subsections.

1.4.a PART - 1: IRS-assisted Opportunistic Communications

Part-1 comprises Chapters 2 and 3 and deals with IRS-assisted opportunistic communi-

cations, where the key objective is to obtain SNR-optimal performance without explicitly

optimizing the IRS or incurring the associated overheads. In particular, when the number

of UEs gets large, a randomly chosen IRS configuration will be near-optimal to at least one

UE in the system with high probability; this is the benefit of multi-user diversity. Then, it

can be shown that, for a randomly chosen IRS configuration, opportunistic scheduling of

UEs using a proportional-fair (PF) scheduler leads to a network sum throughput that, in

the limit of a large number of UEs, converges to the rate achieved by a round-robin (RR)

scheduler with the IRS phase configurations optimized for the scheduled UE’s channel. In

this context, our specific contributions are as follows:

1. We show that, when the phase angles of the IRS are sampled using a uniform distribu-

tion and a PF scheduler is employed, the number of UEs required to obtain near-optimal

benefits in independently and identically distributed (i.i.d.) channels scales exponen-

tially in the number of IRS elements.

2. We analyze the throughput of a few other promising IRS-assisted OC schemes for i.i.d.

narrowband wireless channels. Specifically, we exploit the fast switching time of IRS

phase configurations to obtain reflection diversity from the IRS and show that this helps

to reduce the number of users required to obtain near-optimal throughput.

3. Next, we exploit the directional nature of the channels in the IRS-aided system and

design channel model-aware randomly configured OC schemes that converge to the

coherent beamforming rate without requiring the users to scale exponentially with the

number of IRS elements. Further, using max-rate scheduling, we show that not only
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does this scheme achieve the quadratic scaling of the SNR with the number of IRS

elements, but its throughput can even surpass that of the scheme that involves IRS

optimization techniques due to the lack of multi-user diversity gain in the latter. We

also discuss how this scheme can be applied to narrowband channels in the mmWave

frequencies, which bear a similar structure.

4. We extend our results to a generic spatial correlation model at the IRS, and provide

the following contributions:

(a) We pose and solve a variational functional problem to obtain the optimal sampling

distribution for the random IRS phases, as a function of the distribution of the

channels. We show how the distribution should match the channel statistics.

(b) Next, we show that when the above spatial-correlation-aware distribution is used

to sample the IRS configuration, it is sufficient for the number of UEs to scale

exponentially in the rank of the channel covariance matrix to obtain near-optimal

SNR in every time slot.

(c) In the process, we derive the tail probability of the Rayleigh quotient of a het-

eroscedastic complex Gaussian vector, a result that may be of independent inter-

est.

5. We extend the OC schemes to IRS-aided systems with wideband wireless channels in

the sub-6 GHz frequency bands. Specifically, we consider an OFDM system and discuss

two OC schemes, namely, single-user OFDM, where we schedule a single user across

all subcarriers, and OFDMA, where multiple users are potentially scheduled across

the subcarriers. We derive the sum throughput scaling laws for the two schemes and

provide interesting insights about these systems.2

In a nutshell, we show that even a randomly configured IRS, along with opportunistic

scheduling of UEs, can procure optimal benefits without incurring overheads that scale

2We provide a detailed list of contributions in the context of IRS-assisted opportunistic communica-
tions in wideband scenarios in the mmWave frequency bands in Sec. 1.4.c.ii.
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with the number of IRS elements. The next part of the thesis explores another aspect

of IRS-aided communication systems where random phase configurations will prove to be

beneficial.

1.4.b PART - 2: Impact of IRS on Out-of-Band Performance

This part comprises Chapters 4, 5, 6, and 7, where we consider a system with two network

operators, X and Y, providing service in different frequency bands in the same geographical

area. The IRS is deployed by and optimized to serve the UEs subscribed to the in-band

operator X, and we are interested in analyzing the achievable SE and outage probability

witnessed by the UEs subscribed to the OOB operator Y, which does not control the

IRS. Specifically, we (separately) evaluate the IRS-assisted performance in both sub-6

GHz and the mmWave bands, which are provisioned as the FR1 and FR2 bands in 5G,

respectively [64]. Further, in the mmWave bands, inspired by [65], we study two scenarios:

(a) LoS (line-of-sight) and (b) (L+)NLoS (LoS and Non-LoS.) In the LoS scenario, the IRS

is optimized or aligned to the dominant cascaded path (called the virtual LoS path) of the

in-band UE’s channel. This is also considered in [9, 66], where the in-band UEs’ channels

are approximated by the dominant LoS path to reduce the signaling overhead required

for the BS to program the IRS: the phase of the second IRS element relative to the first

element determines the entire phase configuration. Contrarily, in the (L+)NLoS case, the

IRS optimally combines all the spatial paths to maximize the SNR at the receiver, for

which the overhead scales linearly with the number of IRS elements. Using tools from

high-dimensional statistics, stochastic-dominance theory, and array processing theory, we

make the following contributions.

1.4.b.i OOB Performance in sub-6 GHz Bands

Here, the operators serve their UEs over the sub-6 GHz frequency bands where the channels

are rich-scattering. In this context, our key findings are as follows.

1. We derive the ergodic sum-SEs of the two operators as a function of the system pa-

rameters, under round-robin (RR) scheduling of the UEs served by both operators. We
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show that the sum-SE scales log-quadratically and log-linearly with the number of IRS

elements for the in-band and OOB networks, respectively. Thus, the OOB operator

benefits from the IRS, even though the IRS is not controlled by the OOB operator.

2. We show that the outage probability at an arbitrary OOB UE decreases monotonically

with the number of IRS elements. Further, via the complementary cumulative distri-

bution function (CCDF) of the difference in the OOB channel gain with and without

the IRS, we prove that the OOB channel gain with an IRS stochastically dominates the

gain without the IRS, with the difference increasing with the number of IRS elements.

Thus, an OOB UE gets instantaneous benefits that monotonically increase with the

number of IRS elements.

1.4.b.ii OOB Performance in mmWave Bands

In the mmWave bands, the channels are directional, with only a few propagation paths.

In this context, using novel probabilistic approaches based on the resolvable criteria of the

mmWave spatial beams, our key findings are as follows.

1. In LoS scenarios, where the IRS is optimized to match the dominant path of the in-band

UE’s channel, we derive the ergodic sum-SEs of the two operators under RR scheduling

of the UEs. The SE at the in-band UE scales log-quadratically in the number of IRS

elements, whereas the SE gain at an OOB UE depends on the number of spatial paths

in the OOB UE’s channel. If there are sufficiently many paths in the cascaded channel,

the SE improvement due to the IRS scales log-linearly in the number of IRS elements.

Otherwise, the OOB UE’s SE improves only marginally compared to that in the absence

of the IRS.

2. We evaluate the outage probability and CCDF of an OOB UE’s channel gain with-

/without an IRS in LoS scenarios and prove that the channel gain in the presence of

IRS stochastically dominates the gain in its absence. Thus, even in mmWave bands,

the IRS provides positive instantaneous gains to all the OOB UEs.

3. We next consider the (L+)NLoS scenario where the IRS is jointly optimized considering
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all the spatial paths. We first evaluate the directional energy response of the IRS and

show that it exhibits peaks only at the channel angles to which the IRS is optimized. To

the best of our knowledge, this is a novel and fundamental characterization of the IRS

response under multi-path alignment in mmWave systems, which has not been studied

in the existing literature on IRS-aided communications.

4. We derive the ergodic sum-SE of both operators in (L+)NLoS scenarios. We find

that the OOB performance is even better than the LoS scenario (and hence better

than the system without an IRS). This is because the odds that an OOB UE benefits

improve when the IRS has a nonzero response in multiple directions. Thus, the OOB

performance in mmWave bands does not degrade even when the OOB operator serves

its UEs while remaining oblivious to the presence of the IRS.

5. We then consider a system with multiple smaller distributed IRSs obtained by parti-

tioning a single large IRS. Then, in LoS scenarios, our findings are the following:

(a) Under RR scheduling, we derive the ergodic sum-SEs of the mobile operators

(MOs). If N is the total number of IRS elements, we show that the SE of MO-X

grows as O(2 log2(N)), and the SE of MO-Y scales as O(τ log2(N)), where the pre-

log factor τ ∈ [0, 1] increases with the ratio of the number of OOB paths through

the IRS to the number of elements at an IRS.

(b) We design a distributed IRS system and specify the minimum number of IRSs for

MO-Y to almost surely achieve the maximum SE (i.e., for τ = 1.)

(c) Finally, we show that the outage probability at an arbitrary OOB UE decreases

exponentially as the number of IRSs deployed by MO-X increases.

Thus, we demonstrate that multiple IRSs help the OOB MOs better than a single IRS,

both on average and in an instantaneous sense.

6. Next, since multiple IRSs also increase the CSI estimation overheads at the in-band

MO, we develop a low-complexity CSI estimator (for a general setting with multiple

antennas at both the BS and UE), and make the following contributions:
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(a) We formulate the cascaded CSI estimation problem as a direction of arrival (DoA)

and direction of departure (DoD) estimation problem. We develop a cascaded CSI

estimation algorithm at the BS (in the uplink mode) for distributed IRS-aided mas-

sive MIMO systems by exploiting the subspace properties of the mmWave channels

based on a combination of direction-finding algorithms in the array processing lit-

erature. In particular, since the channel model has both DoAs and DoDs coupled,

we develop a novel joint ESPRIT-MUSIC algorithm that jointly estimates the

DoA at the BS and DoD from the UE, with the estimation being performed at the

BS. The DoA is estimated first and is passed as an input to the DoD estimator

using an appropriately chosen MUSIC-based cost function. Then, the path gain

coefficients are estimated using a low complexity least-squares (LS) method.

(b) We show that our approach yields accurate channel estimates with a dramatically

reduced pilot overhead compared to conventional approaches. This is made possi-

ble by the aforementioned reformulation, which reduces the number of parameters

to be estimated to depend only on the total number of paths in the system, i.e., on

the number of IRSs and the number of antennas at the UE and not on the total

number of IRS elements and the number of BS antennas, which are generally very

large in mmWave massive MIMO systems.

(c) We compare our method against that in [33], where the sparsity in the angular

domain of the mmWave channel is exploited to formulate the problem as a multiple

measurement vector (MMV) based sparse recovery problem, which is then solved

using simultaneous orthogonal matching pursuit (SOMP). We numerically show

that our method outperforms SOMP, with the performance gap increasing as the

number of IRSs increases.

7. Finally, we deal with the case where each MO deploys and controls its own IRS, and

in this case, we make the following contributions for the LoS scenarios:

(a) Considering that 2 MOs, X and Y, control an IRS each, we derive the ergodic

sum SE of the MOs when an overall phase at each IRS is configured as per the
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following implementation schemes:

i. Optimization with Time-sharing : In each time slot, while an MO serves its

own UE, the overall phases at the IRSs are optimized for a UE served by either

MO-X or MO-Y.

ii. Joint-optimization with MO cooperation: The overall IRS phases are jointly

tuned to maximize the weighted sum-SE of UEs served by the MOs in every

time slot.

iii. No MO cooperation: In this scheme, each MO focuses exclusively on optimiz-

ing its IRSs to ensure coherent signal reception at only its own UEs.

(b) We show that the IRS controlled by one MO does not degrade the SE of the

other MO. We quantify the gain in the sum-SE of the MOs obtained with/without

OOB IRS, and with/without cooperation (for time-sharing/joint optimization) as

a function of the number of OOB IRS elements.

(c) We extend our results to a system where more than 2 MOs co-exist, which deploy

and control an IRS each. In particular, we derive the ergodic-sum-SE of the MOs

for the above-mentioned three schemes.

(d) Finally, even with more than 2 MOs, we show that the OOB IRSs do not degrade

the in-band performance. Further, although joint optimization/time sharing with

MO cooperation still offers marginal gains relative to sum-SE when the MOs do

not cooperate, the gain increases at least linearly with the number of OOB MOs.

1.4.b.iii Opportunistic Enhancement of OOB Performance

Having shown that an IRS positively benefits OOB UEs, we next suggest ways to exploit

the uncontrolled IRS to enhance the performance of OOB operators further. In particular,

by using opportunistic selection techniques, we leverage multi-user diversity and show that

a significant boost in the OOB performance can be obtained compared to RR scheduling.

Specifically, we demonstrate the following.

1. By using a proportional-fair scheduler over a large number of OOB UEs, the sum-SE
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of the OOB operator Y converges to the so-called beamforming SE, which is the SE

obtained when the IRS is optimized for an OOB UE in every time slot.

2. By using a max-rate scheduler, the ergodic sum-SE of operator Y monotonically in-

creases with both the number of IRS elements and OOB UEs in the system.

This marks the conclusion of PART-2 of the thesis.

1.4.c PART-3: Wideband Beamforming with Phased Arrays at IRS

This final part comprises Chapters 8, 9, and 10, where the key focus is to enable the

low-complexity promoting IRS phase shifters to perform wideband beamforming over a

frequency-selective wideband channel. In particular, we address the key questions listed

in Sec. 1.3.c and make the following key contributions.

1.4.c.i Mitigating beam-split effects in mmWaves using distributed IRSs

1. SW effect reduction: We mathematically show that a distributed IRS design naturally

parallelizes the spatial delays and mitigates the SW effect.

2. Number of IRS elements : We determine the maximum number of elements at each IRS

so that the loss in the array gain due to B-SP is within acceptable limits while retaining

the achievable peak gain.

3. Sum-rate and array gain: Next, we analyze the impact of the temporal delay spread

(TDS) caused by multiple paths arriving at the UE through different IRSs. We show

that the achievable rate on every subcarrier (SC) scales log-quadratically in the number

of elements at each IRS and at least log-linearly in the number of IRSs, thus effectively

mitigating deep nulls in the channel response due to the B-SP effect. When the TDS is

zero, the sum-rate across all the SCs in the bandwidth (BW) grows log-quadratically

in the total number of IRS elements, and yields the full array gain over the BW.

4. Optimizing the IRS locations: Having noted that the value of TDS is crucial in deter-

mining the achievable peak channel gain, we next focus on optimizing the IRS locations:
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(a) Single UE: To minimize the TDS at a single UE, we show that it is optimal to

position the IRSs on an ellipse with the locations of BS and UE as its foci. The

TDS then becomes zero, allowing the effect of B-SP to be maximally mitigated.

(b) Multiple UEs: With multiple UEs located within a hotspot, we position the IRSs

over an ellipse whose foci are given by the location of the BS and the centroid of

the distribution of the UE locations. We derive the achievable TDS at an arbitrary

location and subsequently characterize a lower bound on the achievable sum-rate.

5. Angle diversity gain: Finally, we reveal that multiple IRSs additionally introduce angle

diversity gain due to multiple independent paths seen by the UE. In particular, we show

that the probability that the array gain equals the worst-case acceptable value (due to

the residual beam squint) decreases exponentially with the number of IRSs. On the

other hand, the outage probability of a centralized IRS for a target SNR close to the

peak array gain is bounded away from zero as the number of IRS elements increases.

1.4.c.ii Exploiting beam-split effects in mmWaves using OFDMA

1. Using a max-rate scheduler in OFDMA, and when the IRS configurations are randomly

sampled from an appropriate distribution, we show that, on every SC, the probability

that at least one UE will achieve nearly full beamforming gain from the IRS increases

as the number of UEs increases.

2. We derive the achievable system throughput and show that a peak data rate that scales

log-quadratically in the total number of IRS elements can be obtained on all SCs in

addition to the multi-user diversity benefits, with a large number of UEs.

Next, we consider the problem of IRS-aided wideband beamforming in the context of sub-

6 GHz bands. We recall from Sec. 1.3.c that the key issue in this case arises due to the

multi-path propagation in a rich-scattering setting.

1.4.c.iii Optimizing the IRS in sub-6 GHz wide bands

1. We first develop a low pilot overhead CSI estimation algorithm by leveraging the spar-

sity in the OFDM channel induced by the IRS. To elaborate, the cascaded BS-IRS and
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Figure 1.3: Summarizing the scope and contribution of the thesis with connections between parts.

IRS-UE channel is sparse in the angular domain and exhibits joint row sparsity across

the OFDM subcarriers. We exploit this to estimate the CSI using the SOMP algorithm.

2. We propose a computationally efficient binary phase optimization solver for IRS-aided

OFDM using the majorization-minimization (MM) theory [67] to optimize the sum rate.

The key novelty of our MM-based approach is in finding tractable lower bounds on the

non-convex sum rate that are tight at the current iterate and amenable to optimization

via closed-form solutions. We develop such bounds via a series of matrix inequalities

and eventually provide closed-form solutions to the inner optimization problems.

In Fig 1.3, we pictorially illustrate how different parts of the thesis are interconnected in

terms of the system models and proposed schemes.
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1.5 Key Takeaways from the Thesis

Based on the contributions outlined in Sec. 1.4, we have the following key takeaways:

1. Achieving Beamforming Gain with Low Complexity: The adoption of an oppor-

tunistic communication framework significantly reduces IRS-related overheads. Specif-

ically, it eliminates the three-fold costs associated with channel estimation, phase opti-

mization, and configuration signaling, without compromising on the performance and

thereby enabling seamless integration of IRSs into future wireless systems.

2. Practical Requirements on the Number of UEs: The OC framework leverages

multi-user diversity to bypass signaling overheads, shifting the trade-off towards the

minimum number of UEs required to realize IRS gains. We demonstrate that to attain

a target fraction of the IRS beamforming gain, the required number of UEs scales

exponentially with the rank of the channel covariance matrix at the IRS.

3. IRS Benefits Extend to All Operators: An IRS, even when deployed by a single

operator, does not degrade the performance of other (OOB) operators. In fact, in sub-6

GHz bands, it enhances multipath richness, while in mmWave bands, it improves the

likelihood of establishing virtual LoS links for OOB users.

4. IRS Provides Spatial Diversity: The deployment of multiple IRSs provides addi-

tional channel degrees of freedom and hence provides spatial diversity, offering consid-

erable performance improvements for OOB operators compared to a single IRS setup.

5. IRS Facilitates Spatial Multiplexing: A distributed deployment of many IRSs

allows mmWave systems to perform spatial multiplexing even in LoS propagation con-

ditions. This is because multiple IRSs improve the rank of an mmWave channel, thereby

enhancing the spatial multiplexing capabilities of mmWave MIMO systems.

6. Large IRSs Break the Narrowband Condition: In wideband systems, especially

in mmWave bands, large IRSs induce propagation delays that cannot be approximated

as phase shifts. This gives rise to the spatial-wideband effect and results in a beam-split

effect, leading to degradation in array gain and throughput.
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7. Mitigating B-SP via Multiple IRSs: Partitioning a large IRS into multiple smaller,

distributed IRSs mitigates B-SP through angle diversity and reduced propagation de-

lays, thereby restoring full array gain from a user-centric perspective.

8. Exploiting B-SP with OFDMA: An opportunistic OFDMA-based strategy lever-

ages the B-SP effect by scheduling multiple UEs across sub-bands, enabling the system

to achieve the full array gain from the viewpoint of the network.

In general, this thesis provides evidence of how even a randomly sampled set of IRS

phase configurations, when combined with low-complexity and appropriately designed

signal processing techniques, can deliver significant performance gains in next-generation

wireless communication systems.
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2 Opportunistic Scheduling in
IRS-aided Sub-6 GHz Systems

Chapter Highlights
Intelligent reflecting surfaces (IRSs) are a promising technology for enhancing coverage and

spectral efficiency for next-generation wireless systems. Existing approaches to leverage the ben-
efits of the IRS involve the use of a resource-intensive channel estimation step followed by a
computationally expensive algorithm to optimize the reflection coefficients at the IRS.
In this chapter, focusing on the sub-6 GHz band of communications, we present and analyze

several alternative schemes, where the phase configuration of the IRS is randomized and multi-
user diversity is exploited to opportunistically select the best user at each point in time for data
transmission. We show that the throughput of an IRS-assisted opportunistic communication
(OC) system asymptotically converges to the optimal beamforming-based throughput under a
fair allocation of resources as the number of users gets large. We also introduce schemes that
enhance the rate of convergence of the OC rate to the beamforming rate with the number of users.
For all the proposed schemes, we provide the distribution for sampling the IRS phase angles and
subsequently derive the scaling law of the throughput in terms of the system parameters as the
number of users gets large. Following this, we extend the setup to wideband channels via an
orthogonal frequency division multiplexing (OFDM) system and discuss two OC schemes in an
IRS-assisted setting: 1) Single-user OFDM (SU-OFDM): motivated by the fact the IRS bears a
frequency flat response, in this scheme, we opportunistically schedule a single UE over the entire
BW, and 2) orthogonal frequency division multiple access (OFDMA), where we multiplex different
UEs on different sub-carriers following an opportunistic scheduling scheme. The numerical results
clearly elucidate the superior performance that IRS-aided OC systems can offer over conventional
systems at very low implementation cost and complexity.

32
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2.1 Introduction

Intelligent Reflecting Surfaces (IRSs) have become a topic of active research for enhanc-

ing the performance of next-generation wireless communication systems both in the sub-6

GHz and in the millimeter wave (mmWave) bands. An IRS consists of passive elements

made out of meta-materials that can be tuned to offer a wide range of load impedances

using a PIN diode. Using this, each element of the IRS can be tuned to have a dif-

ferent reflection coefficient, thereby enabling the IRS to reflect the incoming signals in

any desired direction [2, 68–70]. However, realizing these benefits entails high overheads

in terms of resource-intensive channel estimation followed by solving a computationally

heavy optimization problem to determine the phase configuration at the IRS. In this work,

we consider an alternative approach, where the phase configuration of the IRS is set ran-

domly in each slot, yet extracts the benefits from the IRS in terms of enhancing the system

throughput. This approach only requires a short training signal for estimating the received

signal power at the users, followed by feedback-based selection of the best user in each slot

for subsequent data transmission. Multi-user diversity ensures that at least one user will

see a good channel in the randomly chosen phase configuration [71].

Despite its short history, significant work has gone into the design and optimization of

IRS-aided communication systems. Here, we briefly summarize the existing literature,

in order to place the contributions of this chapter in context. In [9], the authors show

that an IRS can create a virtual line-of-sight (LoS) path between the base station (BS)

and the user, leading to improved coverage and SNR in mmWave systems. In [10], it is

shown that the received SNR increases quadratically with the number of IRS elements,

provided the phase configuration of the IRS is optimized to ensure coherent combining

of the signal at the receiver location. Also, since the IRS is passive in nature, it boosts

the spectral efficiency without compromising on the energy efficiency [11]. In [12], the

authors propose joint active and passive beamforming algorithms at the BS and IRS,

respectively, to maximize the weighted sum rate of an IRS-aided system. IRS phase

optimization in the context of multiple-input multiple-output (MIMO) and orthogonal

frequency division multiplexing (OFDM) systems has been studied in [15–19], and the list
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of potential applications of IRS continues to grow [3,69,72].

All of the above-mentioned works describe and solve complex phase optimization prob-

lems, which are computationally intensive and difficult to implement in real-time systems.

Further, this optimization becomes even more complicated in the context of OFDM sys-

tems, as it requires one to optimize the IRS jointly across all the OFDM subcarriers. More

importantly, these phase optimization algorithms work on the premise of the availability

of accurate channel state information (CSI) of the links between the BS and the user

through every IRS element. Elegant methods for channel estimation in IRS-aided systems

are described in [21, 22], but in all these schemes, the channel estimation overhead scales

linearly with the number of IRS elements. The time, energy, and resource utilization for

channel estimation can quickly erase much of the benefits offered by the IRS. One ap-

proach to mitigate this loss is to exploit structure in the channel model to estimate the

channel with lower overhead [23–25], but these approaches trade off the reduction in over-

head with more complex channel estimation algorithms, thereby substantially increasing

the computational cost. In addition, the complexity of the overall algorithm increases with

the resolution with which phase shifts are configured [73]. Furthermore, since the IRS is

passive, these optimization algorithms have to run at the BS, and a dedicated control link

from the BS to the IRS is needed to communicate the phase configuration information to

the IRS. As the number of IRS elements increases, this becomes an additional bottleneck,

as the control link overhead also scales with the number of IRS elements [69].

In the context of the above, an interesting alternative approach is to configure the IRS

with random phases and make the communications opportunistic in nature. In opportunis-

tic communications (OC), at every point in time, the BS serves the user who witnesses

the best instantaneous channel condition. When there are a large number of users in the

system,1 with high probability, deep fades are avoided at any given user, enhancing the av-

erage system throughput without incurring the overheads mentioned above [71,78,79]. In

particular, opportunistic scheduling is pertinent when the goal is to maximize the system

1In sub-6 GHz band communication system, the consideration of large number of users is realis-
tic [71, 74–76], especially in the context of massive machine-type communications (mMTC) for 5G com-
munications [77].
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average throughput, i.e., the average sum-rate across the users over a long time horizon.

Such an approach is suitable in delay-tolerant networks, where users can afford to wait

before being scheduled for transmission.

Initial work along these lines was reported in [76], where the phase angles of the re-

flection coefficients at the IRS elements are drawn uniformly and independently from the

interval [0, 2π). As we show in the sequel, a drawback of this approach is that the number

of users needed to achieve a performance comparable to coherent beamforming increases

exponentially with the number of IRS elements, making it unattractive for practical im-

plementation. Moreover, the average effective SNR scales linearly, not quadratically, in

the number of IRS elements (as achieved by coherent beamforming.) In this work, we

develop novel, alternative schemes that overcome these drawbacks. Although we focus on

communications over the sub 6-GHz bands (FR-1 band in the 5G NR specifications [64])

assisted by an IRS, we also briefly discuss how one of the proposed schemes is relevant in

mmWave bands.2 For all the schemes, we analyze the system throughput as a function of

the number of users. We show that, by exploiting the structure in the channel, we can

significantly improve the convergence rate of opportunistic throughput to the beamform-

ing throughput and also achieve the quadratic scaling of the SNR with the number of IRS

elements. This, in turn, allows us to achieve near-optimal beamforming performance and

obtain an additional gain from opportunistic user selection without requiring a very large

number of users in the system.

The specific contributions of this chapter are as follows:

• We analyze the throughput of several proposed IRS-assisted OC schemes for inde-

pendent and identically distributed narrowband wireless channels. We exploit the

fast switching time of IRS phase configurations to obtain additional reflection diver-

sity from the IRS, and show that this helps to reduce the number of users required to

obtain near-optimal throughput. We also analytically characterize the throughput

2An IRS can boost the performance in both mmWave and sub-6 GHz bands. In mmWave bands, they
help in improving coverage by establishing a virtual line-of-sight channel. In sub-6 GHz bands, they boost
the received SNR by making the environment more rich-scattering [80]. This work primarily focuses on
the performance in sub-6 GHz bands.
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achievable by this scheme. (See Theorem 2.1 and Sec. 2.3.b.)

• Next, we consider directional channels in the IRS-aided system and design channel

model-aware randomly configured OC schemes that converge to the coherent beam-

forming rate without requiring the users to scale exponentially with the number of

IRS elements. In Theorem 2.2, we show that not only does this scheme achieve the

quadratic scaling of the SNR with the number of IRS elements, its throughput can

even surpass that of the scheme that involves IRS optimization techniques, due to the

lack of multi-user diversity gain in the latter. We also discuss how this scheme can be

applied to mmWave channels, which also bear a similar structure. (See Sec. 2.3.c.)

• We extend the OC schemes to IRS-aided systems with wideband wireless channels.

Specifically, we consider an OFDM system and discuss two OC schemes: single-

user OFDM, where we schedule a single user across all subcarriers, and orthogonal

frequency division multiple access (OFDMA), where multiple users are potentially

scheduled across the subcarriers. We derive the sum throughput scaling laws in

Theorems 2.3 and 2.4 for the two schemes, and provide interesting insights about

these systems. (See Sec. 2.4.)

The results (in Sec. 2.5) show that the presence of an IRS can significantly enhance the

throughput of conventional BS-assisted OC schemes [71]. Specifically, the throughput of

IRS-aided OC grows with the number of IRS elements N , whereas such growth is not

possible in BS-assisted OC as the number of antennas at the BS is increased. This is due

to the power constraint at the transmitter, which eventually limits the maximum achiev-

able throughput. Secondly, the numerical results elucidate the significant reduction in the

number of users to achieve the optimal throughput compared to existing schemes such as

in [76]. For example, in an 8-element IRS system, the approach in [76] has a gap of 175%

from the optimal rate; this gap reduces to 60% by using the proposed reflection diversity

enhanced scheme. Further, the offset from the coherent beamforming throughput reduces

to 11% in the proposed channel model-aware IRS-assisted OC scheme. Also, the channel

model aware OC scheme is within a small offset (18%) with a modest number of users
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Variable Definition Variable Definition
N Number of IRS elements Rk(t) Acheivable rate of UE-k at time t
K Number of UEs Tk(t) Average rate of UE-k till time t

Q Number of IRS reflection patterns hk or
hk

Overall channel at UE-k

M Number of subcarriers in the OFDM h1 Channel from BS to IRS

L Number of taps in the channel h2,k or
H2,k

Channel from IRS to UE-k

P/σ2 Ratio of transmit power at
the BS to noise variance at UE

θ or Θ IRS configuration vector/matrix

ζ Fraction of slots for pilot txn. hd,k Direct channel from BS to UE-k

d/λ
Ratio of inter-elemental spacing
to the signal wavelength

βd,k,
βr,k

Path loss in the direct link /
cascaded link via the IRS

θA Angle of arrival at the IRS from BS θD,k
Angle of departure at the IRS
to UE-k

a
Power delay profile
of the multi-tap channel

R(K) Acheivable system throughput
under opportunistic scheduling

τ Design parameter of PF scheduler RBF
k

Beamforming rate at UE-k

Table 2.1: Commonly encountered variables/notations in chapter 2.

(≈ 50), even when the number of IRS elements is as large as 1024. Thus, IRS-aided OC is

a promising approach for exploiting the benefits of IRS-aided systems without incurring

the cost of training, phase angle optimization, and communication to the IRS.

Notation: For general notations used in this chapter, see the section on “General Mathe-

matical Notations” on page ix. For the notations/variables specific to this chapter, please

refer to Table 2.1.

2.2 Preliminaries of Opportunistic Scheduling

Opportunistic communication schemes exploit the variation of the fading channels across

users in order to improve the throughput of a multi-user system. For example, in max-rate

scheduling [79], the BS sends a common pilot signal to all the users in the system, and

the users measure the received SNR. The BS then collects feedback from the user who
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witnesses the highest SNR,3 and schedules data to that user in the rest of the slot. That

is, in a K user system, the BS serves user k∗ at time t, where k∗ = argmax
k∈[K]

|hk(t)|2,

with hk(t) denoting the channel seen by user k at time t. However, this scheme is unfair

to users located far from the BS due to their higher path loss. An alternative is to

consider proportional fair (PF) scheduling, which provides a trade-off between fairness

and throughput [71]. The PF scheduler serves user k∗ such that

k∗ = argmax
k∈[K]

Rk(t)

Tk(t)
, (2.1)

where Rk(t) = log2

(
1 + P |hk(t)|2

σ2

)
is the achievable rate4 of user k at time t, P is the

transmit power at the BS, σ2 is the noise variance at the user, and Tk(t) captures the

long-term average throughput of user k. We will refer to the term Rk(t)
Tk(t)

as the PF metric

in this chapter. Now, Tk(t) is updated as

Tk(t+ 1) =


(
1− 1

τ

)
Tk(t) +

1
τ
Rk(t), k = k∗,(

1− 1
τ

)
Tk(t), k ̸= k∗.

(2.2)

Here, the variable τ represents the length of a window that captures the tolerable latency

of the application and dictates the trade-off between fairness and throughput. Going

forward, we will refer to the term Rk(t)
Tk(t)

as the PF metric.

A simple illustration of exploiting multi-user diversity through opportunistic scheduling

based on the PF scheduler is shown in Fig. 2.1 for various values of τ . We consider a time-

varying channel across time slots modeled as a Gauss-Markov process, i.e., the channel at

user k varies as

hk(t) = αhk(t− 1) +
√
1− α2vk(t), (2.3)

where α dictates the correlation of channel coefficients across time slots and vk(t) ∼
CN (0, 1) is an innovation process.

Further, the performance of the OC scheme is compared with that of a non-opportunistic

3We note that various timer-based and splitting-based schemes can be used to identify the best user
with low overhead [81,82].

4In this work, we use the terms rate and throughput interchangeably.
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Figure 2.1: Throughput achieved via PF scheduling.

scheduling scheme, namely, round-robin time division multiple access (TDMA).

As can be seen from the figure, the average throughput of the system at higher τ grows

substantially with the number of users. This marks the rate-constrained regime, where

the instantaneous rate is the primary factor determining which user gets scheduled (the

system still offers fairness, but only over very large time scales). Thus, for large τ , the

PF scheduler is approximately the same as a max-rate scheduler, and the throughput

achieved by the PF scheduler approaches that achieved by the max-rate scheduler as τ

goes to infinity. On the other hand, at lower τ , the average throughput has negligible

improvement after a few users, indicating that this is a fairness-constrained regime where

users are selected in a near round-robin fashion to ensure short-term fairness. On the other

hand, for a given choice of τ , opportunistic scheduling performs better for lower values of α

(representing a fast-fading scenario) compared to higher values (representing slow-fading

scenarios). This is because, in fast-fading environments, the rate of channel fluctuations

is enhanced, which improves the performance of opportunistic scheduling schemes.

We note that such an enhancement of the rate of channel fluctuations can be obtained

by choosing different, random phase configurations at an IRS. This has the additional
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advantage that the fluctuations induced by the IRS increase with the number of elements.

This motivates us to take a fresh look at the opportunistic scheduling schemes in IRS-

assisted scenarios. Specifically, we analyze the achievable throughput in IRS-assisted OC

schemes. We show that one can obtain the benefits of using an IRS over conventional

systems with low overhead and complexity by obviating the need for CSI acquisition, IRS

phase optimization, and feedback between the BS and the IRS.

2.3 Single IRS Assisted Opportunistic User Scheduling
for Narrowband Channels

In this section, we present three OC schemes for narrowband channels in a single IRS-

assisted setting. We consider a single cell containing a BS equipped with one antenna

serving K single antenna users. An IRS equipped with N reflecting elements is deployed

at a suitable location in the radio propagation environment, as shown in Fig. 2.2.

2.3.a IRS-Enhanced Multi-user Diversity

2.3.a.i Channel Model

The signal transmitted by the BS reaches each user via a direct path as well as via the

IRS. Thus, the effective downlink channel seen by user k (at time slot t), denoted by hk

(we omit the dependence on t for notational brevity), is given by

hk =
√
βr,kh

T
2,kΘh1 +

√
βd,khd,k, (2.4)

where h2,k and h1 ∈ CN×1 represent the channels between the IRS and user k, and between

the BS and IRS, respectively, and hd,k denotes the direct non-IRS channel between the

BS and user k. We model h1 ∼ CN (0, I), h2,k
i.i.d.∼ CN (0, I) and hd,k

i.i.d.∼ CN (0, 1)

across all users. Further, βr,k and βd,k represent the path loss between the BS and user k

through the IRS and direct paths, respectively. The diagonal matrix Θ ∈ CN×N contains

the reflection coefficients programmed at the IRS, with each diagonal element being of the

form ejθi , where θi ∈ [0, 2π) is the phase angle of the reflection coefficient at the ith IRS



Chapter 2. 41

Figure 2.2: A single IRS-assisted wireless system.

element. The signal received at every user is corrupted by AWGN i.i.d.∼ CN (0, σ2).

2.3.a.ii Scheme for IRS-Enhanced Multi-user Diversity

In every time slot, the IRS sets a random phase configuration. Consequently, the effective

channels seen by the users change in every slot. The BS transmits a pilot signal in the

downlink at the start of the slot. The users measure the SNR from the pilot signal and

compute their respective PF metrics. The user with the highest PF metric feeds back its

identity to the BS, which schedules that user for data transmission for the rest of the slot.

Feedback Mechanism: We consider timer or splitting based schemes [81,82] for identifying

the best user at the BS. These are low-overhead distributed user selection schemes, where

only the best user transmits its identity to the BS, based on their channel-utility metric

(e.g., using a timer that expires after a time interval that is inversely proportional to the

SNR or the PF metric). It is known that, with these schemes, the BS can identify the

best user within 2 or 3 (mini-)slots on average even as K →∞ [81,82]. Since the average

overhead of a timer-based feedback scheme is small compared to the time slot duration,

we ignore its effect in this work.

In the above scheme, as the number of users in the system grows, the randomly chosen IRS

configuration is likely to be close to the beamforming (BF) configuration for at least one

of the users in the system [71]. Note that, in this scheme, there is no communication from

the BS to the IRS, making it attractive from an implementation perspective. Thus, the

benefits of an optimized IRS can be readily obtained without requiring careful optimization

of the IRS, provided there is a large number of users in the system, and the multi-user
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No

Yes

For time slots: 1,2,3,...

IRS is randomly
configured

BS broadcasts pilot signal
& every UE receives it

All UEs compute the
 PF metric:

Is UE-k the
best UE?

UE-k feeds back its
identity first

BS schedules UE-k for
data transmission

Wait for
scheduling

Figure 2.3: IRS-aided opportunistic communication scheme: A pictorial representation.

diversity gain is exploited. The scheme is illustrated pictorially in Fig. 2.3, and the slot

structure of the scheme is illustrated in Fig. 2.4. In particular, the time scale of UE

scheduling and reconfiguring the IRS with a random phase are assumed to be of the same

order, and these are shorter than the time scale of channel variations (channel coherence

time) at the UEs.

We begin our discussion with the following lemma on the performance of an IRS that

adopts a beamforming configuration for a given user, which will serve as a benchmark for

evaluating the OC-based schemes.
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Figure 2.4: Slot structure of the opportunistic communication scheme.

Lemma 2.1 ( [76]). The rate achieved by user k in an IRS aided system under the beam-

forming configuration is

RBF
k = log2

1 +
P

σ2

∣∣∣∣∣√βr,k

N∑
n=1

|h1,nh2,k,n|+
√
βd,k|hd,k|

∣∣∣∣∣
2
 , (2.5)

with the beamforming configuration at the IRS given by

θ∗n,k = ̸ hd,k − ̸ (h1,n × h2,k,n), n = 1, . . ., N. (2.6)

The above lemma quantifies the gain that an IRS can offer compared to a system without

an IRS. However, achieving the rate in (2.5) requires the knowledge of the CSI through

every IRS element, whose complexity scales linearly with the number of elements, as stated

earlier.

Next, consider the system where the phase of every IRS element is selected uniformly

at random from [0, 2π) in each slot, and the user with the best PF metric is selected

for transmission. We define the average rate achieved by the randomly configured IRS

assisted system to be R(K) = E [log2 (1 + P |hk∗|2/σ2)], where k∗ is the user selected in

time slot t, and the expectation is taken over the randomness in the phase configuration.

Then, under PF scheduling, as τ →∞, it is known that the average rate of the randomly

configured IRS-assisted system almost surely converges to the average rate achievable in
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the beamforming configuration under fair resource allocation across users, i.e., [76]

lim
K→∞

(
R(K) − 1

K

K∑
k=1

RBF
k

)
= 0. (2.7)

Note that, in (2.7), the factor 1
K

in the second term on left hand side accounts for the

fairness ensured by the system.

Remark 2.1 (On the convergence rate). Let us compute the scaling of the number of

users K with the number of IRS elements N , such that, with a given (fixed) proba-

bility, a randomly selected phase configuration θ at the IRS is nearly in beamforming

configuration for at least one user. Consider an arbitrary user, and define the event

Ei ≜ {θi ∈ [θ∗i − ϵ, θ∗i + ϵ]}, where θ∗i is the phase angle required for the ith element of the

IRS to be in beamforming configuration for that user. Since the phase angles at the IRS

are chosen as θi
i.i.d.∼ U [0, 2π), if we define E ≜ ∩Ni=1Ei, we have Pr(E) = (ϵ/π)N . Then,

the probability that at least one user in a K-user system sees an IRS phase configuration

that is within ϵ distance of its beamforming configuration is Psucc = 1 −
(
1− (ϵ/π)N

)K
.

Hence, in order to have a fixed probability of success via i.i.d. randomly selected phase

configurations, when ϵ/π ≪ 1, the number of users must scale with N as

K ≥ (− log(1− Psucc)) (π/ϵ)
N . (2.8)

Thus, in the i.i.d. phase configuration scheme, the number of users must grow exponentially

in the number of IRS elements to achieve near beamforming configuration. Contrariwise,

this scheme constrains the number of IRS elements that can be deployed when the number

of users is limited. 5 In the next subsections, we present and analyze schemes that improve

the rate of convergence of R(K) to 1
K

∑K
k=1R

BF
k .

5Note that the rate obtainable in an IRS-assisted OC system always increases with N . However, if N
is increased keeping K fixed, the gap between the rate achieved by OC and the rate achievable under the
beamforming configuration with fair resource allocation across users also increases, because the probability
that no user is close to the beamforming configuration increases. In fact, for a large but fixed K with
i.i.d. channels, the average rate in a randomly configured IRS grows as O(log2 N) (see (2.10)), whereas,
in the beamforming configuration, it grows as O(log2 N2) (see (2.5)).
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2.3.b IRS-Aided Multi-user Diversity with Reflection Diversity

In this subsection, we study an enhancement of the foregoing scheme by offering additional

reflection diversity gain. In this scheme, the IRS is configured using random and inde-

pendent reflection coefficients during multiple consecutive pilot symbols transmitted at

the beginning of each time slot. Note that, in this scheme, there is a one-to-one mapping

between the pilot symbol index and the phase configuration used at the IRS. Hence, the

effective channel between the BS and the kth user during the qth pilot transmission in

a given time slot, denoted by hk,q, is different for each of the pilot symbols because the

phase configuration of the IRS is different for each value of q.

2.3.b.i Channel Model

We model the effective downlink channel hk,q using (2.4), with the phase configuration Θ

replaced with Θq for the qth pilot interval.

2.3.b.ii Scheme for IRS-Enhanced Multi-user Diversity Aided with Reflection
Diversity

Inspired by the fast switching time of IRS phase configurations [83, 84] compared to the

time slot (e.g., 10 ms frame duration in 5G NR [85]), we can obtain additional reflection

diversity on top of the multi-user diversity by configuring the IRS with several random

and independent reflection coefficients (phase configurations) during the pilot symbols

transmitted at the beginning of each time slot. Every user chooses the best configuration

among all the IRS phase configurations in every time slot, computes its PF metric, and

the best user feeds back the corresponding phase configuration index and SNR to the

BS.6 The BS then sets the IRS with the phase configuration index received from the user

selected for transmission, for the rest of the slot.

Let Q be the number of randomly chosen IRS phase configurations within a time slot,

which is the same as the number of pilot transmissions. In the rest of this section, for

6In slowly varying channels, one can maintain the history of the phase configurations used in the pre-
vious time slots and the corresponding SNRs reported by the users, and avoid multiple pilot transmissions
in each slot.
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analytical tractability, and similar to [75], we consider the path loss coefficients to be equal

across all links and users: βr,k ≈ βd,k = β.7 We then have the following proposition.

Proposition 2.1. The effective channels, hk,q, are i.i.d. across users and pilots for rea-

sonably large N , and Q≪ K,N ,8 and further they follow the distribution CN (0, β(N+1)).

Proof. See Appendix 2.A. ■

We can also observe numerically (See Fig. 2.7, Sec. 2.5) that this proposition holds even

for moderate values of N .9 We now note that, as Q increases, the time remaining for data

transmission in each frame decreases. Thus, the average throughput of a system adopting

this scheme is

R(K,Q) = (1− ζQ)E

log2
1 + max

q∈[Q],
k∈[K]

P |hk,q|2
σ2

, (2.9)

where (1− ζQ) is the pre-log factor accounting for the loss in the throughput due to

transmitting Q pilot symbols in each slot, ζ is the fraction of the time slot expended

in a single pilot transmission, and the expectation is taken with respect to the random

IRS phase configurations and fading channels. Note that we account for the (1 − ζQ)

factor only in this subsection, since multiple pilot symbols are used. In the rest of the

chapter, since only a single pilot transmission occurs, we ignore its effect on the throughput.

The following theorem characterizes the scaling of the average system throughput of IRS

enhanced multi-user diversity aided with reflection diversity as a function of the system

parameters.

7The first approximation is realistic as long as the IRS path is not much longer than the non-IRS
path. Also, due to the second equality, the PF scheduler approximates the max-rate scheduler for large
τ [71].

8More precisely, this approximation would be accurate as long as Q is smaller than the number of IRS
elements, where the Q projections result in independent random variables.

9Note that, if the BS and IRS are deployed at fixed and high locations, the channel between the
BS and IRS will remain static for several time slots and have a strong LoS component. One can then
model this channel using a deterministic array steering response vector [76]. Since the distribution of
a circularly symmetric Gaussian random variable is unchanged under rotation by a deterministic phase
angle, hk,q ∼ CN (·) still holds true for any N .
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Theorem 2.1. Consider an N-element IRS-aided system with K users and Q pilot trans-

missions, as described above. Under Proposition 2.1, the average system throughput scales as

lim
K→∞

(
R(K,Q) − (1− ζQ) log2

(
1 +

βP

σ2
(N + 1) ln(QK)

))
= 0. (2.10)

Proof. See Appendix 2.B. ■

In (2.10), the pre-log factor decreases with Q, while the logarithmic factor increases with

Q, making R(K,Q) an unimodal function of Q. The following lemma provides the Q for

which (2.10) is maximized as the solution of an implicit equation, which can be solved

using fixed-point iteration methods. In particular, we state this when ζ is a small positive

number and under a high SNR scenario. We skip the proof as it is straightforward.

Lemma 2.2. The number of pilots Q that maximizes R(K,Q) in (2.10) for a given K and N ,

denoted by Q̂, satisfies the fixed point equation ln(QK) = eW((ζ−1Q−1−1)β(N+1))/β(N + 1),

where W (·) is the Lambert W function. Then, the optimal integer valued Q is Q∗ =

argmax
⌈Q̂⌉,⌊Q̂⌋

R(K,Q).

We note that solving the fixed-point equation in Lemma 2.2 is not straightforward.

Nevertheless, we can deduce the following trends in the variation of optimal Q∗:

(a) With all other parameters fixed, the optimal Q∗ is a non-increasing function of ζ.

This is because an increase in ζ raises the overhead per pilot transmission, making

a smaller Q∗ preferable. This behavior is also evident from the expression in (2.10),

where, under fixed system parameters, the pre-log factor decreases as ζ increases,

thereby driving the optimal solution toward a smaller Q∗.

(b) When N or K increases, again with all other parameters fixed, Q∗ decreases. The

reason is that the logarithmic term provides limiting returns with increasing N or K,

so further increases in Q yield negligible improvement in the log term. Consequently,

the dominant influence on performance comes from the pre-log factor, so the optimal

Q∗ becomes small.
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Remark 2.2 (On the feedback requirement). The feedback requirement in this scheme is

slightly higher than in the previous scheme. In addition to feeding back the best overall

SNR, each user also sends an additional log2Q bits to indicate the index of the IRS phase

configuration that yielded this best SNR at the user. Furthermore, after scheduling the user

by the BS, the BS has to inform the IRS to configure the phase configuration that gives

the best SNR to the scheduled user. However, this additional signaling is still substantially

lower than the signaling required by conventional IRS phase optimization schemes.

Remark 2.3 (On the convergence rate). Continuing with Remark 2.1, in order to ensure

that with probability at least Psucc, there is a user for which the IRS configuration used in

one of the Q pilots is within an ϵ ball of its optimal configuration, we need

K ≥ 1

Q
(− log(1− Psucc)) (π/ϵ)

N , (2.11)

when ϵ/π ≪ 1. Thus, employing Q random phase configurations at the IRS during the

pilot transmissions is equivalent to having KQ users in the system. Hence, a performance

close to that achieved by optimal configuration at the IRS is possible with fewer users

compared to the scheme in Sec. 2.3.a.ii.

2.3.c IRS Channel Model Aware Multi-user Diversity

In the preceding section, a method to improve the performance of the basic scheme in

Sec. 2.3.a was proposed by introducing multiple pilot transmissions. However, as we will

see in Sec. 2.5, for both the schemes, the gap between the optimal rate and opportunistic

rate increases with the number of IRS elements, especially in the large user regime. We

now describe a method to overcome this limitation by accounting for the channel structure

in IRS-aided systems, namely, that the IRS is deployed so that the BS-IRS and IRS-user

channels exhibit strong LoS paths. On the other hand, the direct link between the BS and

the user may be non-LoS and experience high path loss/shadowing effects. Thus, in this

section, we ignore the contribution of the direct link, as in [86].
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2.3.c.i Channel Model

We represent h1 and h2,k as LoS channels using array steering vectors. Considering an

N -element uniform linear array (ULA) based IRS, the LoS channels in the sub-6 GHz

bands can be modeled as [86]

h1 =
[
1, e−j

2πd
λ

sin(θA), e−j
4πd
λ

sin(θA), . . . , e−j
2π(N−1)d

λ
sin(θA)

]T
, (2.12)

h2,k = h′k

[
1, e−j

2πd
λ

sin(θD,k), e−j
4πd
λ

sin(θD,k), . . . , e−j
2π(N−1)d

λ
sin(θD,k)

]T
, (2.13)

where θA and θD,k are the direction of arrival (DoA) and direction of departure (DoD) of

the kth user at the IRS, d and λ are the inter-IRS element distance and signal wavelength,

and h′k is the Rayleigh distributed channel for the kth user. The other parameters are as

in Sec. 2.3.a.i except for the absence of the non-IRS path. For the analysis, the total path

loss is considered to be equal to β for all users as in [75].

2.3.c.ii Scheme for IRS Channel Model Aware Multi-user Diversity

Under the above channel model, with θ′k ≜
2πd
λ
(sin(θA) + sin(θD,k)), the channel at user k

for the IRS configuration Θ is given by

hk =
√
βhT2,kΘh1 =

√
βh′k

N∑
n=1

e−j((n−1)θ′k)+jθn . (2.14)

Clearly, due to the Cauchy-Schwarz inequality, |hk| is maximized iff θi = 2π(i−1)d
λ

(sin(θA)+

sin(θD,k)) for all i, and this is also the beamforming configuration of the IRS.

Recall that the DoA at the IRS from the BS is θA, and let the DoDs from the IRS to the

users be independent and uniformly distributed over [ϕ0, ϕ1]. Then, in each time slot, the

phase configuration θi of the ith IRS element is set as

θi =
2π(i− 1)d

λ
(sin(θA) + sin(ϕ)), (2.15)

where ϕ ∼ U [ϕ0, ϕ1] is a random phase. Note that this assumes that the value of θA is

known. This is reasonable because the IRS and BS are typically installed at pre-fixed
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locations with a direct LoS between them.10 Additionally, if [ϕ0, ϕ1] = [0, 2π], knowledge

of θA is not required. The rest of the scheme proceeds as in Sec. 2.3.a.ii, with the BS

scheduling the user with the highest PF metric for data transmission.

To investigate the performance of this scheme, first, using (2.14), it is clear that

|hk|2= β

∣∣∣∣∣
N∑
n=1

e−j((n−1)θ′k−θn)

∣∣∣∣∣
2

· |h′k|2. (2.16)

The maximum value of the first term in (2.16) is βN2 which is achieved by the beamforming

configuration. Thus, when K is large, for every η ∈ (0, 1), there exists a δ > 0 such that,

for a subset of ηK users, almost surely, we have [71, Sec.III.B]

β

∣∣∣∣∣
N∑
n=1

e−j((n−1)θ′k−θn)

∣∣∣∣∣
2

> βN2 − δ. (2.17)

Thus, when K is large, for any randomly chosen IRS phase configuration as per (2.15),

there will almost surely exist a set of users whose overall channel experiences a near-

optimal beamforming configuration. The second term in (2.16) denotes the square of the

channel gains, which are i.i.d. across users. We characterize the behavior of this term

using extreme value theory. In particular, using Lemma 2.3 given in Appendix 2.B at the

end of this chapter, it can be shown that maxk|h′k|2 grows as lnK. Hence, among the ηK

users, the maximum of |hk|2 grows with K at least as fast as

(βN2 − δ) ln(ηK) = (βN2 − δ) ln(K) +O(1), (2.18)

as K → ∞. Clearly, the case with δ = 0, which happens when at least one user is in

beamforming configuration, serves as an upper bound on the rate of growth of the |hk|2

in (2.18). As a consequence, we have the following theorem.

Theorem 2.2. For the IRS channel model-aware multi-user diversity scheme, the average

10For example, in [23], the authors consider a receiver near the IRS, whose channel to the BS is similar
to the BS-IRS channel, which helps in estimating θA.
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system throughput scales as

lim
K→∞

(
R(K) −O

(
log2

(
1 +

βP

σ2
N2 lnK

)))
= 0. (2.19)

The term N2 in (2.19) shows that this scheme attains the maximum possible array gain

from the IRS by exploiting the presence of strong LoS paths, while the logK term is due

to multi-user diversity. This scheme thus even outperforms the scheme where optimization

methods are used in IRS-aided systems without multi-user diversity (e.g., see (2.5)). Also,

the SNR scaling under i.i.d. channels is O(N), whereas it is O(N2) under strong LoS

channels. This is because, under i.i.d. channels, the variance of the effective channel

scales as N (see Proposition 2.1), while in the latter case it scales as N2, at least for the

subset of users satisfying (2.17). In turn, when the scheduler selects the best user for data

transmission, the SNR scales as O(N2) as per (2.19). A similar observation is made in [71]

in the non-IRS context, when comparing the performance of i.i.d. fast fading channels

and correlated channels.

Remark 2.4 (On the convergence rate). Similar to Remark 2.1, under the channel model

in (2.12), (2.13), we have Pr(E) = 1 −
(
1−

(
ϵ
π

))K when the IRS phases are sampled as

in (2.15). Thus, the K required for near-optimal beamforming does not grow with N , and

the opportunistic rate converges much faster to the beamforming-based rate compared to

the scheme in Sec. 2.3.a. This is illustrated in Figs. 2.8 and 2.9 in the sequel.

Remark 2.5 (mmWave bands). The channel model in (2.12), (2.13) is a special case

of mmWave channels [87] with the number of paths set to 1. Since, by exploiting the

knowledge of the channel statistics to design the distribution from which the random phase

configurations are drawn, we can obtain significant multi-user diversity gains even with

a relatively small number of users, randomly configured IRS-aided OC can also obtain

significant benefits in mmWave scenarios.

Remark 2.6 (Comparison with SSBs in 5G NR). In the context of 5G NR, the proposed

scheme can significantly improve the performance by deploying an IRS with negligible over-

heads. We note that the scheme using the synchronization signal blocks (SSBs) as per NR
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specifications is user-centric, wherein the BS sweeps through several beams across many

time slots [88]. Thus, a given user measures the beam quality on every beam, and in the

end, it reports to the BS the index of the beam which procured the best channel quality.

This procedure focuses on obtaining the best beam for a given user and expends as many

time resources as the number of beams the BS sweeps. As a consequence, the time complex-

ity scales linearly with the number of beams used for sweeping. In contrast, the proposed

scheme is IRS centric where the random phase configuration selected at the IRS in a given

time slot can be considered to be the generation of a beam in a random (spatial) direction.

The scheme then tries to locate the user who finds this random beam to yield the best

beam quality. Thus, the proposed scheme does not need more than one time resource for

scheduling, i.e., it entails lower overhead.

2.4 Single IRS Assisted Opportunistic User Scheduling
for Wideband Channels

This section investigates IRS-assisted OC over an L tap wideband channel. We consider

a multiuser OFDM system where all users are served over a given total bandwidth. Since

the IRS operates over the entire bandwidth (i.e., it is not possible to apply different phase

configurations for different sub-bands),11 we first analyze the performance of an IRS-

assisted OFDM system where all the subcarriers are allocated to a single user with the best

channel condition collectively among the subcarriers. In the second scheme, we configure

OFDM-based multiple access (OFDMA) and study the performance improvement offered

11This assumes that the IRS elements are not frequency selective, similar to past work in the area
[15, 89]. In fact, by appropriately designing the tuning parameters of the IRS circuit elements, it is
possible to achieve non-frequency selectivity of the IRS elements even in wideband systems [90]. Having
said that, as we will see in Chapter 8, as the number of IRS elements increases, so does the aperture of the
IRS, and the propagation delay across the aperture can make the overall channel frequency selective. This
is because the reflections from the different IRS elements contribute to a delay spread in the channel. This
frequency selectivity is ignored in this chapter, and it is a good approximation as long as the aperture of
the IRS and/or the bandwidth of the signal are not too large; this is precisely characterized in Chapter 8.
However, the response of the individual phase shifters in the IRS is indeed frequency flat.
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by the multiplexing gain and multi-user diversity. We refer to the former scheme as single-

user OFDM (SU-OFDM) and the latter scheme as OFDMA. As before, for the analysis,

we assume that all users experience similar large-scale propagation effects with path loss

coefficient β, and hence we model the channels across the users in an i.i.d. fashion.

2.4.a IRS Enhanced Multi-user Diversity in a Single-user OFDM
(SU-OFDM) System

2.4.a.i Channel Model

Consider a time domain channel seen by the kth user in an N -element IRS setting. Let

hd,k ∈ CL×1 be the L-tap channel between the BS and user k through the direct (non-IRS)

path. Let H2,k ∈ CN×L denote the L-tap channel between IRS and user k across all IRS

elements. Note that, without loss of generality, we assume that the number of taps in the

direct channel and the IRS-user channel to be the same. This can be done by letting L

denote the larger of the numbers of taps in the two channels. Since the channel between

the BS and IRS is typically LoS, it can be modeled as a single-tap channel between the

BS and each of the N elements of the IRS, denoted by h1 ∈ CN×1 (see [16].) Furthermore,

due to the strong LoS component, h1 can be modelled as an array steering response vector

when the IRS is configured as a ULA (see (2.12)). We assume that channels between the

IRS and the users across all the L taps are independent of each other [76, 91]. The exact

statistics of the channels are provided below. The composite channel of user k can then

be compactly written as

hk = hd,k +HT
2,kΘh1 ∈ CL×1. (2.20)

In this work, we use an exponentially decaying power delay profile (PDP) in the lag domain.

Let h̆k,l,n ≜ h1,nh2,k,l,n denote the gain of the lth tap of the fading channel between the BS

and the kth user through the nth IRS element. Then, the PDP of the link is given by

al ≜ E[|h̆k,l,n|2] = ce−νl/L, ∀k ∈ [K], n ∈ [N ], (2.21)

where c is chosen such that
∑

l E[|h̆k,l,n|2] = 1, and ν captures the decay rate of the channel

tap power with l. Hence, we have, ∥a∥1= 1, where a ≜ [a1, a2, . . . , aL]
T represents the



Chapter 2. 54

power in each of the L taps. Therefore, the lth component of the channel in (2.20) can be

written as hk,l = hd,k,l+
∑N

i=1 e
jθih̆k,l,i. If hd,k,l, h2,k,l,i ∼ CN (0, al) across the IRS elements

and since |h1,n|2= 1 for all n ∈ [N ], it is easy to show that hk,l ∼ CN (0, (N + 1)al)

and independent across the users and L taps. Equivalently, in the OFDM system with M

subcarriers, if we let h̃k ∈ CM×1 denote the frequency-domain channel vector for user k, we

have h̃k = FM,Lhk where FM,L is the matrix containing the first L columns of the M ×M
DFT matrix.12 Thus, the channel at subcarrierm for user k follows h̃k[m] ∼ CN (0, N + 1),

and we also have the Parseval’s relation E[∥h̃k∥22] =M E[∥hk∥22].

2.4.a.ii Scheme for IRS-Enhanced Multi-user Diversity in SU-OFDM Systems

As before, we randomly set the phase configuration at the IRS at every time slot. The

BS then applies equal power to all the subcarriers and broadcasts pilot symbols to all the

users. In this section, for simplicity and analytical tractability, we assume that the BS uses

equal power allocation across subcarriers during data transmission; note that this is near-

optimal in the high SNR regime. The users estimate the channels, compute the sum rate

obtainable across all subcarriers, and compute their respective PF metrics. The user with

the highest PF metric sends its identity back to the BS, and is scheduled for transmission

using all the subcarriers by the BS. Note that, with a slightly higher feedback overhead,

the scheme easily extends to the case where the BS uses optimal water-filling-based power

allocation. Here, after estimating the channels across the subcarriers, the user computes

the sum rate achievable by it with water-filling power allocation, and uses this to calculate

its PF metric. In this case, instead of feeding back just the user identity and the SNR,

the user with the highest PF metric will also need to include the power allocation vector,

which is of size ≈ 4M bits (assuming 16-levels of power control in each subcarrier.)

Under equal power allocation, in a K user system, the maximum average sum rate

12In this work, we compute the discrete Fourier transform (DFT) as X[m] =
∑M−1

l=0 x[l]e−j 2πml
M for all

m ∈ {0, 1, . . . ,M − 1}.
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obtainable across subcarriers with a total power constraint P and noise variance σ2 is

R
(K)
SU-OFDM = max

1≤k≤K

M−1∑
m=0

log2

(
1 +

βP

Mσ2
|h̃k[m]|2

)
. (2.22)

From (2.22), it is clear that we need to characterize the maxima of the sum of random

variables. However, since the expression is not easily tractable, we upper-bound the term

by invoking Jensen’s inequality. From Parseval’s theorem,
∑M−1

m=0 |h̃k[m]|2=M
∑L−1

l=0 |hk,l|2.
Using the monotonicity of log(·), we get

R
(K)
SU-OFDM ≤ log2

(
1 +

βP

σ2

{
max
1≤k≤K

L−1∑
l=0

|hk,l|2
})

. (2.23)

We illustrate the tightness of the above upper bound in the numerical results section.

Recall that |hk,l|2∼ exp( 1
(N+1)al

) and these form a set of independent and non-identically

distributed (i.n.d.) random variables across L taps. First, we characterize the distribution

of the sum-term in (2.23). We can show from [92] that if {Xi}Li=1 are a set of L i.n.d.

exponential random variables with mean µi, then the cumulative distribution function

(cdf) of Y ≜
∑L

i=1Xi is given by

FY (y) =
yL

Γ(1 + L)
∏i=L

i=1 µ
−2
i

×Υ
(L)
2

(
1, . . . , 1; 1 + L;−µ1y, . . . ,−µLy

)
, (2.24)

where Υ(L)
2 (·) is the confluent Lauricella function [93]. Thus, setting µi = (N+1)ai in (2.24)

will give the distribution of the sum-term in (2.23) and call it F̃ (·). In what follows, we

characterize the maximum of such i.i.d. sum-terms. To that end, we can show that the cdf

in (2.24) satisfies the Von Mises’ condition (see Lemma 2.5 in Appendix 2.C) [92]. Thus,

max
1≤k≤K

L−1∑
l=0

|hk,l|2 K→∞
====⇒ F̃

(
1− 1

K

)
, (2.25)

where, by XK
K→∞
====⇒ c, we mean limK→∞XK − c d−→ Y , and Y is a degenerate random

variable. In other words, the sum-term in (2.23) can be replaced with the right-hand side

of (2.25) when K is large. However, the resultant expression, although accurate, has two

demerits: 1) It does not provide any explicit and useful insight on how the sum-rate scales



Chapter 2. 56

with the total number of users, 2) the characterization is not tractable for comparison and

analyzing the performance.

Hence, we seek approximations by considering large L (In Remark 2.7, we discuss how

large L needs to be.) In Sec. 2.5, we numerically show that this approximation works well

even when L is as small as 5. Then, in view of (2.23), we have the following theorem for

reasonably large L.

Theorem 2.3. Consider an N-element IRS-assisted SU-OFDM system with M subcarri-

ers and L time-domain taps with power delay profile a, a total power constraint P , and

noise variance σ2. Then, for large L, the average sum rate of IRS enhanced multi-user

diversity in an SU-OFDM system under equal power allocation, R(K)
SU-OFDM, scales as

lim
K→∞

(
R

(K)
SU-OFDM −O

(
log2

{
1 +

βP

σ2
(N + 1)×

[
1 + ∥a∥2Φ−1

(
1− 1

K

)]}))
= 0,

(2.26)

where Φ−1(·) is the inverse cdf of a standard Gaussian random variable.

Proof. See Appendix 2.C. ■

In the above result, since the argument of Φ−1(·) is close to 1 for large K, we can use

Φ(x) ≈ 1
2

(
1 +

√
1− e− 2

π
x2
)

[94]. Consequently, from (2.26), we can explicitly determine

the dependence of the sum rate on K as in the following corollary.

Corollary 2.1. For the setup in Theorem 2.3, we have

lim
K→∞

(
R

(K)
SU-OFDM −O

(
log2

{
1 +

βP

σ2
(N + 1)

[
1 + ∥a∥2

√
π

2
lnK

]}))
≈ 0. (2.27)

Comparing the SU-OFDM performance given by the above equation with the perfor-

mance in narrowband channels (see (2.10), with Q = 1), the main difference in the multi-

carrier case is the presence of ∥a∥2 and the dependence on the number of users as
√
lnK

instead of lnK. The
√
lnK dependence is a consequence of the upper-bounding technique

used to obtain (2.27); and apart from the ∥a∥2 factor, the performances are similar in the

two cases.
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Remark 2.7. To quantify how large L should be in order for Theorem 3 to hold, we

use the Berry–Esseen theorem [95] which describes the error bound in approximating the

normalized sum of random variables with a normal random variable through the CLT. We

can show that the worst case absolute error, i.e., supx∈R |Fn(x)− Φ(x)| ≲ C1 · a1/∥a∥2,
where Fn(x) and Φ(x) denote the cdf of the normalized sum-random variable and standard

normal random variable, for some constant C1 > 0. Thus, for a given L, this bound

becomes tighter when the PDP is slowly decaying, with the power in the dominant tap being

comparable to other taps (which occurs when ν is small), and in this case, the convergence

in CLT occurs faster.

2.4.b IRS Enhanced Multi-user Diversity in OFDMA Systems

We now consider an OFDMA system, where, instead of allotting all the subcarriers to one

of the users, each subcarrier is allotted to a single, possibly different user. On the other

hand, a given user can be allotted one or more subcarriers. We consider the same channel

model as in Sec. 2.4.a.i.

2.4.b.i Scheme for IRS-Enhanced Multi-user Diversity in OFDMA Systems

The scheme is similar to the single-user OFDM system in Sec. 2.4.a, except that the user

scheduling is done on a per-subcarrier basis instead of allotting all the subcarriers to the

user with the best sum rate across subcarriers. Recall that the channel coefficient of the

mth subcarrier of user k is denoted by h̃k[m]. Then, the average sum rate under equal

power allocation in the IRS enhanced OFDMA-based multi-user diversity scheme is given

by

R
(K)
OFDMA =

M−1∑
m=0

log2

{
1 +

βP

Mσ2
max
1≤k≤K

|h̃k[m]|2
}
. (2.28)

Thus, we have the following theorem that characterizes the average sum rate of an OFDMA

system.

Theorem 2.4. Consider an N-element IRS assisted OFDMA system with M subcarriers,

a total power constraint P , and noise variance σ2. Then, the average sum rate exploiting
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multi-user diversity under equal power allocation, R(K)
OFDMA, scales as

lim
K→∞

{
R

(K)
OFDMA −M log2

(
1 +

βP

Mσ2
(N + 1) lnK

)}
= 0. (2.29)

Proof. The key step is to characterize the random variable max
1≤k≤K

|h̃k[m]|2 for large K.

Since |h̃k[m]|2i.i.d.∼ exp(1/(N + 1)), we can apply Lemma 2.3 to obtain the scaling law in

(2.29) in the same way as derived in Appendix 2.B. ■

Remark 2.8 (On the performance of OFDMA and SU-OFDM). The IRS-assisted OFDMA

scheme outperforms the SU-OFDM scheme for two reasons: 1) Since there are M parallel

channels in the OFDMA scheme, this offers additional selection/frequency diversity gain

over an SU-OFDM system. 2) While a given user may see different channel coefficients on

different subcarriers, the IRS configuration is common across all subcarriers. Thus, even

in the asymptotic number of users, no user can be in beamforming configuration on all the

subcarriers in an SU-OFDM scheme. On the other hand, in the OFDMA scheme, since

the setup boils down to the availability of M parallel channels, and when K is large, the

IRS can be close to the beamforming configuration with high probability on all subcarriers,

by scheduling different users on different subcarriers. However, the feedback overhead in

the OFDMA scheme is M times that of SU-OFDM, since the BS needs to find the best user

on each of the M subcarriers. Note that, with OFDMA, one can still use a low feedback

overhead timer- or splitting-based scheme [81,82] for identifying the best user to schedule

for data transmission, but on a subcarrier-by-subcarrier basis.

2.5 Numerical Results

In this section, we validate the derived analytical results and quantify the relative perfor-

mance of the schemes proposed in the previous sections through Monte Carlo simulations.

A single antenna BS is located at (0, 0) (in metres), the IRS is at (0, 250), and single

antenna users are uniformly distributed in the rectangular region with diagonally opposite

corners (100, 500) and (500, 1000). The path losses are computed as β = 1/dα where d is

the distance and α is the path loss exponent. We use α = 2, 2.8 and 3.6 in the BS-IRS,
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IRS-user and BS-user (direct) links, respectively [76]. Further, we consider a BS trans-

mitting with power P = −10 dBm and noise variance at the receiver σ2 = −117.83 dBm,

corresponding to a signal bandwidth of 400 kHz at a temperature of 300 K. Then, in the

absence of the IRS, a user at the point closest to the BS experiences an average SNR

of about 10.3 dB, while the farthest user experiences an average SNR of −1.9 dB. The

fading channels are randomly generated as per the distributions discussed in the previous

sections.

We first evaluate the performance of the scheme described in Sec. 2.3.a. In Fig. 2.5,

we plot the average throughput offered by a randomly configured IRS-assisted OC scheme

operated using a proportional fair scheduler with τ = 5000. We compare the performance

of the OC scheme against that of the beamforming-optimal scheme, given by (2.7). The

throughput of the OC system improves with the number of IRS elements and users in

the system. On the other hand, the gap between the throughput of the OC scheme and

that of the optimally configured IRS-based scheme also increases with the number of IRS

elements, in line with our discussion in Remark 2.1. We also see that the IRS assisted

system significantly outperforms opportunistic scheduling in the absence of the IRS, when

the BS is equipped with N antennas [71, Sec. III.A] (i.e., the same as the number of IRS

elements used.)13 This is because the BS is constrained by the total radiated power. Hence,

increasing the number of antennas reduces the transmit power per antenna, resulting in

a throughput that improves only marginally with the number of antennas at the BS. On

the other hand, since the IRS uses passive reflective elements, the total received power

at the user increases quadratically with the number of IRS elements under the optimal

beamforming configuration (see, e.g., Theorem 2.2 or [10]).

Next, in Figs. 2.6 and 2.7, we evaluate the scheme in Sec. 2.3.b. In this experiment,

we use ζ = 0.01 in (2.10).14 Hence, the rate goes to zero when Q = 100, since no sym-

bols are left for data transmission. In Fig. 2.6, we plot the throughput as a function

13The BS uses weights αn(t) and phase θn(t) at the nth antenna at time t, leading to hk(t) =∑N
n=1

√
αn(t) e

jθn(t)hnk(t) as the effective channel gain. At each t, αn(t) and θn(t) are set randomly.
14We note that ζ depends on the coherence time of the channel. It has been shown in [96] that an

optimal ζ is around 0.01 for channels with moderate fading rate operating at moderate SNR, in single
antenna systems.
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Figure 2.5: Average throughput vs. the number of users compared with the opportunistic scheme
using multiple antenna BS used in [71, Sec.III.A].

of Q, the number of pilot transmissions. The optimal Q∗ that yields the best trade-off

between the pilot overhead and reflection diversity gain, given by Lemma 2.2, agrees with

the integer Q at which the throughput achieves its maximum. In Fig. 2.7, we compare

the performance in terms of the achievable system throughput obtained using Q = 1

(“Opportunistic throughput, Q = 1”) against that obtained by using Q = Q∗ pilot trans-

missions (“Opportunistic throughput, Q = Q∗”.) The figure shows the additional gain due

to the reflection diversity, particularly when the number of users is small. The gain is

marginal when K is large, partly because the throughput depends weakly on Q since it

scales as log ( ln(QK)), and partly because Q∗ itself reduces with K. In the same figure, we

also plot the performance of the IRS assisted opportunistic system under equal path loss

across users, and see that the simulations (“Equal path loss - opp. throughput, Q = Q∗”)

match with the theoretical result in Theorem 2.1 (“Theorem 1, Q = Q∗”.)

In Fig. 2.8, we study the performance of the channel model aware OC scheme as in

Sec. 2.3.c and the IRS draws phase angles randomly as per (2.15), with users’ DoDs

(at the IRS) being randomly and independently sampled from a uniform distribution in
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Figure 2.6: Average throughput as a function of the number of pilot transmissions, for N = 8.

[−40◦, 40◦] with θA = 20◦. Further, the users are located in the region as mentioned in

paragraph 1 of this section. We also use the uniform distribution to independently draw

the phase angles at all the IRS elements, and show its performance in the same figure.

We see that the performance of the OC system improves dramatically when the channel

model and DoD statistics at the IRS are used in selecting the phase configurations. In Fig.

2.9, we investigate the performance gap between the randomly configured IRS-based OC

and the rate obtained from the beamforming configuration, as a function of the number of

IRS elements with and without the knowledge of DoD statistics at the IRS. The different

curves correspond to the system having a varying number of users. We see that, for a given

number of users, the performance of the system with the IRS phase angles drawn exploiting

the knowledge of the DoD statistics is very close to the performance of an optimized IRS,

even if the number of IRS elements is as large as 1024. Furthermore, in this regime,

even when the number of users in the system is as small as 50, the OC performance is

still close to the coherent beamforming rate. On the other hand, the performance of an

IRS-assisted OC scheme with the phase angles drawn independently from the uniform

distribution becomes increasingly worse relative to the beamforming rate as the number
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Figure 2.7: Average throughput as a function of the number of users, with Q∗ pilot transmissions.

Figure 2.8: Average throughput as a function of the number of users, for channel model aware
scheme.

of IRS elements increases. Moreover, the effect of multi-user diversity is hardly evident

in the latter case, when the number of IRS elements is large. In a nutshell, for a given
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Figure 2.9: Average throughput as a function of N , for different number of users.

number of users, the channel model aware scheme offers two benefits: 1) The rate of the

OC system remains close to the optimal beamforming rate even with a large number of

IRS elements; 2) The effect of multi-user diversity is well captured, even with a small

number of users.

We next illustrate the average SNR scaling of both schemes under opportunistic schedul-

ing in Fig. 2.10. We plot the variation of the average SNR (the average of the maximum

of the squared effective channel magnitudes across users) as a function of the number of

IRS elements for a large number of users (K = 10, 000) in the system. In the top part

of the figure, the channels across all users are taken to be i.i.d. as per Sec. 2.3.a, with

β = 1. Clearly, the average SNR scales as O(N), in line with Theorem 2.1. In the bottom

part, we plot the effective SNR in the channel model aware scheme with IRS phase angles

sampled from (2.15), and the channels taken as per Sec. 2.3.c. In this case, opportunis-

tic scheduling significantly boosts the performance over the i.i.d. case and gives an SNR

scaling of O(N2), in line with Theorem 2.2. This is again because, for every random IRS

configuration, the effective channel corresponds to a strong LoS channel to a fraction of

users, and the scheduler picks the best among them.
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Figure 2.10: Scaling of the SNR in i.i.d. vs. LoS channels.

As the last experiment in this section, we consider the performance of IRS-aided OC over

wideband channels as discussed in Sec. 2.4. We fix the number of time domain channel taps

to two different values: L = 25 [97] and 5 with ν = 1, in (2.21), and perform communication

through an OFDM system with M = 1024 subcarriers and subcarrier spacing of 30 kHz.

As a result, the total system bandwidth is 30.72 MHz, which corresponds to a total noise

variance σ2 = −98.95 dBm at 300 K. We choose a total power budget P = 24 dBm

at the BS, and as a consequence, the nearest user experiences an average per-subcarrier

SNR of 11 dB and the farthest user −1.2 dB, respectively. The channels are generated

in an i.i.d. fashion across the users by setting the path loss coefficient to be equal for all

users, such that the average SNR is 4.3 dB, and the BS power is allotted equally across

all the subcarriers. Before we look at the numerical performance of the schemes, we first

ascertain the applicability of the analytical rate scaling law in (2.26) for the choice of

L = 25 at ν = 1 in SU-OFDM systems. To characterize the Gaussianity of the sum-term

in the left-hand side of (2.50), we compute its excess kurtosis, which measures how close a

given distribution is to the Gaussian distribution [98]. The excess kurtosis, κ, of a random
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Table 2.2: Excess kurtosis κ as a function of the number of taps.

L 1 2 5 10 20 25 50 100

κ 5.96 3.52 1.5 0.76 0.35 0.28 0.13 0.07

variable X with mean µ is defined as

κ =
E[|X − µ|4]
(E[|X − µ|2)2

− 3. (2.30)

For a Gaussian random variable, κ = 0. In Table 2.2, we list the excess kurtosis of the

L-sum-term in (2.50) as a function of L. We see that, for L = 25, we obtain an excess

kurtosis of approximately 0.28, which is within 4% of the distance between a Gaussian

and exponential random variable (corresponding to L = 1) and closer to the Gaussian

random variable. Thus, it is reasonable to consider that this sum term is nearly Gaussian

distributed, making the scaling law in (2.26) valid for L = 25. Subsequently, we relax the

requirement on large values for L and study the validity of the scaling law for smaller L

(particularly at L = 5.)

We present the OC throughput of SU-OFDM and OFDMA for L = 25 and 5, respectively,

in Figs. 2.11a and 2.11b. We set the constant in the upper bound in (2.26) to 1 for plotting

the theoretical result. The throughput offered by the IRS-assisted OFDMA is superior to

that of SU-OFDM, in line with Remark 2.8. We also see that the performance of both

OFDMA and SU-OFDM increases with N . However, while the simulated and theoretical

performance of OFDMA given in Theorem 2.4 (marked as “OFDMA, Theorem 4” in the

figures) match well as K increases, there is a gap between the two in the case of SU-OFDM

(the theory is marked as “SU-OFDM, Theorem 3 on the plot”.) This is partly because

the throughput analysis of SU-OFDM is an upper bound (see (2.23)), and partly because

the channels across the subcarriers become more disparate as the number of IRS elements

increases, making the upper bound looser as N increases. We also observe that although

the scaling law in Theorem 2.3 was derived assuming a large L, the expression captures

the rate scaling performance even for moderate values of L such as 5 (in Fig. 2.11b).

Nonetheless, the plot shows that one can obtain a performance boost by deploying an
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(a) L = 25. (b) L = 5.

Figure 2.11: Average sum rate as a function of number of users, for an OFDM-based communi-
cation system with M = 1024 subcarriers.

IRS, even without using complex optimization algorithms, by merely obtaining multi-user

diversity gains over randomly configured IRSs.

2.6 Conclusions

In this chapter, we presented several opportunistic schemes in a single IRS-aided set-

ting for exploiting and enhancing the multi-user diversity gains, both in narrowband and

wideband channels. The schemes completely avoid the need for CSI estimation and com-

putationally expensive phase optimization, and require little or no communication from

the BS to the IRS. First, we saw that, in narrowband channels, a basic multi-user diversity

scheme using a randomly configured IRS provides a performance boost over conventional

systems as the number of users, K, gets large. In order to improve the rate of conver-

gence of the opportunistic rate to the optimal rate (in terms of the number of users),

we presented two alternative approaches and analyzed their performances: one where we

obtained additional reflection diversity, and the other where we exploited the channel

structure in IRS assisted systems. Both these schemes improve the rate of convergence

of the throughput from the OC schemes with the number of users. In particular, exploit-

ing the channel structure allows us to significantly increase the number of IRS elements
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(and also achieve the coherent beamforming throughput) without requiring an exponen-

tially large number of users to achieve significant multi-user diversity gains. Finally, we

considered IRS-aided OC over a wideband channel in an OFDM system, and analyzed

the performance of two different schemes, namely, SU-OFDM and OFDMA. Overall, IRS-

assisted OC schemes offer significant performance improvement over conventional schemes,

while incurring very low system overheads. Potential future research directions include ex-

tending the IRS-aided opportunistic communication framework to more general mmWave

systems, multiuser MIMO-OFDM settings, and its integration with other transmission

protocols within the broader class of multiple-antenna systems, such as spatial multi-

plexing. Another important direction is to adapt opportunistic UE selection schemes for

delay-sensitive applications.

Appendix 2.A Proof of Proposition 2.1: Statistics of hk,q

2.A.a Independent and Identically Distributed nature of hk,q

We recognize that hk,q (ignoring the direct path) at any time can be decomposed as

hk,q =
N∑
i=1

√
βh1,nh2,k,ne

jθq,n . (2.31)

That the distributions of hk,q are identical is clear due to βr,k ≈ βd,k = β. In the sequel,

we first prove that the channels are uncorrelated and then argue their independence under

random and independent IRS phase configurations.

Since the analysis holds true for any user, we consider the channels at a single user with

normalization of path losses, and subsequently extend the analysis across other users.

Hence, we drop the subscript k going forward, and let fn ≜ h1,n, and gn ≜ h2,k,n for the

sake of brevity. We then have from (2.31)

hk,q/β ≜ hq =
N∑
i=1

fngne
jθq,n . (2.32)
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We define the correlation coefficient as

ρq,r ≜
E[(hq − E[hq])(hr − E[hr])∗]√(

E[|hq|2]− |E[hq]|2
)︸ ︷︷ ︸

Var(hq)

(
E[|hr|2]− |E[hr]|2

)︸ ︷︷ ︸
Var(hr)

. (2.33)

We also decompose these complex random variables into their constituent real and imagi-

nary parts as: fn = ℜ(fn)+jℑ(fn), gn = ℜ(gn)+jℑ(gn), and ejθq,n = cos(θq,n)+j sin(θq,n),

so that ℜ(fn),ℑ(fn),ℜ(gn),ℑ(gn) i.i.d.∼ N (0, 1
2
), where ℜ(·) and ℑ(·) are the real and imag-

inary parts of a complex number. Then, hq in (2.32) can be written as hq = Xq+jYq, with

Xq ≜
N∑
n=1

{
≜an︷ ︸︸ ︷

(ℜ(fn)ℜ(gn)−ℑ(fn)ℑ(gn)) cos(θq,n)

− (ℜ(fn)ℑ(gn) + ℑ(fn)ℜ(gn))︸ ︷︷ ︸
≜bn

sin(θq,n)}, (2.34)

Yq ≜
N∑
n=1

an sin(θq,n) + bn cos(θq,n). (2.35)

Computation of E[hq]: Since θq,n’s are sampled from the uniform distribution in [0, 2π],

E[cos(θq,n)] = E[sin(θq,n)] = 0 ∀q, n. Since θq,n is independent of f and g, E[Xq] = E[Yq] =

0 by linearity of expectation over finite sums, and hence E[hq] = E[hr] = 0. Hence, (2.33)

becomes

ρq,r =
E[hqh∗r]√

Var(hq)Var(hr)
. (2.36)

Computation of E[hqh∗r]: It is again clear that

E[hqh∗r] = E[XqXr] + E[YqYr] + j (E[XrYq]− E[XqYr]) . (2.37)

Expanding the first term in the RHS of (2.37) using (2.34), we have E[XqXr] =

E

{
N∑
n=1

N∑
m=1

anam cos(θq,n) cos(θr,m)−
N∑
n=1

N∑
m=1

anbm cos(θq,n) sin(θr,m)

−
N∑
n=1

N∑
m=1

ambn cos(θr,m) sin(θq,n) +
N∑
n=1

N∑
m=1

bmbn sin(θr,m) sin(θq,n)

}
. (2.38)
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Focusing on the first term in RHS of (2.38), we have by linearity of expectation over finite

sums and by independence of IRS phase angles and channel fading coefficients, ∀n,m,

E

{
N∑
n=1

N∑
m=1

anam cos(θq,n) cos(θr,m)

}
=

N∑
n=1

N∑
m=1

E[anam]E[cos(θq,n) cos(θr,m)]. (2.39)

But, from the properties of trigonometric functions, we have

cos(θq,n) cos(θr,m) =
1

2
(cos(θq,n + θr,m) + cos(θq,n − θr,m)) . (2.40)

Also, we have

E[cos(θq,n ± θr,m)]
(a)
=

1

4π2

∫ 2π

0

∫ 2π

0

cos(ω ± ϕ)dωdϕ, (2.41)

since the IRS phase configurations are independent across IRS elements and pilots. Com-

puting the above integral, we have, ∀n,m, E[cos(θq,n± θr,m)] = 0. Therefore, the expecta-

tion in (2.39) is 0, and so is the first term in (2.38). We can similarly show that all the

other terms in (2.38) equal 0, in turn making the first term in (2.37) equal to 0. Similarly,

we can show that all terms in (2.37) are also 0, i.e., E[hqh∗r] = 0. It is also straightforward

show that Var(hq) = Var(hr) > 0 (see Appendix 2.A.b.) Hence, from (2.36), ρq,r = 0.

Extending the argument across all users, we have that hk,q forms a set of uncorrelated ran-

dom variables. Now, under the joint Gaussianity assumption [43] (see Appendix 2.A.b),

these uncorrelated random variables are also independent. Finally, adding the direct path

in the scenario does not change the result because the direct paths are independent across

users, and using the fact that functions of independent random variables are independent,

the result follows.

2.A.b On the distribution of hk,q

Recall that the cascaded channel ignoring path loss at a given user is given by (2.32).

From the real and imaginary parts in (2.34), (2.35), Xq and Yq are a sum of N zero-mean

random variables. Then, for large N , by the central limit theorem (CLT), we have that

Xq and Yq are normal random variables. What remains is to compute their variances.
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Computation of Var(Xq): Var(Xq) = E[X2
q ], with

X2
q =

N∑
n=1

(an cos(θq,n)− bn sin(θq,n))2

+
N∑

n,m=1

n̸=m

{[an cos(θq,n)− bn sin(θq,n)] [am cos(θq,m)− bm sin(θq,m)]} . (2.42)

We simplify the first term in (2.42) as

N∑
n=1

(
a2n cos

2(θq,n) + b2n sin
2(θq,n)− 2anbn cos(θq,n) sin(θq,n)

)
. (2.43)

It is also straightforward to compute the following values.

1. E[cos(θq,n)] = E[sin(θq,n)] = 0,

2. E[cos2(θq,n)] = E
[
1+cos(2θq,n)

2

]
= 1

2
,

3. E[sin2(θq,n)] = E
[
1−cos(2θq,n)

2

]
= 1

2
, and

4. E[a2n] = E[b2n] = 1
2
.

Taking expectations on both sides of (2.42), we can show that E[X2
q ] =

N
2
. Similarly,

Var(Yq) = E[Y 2
q ] = N

2
. Thus, by CLT, Xq ∼ N (0, N

2
), and Yq ∼ N (0, N

2
). Further,

we can verify that Xq and Yq are uncorrelated. Since they are jointly Gaussian (see

Appendix 2.A.a), they are i.i.d. as well. Therefore, hq ∼ CN (0, N). Finally, adding the

contributions from path loss and the direct path, hk,q ∼ CN (0, β(N + 1)).

Appendix 2.B Proof of the Theorem 2.1

The proof of the theorem uses the following lemma on the extreme values of i.i.d. random

variables.

Lemma 2.3. ( [71]). Let z1, . . . , zK be i.i.d. random variables with a common cumulative

distribution function (cdf) F (·) and probability density function (pdf) f(·) that satisfy
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F (z) < 1 and are twice differentiable for all z. Let the corresponding hazard function,

Ω(z) ≜
[

f(z)
1−F (z)

]
be such that

lim
z→ψ

1

Ω(z)
= c > 0, (2.44)

for ψ ≜ sup{z : F (z) < 1} and some constant c. Then, max1≤k≤K zk − lK converges in

distribution to a Gumbel random variable with cdf e(−e−x/c), where F (lK) = 1− 1
K

.

In words, the lemma states that, asymptotically, the maximum of K i.i.d. random

variables grows like lK . From Theorem 2.1, |hk,q|2∼ exp
(

1
β(N+1)

)
for all k ∈ [K] and

q ∈ [Q]. Further, since the phase angles are independently generated at the IRS during

each pilot transmission, we have that h̀k,q ≜ |hk,q|2 form a set of QK i.i.d. exponential

random variables with mean β(N + 1). Thus, we have the pdf, fh̀k,q(h) =
1

β(N+1)
e−

h
β(N+1)

for h ≥ 0 and hence the cdf, Fh̀k,q(h) = 1− e− h
β(N+1) for h ≥ 0 and 0 otherwise. Also, here

ψ =∞. Thus, we have,

lim
h→∞

1

Ω(h)
= lim

h→∞

 e−
h

β(N+1)

1
β(N+1)

e−
h

β(N+1)

−1

=
1

β(N + 1)
> 0. (2.45)

Hence, by virtue of the above lemma, we have lQK = F−1
(
1− 1

QK

)
and solving, we get

lQK = β(N + 1) ln(QK), and applying the lemma to (2.9), we get the desired result.

Appendix 2.C Proof of the Theorem 2.3

We use the fact that L is large and invoke the following version of the central limit theorem

(CLT) [99]:

Lemma 2.4 (Lyapounov’s Central Limit Theorem). Suppose that X1, X2, . . . , Xn form a

sequence of independent random variables such that ∀i ∈ [n], E[Xi] ≜ µi, σ2
i ≜ E[|Xi|2]

and s2n ≜
∑n

i=1 σ
2
i . If, for some δ > 0,

L ≜ lim
n→∞

n∑
i=1

1

s2+δn

E
[
|Xi − µi|2+δ

]
= 0, (2.46)
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then
1

sn

n∑
i=1

(Xi − µi) d−−−→
n→∞

CN (0, 1), (2.47)

where d−−−→
n→∞

stands for convergence in distribution.

To check whether the random variables {|hk,l|2}l satisfy (2.46), let δ = 1. Then E [|Xi − µi|3] =
2 ((N + 1)al)

3. Further, s2n =
∑n

i=1 a
2
l (N + 1)2, hence s3n = (∥a∥2(N + 1))3. Thus,

L = limn→∞ 2
∥a∥33
∥a∥32

. We can lower and upper bound the ratio on the right-hand side

as follows:

2

nmin
i∈[n]

a3i

n3/2max
i∈[n]

a3i
≤ 2
∥a∥33
∥a∥32

≤ 2

nmax
i∈[n]

a3i

n3/2min
i∈[n]

a3i
. (2.48)

Hence, when n −→ ∞ and ∥a∥< ∞, both lower and upper bounds go to zero, and by

the sandwich theorem, L = 0. Thus, the given exponential random variables satisfy the

condition in the lemma. Therefore, we have,

1

(N + 1)∥a∥2

L∑
l=1

(
|hk,l|2−(N + 1)al

) d−−−→
L→∞

CN (0, 1), (2.49)

which implies
L∑
l=1

|hk,l|2 d−−−→
L→∞

(N + 1)
{
1 + ∥a∥2h̄k

}
, (2.50)

where h̄k ∼ CN (0, 1). Thus, (2.23) can be rewritten as,

R
(K)
SU-OFDM ≤ log2

(
1 +

βP

σ2
(N + 1) ×

[
1 + ∥a∥2

{
max
1≤k≤K

h̄k

}])
. (2.51)

To characterize the extreme value of K i.i.d. Gaussian random variables, we note that

Lemma 2.3 cannot be used as (2.44) is not satisfied by Gaussian random variables. In-

stead, we use another lemma to characterize the extreme values of i.i.d. Gaussian random

variables from [100].

Lemma 2.5 (Von Mises’ sufficient condition for weak convergence of extreme values). Let

X1, X2, . . . , XK be i.i.d. random variables each having an absolutely continuous cdf F (x)

and pdf f(x). Let MK ≜ max{X1, X2, . . . , XK}, Ω(x) ≜
[

f(x)
1−F (x)

]
and ψ ≜ sup{x : F (x) <
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1}. If

lim
x→ψ

d

dx

(
1

Ω(x)

)
= 0, (2.52)

then

MK − lK d−−−→
K→∞

G, (2.53)

where G is a Gumbel random variable with cdf, e(−e−x/c) and lK is given by F (lK) = 1− 1
K

for some constant c > 0.

As before, the result shows that the extreme value of K i.i.d. random variables satisfying

(2.52) grows like lK , asymptotically. In what follows, we check the applicability of the

lemma to K i.i.d. Gaussian random variables. Clearly, ψ =∞. Let Φ(x) and f(x) be the

cdf and pdf of a standard complex normal random variable. We then have,

d

dx

(
1− Φ(x)

f(x)

)
=

(1− Φ(x))x

f(x)
− 1 =

√
2x
Q(x)

f(x)
− 1, (2.54)

where Q(x) is the standard Q function. But we know that,

1√
2πx

e−
x2

2

(
1− 1

x2

)
≤ Q(x) ≤ 1√

2πx
e−

x2

2 . (2.55)

Using (2.55) to lower and upper bound (2.54) and taking the limit x to ∞ and applying

the sandwich theorem, it is straightforward to show that (2.52) is satisfied by Gaussian

random variables. Thus, lK = Φ−1
(
1− 1

K

)
. Substituting it in (2.51) yields the desired

result in (2.26).



3 Spatial Correlation Aware
Oppotunistic Beamforming in
IRS-Aided Communications

Chapter Highlights
This chapter addresses the question of how to exploit the inherent spatial correlation in the chan-

nels through the different intelligent reflecting surface (IRS) elements to reduce the overheads in
IRS-aided wireless communications. We propose a novel approach that randomly samples the IRS
phase configurations from a carefully designed distribution and opportunistically schedules the
user equipments (UEs) for data transmission. The key idea is that when the IRS configuration is
randomly chosen from a channel statistics-aware distribution, it will be near-optimal for at least
one UE, and upon opportunistically scheduling that UE, we can obtain nearly all the benefits from
the IRS without explicitly optimizing it. We formulate and solve a variational functional prob-
lem to derive the optimal phase sampling distribution. Interestingly, we find that, with the IRS
phase configuration drawn from the optimized distribution, it is sufficient if the number of UEs
scales exponentially with the rank of the channel covariance matrix, not with the number of IRS
elements, to achieve a given target signal-to-noise ratio (SNR) with high probability. Our numer-
ical studies reveal that even with a moderate number of UEs, the opportunistic scheme achieves
near-optimal performance without incurring the conventional IRS-related signaling overheads and
complexities.

74



Chapter 3. 75

3.1 Introduction

An intelligent reflecting surface (IRS) comprises multiple passive elements that can be

independently configured to reflect signals in required directions [68]. This enables one

to control the wireless channel between any two nodes and thereby improve the spectral

efficiency (SE) of next-generation wireless systems. However, optimally configuring every

IRS element entails three-fold control overheads: 1) acquisition of channel state informa-

tion (CSI), 2) optimization of IRS phase angles, and 3) phase transportation from the base

station (BS) to the IRS via control links. These overheads can easily undermine the pro-

fessed benefits of an IRS when the number of IRS elements is large. This chapter overcomes

this bottleneck by leveraging a spatial correlation-aware opportunistic beamforming (BF)

framework that obtains the optimal IRS gains without optimization/three-fold overheads

as described above.

In the pursuit of reducing the complexity while maximizing the IRS-aided performance, [101]

leverages correlation among different user equipments (UEs) to minimize the pilot over-

heads, and [102] proposed to use only the partial CSI of the channel. In [41], a blind beam-

forming approach is proposed, which does not need CSI estimation; however, it suffers from

high time complexity. In this context, [76] and our previous work [103] utilize opportunis-

tic scheduling techniques in IRS-aided systems to mitigate both time and computational

complexity. However, they consider independent fading channels and consequently need a

very large number of UEs to achieve optimal gains.

In this chapter, we progress upon this problem by exploiting the inherent spatial cor-

relation at the IRS and show that the performance of the opportunistic scheme can be

significantly improved even with a small number of UEs at very low time and computa-

tional complexities. Our key contributions are:

1. We pose and solve a variational functional problem to obtain the optimal sampling dis-

tribution for the random IRS phases, as a function of the channel statistics. (Sec. 3.4.c.)

2. We show that when the above spatial-correlation-aware distribution is used to sample

the IRS configuration, it is sufficient for the number of UEs to scale exponentially in
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Variable Definition Variable Definition
N Number of IRS elements Rk(t) Achievable rate of UE-k at time t
K Number of UEs Tk(t) Average rate of UE-k till time t
Σ Covariance matrix at IRS hk Overall channel at UE-k
M Rank of Σ h1 Channel from BS to IRS
U Eigenvector matrix of Σ h2,k Channel from IRS to UE-k
Λ Eigen value matrix of Σ θ Effective IRS phase vector

P/σ2 Ratio of transmit power at BS
to the noise variance at UE

hd,k Direct channel from BS to UE-k

Ropp
K

Acheivable system SE using
opportunistic beamforming

hr,k Cascaded channel from BS to UE-k

Ropt
K

Acheivable system SE using IRS
optimization under RR scheduling

hf,k Composite fading ch.: BS to UE-k

Psucc Success probability of the scheme βd,k,
βr,k

Path loss in the direct link /
cascaded link via the IRS

Table 3.1: Commonly encountered variables/notations in chapter 3.

the rank of the channel covariance matrix to obtain near-optimal SNR in every time

slot. (Sec. 3.5.)

3. In the process, we derive the tail probability of the Rayleigh quotient of a heteroscedastic

complex Gaussian random vector, which may be of independent interest. (Lemma 3.3.)

We empirically verify our findings and show the efficacy of the opportunistic scheme even

with a moderate number of UEs in the system. For e.g., when the number of IRS elements

is N = 32, even with as few as K = 25 UEs, the sum-SE is just 0.7 bps/Hz away from the

SE obtained by IRS optimization.

Notation: For general notations used in this chapter, see the section on “General Mathe-

matical Notations” on page ix. For the notations/variables specific to this chapter, please

refer to Table 3.1.
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3.2 System Model and Problem Description

We consider an N -element IRS-aided downlink scenario where a BS serves K UEs in a

time-division multiple-access fashion. Let the small-scale channel from the BS to IRS be

h1 ∈ CN , and from IRS to UE-k be h2,k ∈ CN . Since the BS and IRS are envisioned to

be deployed at fixed positions, we model h1 as a deterministic vector, with entries given

by [75]

[h1]n = exp (j2πdn/λ) , n = 1, 2, . . . N, (3.1)

where dn is the distance between the BS antenna and the nth IRS element. The channel

from IRS to UE can be random; so, we model h2,k ∼ CN (0,Σk), where Σk is the spatial

correlation matrix at the IRS for UE-k. The overall channel at UE-k is

hk =
√
βd,khd,k +

√
βr,kh

T
2,kΘ̃h1,

where hd,k ∼ CN (0, 1) is the direct channel from BS to UE-k, Θ̃ ∈ CN×N is a diagonal

matrix containing the IRS phase shifts, and βd,k, βr,k denote the path loss of the direct

path and cascaded path via the IRS, respectively. We now write

hk =
√
βd,khd,k +

√
βr,k θ̃T (h2,k ⊙ h1) ≜ θHhf,k, (3.2)

where ⊙ is the Hadamard product, θ ≜
[
1, θ̃∗T

]T
∈ CN+1 is called as the effective IRS vec-

tor with θ̃ ∈ CN comprising of the diagonal elements of Θ̃, and hf,k ≜ [
√
βd,khd,k,

√
βr,kh

T
r,k]

T

is the fading vector with hr,k ≜ h2,k ⊙ h1. The system is illustrated in Fig. 3.1.

Let P and σ2 denote the transmit power and noise variance, respectively. The overheads

incurred when the BS schedules UE-k and configures the IRS with the SE-optimal phase

vector

θopt = argmax
θ

log2
(
1 + |θHhf,k|2P/σ2

)
, (P1)

s.t. [θ]1 = 1, |[θ]n| = 1, n = 2, . . . , N + 1, (C1-1)

are computationally expensive (explained in Sec. 3.3.) We then address the following
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Figure 3.1: System model for one UE.

questions:

1. Leveraging the spatial correlation, how can we randomly configure the IRS phase vector

θ (i.e., without determining θopt), and still obtain near-optimal benefits from the IRS?

2. For the above scheme, what is the probability that a random IRS phase procures a

target near-optimal SE as in (P1)?

To this end, we first analyze the benchmark SE obtained under IRS optimization with

round-robin (RR) scheduling of UEs.

3.3 The Benchmark Sum-SE Via IRS Optimization

Under RR scheduling, the BS sequentially schedules UEs using a pre-defined ordering.

Considering that the IRS is configured as per (P1) in every time slot, the achievable

beamforming (BF) sum-SE is characterized in the following [103].

Lemma 3.1. With K-UEs, under RR scheduling, the BF sum-SE obtained when the BS

optimizes the IRS to the channel of the scheduled UE in every time slot is given by Ropt
K =

1

K

K∑
k=1

log2

1 +

∣∣∣∣∣√βd,k |hd,k|+
√
βr,k

N∑
n=1

|[hr,k]n|
∣∣∣∣∣
2

P

σ2

 ,
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and is achieved with the optimal IRS configurations given by

[θopt]n = exp
{
j (̸ [hr,k]n−1 − ̸ hd,k)

}
, n = 2, . . . , N + 1. (3.3)

Remark 3.1. Achieving Ropt
K as in Lemma 3.1 incurs computationally expensive three-

fold overheads in every time slot:

1. Channel estimation: The BS acquires the CSI of all the links; this potentially requires

O(N) pilot transmissions.

2. Phase optimization: The BS employs solvers to optimize the IRS for achieving the best

SE during data transmission.

3. Phase transportation: The BS transports the optimal phase of each IRS element to the

IRS controller via an error-free control link; its overhead scales as O(N).

3.4 Spatial correlation-aware Opportunistic BF

3.4.a The Proportional-fair Scheduler

In every slot, the PF scheduler selects a UE that achieves the highest SE relative to the

average SE of the UE till that time for data transmission [71]. In this way, the system op-

portunistically enhances the throughput while ensuring fairness in UE scheduling, thereby

exploiting multi-user diversity. Let Rk(t) ≜ log2(1+ |hk(t)|2P/σ2) be the achievable SE of

UE-k at time t. The PF scheduler selects the k∗(t)th UE, where

k∗(t) = argmax
k∈{1,...,K}

Rk(t)

Tk(t)
,

where Tk(t) is the exponentially weighted moving average (EWMA) SE seen by UE-k till

time t, which is parameterized by the EWMA factor τ [71]. Smaller (larger) values of τ

favor short-term (long-term) fairness in UE scheduling.

We will refer to Rk(t)/Tk(t) as the PF metric of UE-k at time t.
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3.4.b Opportunistic Communication using an IRS

The proposed opportunistic communication (OC) scheme has two steps per slot: 1) the

IRS configuration is randomly chosen from an appropriate sampling distribution, and 2)

the BS opportunistically selects a UE using the PF scheduler. Then, if there are many

UEs, the random IRS configuration will be near-optimal for at least one UE. In this view,

we have the following lemma, proved similar to [71].

Lemma 3.2. In a K-UE system, which uses a PF scheduler with τ → ∞, when the

IRS configurations are randomly sampled from a spatial correlation-aware distribution, the

sum-SE of the IRS-aided OC scheme, denoted by Ropp
K , obeys

lim
K→∞

(
Ropp
K −Ropt

K

)
= 0,

where Ropt
K is the optimal sum-SE as given in Lemma 3.1.

From Lemma 3.2, we deduce that with a large number of UEs, the PF scheduler selects

the UE for which the random IRS phase is close to its BF configuration, and procures

the BF benefits without actually optimizing the IRS [71]. This is called opportunistic

beamforming. We next characterize the IRS phase sampling distribution that satisfies

Lemma 3.2 from a variational perspective, which is one of our key contributions.

3.4.c Optimal Distribution for Sampling the Random IRS Phases

We observe that the optimal IRS vector in (3.3) is obtained as the deterministic map

F : CN+1 −→ {1} × UN , given by

F : hf,k 7 −→
[
1,
(
exp
{
j ( ̸ hr,k − ̸ hd,k)

})T]T
, (3.4)

where UN ≜
{
z ∈ CN

∣∣∣|zi|= 1, i = 1, . . . , N
}

. As a consequence, the design of the random

distribution is also tightly connected to the statistics of the channels to the UEs. We can

write the small-scale channel between the IRS and UE-k as

h2,k = Σ
1/2
k h̃2,k

(a)≈ Σ1/2h̃2,k, (3.5)
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where h̃2,k ∼ CN (0, IM), M = rank(Σ), Σ1/2
k contains the first M columns of a square

root of Σk, and in (a), we used Σk = Σ, ∀k. This corresponds to a Kronecker channel

model where the correlation is induced by local spatial scattering at the IRS elements, or a

scenario where many UEs are located in a hotspot area [76,104].1 Since R(Σ1/2) = R(Σ),

where R(A) is the range space of A, from (3.5), we get h2,k ∈ R(Σ). Thus, h2,k lies in

an M -dimensional subspace of CN . Let Σ = UΛUH be the spectral decomposition of

Σ and Λ contains the non-zero eigenvalues of Σ. Then, for every h2,k ∈ R(Σ), by the

Karhunen–Loève Theorem, there exists {αk,i}Mi=1 such that

h2,k =
M∑
i=1

αk,iui, and αk,i = ⟨h2,k,ui⟩, (3.6)

with ui being the ith orthonormal eigenvector of Σ. Hence, the channel at each UE is

uniquely determined by the UE-specific coefficients {αk,i}Mi=1 along with the basis vectors

{ui}Mi=1.

Conversely, with a large number of UEs, for any given {αk,i ∈ C}Mi=1, there exists a UE

whose channel corresponds to the chosen coefficients via (3.6). Since h2,k is a Gaussian

vector, αk,i ∼ CN (0, [Σα]i,i), with [Σα]i,i = E
[∣∣uHi h2,k

∣∣2] = uHi Σui, i.e., Σα = UHΣU =

Λ. We have the following result.

Theorem 3.1. The probability density function for drawing the random samples of the

IRS vector in every time slot to ensure that a PF scheduler achieves the BF-SE as in

Lemma 3.2 is

f opt
θ (θ′) =

∫
F−1(θ′)

δ
(
h−F−1(θ′)

)
phf

(h)dh,

where F−1(θ′) denotes the set-inverse under the F(·) mapping, i.e., F−1(θ′) ≜ {h ∈
CN+1 : F(h) = θ′}, and phf

(h) is the probability density function of hf =
[
hd, (h1 ⊙ h2)

T
]T

with hd ∼ CN (0, 1), h1 as given in (3.1), and h2 ∼ CN (0,Σ).

Proof. See Appendix 3.A. ■

1To serve UEs with different covariance matrices at the IRS, we first cluster UEs sharing similar
covariance matrices as in [105]. Then, we select a cluster in an RR manner, and within the slots alloted
for the selected cluster, a UE is served via the opportunistic BF scheme proposed in this chapter.
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Algorithm 3.1: Spatial correlation-aware Opportunistic BF
Input: Correlation values: U, Σα; BS-IRS link: h1.

1 for time slot t = 1, 2, 3, . . . do
/* Random sampling of IRS configurations */

2 Sample the random vector β ∼ CN (0,Σα).

3 Set θrand = F
([

1, (h1 ⊙Uβ)T
]T)

, as per (3.4).

/* Towards identifying the best UE */

4 BS broadcasts a common pilot signal to every UE.
5 All UEs compute their PF metrics & feedback their identities to BS using

timer schemes [82].
/* Proportional-fair scheduling of UEs */

6 Identity of the best UE-k∗(t) arrives BS first, with

k∗(t) = argmax
k=1,...,K

Rk(t)/Tk(t).

7 The BS schedules UE-k∗(t) for data transmission.

Remark 3.2. The IRS-aided OC scheme achieves the BF-SE without incurring the over-

heads discussed in Remark 3.1:

1. CSI acquisition with single pilot only: In the OC scheme, only one pilot is needed to

estimate the composite channel.

2. No phase optimization: The phase optimization procedure is absent since the IRS phases

are randomly chosen.

3. No phase transportation: The IRS picks a random phase on its own in every slot, so

phase transportation is obviated.

Further, to help the BS identify the best UE that yields the highest PF metric, efficient

and low-complexity feedback schemes like timer/splitting-based methods can be used [82].

Using Theorem 3.1, we present the overall protocol of spatial-correlation-aware OC in
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Algorithm 3.1 of this chapter.2

3.5 How many Users are Sufficient in Practice?

We now consider the success rate of Algorithm 3.1 for a practical system with a finite

number of UEs. Let Eδk denote the (1− δ)N2-success event that the channel gain at UE-k

is at least a (1− δ) factor of the BF gain obtained via the IRS, i.e.,

Eδk ≜
{
|θHhf,k|2≥ (1− δ) ∥hf,k∥21

}
, δ ∈ (0, 1). (3.7)

In the sequel, we evaluate the probability of Eδk . To that end, we require a characterization

of the Rayleigh quotient of heteroscedastic Gaussian random vectors, discussed next.

Lemma 3.3. Let A ∈ CL×L be a hermitian rank-1 matrix, and α ∈ R be such that

0 < α < ∥A∥F . If x ∈ CL ∼ CN (0,R) and R has full rank, the Rayleigh quotient of A

w.r.t. x obeys

Pr

(
xHAx

xHx
≥ α

)
≥

L∏
l=1

(
1
/{

1 +
α

(∥A∥F − α)
· λx,l
λx,L

})
,

where λx,1 ≥ . . . ≥ λx,L are the ordered eigenvalues of R.

Proof. See Appendix 3.B. ■

We are now ready to state the main theorem of this section.

Theorem 3.2. The probability of the (1−δ)N2-success event at a scheduled UE (as defined

in (3.7)) using a PF scheduler over K UEs, denoted by Psucc, with the spatial correlation-

aware random IRS configuration as in Theorem 3.1 is bounded as

Psucc ≥ 1−

1−
M∏
m=1

1

1 +
1− δ
δ
· λm
λM


K

, (3.8)

2We absorb the overall phase in the F-mapped channel vectors due to the angle of the direct channel
into the randomness in the angle of the cascaded channel. So, the 1st entry in the input to F-map in line
3 equals 1. We also assume that the spatial correlation matrix Σ is known, which can be estimated using
works whose focus is to estimate the channel covariance matrices.
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Figure 3.2: Sum-SE vs. K for different N , ρ = 0.9. Compared with [76,103] using unif. distbn.

where M = rank(Σ) and λ1 ≥ . . . ≥ λM are the ordered non-zero eigenvalues of the

channel covariance matrix, Σ.

Proof. See Appendix 3.C. ■

As a consequence, we have the following result.

Corollary 3.1. Let δ ∈ (0, 1). With Scheme 3.1, if K is at least

K∗ ≜ − log (1− Psucc)
M∏
m=1

1 +
[(

(1− δ)
/
δ
)(

λm

/
λM

)]
∼ O

(
−[log (1− Psucc)]/δ

M
)
, (3.9)

then, with probability Psucc, the channel gain using a randomly configured IRS exhibits a

(1− δ)N2 success in every time slot.

Proof. The first step is obtained by rearranging the probability expression derived in (3.8)

as

K ≥ log (1− Psucc)
/
log

1−
M−1∏
m=1

1

1 +
1− δ
δ
· λm
λM

. (3.10)
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Figure 3.3: Sum-SE vs. K for different ρ at N = 16.

Then, using the fact that for small x, log(1 − x) ≈ x in the above, when δ is very small,

the proof follows. ■

Corollary 3.1 shows that a sufficient number of the UEs for (1 − δ)N2-success grows

exponentially with the rank of the channel covariance matrix, and not with the number of

IRS elements. Thus, if the UE’s channel lies in a fixed-dimensional subspace, the number

of UEs needed to reap the benefits from the IRS is fixed even if the number of IRS elements

grows. We note that the number of UEs given in Corollary 3.1 generalizes the results for

i.i.d. and LoS scenarios discussed in Remarks 2.1 and Remark 2.4, respectively.

3.6 Numerical Results

We now illustrate our results numerically via Monte Carlo simulations. We consider a

setup where the BS is located at (0, 0) (measured in meters) and up to K = 1000 UEs are

located in a square region described by [900, 1100]× [900, 1100], and an IRS positioned at

(1000, 1000). The path loss is modeled as β = C0(d/d0)
κ, where κ is the path-loss exponent,

set to 2, 2, 4 in the BS-IRS, IRS-UE and BS-UE links, respectively [106]. We run the PF
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Figure 3.4: Success probability vs. M .

scheduler with τ = 5000 over 50, 000 time slots. The channel covariance matrix at the

IRS is Σ = Toeplitz
([
1, ρ, ρ2, . . . , ρN−1

])
, where Toeplitz(x) returns a hermitian Toeplitz

matrix with x as the first row, and ρ is the correlation coefficient between two nearby IRS

elements. Since Σ as above is full-rank when ρ ̸= 1, we use the effective rank [107] for

Algorithm 3.1.

In Fig. 3.2, we plot the sum-SE vs. the number of UEs, K, for N = 16 and 32, at ρ = 0.9.

For both values of N , the sum-SE with the spatial-correlation-aware OC scheme grows

with K and approaches the SE obtained by optimizing the IRSs in every time slot using

an RR scheduler. Thus, we can leverage multi-user diversity and achieve the BF sum-SE

in Lemma 3.1 without incurring the overheads associated with optimizing the IRS. We

also compare the sum-SE with the OC in [76] that uses the i.i.d. uniform distribution

to sample the IRS phases. In this case, although the SE grows with K, the gap with

respect to the BF-SE is large, which underscores the importance of choosing the random

IRS configuration based on the channel statistics. Our scheme also outperforms a system

without an IRS.

In Fig. 3.3, we plot the sum-SE versus K for N = 16 and different correlation values
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Figure 3.5: Difference between OC-SE and BF-SE vs. ρ.

ρ. For a fixed K, the gap between the BF-SE and OC-SE decreases as ρ increases. This

happens because the effective rank of the channel decreases with ρ, making it easier for the

IRS to achieve a near-BF configuration even with a moderate number of UEs, as shown in

Corollary 3.1. Conversely, when the IRS phases are sampled from a uniform distribution,

the gap between the SEs is large because the IRS configuration is uniformly distributed

over the full N -dimensional space, whereas the channels lie in a lower M -dimensional

subspace. So, as ρ increases, the mismatch between the IRS phase sampling distribution

and channel phase distribution increases, worsening the performance gaps.

In Fig. 3.4, we plot the success probability, Psucc (see (3.7)) vs. M = rank(Σ). For

fixed K, Psucc decreases with M because the effective dimension grows with M . Also,

Theorem 3.2 (marked “Theorem 2” on the plot) is a valid lower bound and succinctly

captures the scaling with M . Finally, we verify that Psucc = 1 for any M, δ if K = K∗ (see

Corollary 3.1 (marked as “Corr. 1”)), and Psucc < 1 when K =
√
K∗ < K∗, validating that

the scaling we derived is tight.

Finally, in Fig. 3.5, we plot the gap between the BF-SE and OC-SE, i.e., Ropt
K − Ropp

K

versus ρ for different values of K and N . For the spatial-correlation-aware OC, as ρ
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increases, the difference goes to 0 for any N , even for moderate values of K, in line with

Fig. 3.3. However, for the OC scheme using a uniform distribution, the difference increases

with ρ because the probability that a random configuration matches the channel decreases

as the sub-space dimension, M , reduces. This further exacerbates as N increases, as the

difference in the dimensional mismatch between the IRS search space and the channel

space becomes more pronounced.

3.7 Conclusions

We developed a low-complexity spatial-correlation-aware opportunistic beamforming scheme

for IRS-aided wireless systems. By leveraging the multi-user diversity, we showed that

randomly drawing the IRS phase angles from an appropriate distribution procures near-

optimal benefits from the IRS. For the SE to be arbitrarily close to the BF-SE, the number

of UEs needs to grow exponentially only with the rank of the spatial covariance matrix,

and not with the number of IRS elements.

Appendix 3.A Proof of Theorem 3.1

Suppose the IRS-UEs channel state process is jointly stationary and ergodic. With PF

scheduling, the optimal sampling distribution at the IRS, so that a scheduled UE achieves

the BF-SE as K →∞, is the solution to the variational functional problem:

argmax
fθ(θ

′ )

R̄ ≜ Eθ,hf,k

[
log2

(
1 + |θ′Hhf,k|2P/σ2

)]
, (P2)

s.t.

∫
θ′∈UN

⋃
{1}
fθ(θ

′)dθ′ = 1, (C2-1)

and

∫
[θ′]2

. . .

∫
[θ′]N+1

fθ(θ
′)dθ′ = δ([θ′]1 − 1), (C2-2)

where in (P2), we seek to maximize the achievable throughput, and (C2-1), (C2-2) account

for the constraints of a density function and the structure of θ′ as per (3.2), respectively.

Also, in (P2), the expectation is taken over the joint distribution of the UEs’ channels.

We first solve the unconstrained version of (P2) and analyze the feasibility of its solution
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in the constrained case. Thus, the variational problem becomes

max
fθ(θ′)

Ehf,k

[
Eθ|hf,k

[
log2

(
1 +

∣∣∣θ′Hhf,k

∣∣∣2 P
σ2

) ∣∣∣hf,k]]
(a)
= max

gθ(θ′)

∫
h

(∫
θ′
log2

(
1 +

∣∣∣θ′Hhf,k

∣∣∣2 P
σ2

)
gθ(θ

′)dθ′
)
phf

(h)dh,

where in (a), gθ(θ′) ≡ gθ|hf
(θ′) is the conditional density function of the IRS configurations

given the channel realization. It is related to fθ(θ′) via the law of total probability:

fθ(θ
′) =

∫
h

gθ(θ
′)phf

(h)dh. (3.11)

Then, an equivalent functional optimization problem is

I ≜ max
gθ(θ′)

∫
θ′
log2

(
1 + |θ′Hhf,k|2P/σ2

)
gθ(θ

′)dθ′. (3.12)

Using the Hölder’s inequality: |θ′Hhf,k|≤ ∥hf,k∥1 ∥θ′∥∞ along with the fact that ∥θ′∥∞ = 1

due to the unit-modulus nature of the IRS phase configurations, we upper bound (3.12)

as

I ≤ IU ≜ log2
(
1 + ∥hf,k∥21 P/σ2

)
max
gθ(θ′)

∫
θ′
gθ(θ

′)dθ′︸ ︷︷ ︸
=1

.

From Lemma 3.2, since the PF scheduler achieves the BF-SE, gθ(θ′) must satisfy the

following lower bound:

I ≥ IL ≜ max
gθ(θ′)

∫
θ′
log2

(
1 +

{
∥hf,k∥21 + o(K)

} P
σ2

)
gθ(θ

′)dθ′.

Now, letting K → ∞ and using the sandwich theorem, limK→∞ I = IL = IU, which can

be achieved if and only if θ′ = F (hf,k). So, the optimal conditional density for a given

channel at scheduled UE-k is

goptθ (θ′) = δ (θ′ −F(hf,k)) . (3.13)

Substituting (3.13) in (3.11), we get

f opt
θ (θ′)

(b)
=

∫
h

δ (θ′ −F(h)) phf
(h)dh
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(c)
=

∫
F−1(θ′)

δ
(
h−F−1(θ′)

)
phf

(h)dh, (3.14)

where, in (b), we dropped the index k from (3.13) as F(hf,k) are i.i.d. across k ∈ [K] ≜

{1, . . . , K}; and in (c), we used the definition F−1(·) and the sifting property of the

Dirac-delta function. By construction, since f opt
θ (·) in (3.14) is a valid probability density

function obtained via the F(·) mapping, (C2-1) and (C2-2) are trivially satisfied. This

completes the proof.

Appendix 3.B Proof of Lemma 3.3

We note that the required probability can be written as

Pα ≜ Pr
(
xHAx ≥ αxHx

)
= Pr

(
xH (A− αIL)x ≥ 0

)
.

Let B ≜ A− αIL. Now B is a full-rank, hermitian matrix; so its spectral decomposition

is written as B = VΓVH . Then

Pα
(a)
= Pr

(
x̃HΓx̃ ≥ 0

) (b)
= Pr

(
L∑
l=1

γl |[x̃]l|2 ≥ 0

)
,

where in (a), x̃ ≜ VHx ∼ CN (0,VHRV); in (b), γl is the lth largest eigenvalue of

B. Since A is hermitian, A = aaH for some a ∈ CL. Then, the eigenvalues of B are

γ1 = ∥a∥22 − α > 0, and γ2 = γ3 . . . = γL = −α < 0. Using this, we have

Pα = Pr

(
|[x̃]1|2 ≥

α

∥a∥22 − α

L∑
l=2

|[x̃]l|2
)

= E{[x̃]l}Ll=2

[
Pr

(
|[x̃]1|2 ≥

α

∥a∥22 − α

L∑
l=2

|[x̃]l|2
∣∣∣∣∣[x̃]2, . . . , [x̃]L

)]
.

Now, we decompose x = R1/2x′, where R1/2 ∈ CL×L is a square root of R, and x′ ∼
CN (0, IL). In particular, we can write R1/2 = UxΛ

1/2
x so that x̃ = WHΛ

1/2
x x′, where W ≜

UH
x V = [w1, . . . ,wL] ∈ CL×L is a unitary matrix. We then have [x̃]1 ∼ CN (0,

∑L
l=1 λx,l|[w1]l|2).
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Since ∥A∥F = ∥a∥22, and
∑L

l=1 λx,l|[w1]l|2≥ λx,L, we can lower bound Pα as

Pα ≥ E[x̃]2,...,[x̃]L

[
e
−(α/((∥A∥F−α)λx,L))

L∑
l=2

|[x̃]l|2]
. (3.15)

Define x̃(1) ≜ [[x̃]2, . . . , [x̃]L]
T , W(1) ≜ [w2, . . . ,wL]. Then,

L∑
l=2

|[x̃]l|2 =
∥∥x̃(1)

∥∥2
2
= x′HΛ1/2

x W(1)W
H
(1)Λ

1/2
x x′

(c)

≤
∥∥Λ1/2

x x′∥∥2
2
,

where in (c), we first noted that W(1)W
H
(1) is an orthogonal projector and that its eigenval-

ues are either 0 or 1; then used the Rayleigh-Ritz Theorem. So, we further bound (3.15)

as

Pα ≥ E[x′]2,...,[x′]L

[
e
−(α/((∥A∥F−α)λx,L))

L∑
l=2

λx,l|[x′]l|2]
(d)
=

L∏
l=1

E[x′]l

[
e−(α/((∥A∥F−α)λx,L))λx,l|[x′]l|2

]
(e)
=

L∏
l=1

(
1

/{
1 +

α

(∥A∥F − α)
· λx,l
λx,L

})
,

where in (d), we used the independence of {[x′]l}Ll=1; in (e), we used the expression for

the moment generating function of the exponential random variables |[x′]l|2, l ∈ [L]. This

completes the proof of the lemma.

Appendix 3.C Proof of Theorem 3.2

With a PF scheduler used over K UEs, the probability of at least one UE witnessing the

(1− δ)N2-success event is

Psucc = Pr

(
K⋃
k=1

Eδk

)
(a)
= 1−

K∏
k=1

(
1− Pr

(
Eδk
))
, (3.16)

where (a) follows by the independence of channels across theK UEs. Let f ′ ≜ h1⊙f , where

f = UΛ1/2f̃ with f̃ ∼ CN (0, IM). So, θ = [1, ej
̸ [f ′]1 , . . . , ej

̸ [f ′]N ] is a candidate random

IRS phase vector as stated in Theorem 3.1. For simplicity of exposition, we ignore the
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direct path from the BS to UE, which can be easily included in the analysis. Then, in (3.7),

θ = [ej
̸ [f ′]1 , . . . , ej

̸ [f ′]N ], and the channel vector is hf,k =
√
βr,k[[hr,k]1, . . . , [hr,k]N ]

T . Now,

we have Pr
(
Eδk
)
=

Pr

∣∣∣∣∣
N∑
n=1

e−j
̸ [f ′]n [hr,k]n

∣∣∣∣∣
2

≥ (1− δ)
∣∣∣∣∣
N∑
n=1

|[hr,k]n|
∣∣∣∣∣
2


= Pr

∣∣∣∣∣
N∑
n=1

e−j
̸ [f ]n [h2,k]n

∣∣∣∣∣
2

≥ (1− δ) ∥h2,k∥21

 ,

where we used the form of f ′ and |[h1]n|= 1. From the decomposition h2,k = UΛ1/2h̃2,k,

f = UΛ1/2f̃ , since the channel and IRS vectors are generated using the same basis U,

and their distributions are invariant to left multiplication by a unitary matrix, we let

U = [e1, . . . , eM ] without loss in generality, where em ismth column of IN . Thus, Pr
(
Eδk
)
=

Pr

∣∣∣∣∣
M∑
m=1

e−j
̸ [f̃ ]m

√
λm[h̃2,k]m

∣∣∣∣∣
2

≥ (1− δ)
∥∥∥Λ1/2h̃2,k

∥∥∥2
1


≥ Pr

∣∣∣∣∣
M∑
m=1

√
λm[h̃2,k]m

∣∣∣∣∣
2

≥ (1− δ)M
∥∥∥Λ1/2h̃2,k

∥∥∥2
2


where we dropped e−j

̸ [f̃ ]m because ̸ [f̃ ]m is uniformly distributed in [0, 2π) and indepen-

dent of ̸ [h̃]m, which does not alter the distribution of [h̃]m. Also, the right-hand side

does not depend on ̸ [h̃]m, and we used the property: ∥x∥1≤
√
M∥x∥2. Now, the above

probability can be rewritten as

Pr
(
Eδk
)
≥ Pr

(
ĥHk Eĥk

/
(ĥHk ĥk) ≥ (1− δ)M

)
,

where ĥk ≜ Λ1/2h̃2,k, and E ≜ 1M1HM with 1M being an M -length all one vector. Note

that ∥E∥F= M > (1 − δ)M > 0, and that E[ĥkĥHk ] = Λ has full-rank. Then, using

Lemma 3.3,

Pr
(
Eδk
)
≥

M∏
m=1

(
1

/{
1 +

1− δ
δ
· λm
λM

})
. (3.17)

Substituting (3.17) in (3.16), we get (3.8) as desired.
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4 Performance of IRS-Aided
Wireless Communications with
Multiple Operators

Chapter Highlights
From a network service provider’s viewpoint, a concern with the use of an IRS is its effect on

out-of-band (OOB) quality of service. Specifically, if two operators, say X and Y, provide services
in a given geographical area using non-overlapping frequency bands, and if operator X uses an
IRS to enhance the spectral efficiency (SE) of its users (UEs), does it degrade the performance
of UEs served by operator Y?
We answer this by analyzing the average and instantaneous performances of the OOB operator

considering both sub-6 GHz and mmWave bands. Specifically, we derive the ergodic sum-SE
achieved by the operators under round-robin scheduling. We also derive the outage probability
and analyze the change in the SNR caused by the IRS at an OOB UE, using stochastic dominance
theory.
Surprisingly, even though the IRS is randomly configured from operator Y’s point of view, the

OOB operator still benefits from the presence of the IRS, witnessing a performance enhancement
for free in both sub-6 GHz and mmWave bands. This is because the IRS introduces additional
paths between the transmitter and receiver, increasing the overall signal power arriving at the
UE and providing diversity benefits. Specifically, in the sub-6 GHz bands, the OOB sum-SE
increases log-linearly in the number of IRS elements, and in mmWaves, the sum-SE exhibits a
unimodal behavior as a function of the number of IRS elements. Finally, we show that the use
of opportunistic scheduling schemes can further enhance the benefit of the uncontrolled IRS at
OOB UEs.
We numerically illustrate our findings and conclude that an IRS is always beneficial to every

operator, even when the IRS is deployed and controlled by only one operator.
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4.1 Introduction

Intelligent reflecting surfaces (IRSs) have been extensively studied to enhance the per-

formance of beyond 5G and 6G communications [2,3]. They are passive reflecting surfaces

with many elements that can introduce carefully optimized phase shifts while reflecting

an incoming radio-frequency (RF) signal, thereby steering the signal towards a desired

user equipment (UE). Although a recent topic of research, several use-cases elucidating

the benefits of IRS-aided communications have already been investigated [3–8]. All these

studies implicitly assume that only one operator deploys and controls single or multiple

IRS(s) to provide wireless services to their subscribed UEs. However, in practice, multiple

wireless network operators simultaneously exist in a given geographical area, each operat-

ing in non-overlapping frequency bands. Then, if an IRS is deployed and optimized by one

of the operators to cater to its subscribed UEs’ needs, it is unclear whether the IRS will

boost or degrade the performance of the UEs served by the other operators. This point

is pertinent because the IRS elements are passive and have no band-pass filters. They

reflect all the RF signals that impinge upon them across a wide range of frequency bands,

including signals from out-of-band (OOB) operators intended to be received by OOB UEs.

Thus, this chapter focuses on understanding how an IRS controlled by one operator affects

the performance of other OOB operators.

4.1.a Related Literature and Novelty of This Work

The benefits of using an optimized IRS have been illustrated in several use-cases, see [3–8].

For e.g., in [4], outage analysis with randomly distributed IRSs is investigated. In [5, 36],

coverage enhancement due to an IRS is studied, and in [37], the effect of IRSs on inter base

station (BS) interferences is explored. Contrary to this, a few works also use randomly

configured IRSs and obtain benefits from them. For instance, [75, 76, 103] use oppor-

tunistic communications using randomly configured IRSs. Similarly, blind beam forming

approaches and diversity order analysis are reported in [41], and [42–44], respectively. Also,

in [45], random IRSs are used to protect against wireless jammers. However, none of these

works consider the scenario where multiple network operators coexist in an area. Very
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few studies have considered using an IRS in multi-band, multi-operator systems. In [108],

the effect of pilot contamination on channel estimation in a multiple-operator setting is

reported. In [109,110], the authors jointly optimize the IRS configurations across multiple

frequency bands via coordination among the BSs, which is impractical and incurs high

signal processing overhead.1 Further, the solutions and analyses provided therein are not

scalable with the number of operators (or frequency bands). More fundamentally, none

of these works consider the effect on the OOB performance, even in the scenario of two

operators providing services in non-overlapping bands when the IRS is optimized for only

one operator. In this work, we investigate whether an IRS degrades the performance of

other OOB operators. If not, can the mere presence of an IRS in the vicinity provide free

gains to OOB operators? Below, we explain our contributions in this context.

4.1.b Contributions

We consider a system with two network operators, X and Y, providing service in different

frequency bands in the same geographical area. The IRS is optimized to serve the UEs

subscribed to the in-band operator X, and we are interested in analyzing the spectral effi-

ciency (SE) achieved and outage probability witnessed by the UEs subscribed to the OOB

operator Y who does not control the IRS. Specifically, we (separately) evaluate the IRS-

assisted performance in both sub-6 GHz and the mmWave bands, which are provisioned

as the FR1 and FR2 bands in 5G, respectively [64]. Further, in the mmWave bands, in-

spired by [65], we study two scenarios: (a) LoS (line-of-sight) and (b) (L+)NLoS (LoS and

Non-LoS.) In the LoS scenario, the IRS is optimized or aligned to the dominant cascaded

path (called the virtual LoS path) of the in-band UE’s channel. This is also considered

in [9, 66], where the in-band UEs’ channels are approximated by the dominant LoS path

to reduce the signaling overhead required for the base station (BS) to program the IRS:

the phase of the second IRS element relative to the first element determines the entire

phase configuration. Contrarily, in the (L+)NLoS case, the IRS optimally combines all

1The works that assume inter-BS coordination to optimize the IRS configuration jointly consider a
single operator deploying many BSs. Coordination among BSs may be feasible in this scenario. However,
it is impractical for the BSs owned by two different operators to coordinate with each other.
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the spatial paths to maximize the signal-to-noise ratio (SNR) at the receiver, for which

the overhead scales linearly with the number of IRS elements. Using tools from high-

dimensional statistics, stochastic-dominance theory, and array processing theory, we make

the following contributions.

4.1.b.i OOB Performance in sub-6 GHz Bands (See Section 4.3)

Here, the operators serve their UEs over the sub-6 GHz frequency band where the channels

are rich-scattering. In this context, our key findings are as follows.

1-a) We derive the ergodic sum-SEs of the two operators as a function of the system

parameters, under round-robin (RR) scheduling of the UEs served by both operators.

We show that the sum-SE scales log-quadratically and log-linearly with the number

of IRS elements for the in-band and OOB networks, respectively, even though the

OOB operator does not control the IRS (see Theorem 4.1.)

1-b) We show that the outage probability at an arbitrary OOB UE decreases monotoni-

cally with the number of IRS elements. Further, via the complementary cumulative

distribution function (CCDF) of the difference in the OOB channel gain with and

without the IRS, we prove that the OOB channel gain with an IRS stochastically

dominates the gain without the IRS, with the difference increasing with the number

of IRS elements. Thus, an OOB UE gets instantaneous benefits that monotonically

increase with the number of IRS elements (see Theorem 4.2 and Proposition 4.1.)

4.1.b.ii OOB Performance in mmWave Bands (See Section 4.4)

In the mmWave bands, the channels are directional, with only a few propagation paths.

In this context, using novel probabilistic approaches based on the resolvable criteria of the

mmWave spatial beams, our key findings are as follows.

2-a) In LoS scenarios, where the IRS is optimized to match the dominant path of the

in-band UE’s channel, we derive the ergodic sum-SEs of the two operators under

RR scheduling of the UEs. The SE at the in-band UE scales log-quadratically in

the number of IRS elements, whereas the SE gain at an OOB UE depends on the
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number of spatial paths in the OOB UE’s channel. If there are sufficient paths in

the cascaded channel, the SE improvement due to the IRS scales log-linearly in the

number of IRS elements. Otherwise, the OOB UE’s SE improves only marginally

compared to that in the absence of the IRS (see Theorem 4.3.)

2-b) We evaluate the outage probability and CCDF of an OOB UE’s channel gain with-

/without an IRS in LoS scenarios and prove that the channel gain in the presence of

IRS stochastically dominates the gain in its absence. Thus, even in mmWave bands,

the IRS provides positive instantaneous gains to all the OOB UEs (see Theorem 4.4.)

2-c) We next consider the (L+)NLoS scenario where the IRS is jointly optimized consid-

ering all the spatial paths. We first evaluate the directional energy response of the

IRS and show that it exhibits peaks only at the channel angles to which the IRS

is optimized. This is a fundamental and new characterization of the IRS response

when it is aligned to multiple paths in an mmWave system. (see Lemma 4.1.)

2-d) We derive the ergodic sum-SE of both operators in (L+)NLoS scenarios. We find

that the OOB performance is even better than the LoS scenario (and hence better

than the system without an IRS.) This is because the odds that an OOB UE benefits

improve when the IRS has a nonzero response in multiple directions. Thus, the OOB

performance in mmWave bands does not degrade even when the OOB operator serves

its UEs while remaining oblivious to the presence of the IRS (see Theorem 4.5.)

4.1.b.iii Opportunistic Enhancement of OOB Performance (See Section 4.5)

Having shown that an IRS positively benefits OOB UEs, we next suggest ways to exploit

the uncontrolled IRS to enhance the performance of OOB operators further. In particular,

by using opportunistic selection techniques, we leverage multi-user diversity and show that

a significant boost in the OOB performance can be obtained compared to RR scheduling.

Specifically, we demonstrate the following.

3-a) By using a proportional-fair scheduler over a large number of OOB UEs, the sum-SE

of operator Y converges to the so-called beamforming SE, which is the SE obtained
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when the IRS is optimized for an OOB UE in every time slot (see Lemma 4.2.)

3-b) By using a max-rate scheduler, the ergodic sum-SE of operator Y monotonically

increases with both the number of IRS elements and OOB UEs in the system (see

Lemma 4.3.)

Next, we highlight the practical utility of our results.

4.1.c Practical Implications and Useful Insights

Our results offer several interesting insights into the performance of IRS-aided wireless

systems where one operator deploys and controls an IRS. First, in all the scenarios men-

tioned in Sec. 4.1.b, we present novel, compact, and insightful analytical expressions that

uncover the dependence of the performance on system parameters such as the number of

IRS elements, SNR, number of channel paths, etc. As shown both analytically and through

simulations, an IRS is beneficial to OOB users even though the IRS phase configuration is

chosen randomly from the OOB operator’s viewpoint, and this holds both in terms of the

average and instantaneous SE. In particular, in rich scattering environments, the average

SE at any OOB UE scales log-linearly in the number of IRS elements. On the other hand,

in mmWave channels, the average SE improvement at the OOB UE due to the IRS is

an increasing function of the number of spatial paths in the OOB UE’s channel. Thus,

deploying an IRS enriches the overall wireless channels (in both sub-6 GHz and mmWave

bands) and can only benefit all wireless operators in the area. Our study also reveals that

there exists an interesting trade-off between reducing the signaling overhead to program

the IRS at the in-band operator (as in LoS scenarios) versus boosting the gain at the

OOB operators (as in (L+)NLoS scenarios) in the mmWave bands. Finally, our results

and insights derived for 2 operators directly extend to any number of OOB operators and

other settings like a planar array IRS.

Notation: For general notations used in this chapter, see the section on “General Mathe-

matical Notations” on page ix. For the notations/variables specific to this chapter, please

refer to Table 4.1.
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Variable Definition Variable Definition
N Number of IRS elements γ

(1)
i,p Gain of ith path from BS-p to IRS

K Number of UEs served by BS-X γ
(2)
j,ℓ Gain of jth path from IRS to UE-ℓ

Q Number of UEs served by BS-Y hd,k Direct channel from BS-X to UE-k
L1,p Number of paths from BS-p to IRS hd,q Direct channel from BS-Y to UE-q
L2,ℓ Number of paths from IRS to UE-ℓ gk/gq Channel from IRS to UE-k/q
L Number of cascaded paths (L = L1L2) fX/fY Channel from BS-X/Y to IRS
P Transmit power at the BS θ or Θ IRS configuration vector/matrix
σ2 Noise variance at the UE βx Path loss in link-x

ω1
X,k

Dominant cascaded normalized angle
from BS-X to UE-k via the IRS

ωlY,q
Cascaded normalized angle from
BS-Y to UE-q in the lth path

d/λ
Ratio of inter-elemental spacing
to the signal wavelength

RBF
k

Achievable beamforming SE at UE-k

A Resolvable beam book: set of
resolvable array steering vectors

R̄(X)/

S̄
(X)
1 /

S̄
(X)
L

Acheivable ergodic sum-SE of op. X
in sub-6 GHz/ mmWave scenarios

Φ
Resolvable angle book: set of
resolvable normalized angles

R̄(Y )/

S̄
(Y )
1 /

S̄
(Y )
L

Acheivable ergodic sum-SE of op. Y
in sub-6 GHz/ mmWave scenarios

R̄
(Y )
PF

Acheivable sum-SE of op. Y
under PF scheduling

R̄
(Y )
MR

Acheivable ergodic sum-SE of op. Y
under max-rate scheduling

Table 4.1: Commonly encountered variables/notations in chapter 4.

4.2 System Model

We consider a single-cell system with two mobile network operators, X and Y, who pro-

vide service to K and Q UEs, respectively, on different frequency bands and in the same

geographical area. The BSs of operators X and Y (referred to as BS-X and BS-Y, re-

spectively) and UEs are equipped with a single antenna, and all the channels undergo

frequency-flat fading [111].2 An N -element IRS is deployed by operator X to enhance the

SNR at the UEs it serves. So, operator X configures the IRS with the SNR-optimal phase

configuration for a UE scheduled by BS-X in every time slot. On the other hand, operator

Y does not deploy any IRS and is oblivious to the presence of operator X’s IRS. Then,

2For simplicity of exposition and to focus on the effect of the IRS on OOB users, we consider single
antennas at the BSs and UEs, similar to [6–8,112,113]. The extension to the multiple antenna case does
not change our broad conclusions, but we relegate this to future work.
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the downlink signal received at the kth UE served by BS-X is

yk =
(
hd,k + gTkΘfX

)
xk + nk, (4.1)

where gk ∈ CN×1 is the channel from IRS to the kth UE, fX ∈ CN×1 is the channel from

BS-X to the IRS, Θ ∈ CN×N is a diagonal matrix containing the IRS reflection coefficients

of the form ejθ, and hd,k is the direct (non-IRS) path from BS to the UE-k. Also, xk is

the data symbol for UE-k with average power E[|xk|2] = P , and nk is the additive noise

∼ CN (0, σ2) at UE-k. Similarly, at UE-q served by BS-Y, we have

yq =
(
hd,q + gTq ΘfY

)
xq + nq. (4.2)

In Figure 4.1, we pictorially illustrate the considered network.

4.2.a Channel Model in sub-6 GHz Frequency Bands

Similar to [111], in the sub-6 GHz band, we consider that all the fading channels are

statistically independent3 and identically distributed (i.i.d.) following the Rayleigh dis-

tribution.4 Specifically, hd,k =
√
βd,kh̃d,k, hd,q =

√
βd,qh̃d,q; h̃d,k, h̃d,q

i.i.d.∼ CN (0, 1); gk =√
βg,kg̃k,gq =

√
βg,qg̃q; g̃k, g̃q

i.i.d.∼ CN (0, IN); fX =
√
βfX f̃

X , fY =
√
βfY f̃

Y ; f̃X , f̃Y
i.i.d.∼

CN (0, IN). All terms of the form βx represent the path losses.

4.2.b Channel Model in mmWave Frequency Bands

In the mmWave band, we consider a Saleh-Valenzuela type model for all the channels [114].

At UE-ℓ, the channels are

fp =

√
N

L1,p

L1,p∑
i=1

γ
(1)
i,p a

∗
N(ϕi,p); gℓ =

√
N

L2,ℓ

L2,ℓ∑
j=1

γ
(2)
j,ℓ a

∗
N(ψj,ℓ), (4.3)

3We consider that IRS elements are placed sufficiently far apart that the spatial correlation in the
channels to/from the IRS is negligible.

4Our results can be easily extended to other sub-6 GHz channel fading models also. From the approach
used to show the results here, it is easy to see that the scaling law of the SE as a function of the IRS
parameters will remain the same, although the scaling constants depend on the fading model. Thus, the
conclusions on the impact of the IRS on OOB performance reported in this chapter will continue to hold.
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Figure 4.1: Network scenario of an IRS-aided two-operator system.

where p ∈ {X, Y }, L1,p and L2,ℓ are the number of spatial paths in the BS-p to IRS, and

IRS to UE-ℓ links, respectively. Since the in-band and OOB BSs/UEs are distributed

arbitrarily with respect to the IRS, for notational simplicity, we let L1,X = L1,Y ≜ L1,

and L2,ℓ = L2 ∀ℓ (including in-band and OOB UEs.) Also, ϕi,p and ψj,ℓ denote the sine

of the angle of arrival of the signal from BS-p to the IRS via the ith path, and the sine

of the angle of departure from the IRS to the ℓth UE via the jth path, where sine of an

angle (ϕx) is related to the physical spatial angle (χ) by5 ϕx = (2d/λ) sin(χ), with d, λ

being the inter-elemental distance and signal wavelength, respectively. The sine terms are

sampled from a distribution UA, which depends on the beam resolution capability of the

IRS (elaborated next.) The fading coefficients, γ(1)i,p and γ
(2)
j,ℓ , are independently sampled

from CN (0, βfp), and CN (0, βg,ℓ), respectively. Finally, aN(ϕ) is an array steering vector

of a uniform linear array (ULA)6 based IRS oriented at the angle ϕ, given by

aN(ϕ) =
1√
N
[1, e−jπϕ, . . . , e−j(N−1)πϕ]T . (4.4)

4.2.b.i Beam Resolution Capability of the IRS

We now describe the beam resolution capability of an IRS, which is important to account

for when the array contains a finite number of elements. Beam resolution measures the

5In the sequel, the term “angle" will denote the sine of a physical angle.
6All our main conclusions remain unchanged even if other array geometries (e.g., a uniform planar

array) are used at the IRS, similar to [33,115–117].
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degree to which two closely located beams are distinguishable (or resolvable.) Spatial paths

in (4.3) will become non-resolvable if the angles associated with the paths are spaced less

than the beam resolution and can be modeled as being clustered into a single path with

an appropriate channel gain. To measure the beam resolution of the ULA-based IRS

model [33, 115–117], we enumerate all possible D beams as

A = [aN(ϕ1), aN(ϕ2), . . . , aN(ϕD)] ∈ CN×D. (4.5)

We can verify that A is a Vandermonde matrix and hence its column vectors {aN(ϕi)}Di=1

are linearly independent when D ≤ N provided {ϕi}Di=1 are distinct [118, Pg. 185]. On the

other hand, when D > N , the vectors are always linearly dependent and hence are non-

resolvable. So, the total number of independent (or resolvable) beams that can be formed

by an N -element IRS is at most N . This fact has been observed in the literature [114,

119, 120], and also in the current works on IRS-aided mmWave wireless systems [65, 121].

Thus, the complete set of resolvable beams A (called the resolvable beambook) at the IRS

is7

A ≜ {aN(ϕ), ϕ ∈ Φ} ;Φ ≜

{(
−1 + 2i

N

) ∣∣∣∣i = 0, . . . , N − 1

}
. (4.6)

Here Φ is the resolvable anglebook of the IRS, and, without loss in generality, we model

its distribution UA by

UA(ϕ) =
1

|Φ|1{ϕ∈Φ} =
1

N
1{ϕ∈Φ}. (4.7)

Also, for large N , A constitutes a set of orthonormal vectors:

aHN(ϕ1)aN(ϕ2)→ δ{ϕ1,ϕ2}∀aN(ϕ1), aN(ϕ2) ∈ A, (4.8)

where δ{x,y} is the usual dirac-delta function.

7For analytical tractability, we consider a flat-top RF directivity pattern of the IRS [122, Eq. 5]. This
is a good approximation to practical array systems and becomes accurate as N gets large [114,122].
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4.2.c Problem Statement

We are now ready to state the problem mathematically. Suppose BS-X tunes the IRS with

the SNR-optimal vector θopt ≜ diag(Θopt) to serve UE-k by solving the problem:

Θopt = argmax
Θ∈CN×N

∣∣hd,k + gTkΘfX
∣∣2 , (4.9)

subject to Θ being a diagonal matrix with unit-magnitude diagonal entries. Then, we

wish to characterize the impact of the IRS on the channel gain,
∣∣hd,q + gTq Θ

optfY
∣∣2, of

OOB UE-q scheduled by BS-Y. In particular, we wish to answer:

1. Does the IRS degrade OOB performance? That is, when or how often will∣∣hd,q + gTq Θ
optfY

∣∣2 < |hd,q|2 hold?

2. How does the OOB channel gain
∣∣hd,q + gTq Θ

optfY
∣∣2 depend on N?

Clearly, these aspects of an IRS are fundamental to understanding the overall impact of

an IRS in practical systems when many operators exist together. In the sequel, we answer

these by analyzing the ergodic and instantaneous characteristics of the OOB UE’s channel

in both sub-6 GHz and mmWave bands in the presence of an IRS controlled by a different

operator.

Remark 4.1. The next two sections focus on cases where both operators provide services

in the sub-6 GHz band (Sec. 4.3) or both provide services in the mmWave band (Sec. 4.4),

using non-overlapping frequency allocations. We do not consider the case where one op-

erator uses the sub-6 GHz band while the other uses the mmWave band, as it is unclear

whether an IRS can efficiently reflect signals in both these frequency bands.

4.3 OOB Performance: sub-6 GHz bands

Suppose an operator X deploys and controls an IRS to enhance the SE of the UEs being

served by it in a sub-6 GHz band. We wish to characterize the effect of the IRS on operator

Y, which is operating in a different sub-6 GHz frequency band with no control over the



Chapter 4. 105

IRS. Thus, to serve the kth UE, BS-X configures the IRS with the SNR/SE-optimal

phases [2, 3, 103]

θoptn,k = ej(̸ hd,k−(̸ fXn +̸ gk,n)), n = 1, . . ., N, (4.10)

which results in the coherent addition of the signals along the direct and IRS paths, leading

to the maximum possible received SNR. Then, the SE achieved by the kth UE is

RBF
k = log2

1 +
P

σ2

∣∣∣∣∣|hd,k|+
N∑
n=1

|fXn gk,n|
∣∣∣∣∣
2
 . (4.11)

Due to the independence of the channels of the UEs served by operators X and Y, the IRS

phase configuration used by operator X to serve its own UEs appears as a random phase

configuration of the IRS for any UE served by operator Y.

We consider RR scheduling of UEs at both BS-X and BS-Y.8 Since the BSs are equipped

with a single antenna, one UE from each network is scheduled at every time slot. A

summary of the protocol is given in Fig. 4.2.

We characterize the average OOB performance by deriving the ergodic sum-SE of both

networks and then infer the degree of degradation/enhancement of the OOB performance

caused by the IRS. The ergodic SE at UE-k is

⟨R(X)
k ⟩ = E

log2
1 +

∣∣∣∣∣
N∑
n=1

∣∣fXn gk,n∣∣+ |hd,k|
∣∣∣∣∣
2

P

σ2

 , (4.12)

since the IRS is configured with the optimal phase configuration for (scheduled) UE-k. On

the other hand, the ergodic SE for (scheduled) UE-q of operator Y is

⟨R(Y )
q ⟩ = E

log2
1 +

∣∣∣∣∣
N∑
n=1

fYn gq,n + hd,q

∣∣∣∣∣
2

P

σ2

 , (4.13)

where we used the fact that the channels are circularly symmetric random variables, i.e.,

fYn gq,ne
jθ d

= fYn gq,n for any θ. Here, the expectations are taken with respect to the distri-

bution of the channels to the respective UEs. With RR scheduling, the ergodic sum-SEs

8The extension of our results to the proportional fair and max-rate scheduling schemes is provided in
Sec. 4.5.
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For time slots 

BS-Y schedules UE

BS-X schedules UE

random IRS 
to OOB UE

optimal IRS 
to in-band UE

UE -

UE -

IRS

Figure 4.2: Flowchart of the round-robin scheduling-based protocol.

of two operators are given by

R̄(X) ≜
1

K

K∑
k=1

⟨R(X)
k ⟩, and R̄(Y ) ≜

1

Q

Q∑
q=1

⟨R(Y )
q ⟩. (4.14)

We note that closed-form expressions for the ergodic sum-SE are difficult to obtain due

to the complicated distribution of the SNR and SE terms (e.g., in (4.12) and (4.13).)

Although we can use the approach in [123] to obtain the exact ergodic sum-SE in terms of

standard integrals, the resulting expressions do not provide insights into how the sum-SE

scales with the system parameters. Instead, we rely on applying tight approximations to

obtain insightful results. However, we note that it is important to choose approximations

such that the analysis across different scenarios can be unified in a single framework and

the corresponding results are comparable. To that end, we apply Jensen’s inequality,

and after careful simplification, we arrive at elegant and interpretable expressions for the

ergodic sum-SEs in all scenarios. In this view, we have the following theorem for the sub-6

GHz band of communication.

Theorem 4.1. Under independent Rayleigh fading channels in the sub-6 GHz bands, with

RR scheduling, and when the IRS is optimized to serve the UEs of operator X, the ergodic
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sum-SEs of operators X and Y scale as

R̄(X) ≈ 1

K

K∑
k=1

log2

(
1 +

[
N2

(
π2

16
βr,k

)
+N

(
βr,k −

π2

16
βr,k +

π3/2

4

√
βd,kβr,k

)
+ βd,k

]
P

σ2

)
,

(4.15)

where βr,k ≜ βfXβg,k, and

R̄(Y ) ≈ 1

Q

Q∑
q=1

log2

(
1 + [Nβr,q + βd,q]

P

σ2

)
, (4.16)

where βr,q ≜ βfY βg,q.

Proof. See Appendix 4.A. ■

From the above theorem, we infer the following:

• The IRS enhances the average received SNR by a factor of N2 at any scheduled

(in-band) UE of operator X when BS-X optimizes the IRS. This is the benefit that

operator X obtains by using an optimized N -element IRS.

• Operator Y, who does not control the IRS, also witnesses an enhancement of average

SNR by a factor of N for free, i.e., without any coordination with the IRS. This

happens because the IRS makes the wireless environment more rich-scattering on

average, and facilitates the reception of multiple copies of the signals at the (OOB)

UEs.

Next, we prove that even the instantaneous characteristics of the OOB channel are fa-

vorable due to the IRS. We recognize that the instantaneous channel at an OOB UE-q is

given by |hq|2, where hq ≜
N∑
n=1

fYn gq,n+hd,q. In the sequel, we provide two kinds of results:

first, we compute the outage probability experienced by UE-q, and then provide stronger

results on the OOB channels via stochastic dominance theory.

The outage probability of UE-q is given by

P ρ
q,out = Pr(|hq|2< ρ), (4.17)
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where ρ is a constant that depends on the receiver sensitivity threshold. Although works

like [43] provide closed-form expressions for the outage probabilities of randomly configured

IRSs, these expressions do not provide insight into the system performance. So, using [103,

Proposition 1], we approximate hq ∼ CN (0, Nβr,q + βd,q) which becomes accurate as N

gets large.9 Hence, |hq|2 is a exponential random variable with mean Nβr,q +βd,q, and the

outage probability in (4.17) can be easily obtained as shown in Theorem 4.2 below.

Next, we characterize the stochastic behavior of the channel gains witnessed by UE-q

with/without an IRS. In this view, define the following random variables.

|h1,q|2 ≜
∣∣∣∣∣
N∑
n=1

fYn gq,n + hd,q

∣∣∣∣∣
2

; |h2,q|2 ≜ |hd,q|2 . (4.18)

Note that |h1,q|2 and |h2,q|2 represent the channel power gain of UE-q in the presence and

absence of the IRS, respectively. We now characterize the change in the channel gain at

UE-q served by BS-Y in the presence and absence of the IRS:

Z
(Y )
N ≜ |h1,q|2 − |h2,q|2 1{N ̸=0}. (4.19)

The event {Z(Y )
N < 0} indicates an SNR degradation at the OOB UE due to the IRS. In

the following theorem, we show that, almost surely, Z(Y )
N is non-negative by deriving the

CCDF of Z(Y )
N , F̄

Z
(Y )
N

(z) ≜ Pr(Z
(Y )
N ≥ z).

Theorem 4.2. The probability of outage at UE-q served by an (OOB) operator Y in the

sub-6 GHz band, when an IRS is optimized to serve the UEs of operator X, is given by

P ρ
q,out = 1− e

−
ρ

Nβr,q + βd,q . (4.20)

9This approximation works well even with N = 8 [103].
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Further, for reasonably large N ,10 the CCDF F̄
Z

(Y )
N

(z) of Z(Y )
N is given by

F̄
Z

(Y )
N

(z) =



1− 1

Nβ̃ + 2
× e

 z

βd,q


, if z < 0,

(
Nβ̃ + 1

Nβ̃ + 2

)
× e

−

 z

βd,q

(
1 +Nβ̃

)

, if z ≥ 0.

(4.21)

where β̃ ≜ βr,q/βd,q.

Proof. We can obtain P ρ
q,out using the CCDF of an exponential random variable. For (4.21),

see Appendix 4.B. ■

Theorem 4.2 shows that the outage probability is strictly monotonically decreasing with

N , which shows that the IRS only improves the OOB performance. In fact, from a first-

order Taylor series approximation, we can show that P ρ
q,out ≈ ρ/(Nβr,q + βd,q), i.e., the

outage probability decreases linearly in N . Further, since F̄
Z

(Y )
N

(0) = 1 − 1/
(
2 +Nβ̃

)
,

for a given β̃, the probability that the SNR/gain offset in (4.19) is negative decays as

O (1/N). Also, F̄
Z

(Y )

N′
(z) ≥ F̄

Z
(Y )

N′′
(z) for all z and N ′ > N ′′. Consequently, we have the

following proposition.

Proposition 4.1. For any M,N ∈ N with M > N , the random variable Z(Y )
M stochasti-

cally dominates11 Z(Y )
N . In particular, the channel gain in the presence of the IRS stochas-

tically dominates the channel gain in its absence.

The above proposition states that the random variables
{
Z

(Y )
n

}
n∈N

form a sequence of

stochastically larger random variables as a function of the number of IRS elements, where

N is the set of natural numbers. Thus, the SNR offset increases with the number of

10We will later numerically show that the result holds even for N ≥ 4.
11A real-valued random variable X is stochastically larger than, or dominates, the real-valued random

variable Y , written X >st Y , if
Pr(X > a) ≥ Pr(Y > a), for all a. (4.22)

Note that, if the random variables X and Y have CCDFs F̄ and Ḡ, respectively, then X >st Y ⇐⇒
F̄ (a) ≥ Ḡ(a) ∀ a ∈ R [124].
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IRS elements even at an OOB UE, i.e., the IRS only enhances the channel quality at an

OOB UE at any point in time, with high probability. Therefore, the performance of OOB

operators does not degrade even when the operator is entirely oblivious to the presence of

the IRS. Note that this holds true for any operator in the area; hence, no operator will be

at a disadvantage due to the presence of an IRS being controlled by only one operator.

Remark 4.2. The outage probability and the CCDF of the SNR offset as in Theorem 4.2

at the in-band UE (for whom the IRS is optimized) decay to zero as O(e−N) (see Ap-

pendix 4.C.) This improvement in decay is the benefit of using an optimized IRS.

Having asserted that IRS can only benefit every OOB operator in the sub-6 GHz bands,

we next move on to understand the effect of IRS on the OOB performance in the mmWave

bands of communications, where the IRSs can significantly boost the in-band operators’

performance in establishing link connectivity, improving coverage, etc.

4.4 OOB Performance: mmWave bands

In this section, we evaluate the in-band and OOB performance of an IRS-aided mmWave

system under RR scheduling of the UEs. The wireless channels in the mmWave bands

are typically spatially sparse and directional, with a few propagation paths, as against the

rich-scattering sub-6 GHz channels. Consequently, the analysis in the sub-6 GHz bands

does not extend to mmWave bands, and it is necessary to evaluate the OOB performance

in the mmWave bands independently. We consider two different scenarios inspired by [65],

namely, the LoS and (L+)NLoS scenarios, as explained in Sec. 4.1.b. In both cases, we

assume that the channel (see (4.3)) to the OOB UEs is a mixture of LoS and NLoS paths.

4.4.a IRS Optimized for LoS Scenarios

The dominant LoS channel of the in-band UE is [9, 66]

hk = Nγ
(1)
1,Xγ

(2)
1,ka

H
N(ψ1,k)Θa∗

N(ϕ1,X) + hd,k (4.23)
(a)
= N

(
γ
(1)
1,Xγ

(2)
1,k

(
aHN(ϕ1,X)⊙ aHN(ψ1,k)

))
θ + hd,k, (4.24)
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where θ = diag(Θ) ∈ CN , and (a) is obtained using the properties of the Hadamard

product. Since the Hadamard product of two array response vectors is also an array

vector but aligned in a different direction [33], we simplify (4.24) as

hk = NγX,kȧ
H
N(ω

1
X,k)θ + hd,k, (4.25)

where ω1
X,k ≜ sin−1

(p) (sin(ϕ1,X) + sin(ψ1,k)),12 and γX,k ≜ γ
(1)
1,Xγ

(2)
1,k. Here, ȧN is an array

vector that is normalized by N instead of
√
N (see (4.4)), and so ȧN(·) = 1√

N
aN(·). Then

by the Cauchy-Schwarz (CS) inequality, the nth entry of the optimal IRS configuration

vector θopt which maximizes the channel gain |hk|2 is θn = ej(
̸ hd,k−π(n−1)ω1

X,k−̸ γX,k), and

hence the optimal IRS vector is

θopt =
hd,kγ

∗
X,k

|hd,kγX,k|
×N ȧN(ω

1
X,k). (4.27)

From (4.27), it is clear that the IRS vector is directional ; it is aligned in the direction of the

in-band UE’s channel. To illustrate this, we plot the correlation function E
[∣∣ȧH(ν)θopt

∣∣2]
versus ν ∈ Φ in Fig. 4.3, where θ is set to align with an arbitrary in-band UE with

ω1
X,k = 0.52. The expectation is with respect to the channel fading coefficients. Clearly,

when ν = 0.52 = ω1
X,k, the function takes its maximum value of 1. This confirms that

the IRS aligns with the in-band channel to which it is optimized. Contrariwise, the IRS

phase shift as optimized by BS-X will be aligned at a random direction from any OOB

UE’s view with the distribution given by UA in (4.7). We now characterize the ergodic

sum-SEs of both operators.

Theorem 4.3. Under the Saleh-Valenzuela LoS model in the mmWave channels, with RR

scheduling, and when the IRS is optimized to serve the UEs of operator X, the ergodic

12We define sin−1
(p)(x) so that x is in the principal argument [−1, 1) as

sin−1
(p)(x) =


sin−1(x− 2), if x ≥ 1,

sin−1(x), if x ∈ [−1, 1),

sin−1(x+ 2), if x < −1.

(4.26)
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Figure 4.3: Correlation response of the IRS vector and array steering vectors pointing at different
spatial angles, ν, for (a) N = 50 and (b) N = 500. When ν = ω1

X,k, the response attains its
maximum value of 1.

sum-SEs of operators X and Y scale as

S̄
(X)
1 ≈ 1

K

K∑
k=1

log2

(
1 +

[
N2βr,k +N

(
π3/2

4

√
βd,kβr,k

)
+ βd,k

]
P

σ2

)
, (4.28)

and

S̄
(Y )
1 ≈ 1

Q

Q∑
q=1

(
L̄

N
log2

(
1 +

[
N2

L̄
βr,q + βd,q

]
P

σ2

)
+

(
1− L̄

N

)
log2

(
1 + βd,q

P

σ2

))
,

(4.29)

respectively, where L̄ ≜ min {L,N}, and L ≜ L1L2.

Proof. See Appendix 4.D. ■

From the above theorem, it is clear that an IRS can never degrade the OOB performance

in LoS scenarios of the mmWave bands. Even when L is small and N is large, the second

term in (4.29) remains, which is the achievable SE in the absence of IRS. Thus, almost

surely, the IRS results in an OOB-SE that is at least as high as the SE seen in its absence.

Remark 4.3 (OOB performance as a function of L for large N). From (4.29), we can show

that when N → ∞ for a fixed and finite L, the SE is a unimodal function of N . Hence,

there exists an N = N0 which provides the maximum gain and distinguishes the favorable
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region (N ≤ N0) from the non-favorable region (N ≥ N0).13 Here, N0 itself increases with

L because the probability of establishing connectivity via the IRS, i.e., Pr(E1) increases.

Remark 4.4 (Distributed IRSs always benefit). As noted in Remark 4.3, the OOB UEs

benefit more if the number of channel paths at these UEs is large. A natural way to obtain

more paths is to deploy multiple distributed IRSs so that each IRS can provide an additional

path to the UEs. This, in turn, increases the overall probability of benefiting the OOB UEs.

We refer the reader to our follow-up work in Chapter 5 and [125] for more details.

Similar to Theorem 4.2, the outage probability and CCDF of an OOB UE with/without

IRS in mmWave bands is analyzed next.

Theorem 4.4. The probability of outage at UE-q served by an OOB operator Y in the

mmWave bands, when an IRS is optimized to serve the UEs of operator X, is

F|hq |2(ρ) ≜ Pr(|hq|2< ρ) = 1− e−ρ/βd,q − L̄

N

 L̄e L̄βd,q

N2βr,q

N2βr,q
I0
(
ρ; βd,q,

N2

L̄
βr,q

)
− e−ρ/βd,q

 ,

(4.30)

where L̄ ≜ min{L,N}, and I0(x; c1, c2) ≜
∫ ∞

c1

e
−

x
t
+
t

c2


dt. Further, define the random

variables G1 = |hq|2, and G0 = |hd,q|2 (the channel gain in the presence and absence of

the IRS, respectively.) Then,

Pr(G1 > ρ) ≥ Pr(G0 > ρ), ∀ρ ∈ R+, (4.31)

i.e., the channel gain of the OOB-UE in the presence of an IRS stochastically dominates

the channel gain in its absence.

Proof. See Appendix 4.E. ■

The above theorem characterizes the instantaneous behavior of the OOB UEs’ channels

in the LoS scenarios and shows that the IRS never degrades the performance of OOB UEs.

13By non-favorable, we mean that the SE does not grow linearly with N beyond N = N0. However,
the SE never drops below the achievable SE in the absence of the IRS.
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4.4.b IRS Optimized for (L+)NLoS Scenarios

In the previous section, we studied the OOB performance when the IRS is only optimized

to the dominant path in the cascaded channels of the scheduled in-band UEs and concluded

that the OOB performance does not degrade due to the IRS. However, when the IRS is

programmed to align jointly along all the in-band UE’s channel paths, it remains unclear

whether an IRS can still benefit an OOB operator due to the unit-modulus preserving

property of IRS coefficients. In fact, the directional response of the IRS is not easy to

characterize since the IRS does not align completely along a single channel direction. To

that end, we first determine the directional response of the IRS when it is optimized to a

channel comprising multiple paths. We can write the channel to the in-band UE-k with

L resolvable spatial paths as in the following equation.14

hk = hd,k +
N√
L

L∑
l=1

γ
(1)
l,Xγ

(2)
l,k ȧ

H
N(ω

l
X,k)θ. (4.32)

Then, we can show that nth element of the optimal IRS configuration θopt is given by

(using CS inequality)

θoptn = ej
̸ hd,k

L∑
l=1

γ
(1)∗
l,X γ

(2)∗
l,k e−j(n−1)πωl

X,k∣∣∣∣ L∑
l=1

γ
(1)∗
l,X γ

(2)∗
l,k e−j(n−1)πωl

X,k

∣∣∣∣ . (4.33)

Hence, the optimal IRS vector θopt is

hd,k
|hd,k|

(
L∑
l=1

γ
(1)∗
l,X γ

(2)∗
l,k ȧN(ω

l
X,k)

)
⊙ 1∣∣∣∣ L∑

l=1

γ
(1)
l,Xγ

(2)
l,k ȧN(ω

l
X,k)

∣∣∣∣ , (4.34)

where |x| is the vector containing the magnitudes of the entries of x and 1/|x| is an entry-

wise inverse.

14For the sake of exposition, we consider that all cascaded paths through the IRS have the same average
energy, similar to [126]. However, our results can be directly extended to scenarios where the paths have
unequal energies.
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(a) L = 2. (b) L = 3.

Figure 4.4: Normalized Correlation response of the IRS (in (L+)NLoS scenarios) and array vectors
at different ν for N = 500 with (a) L = 2, and (b) L = 3. When ν ∈ L2 (or) L3, the response,
ρν,θ/N peaks and ≈ 1/

√
L.

Directional Response of the IRS: To determine the directional response of an IRS opti-

mized for (L+)NLoS scenarios, similar to Sec. 4.4.a, we evaluate the correlation function:

ρν,θ ≜ NE
[∣∣ȧH(ν)θopt

∣∣] at various angles of ν. We then focus on the values of ν that match

the channel angles of UE-k and ascertain the distribution of the IRS-reflected energy along

these directions. We have the following lemma.

Lemma 4.1. The optimal IRS configuration as in (4.34) has the following spatial ampli-

tude response ρν,θ as defined above:

ρν,θ =


Ω

(
N√
L

)
+ o(N), if ν ∈

{
ω1
X,k, . . . , ω

L
X,k

}
,

o(N), if ν ∈ Φ \
{
ω1
X,k, . . . , ω

L
X,k

}
.

(4.35)

Proof. See Appendix 4.F. ■

The above Lemma shows that when the IRS is optimized to align jointly along L direc-

tions, it has a spatial energy response of 1/L in each of these L directions and a negligible

response in other directions. We perform a similar experiment as in the LoS scenario to nu-

merically verify Lemma 4.1. In Fig. 4.4, we plot the normalized correlation response ρν,θ/N

as function of ν ∈ Φ, for L = 2 and L = 3. We consider that the IRS is optimized to an

in-band UE whose equal-gain paths have channel angles drawn from L2 = {−0.23, 0.54},
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and L3 = {−0.23, 0.06, 0.54}, for L = 2, and L = 3, respectively. We see that whenever

ν ∈ L2 for L = 2 (L3 for L = 3), the response is maximum, and is nearly 1/
√
L, and is 0,

otherwise. We now provide the ergodic sum-SEs of the system when the IRS is optimized

for (L+)NLoS scenarios.

Theorem 4.5. Under the Saleh-Valenzuela (L+)NLoS model in the mmWave channels,

with RR scheduling, and when the IRS is optimized to serve the UEs of operator X, the

ergodic sum-SEs of operators X and Y scale as

S̄
(X)
L ≈ 1

K

K∑
k=1

log2

(
1 +

(
N2βr,k +N

√
πβd,kβr,k + βd,k

) P
σ2

)
, (4.36)

and

S̄
(Y )
L ≈


1

Q

Q∑
q=1

L∑
i=i0

(
L

i

)(
N − L
L− i

)
(
N

L

) × log2

(
1 +

(
βd,q + i

N2

L2
βr,q

)
P

σ2

)
, if L < N,

1

Q

Q∑
q=1

log2

(
1 + (βd,q +Nβr,q)

P

σ2

)
, if L ≥ N,

(4.37)

respectively, where i0 ≜ max{0, 2L−N}.

Proof. See Appendix 4.G. ■

Theorem 4.5 shows that the IRS provides an O(log2(N)) scaling of the SE at OOB UEs

when L ≥ N . In fact, in Sec. 4.6, we numerically show that this bound can be improved

to L ≥
√
N while preserving the O(log2(N)) growth of SE. In that case, for L <

√
N ,

the OOB-SE is shown to be log-sub-linear in N , which is still better than the SE in the

absence of IRS.15 Subsequently, we show that the OOB sum-SE in (L+)NLoS scenarios is

at least as good as in LoS scenarios and present further insights on the OOB performance

in the presence of an uncontrolled IRS.

15We reiterate that we need L ≥
√
N only for O(log2(N)) scaling of SE. More generally, the OOB-SE

in mmWave bands scales as O(log2(Nδ)), δ > 0. Thus, an IRS strictly benefits the OOB system under all
conditions.
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4.5 Enhancement of OOB Performance Using Oppor-
tunistic Scheduling

In the previous sections, we saw that an IRS that is optimally configured to serve the UEs

of operator X also benefits operator Y, but to a lesser extent than the benefit to the UEs of

operator X. In this section, we show that the benefit of the uncontrolled IRS to the UEs of

operator Y can be further enhanced using opportunistic user selection. Specifically, since

the IRS is randomly configured from an OOB UE’s view, if there are sufficiently many OOB

UEs, at least one of the UEs will experience an SNR that is close to the SNR when the IRS

is optimized for that UE (i.e., when the IRS is in beamforming configuration for that UE),

as explained in Chapters 2 and 3. Then, opportunistically scheduling the UE for which

the IRS is in beamforming configuration in every slot extracts multi-user diversity in the

system and enhances the OOB performance better than RR-based UE scheduling [71]. We

now analyze the OOB performance for two such opportunistic schedulers: the proportional-

fair (PF) and max-rate (MR) schedulers.

4.5.a Multi-user Diversity for Operator Y using PF Scheduler

The PF scheduler serves UE-q∗ at time t, where [71]

q∗(t) = argmax
q∈{1,2,...,Q}

log2 (1 + |hq(t)|2P/σ2)

Tq(t)
≜
Rq(t)

Tq(t)
, (4.38)

where Tq(t) is the exponential moving average SE seen by UE-q till time t which is updated

as

Tq(t+ 1) =


(
1− 1

τ

)
Tq(t) +

1

τ
Rq(t), if q = q∗(t),(

1− 1
τ

)
Tq(t), if q ̸= q∗(t).

(4.39)

Here, the parameter τ controls the trade-off between fairness and throughput [103, Sec.II].

The following Lemma shows the achievable sum-SE of operator Y under PF scheduling.

Lemma 4.2. ( [76, 103]) Under independent Rayleigh fading channels in the sub-6 GHz

bands, when the IRS is optimized to serve the UEs of operator X, and operator Y uses the
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PF scheduler, the sum-SE of operator Y, R(Y )
PF , obeys

R
(Y )
PF −

1

Q

Q∑
q=1

log2

(
1 +

∣∣∣∣∣
N∑
n=1

|fYn gq,n|+|hd,q|
∣∣∣∣∣
2

P

σ2

)
−→ 0, (4.40)

as Q, τ −→∞.

From (4.40) and (4.11), we see that UE-q achieves the optimal SNR from the IRS even

though the IRS is not explicitly programmed to be in beamforming configuration for this

UE. Thus, operator Y also experiences O(N2) gain in the SNR, free of cost, provided the

number of UEs it serves is very large. However, one drawback of using the PF scheduler

with large τ is that the latency in UE scheduling also becomes large [71]. Thus, an OOB

operator has to judiciously choose τ to balance the achievable sum rate with the latency

in UE scheduling.

4.5.b Multi-user Diversity for Operator Y using MR Scheduler

The MR scheduler serves UE-q∗ at time t, where

q∗(t) = argmax
q∈{1,2,...,Q}

log2

(
1 + |hq(t)|2

P

σ2

)
. (4.41)

Unlike the PF scheduler, an MR scheduler maximizes the overall system throughput,

disregarding fairness across the UEs. As a result, the achievable benefit from the IRS

when using an MR scheduler has a different flavor than the PF scheduler. Specifically, the

random IRS configurations are used to enhance the dynamic range of fluctuations in the

SNR at OOB UEs. Then, the ergodic sum-SE of the operator Y is

R̄
(Y )
MR = E

[
log2

(
1 + max

q∈{1,...,Q}
|hq|2

P

σ2

)]
. (4.42)

A closed-form characterization of (4.42) is given below under a special case where {hq}q
form a set of i.i.d. random variables.

Lemma 4.3. (Theorem 1, [127]) Under i.i.d. Rayleigh fading channels in the sub-6 GHz

bands, when the IRS is optimized to serve the UEs of operator X, and operator Y uses the
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MR scheduler, the ergodic sum-SE of operator Y, R̄(Y )
MR, scales as

R̄
(Y )
MR

Q→∞−−−→ log2

(
1 + loge(Q) (Nβr + βd)

P

σ2

)
, (4.43)

where βr, βd are the common direct and cascaded path losses.

Thus, the MR scheduler leverages multi-user diversity to obtain a loge(Q)-fold improve-

ment in SNR and focuses less on achieving the beamforming SE at the selected OOB UE.

We note that practical aspects, such as the number of UEs required to achieve a target

multi-user diversity, efficient feedback schemes to identify the best UE for scheduling, etc.,

are not discussed here for brevity, and we refer the reader to previous chapters, and also

to [127, Sec. II] and [103, Sec. III-A] for more details.

The results in Lemmas 4.2, 4.3 pertain to the sub-6 GHz bands. Similar results can also

be derived for operator Y in mmWave bands using PF and MR schedulers, e.g., using the

opportunistic scheme presented in [103, Sec.III-C] and [127, Sec. III].

4.6 Numerical Results and Discussion

In this section, we demonstrate all our results via Monte Carlo simulations. Let BS-

X and BS-Y be located at (0, 50), and (50, 0) (in meters), the IRS is at (1025, 1025),

and the UEs are randomly and uniformly located in a rectangular region with diagonally

opposite corners (950, 950) and (1100, 1100). The path loss in each link is modeled as

β = C0 (d0/d)
α, where C0 is the path loss at the reference distance d0, d is the distance

of the link, and α is the path loss exponent. We let d0 = 1 meter, C0 = −30 dB and

−60 dB for sub-6 GHz and mmWave bands, respectively. We use α = 2, 2, and 4.5 in the

BS X/Y-IRS, IRS-UE, and BS X/Y-UE (direct) links, respectively. Finally, we consider

K = Q = 10 UEs served over 5000 time slots.

4.6.a OOB Performance in sub-6 GHz Bands using RR Scheduler

In Fig. 4.5, we plot the empirical ergodic sum-SE vs. the transmit SNR
(
γ ≜ P/σ2

)
for

both the operators as a function of N , the number of IRS elements, and in the sub-6 GHz



Chapter 4. 120

Figure 4.5: Ergodic sum-SE vs. transmit SNR.

frequency band.16 We also plot the sum-SE obtained from the analytical expressions in

Theorem 4.1 (marked as “Theorem 1” in the plot.) We see that the IRS enhances the

sum-SEs of both operators, although operator X benefits more from the IRS. We also see

that the improvement in SE with N is log-quadratic for operator X, while it is log-linear

for operator Y, as expected. For example, the gap between the N = 64 and N = 256

curves for operator X is about 4 bits (≈ log2(4
2) = 4), the gap is about 2 bits (≈ log2(4))

for operator Y. Also, the analytical expressions tightly match the simulated values, i.e.,

the approximation error introduced using Jensen’s inequality is very small.

Next, in Fig. 4.6, we examine the effect of the number of IRS elements, N , by plotting

the ergodic sum-SE vs. log2(N) for transmit SNRs of 130 dB and 150 dB to validate the

scaling of the received SNR as a function of N . On the plot, we mark the slope of the

different curves, and as expected from Theorem 4.1, it is clear that while the received

SNR for a UE served by operator X scales as N2, it also scales as N for a UE served by

operator Y.

16We set the range of γ in 110− 160 dB for sub-6 GHz bands. For e.g., when N = 8 and γ = 160 dB,
the received SNR is ≈ 5,−10 dB with and without an IRS, respectively, at an OOB UE at (1000, 1000).
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Figure 4.6: Ergodic sum-SE vs. log2(N).

Next, we study the effect of the IRS on the OOB operator Y by considering the behavior of

the random variable Z(Y )
N (see (4.19)), which represents the difference in the SNR/channel

gain at a UE q served by BS-Y (which does not control the IRS) with and without the IRS

in the environment. In Fig. 4.7, we plot the empirical and theoretical CCDF of Z(Y )
N (at

γ = 130 dB.) The analytical expression derived in Theorem 4.2 (marked as “Theorem 2”)

matches well with the simulations. Also, almost surely, Z(Y )
N is a non-negative random

variable for any N > 0, which confirms that the channel gain at an OOB UE with an IRS

is at least as good as the channel gain at the same UE without an IRS with probability

1. The CCDF shifts to the right as the N is increased, as expected. The left-most curve

in the figure is the CCDF of received SNR in the absence of the IRS, which shows that

the probability that an operator benefits from the presence of a randomly configured IRS

increases with N for operators who do not control the IRS. Thus, the instantaneous SNRs

witnessed at an arbitrary UE of an OOB operator stochastically dominate the SNR seen

by the same UE in the absence of the IRS, in line with Proposition 4.1.

Finally, we compare the outage probabilities of the in-band and OOB UEs in Fig. 4.8a

as a function of N . While the probability decreases as O(e−N) at the in-band UEs (in-line
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Figure 4.7: CCDF of Z(Y )
N as a function of N .

with Remark 4.2), it also uniformly decreases at OOB UEs, but at the rate of O(1/N) as

per Theorem 4.2. Thus, the outage probability of the OOB UEs monotonically decreases

with the IRS elements free of cost. For completeness, in Fig. 4.8b, we also validate that

the CCDF of the SNR offset as in Remark 4.2 for the in-band UEs grows to 1 at the rate

of 1−O(e−N).

4.6.b OOB Performance in mmWave Bands using RR Scheduler

We now numerically illustrate our findings in the mmWave band. First, we focus on the

OOB performance when the IRS is optimized for in-band UEs in the LoS scenarios. In

Figs. 4.9 and 4.10, we plot the ergodic sum-SEs vs. N , of both operators, at low and high

(received) SNRs, respectively. At low SNR, we observe that 1) The ergodic sum-SE scales

linearly with N , and 2) The OOB performance is insensitive to L. This can be explained

by analyzing the behavior of the SE in (4.29) at low SNRs. Namely log(cγ) ≈ cγ for

small cγ. Thus, an OOB UE witnesses an SE which scales as N2/L for an L/N fraction

of time, leading to an effective scaling of SE as O(N). Thus, if the OOB system is

designed to operate at low SNRs, then even an OOB UE obtains benefits from the IRS
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(a) Outage probability at in-band UEs vs. OOB UEs. (b) CCDF of the SNR offset at in-band UEs.

Figure 4.8: Instantaneous channel quality of the in-band/OOB UEs in the sub-6 GHz bands.

that monotonically increase with N . On the other hand, at high SNRs, for any given L, the

SE is an unimodal function of N , as described in Remark 4.3. As long as L ≥ N , i.e., the

number of paths is sufficiently large (at least as many as the number of resolvable beams

the IRS can form), almost surely, the IRS aligns with one of the OOB UE’s channel angles

and provides benefits which linearly increases with N . However, when L < N , the IRS

beam does not always align with the OOB UE; hence, the performance starts to decline

as N grows, with the peak SE obtained when L = N . In any case, the OOB SE is higher

than the SE obtained without the IRS. This confirms that the IRS never degrades the

average OOB performance even in mmWave bands. Also, the simulations and analytical

expressions match very well, which validates the correctness of Theorem 4.3. Finally, we

note that the SNR of the in-band operator monotonically grows as N2, as expected.

Next, we validate the instantaneous OOB performance by plotting the CCDFs of the

channel gains of an arbitrary OOB UE in Figs. 4.11, 4.12, and 4.13, for L = 5, 20, and

50, respectively. Clearly, the effective channel in the presence of the IRS stochastically

dominates the effective channel in its absence, as found in Theorem 4.4. Further, with

high probability, the channel gains of the OOB UEs achieve their maximum value when

N = L, which is in line with our previous observations.

Next, we focus on when the IRS is optimized for (L+)NLoS mmWave scenarios. Specifi-

cally, we study the operators’ ergodic sum-SE behavior in a high SNR regime. In Fig. 4.14,
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Figure 4.9: Ergodic sum-SE vs. N in LoS scenarios at C0γ = 90 dB.

we plot the ergodic sum-SE vs. N when the IRS is optimized for (L+)NLoS scenarios.

The OOB performance in this case is very similar to the LoS scenarios, where the en-

hancement in the OOB SE due to the IRS is contingent on the number of spatial paths

available in the OOB UEs’ channel. However, the main difference lies in the number of

paths needed in the OOB UE’s channel to obtain performance enhancement by the IRS.

While the LoS scenarios require L to scale with N , it is sufficient for L to scale with
√
N

in the (L+)NLoS scenarios to obtain an OOB performance boost which is monotonic in

N . Intuitively, this is because, in addition to the probability that one of the L paths of

the OOB channel aligns with the IRS (which scales as L/N), the IRS provides an addi-

tional opportunity for alignment by having a directional response in L directions. This

leads to the probability of alignment improving to L2/N in the OOB system. We con-

firm this in Fig. 4.14: the peak performance is attained roughly at N = L2 for every L.

Recall that the probability that i of the IRS beams align with the OOB channel is given

by (4.89). Consider the scenario L ≪ N . Using Stirling’s approximation
(
n

i

)
≈ ni

i!
we

can simplify (4.89) as Pr(Y = i) ≈ 1

i!

(
L2

N

)i
. Then, letting i = 1 (to compare against the
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Figure 4.10: Ergodic sum-SE vs. N in LoS scenarios at C0γ = 150 dB.

LoS scenario), the probability is L2/N , supporting the fact that
√
N paths are sufficient

to obtain an OOB SE that log-linearly grows with the IRS elements. Finally, Fig. 4.15

compares the OOB performance in LoS and (L+)NLoS scenarios. For a fixed N , L, the

performance is enhanced much faster in (L+)NLoS than in LoS scenarios, which is in line

with our discussions.

4.6.c OOB performance with PF and MR schedulers

We now numerically illustrate the OOB performance enhancement that can be obtained

using the PF and MR schedulers described in Sec. 4.5. We plot the OOB SE versus the

number of OOB UEs Q in Fig. 4.16. Here, we compare the SE for RR, PF, and MR

schedulers for different N . Using an MR scheduler, the OOB SE increases monotonically

as O (log(log(Q))), in line with Lemma 4.3. Next, we consider the OOB SE using a

PF scheduler. For N = 4, the SE increases with Q, and it converges to the SE that

is achievable as though the IRS is also optimal to the OOB UEs under RR scheduling,

in line with Lemma 4.2. Thus, for large Q, OOB UEs enjoy optimal beamforming IRS

benefits without explicitly optimizing the IRS to them when the OOB operator uses a PF
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Figure 4.11: CCDF of OOB UE’s channel gain |hq|2 as a function of N in LoS scenarios of the
mmWave bands at C0γ = 150 dB and L = 5.

scheduler. Even with N = 16 using a PF scheduler, a similar trend as in N = 4 is observed,

except that the convergence rate to the optimal SE is now reduced. We observe this from

the unequal gaps between the optimal SE and SE obtained by PF schedulers for N = 4

and 16, namely: ∆16 > ∆4. This is because the degree of randomness increases with N ,

which requires the number of UEs to scale with N . We refer the reader to [127, Prop. 1]

for more details on the required number of UEs for a target gap in the SE. Finally, the

OOB SE using the RR scheduler is invariant to Q because it does not leverage multi-user

diversity in the system.

In the final study of this section, we plot the OOB SE as a function of log2(N) in

Fig. 4.17 for different schedulers. First, we observe that the slope of the curve using the

MR scheduler for both Q = 10, 100 is 1, which validates the O(log(N)) dependence of the

SE as in Lemma 4.3. Similarly, the RR scheduler also scales as O(log2(N)), in line with

Theorem 4.1. On the other hand, the performance of the PF scheduler as a function of N

crucially depends on the relative value of Q with respect to N . For smaller N , the OOB

SNR scales with N2, and as N increases, the OOB SNR scales as N ϵ, where ϵ ≤ 2 (notice

this in the decreasing values of slopes.) This happens because, as N increases, Q is not
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Figure 4.12: CCDF of OOB UE’s channel gain |hq|2 as a function of N in LoS scenarios of the
mmWave bands at C0γ = 150 dB and L = 20.

large enough for the random IRS configuration to be near-optimal for at least one OOB

UE at every point in time.

4.7 Conclusions and Future Work

In this chapter, we studied a fundamental issue in an IRS-aided system, namely, the effect

of deploying an IRS on the average and instantaneous performance of an OOB operator

who has no control over the IRS. Surprisingly, we found that while the IRS optimally serves

the in-band UEs, it simultaneously, and at no additional cost, enhances the quality of the

channels of the OOB UEs compared to the system without any IRS. This performance

enhancement is due to the reception of multiple copies of the signal at the OOB UEs

through the IRS. Although this is always true in the sub-6 GHz bands, the degree of

enhancement in the mmWave communications is determined by the number of spatial

paths in the OOB UE’s channel. When the number of paths in the channel is at least

the number of resolvable beams at the IRS, the gain is monotonic in the number of IRS

elements, similar to sub-6 GHz bands, and is marginal otherwise. Further, we showed
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Figure 4.13: CCDF of OOB UE’s channel gain |hq|2 as a function of N in LoS scenarios of the
mmWave bands at C0γ = 150 dB and L = 50.

that the systems where IRS is optimized to all the spatial paths of the in-band UE’s

channel outperform the ones where IRS is aligned only to the dominant path. This is

due to the additional degrees of freedom offered by the IRS in the former, although it

incurs additional BS-IRS signaling overhead at the in-band operator to configure the IRS

optimally. Therefore, the deployment of an IRS benefits all the other existing network

operators, albeit to a lesser extent than the operator that has control over the IRS phase

configuration. Further, it is possible to obtain much better benefits at the OOB UEs by

using an opportunistic scheduler at the OOB operator.

Future work can include the effect of multiple antennas at the BSs/UEs and study the

diversity-multiplexing gain tradeoff at OOB UEs. Other practical considerations, like the

non-availability of perfect channel state information, quantized IRS phase shift levels,

frequency selectivity of channels, time & frequency offsets, near-field effects, etc., can be

accounted for to provide more insights. Another interesting line of study is to analyze the

impact of IRSs on the OOB performance in interference-limited scenarios such as multi-cell

environments.



Chapter 4. 129

Figure 4.14: Ergodic sum-SE vs. N in (L+)NLoS scenarios. Theorem 4.5 is marked as “Theo-
rem 5” in this plot.

Appendix 4.A Proof of Theorem 4.1

We compute the sum-SEs for both operators one by one below.

4.A.a Ergodic sum-SE of operator X

We first compute ⟨R(X)
k ⟩ for a given k. By Jensen’s inequality, we obtain

⟨R(X)
k ⟩ ≤ log2

1 + E

∣∣∣∣∣
N∑
n=1

|fXn gk,n|+|hd,k|
∣∣∣∣∣
2
 P

σ2

 . (4.44)

We expand the expectation term as follows.

∣∣∣∣∣
N∑
n=1

|fXn gk,n|+|hd,k|
∣∣∣∣∣
2

=
N∑

n,m=1

|fXn ||gk,n||fXm ||gk,m|+|hd,k|2+2
N∑
n=1

|fXn ||gk,n||hd,k|

=
N∑
n=1

|fXn |2|gk,n|2+|hd,k|2+
N∑

n,m=1

n̸=m

|fXn ||gk,n||fXm ||gk,m|+2
N∑
n=1

|fXn ||gk,n||hd,k|. (4.45)
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Figure 4.15: Comparison of the sum-SE in LoS and (L+)NLoS scenarios.

Under Rayleigh fading, E[|fXn |2] = βfX ,E[|gk,n|2] = βg,k,E[|hd,k|2] = βd,k, E[|fXn |] =√
π

4
βfX , E[|gk,n|] =

√
π

4
βg,k,E[|hd,k|] =

√
π

4
βd,k,∀k = 1, . . . , K;n = 1, . . . , N . Further, all

the random variables are independent. Taking the expectation in (4.45), and substituting

for these values, we get

E

∣∣∣∣∣
N∑
n=1

|fXn gk,n|+|hd,k|
∣∣∣∣∣
2
 = N2

(
π2

16
βr,k

)
+N

(
βr,k −

π2

16
βr,k +

π3/2

4

√
βd,kβr,k

)
+ βd,k,

(4.46)

where βr,k is as defined in the statement of the theorem. Substituting (4.46) in (4.44), and

plugging in the resulting expression in (4.14) yields (4.15), as desired.

4.A.b Ergodic sum-SE of operator Y

As above, from Jensen’s inequality, we have

⟨R(Y )
q ⟩ ≤ log2

1 + E

∣∣∣∣∣
N∑
n=1

fYn gq,n + hd,q

∣∣∣∣∣
2
 P

σ2

 . (4.47)
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Figure 4.16: OOB SE versus Q for different schedulers.

Proceeding along the same lines, we get∣∣∣∣∣
N∑
n=1

fYn gq,n + hd,q

∣∣∣∣∣
2

=
N∑
n=1

|fYn |2|gq,n|2+|hd,q|2+
N∑

n,m=1

n̸=m

fYn gq,nf
Y ∗
m g∗q,m + 2ℜ

(
N∑
n=1

fYn gq,nh
∗
d,q

)
.

(4.48)

Taking the expectation and simplifying,

E

∣∣∣∣∣
N∑
n=1

fYn gq,n + hd,q

∣∣∣∣∣
2
 = Nβr,q + βd,k. (4.49)

Substituting (4.49) in (4.47), and plugging in the resulting expression in (4.14) yields (4.16).

Appendix 4.B Proof of Theorem 4.2

We recognize that h̃1,q ≜ |h1,q|2∼ exp(1/(Nβr,q + βd,q)), and h̃2,q ≜ |h2,q|2∼ exp(1/βd,q).

Now, Z(Y )
N is the difference between two exponential random variables. We first show

that the correlation coefficient between h̃1,q and h̃2,q decays inversely with N . Recall

that the correlation coefficient is defined ρ12 ≜ E
[
(h̃1,q − E[h̃1,q])(h̃2,q − E[h̃2,q])

]/
σ1σ2,
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Figure 4.17: OOB SE versus log2(N) for different schedulers.

where σ2
1 and σ2

2 are the variances of h̃1,q and h̃2,q, respectively. We can verify that 1)

µ1 ≜ E[h̃1,q] = Nβr,q + βd,q, and µ2 ≜ E[h̃2,q] = βd,q 2) σ
2
1 = (Nβr,q + βd,q)

2, and σ2
2 = β2

d,q.

Thus, we get ρ12 =
(
E
[
h̃1,qh̃2,q

]
− (Nβr,q + βd,q) βd,q

)/
(Nβr,q + βd,q) βd,q. Using (4.18),

it is easy to verify that E
[
h̃1,qh̃2,q

]
= Nβr,qβd,q + 2β2

d,q. After simplification, we have

ρ12 =
1

(1 +N (βr,q/βd,q))
, (4.50)

which decays inversely with N . We now use a result from [128, Eq. 4.24] which charac-

terizes the distribution of the difference of two dependent and non-identically distributed

chi-square random variables, and obtain the CDF of Z(Y )
N as

F
Z

(Y )
N

(z) =


8

µ1µ2(1− ρ212)γα− e

(
α−z
4

)
, if z < 0,

1− 8

µ1µ2(1− ρ212)γα+
e
−
(

α+z
4

)
, if z ≥ 0,

(4.51)

where

γ =
2
√

(µ2 − µ1)
2 + 4µ1µ2(1− ρ212)

µ1µ2(1− ρ212)
;α± = γ ± 2 (µ2 − µ1)

µ1µ2(1− ρ212)
. (4.52)
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For large N , using (4.50) to let ρ12 → 0 in (4.51), (4.52), and recognizing that ∀z,
F̄
Z

(Y )
N

(z) = 1− F
Z

(Y )
N

(z), we obtain

F̄
Z

(Y )
N

(z) =


1− µ2

µ1 + µ2

e
z
µ2 , if z < 0,

µ1

µ1 + µ2

e
− z

µ1 , if z ≥ 0,
(4.53)

Substituting for µ1 and µ2 into (4.53) completes the proof. ■

Appendix 4.C Proof of the decay rate of outage prob-
ability and SNR offset at in-band UEs

Below, we compute the decay rate of the outage probability and SNR offset for the in-band

UEs (as in Theorem 4.2).

4.C.a Outage Probability

Let X ≜

∣∣∣∣|hd|+∑
n

|fn||gn|
∣∣∣∣2 be the channel gain at an arbitrary in-band UE (dropping

index k). Then, the outage probability is

P ρ
out = Pr(X ≤ ρ). (4.54)

Since the true distribution of X is complicated due to multiple products and summations,

we find an upper bound on P ρ
out as

X =

∣∣∣∣∣|hd|+∑
n

|fn||gn|
∣∣∣∣∣
2

≥
∣∣∣∣∣∑
n

|fn||gn|
∣∣∣∣∣
2

≜ Y, almost surely.

As a result, we have

P ρ
out = Pr(X ≤ ρ) ≤ Pr

∣∣∣∣∣∑
n

|fn||gn|
∣∣∣∣∣
2

≤ ρ

 . (4.55)
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Now by Central Limit Theorem (CLT) [129], we have

Z ≜
∑
n

|fn||gn| −→ N
(
N
π

4

√
βr, N

(
1− π2

16

)
βr

)
. (4.56)

Using (4.56), we can simplify (4.55) as

P ρ
out

(a)

≤ 1−Q
( √

ρ

c1
√
N
− c2
√
N

)
−Q

( √
ρ

c1
√
N

+ c2
√
N

)
(b)≈ 2Q

(
c2
√
N
)
, (4.57)

where, in (a), c1 ≜
√(

1− π2

16

)
βr and c2 ≜ π√

16−π2 , and (b) follows as for fixed ρ,
√
ρ

c1
√
N
→

0 for large N . Now, by applying the Chernoff bound to Q(·) in (4.57), we see that

Q(c2
√
N)→ 0 at the rate of O(e−N). Hence, the outage probability in (4.54) also decays

at least as fast as O(e−N).

4.C.b CCDF of the SNR offset

Let the channel gain with and without an IRS be h1 ≜
∣∣∣∣|hd|+∑

n

|fn||gn|
∣∣∣∣2 and h2 ≜ |hd|2.

To compute the CCDF of O ≜ h1 − h2, using (4.56), we notice

F̄O(ρ) ≜ Pr (h1 − h2 ≥ ρ) ≥ Pr

(
|Z|2 − |hd|2︸ ︷︷ ︸

≜O′

≥ ρ

)
. (4.58)

Now, we can simplify the lower bound of (4.58) as

Pr
(
|Z|2−|hd|2≤ ρ

)
= EZ

[
Pr
(
|z|2−|hd|2≤ ρ|Z = z

)]
(4.59)

= EZ
[
Pr
(
|hd|2≥ |z|2−ρ|Z = z

)] (a)
= EZ

[
e
−
(

|z|2−ρ
βd

)]
(4.60)

=

√
8

Nπ(16− π2)βr

∫ ∞

−∞
e
−
(

|z|2−ρ
βd

+
(z−N π

4
√

βr)
2

2N(1−π2
16 )βr

)
dz, (4.61)

where in (a), we used the property of the exponentially distributed random variable |hd|2.
To compute the above integral, we define α ≜ 2N

(
1− π2

16

)
βr, η ≜ N π

4

√
βr.
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Then, by using standard integral solvers, we can show that

Pr
(
|Z|2−|hd|2≥ ρ

)
= 1−

√
βd√

βd + α
e
−
(

βdη
2−(βd+α)ρ

β2
d
+αβd

)
. (4.62)

The above probability can be shown to be proportional to

1− (1/
√
N)× e−N × e(

1/N
1/N ) ∼ 1−O

(
e−N

)
. (4.63)

Thus, the lower bound grows to 1 exponentially in N , and hence the CCDF of the random

variable O also grows to 1 at least as fast as the decay rate of e−N to 0. ■

Appendix 4.D Proof of Theorem 4.3

We derive the SEs of both operators separately below.

4.D.a Ergodic sum-SE of operator X

Let the average SE seen by UE-k be ⟨S(X)
k,1 ⟩. Then the ergodic sum-SE of operator X is

S̄
(X)
1 = 1

K

K∑
k=1

⟨S(X)
k,1 ⟩. By Jensen’s inequality,

⟨S(X)
k,1 ⟩ ≤ log2

(
1 + E

[
|hk|2

] P
σ2

)
. (4.64)

We recognize that

|hk|2 =
∣∣NγX,kȧHN(ω1

X,k)θ
opt + hd,k

∣∣2 (4.65)

(a)
=

∣∣∣∣∣hd,k +N2hd,k |γX,k|2
|hd,kγX,k|

× ȧHN(ω
1
X,k)ȧN(ω

1
X,k)

∣∣∣∣∣
2

, (4.66)

where (a) is due to (4.27). Further, using ȧHN(ω
1
X,k)ȧN(ω

1
X,k) = 1

N
, we can compute

E
[
|hk|2

]
= E

[
||hd,k|+N |γX,k||2

]
= E

[
|hd,k|2

]
+N2E

[
|γX,k|2

]
+ 2NE [|hd,k| |γX,k|]. Using

the results from Sec. 4.2.b, this can be simplified as

E
[
|hk|2

]
= N2βr,k +N

(
π3/2

4

)√
βr,kβd,k + βd,k. (4.67)
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Substituting the above in (4.64), and plugging it into the expression for S̄(X)
1 yields (4.28).

4.D.b Ergodic sum-SE of operator Y

Recall that the ergodic sum-SE of operator Y is S̄(Y )
1 = 1

Q

Q∑
q=1

⟨S(Y )
q,1 ⟩. Then, the channel

seen by an arbitrary OOB UE, say UE-q, can be derived in a similar manner as (4.25) and

is given by

hq = hd,q +
N√
L

L∑
l=1

γ
(1)
l,Y γ

(2)
l,q ȧ

H
N(ω

l
Y,q)θ

opt, (4.68)

where θopt is given by (4.27), and γ(1)l,Y , γ
(2)
l,q denote the channel gains of the paths between

BS-IRS, and IRS-UE, respectively, corresponding to the lth cascaded path. Then we have

hq = hd,q +
N2

√
L

L∑
l=1

γ
(1)
l,Y γ

(2)
l,q

hd,kγ
∗
X,k

|hd,kγX,k|
ȧHN(ω

l
Y,q)ȧN(ω

1
X,k)

= hd,q +
N2

√
L

L∑
l=1

γ
(1)
l,Y γ

(2)
l,q

ej
̸ hd,k

ej ̸ γX,k

ȧHN(ω
l
Y,q)ȧN(ω

1
X,k)

d
= hd,q +

N2

√
L

L∑
l=1

γ
(1)
l,Y γ

(2)
l,q ȧ

H
N(ω

l
Y,q)ȧN(ω

1
X,k), (4.69)

where, in the last step, we used the fact that the product term γ
(1)
l,Y γ

(2)
l,q is circularly sym-

metric. We also have

⟨S(Y )
q,1 ⟩ ≜ E

[
S
(Y )
q,1

]
= E

[
log2

(
1 + |hq|2

P

σ2

)]
. (4.70)

Consider L < N . Now, let E1 be the event that one of the L angles of the OOB channel

“matches” with the IRS angle, and E0 be the event that none of the L angles of the OOB

channel match with the IRS angle. Then, we can write (4.70) as

⟨S(Y )
q,1 ⟩

(a)
=

1∑
i=0

E
[
S
(Y )
q,1 1{Ei}

]
(b)
=

1∑
i=0

E
[
S
(Y )
q,1

∣∣∣∣Ei]Pr(Ei), (4.71)

where 1{Ei} is the indicator for the occurrence of event Ei, (a) is because E0 and E1 are

mutually exclusive and exhaustive; (b) is due to the law of iterated expectations. Also,

from (4.7), and flat-top directivity of the IRS, Pr(E1) = L/N , and Pr(E0) = (1− L/N).
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Then from (4.8), and Jensen’s inequality, we have

E
[
S
(Y )
q,1

∣∣∣∣E1] ≤ log2

(
1 + E

[∣∣∣∣hd,q + N√
L
γ
(1)
l∗,Y γ

(2)
l∗,q

∣∣∣∣2
]
P

σ2

)
, (4.72)

and, E
[
S
(Y )
q,1

∣∣∣∣E0] ≤ log2

(
1 + E

[
|hd,q|2

] P
σ2

)
, (4.73)

where l∗ = argl
{
ȧHN(ω

l
Y,q)ȧN(ω

1
X,k) = 1/N

}
. We can show that (similar to Sec. 4.A.b),

E
[
|hq|2

∣∣∣∣E1] =

(
N2

L
βr,q + βd,q

)
, and E

[
|hq|2

∣∣∣∣E0] = βd,q. Collecting all the terms and

substituting in (4.70) and using the expression for S̄(Y )
1 yields (4.29). Now, when L ≥ N ,

since an N -element IRS can steer at most N resolvable beams, some of the paths will be

clustered together, and the above analysis holds by replacing L with N . We cover both

cases by L̄ = min{L,N} in (4.29).

Appendix 4.E Proof of Theorem 4.4

Assume L < N . From (4.69), we compute probability P =

Pr

∣∣∣∣∣hd,q + N2

√
L

L∑
l=1

γ
(1)
l,Y γ

(2)
l,q ȧ

H
N(ω

l
Y,q)ȧN(ω

1
X,k)

∣∣∣∣∣
2

< ρ

 . (4.74)

By the total law of probability, we obtain P = Pr(|hq|2< ρ|E1)Pr(E1)+Pr(|hq|2< ρ|E0)Pr(E0),
where E0 and E1 are as defined in Sec. 4.D.b. Thus, we can simplify P as

Pr

(∣∣∣∣hd,q + N√
L
γ
(1)
l∗,Y γ

(2)
l∗,q

∣∣∣∣2 < ρ

)
Pr(E1) + Pr

(
|hd,q|2 < ρ

)
Pr(E0). (4.75)

Let
{
γ̃
(1)
l∗,Y , γ̃

(2)
l∗,q

}
≜
√

N√
L

{
γ
(1)
l∗,Y , γ

(2)
l∗,q

}
. Then, by [130, Eq. 17],

Pr

(∣∣∣hd,q + γ̃
(1)
l∗,Y γ̃

(2)
l∗,q

∣∣∣2 < ρ

)
= 1− Le

Lβd,q

N2βr,q

N2βr,q
I0
(
ρ; βd,q,

N2

L
βr,q

)
. (4.76)

Also, Pr(|hd,q|2 < ρ) = 1− e−ρ/βd,q . Collecting these together completes the proof of (4.30)

when L < N . Similarly, we can prove for L ≥ N . To obtain (4.31), it suffices to show that
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Figure 4.18: Graph of f ′(ρ) vs. ρ with N = 128.

∀L ≶ N, Pr(G1 > ρ)− Pr(G0 > ρ) ≥ 0
(a)⇐⇒

L̄

N

 L̄e L̄βd,q

N2βr,q

N2βr,q
I0
(
ρ; βd,q,

N2

L̄
βr,q

)
− e−ρ/βd,q

 ≥ 0, (4.77)

where (a) is due to (4.30). From [131], we know that I0(·) is related to the generalized

upper incomplete Gamma function Γ(α, x; b) for appropriate α, x, b, and hence we can

simplify

I0
(
ρ; βd,q,

N2

L̄
βr,q

)
=
N2βr,q
L̄

Γ

(
1,

L̄βd,q
N2βr,q

;
L̄ρ

N2βr,q

)
. (4.78)

Then, it suffices to show that

f(ρ) ≜ e
L̄βd,q

N2βr,q Γ

(
1,

L̄βd,q
N2βr,q

;
L̄ρ

N2βr,q

)
︸ ︷︷ ︸

≜f1(ρ)

− e−ρ/βd,q︸ ︷︷ ︸
≜f2(ρ)

≥ 0. (4.79)

We first prove a few properties of f(ρ). 1) f(0) = 0: Clearly, f2(0) = 1. Now, f1(0) =

e
L̄βd,q

N2βr,q Γ
(
1,

L̄βd,q
N2βr,q

; 0
)
. But, Γ (1, x; 0) = Γ(1, x) where Γ(α, x) is the upper incomplete

Gamma function. Hence, f1(0) = e
L̄βd,q

N2βr,q Γ
(
1,

L̄βd,q
N2βr,q

)
. But from [132, Eq. 8.4.5], Γ (1, x) =

e−x. Thus, f1(0) = 1 and hence f(0) = f1(0) − f2(0) = 0. 2) f(ρ) is non-decreasing :
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From [133], ∂Γ(α, x; b)/∂b = −Γ(α−1, x; b) and thus, f ′
1(ρ) = −e

L̄βd,q

N2βr,q Γ
(
0,

L̄βd,q
N2βr,q

; L̄ρ
N2βr,q

)
.

Further, for practical values of the system parameters, L̄βd,q/N2βr,q ≤ 1, and thus we

can approximate f ′
1(ρ) ≈ −2e

L̄βd,q

N2βr,qK0

(
2
N

√
L̄ρ
βr,q

)
, whereK0(x) is the zeroth-order modified

Bessel function of the second kind. Further, f ′
2(ρ) = − (1/d) e−

ρ
d . Hence, we can show that

f ′(ρ) = f ′
1(ρ) − f ′

2(ρ) ≥ 0 ∀ρ ∈ R+ (see Fig. 4.18). Finally, since f(ρ) is non-decreasing,

f(ρ) ≥ f(0) = 0. ■

Appendix 4.F Proof of Lemma 4.1

Using (4.34), we simplify ρν,θ = NE
[∣∣ȧH(ν)θopt

∣∣] as

= E


∣∣∣∣∣∣∣∣∣
N∑
n=1

ejπ(n−1)ν

L∑
l=1

γ
(1)∗
l,X γ

(2)∗
l,k e−j(n−1)πωl

X,k∣∣∣∣ L∑
l=1

γ
(1)∗
l,X γ

(2)∗
l,k e−j(n−1)πωl

X,k

∣∣∣∣

∣∣∣∣∣∣∣∣∣


(a)

≥ 1√
L
E

[
1

∥hc∥2

∣∣∣∣∣
N∑
n=1

ejπ(n−1)ν

L∑
l=1

γ
(1)∗
l,X γ

(2)∗
l,k e−j(n−1)πωl

X,k

∣∣∣∣∣
]

(b)
=

1√
L
E

[
1

∥hc∥2

∣∣∣∣∣
L∑
l=1

γ
(1)∗
l,X γ

(2)∗
l,k

N∑
n=1

ejπ(n−1)(ν−ωl
X,k)

∣∣∣∣∣
]

=
1√
L
E

[
1

∥hc∥2

∣∣∣∣∣
L∑
l=1

γ
(1)∗
l,X γ

(2)∗
l,k

ejN
π
2
(ν−ωl

X,k)

ej
π
2
(ν−ωl

X,k)
×

sin
(
0.5Nπ(ν − ωlX,k)

)
sin
(
0.5π(ν − ωlX,k)

) ∣∣∣∣∣
]
,

(4.80)

where hc ≜ [γ
(1)
1,Xγ

(2)
1,k, . . . , γ

(1)
L,Xγ

(2)
L,k]

T . Also, (a) is because
∣∣∣∣ L∑
l=1

γ
(1)∗
l,X γ

(2)∗
l,k e−j(n−1)πωl

X,k

∣∣∣∣ ≤√
L

L∑
l=1

|γ(1)l,Xγ
(2)
l,k |2 (the Cauchy-Schwarz inequality), and (b) is obtained by changing the

order of summation. We recognize that

sin
(
0.5Nπ(ν − ωlX,k)

)
sin
(
0.5π(ν − ωlX,k)

) = FN(ν − ωlX,k), (4.81)

where FN(·) is the Fejér Kernel given by

FN(x) =

N + o(N), if x = 0,

o(N), if x = ± k
N
, k ∈ N.

(4.82)
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As a consequence, we have

FN(ν − ωlX,k) =

N + o(N), if ν ∈
{
ω1
X,k, . . . , ω

L
X,k

}
,

o(N), if ν ∈ Φ \
{
ω1
X,k, . . . , ω

L
X,k

}
.

(4.83)

Thus, when ν ∈ Φ\
{
ω1
X,k, ω

2
X,k, . . . , ω

L
X,k

}
, ρν,θ

N→∞−→ 0; and when ν ∈
{
ω1
X,k, ω

2
X,k, . . . , ω

L
X,k

}
,

we have ρν,θ ≥
N√
L
× E

[ |hl∗|
∥hc∥2

]
, implying ρν,θ = Ω

(
N√
L

)
+ o(N). ■

Appendix 4.G Proof of Theorem 4.5

We derive the SEs of both operators separately below.

4.G.a Ergodic sum-SE of operator X

As before, we first compute the ergodic SE of UE-k, ⟨S(X)
k,L ⟩, and then evaluate the ergodic

sum-SE of operator X. Using (4.32) and (4.34), the ergodic SE of UE-k is bounded by

⟨S(X)
k,L ⟩ ≤ log2

1 + E

∣∣∣∣∣|hd,k|+ 1√
L

N∑
n=1

∣∣∣∣∣
L∑
l=1

γ
(1)
l,Xγ

(2)
l,Ke

jπ(n−1)ωl
X,k

∣∣∣∣∣
∣∣∣∣∣
2
 P

σ2

 . (4.84)

Using the fact that the distribution of γ(1)l,Xγ
(2)
l,K is circularly symmetric, we can rewrite the

inner term as

E

∣∣∣∣∣|hd,k|+ N√
L

∣∣∣∣∣
L∑
l=1

γ
(1)
l,Xγ

(2)
l,K

∣∣∣∣∣
∣∣∣∣∣
2
 = E

|hd,k|2+N2

L

∣∣∣∣∣
L∑
l=1

γ
(1)
l,Xγ

(2)
l,K

∣∣∣∣∣
2

+
2N√
L
|hd,k|

∣∣∣∣∣
L∑
l=1

γ
(1)
l,Xγ

(2)
l,K

∣∣∣∣∣
 .

(4.85)

Term I : It is straightforward to see that E[|hd,k|2] = βd,k.

Term II : Finally, we can write

E

∣∣∣∣∣
L∑
l=1

γ
(1)
l,Xγ

(2)
l,K

∣∣∣∣∣
2
 = E

[
L∑
l=1

∣∣∣γ(1)l,Xγ
(2)
l,K

∣∣∣2]+ E

[
L∑

l,ℓ=1;l ̸=ℓ

γ
(1)
l,Xγ

(2)
l,Kγ

(1)∗
ℓ,X γ

(2)∗
ℓ,K

]
(a)
= Lβr,k, (4.86)
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where (a) is due to the zero-mean and independence of
{
γ
(1)
l,X , γ

(2)
l,K

}
l
across the paths.

Term III : We have the following sequence of relations

E

{
|hd,k|

∣∣∣∣∣
L∑
l=1

γ
(1)
l,Xγ

(2)
l,K

∣∣∣∣∣
}

(a)

≤ E|hd,k|

√√√√√E

∣∣∣∣∣
L∑
l=1

γ
(1)
l,Xγ

(2)
l,K

∣∣∣∣∣
2
 =

1

2

√
πβd,k ·

√
Lβr,k,

where (a) follows by using the independence of hd,k and
L∑
l=1

γ
(1)
l,Xγ

(2)
l,K , followed by the Jensen’s

inequality. Collecting all the terms yields (4.36).

4.G.b Ergodic sum-SE of operator Y

Consider the case L < N . As above, the channel seen at the UE-q is

hq = hd,q +
N√
L

L∑
l=1

γ
(1)
l,Y γ

(2)
l,q ȧ

H
N(ω

l
Y,q)θ, (4.87)

where θ is optimized by operator-X and is given by (4.34). The IRS vector aligns along L

directions of Φ, while the OOB UE’s channel is oriented along L directions independent

of the IRS. We let the random variable X denote the instantaneous SE at UE-q, and Y

denotes the number of matching (spatial) paths between the UE-q’s channel and the IRS

response. Clearly, the possible support of Y is the set of integers from 0 to L. We now

compute ⟨S(Y )
q,L ⟩ = E[X] as

E[X] = EY [EX [X|Y ]] =
∑
i

EX [X|Y = i]Pr(Y = i). (4.88)

When L < N , we can show that the probability mass function (pmf) of Y is given by

Pr(Y = i) =

(
L
i

)(
N−L
L−i

)(
N
L

) , i = i0, i0 + 1, . . . , L, (4.89)

and 0 otherwise, where
(
x
y

)
is the usual binomial coefficient, and i0 = max{0, 2L − N}.

This is because, if N −L ≤ L, not more than N −L spatial paths of the OOB channel can

be misaligned with the IRS, and hence, the support of the above pmf begins at 2L − N .

Next, we compute the term EX [X|Y = i], which is the average SE seen by UE-q when
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exactly i of the spatial paths are common between the IRS response and scheduled UE-q’s

channel angles. Then, EX [X|Y = i]

(a)

≤ log2

1 + E

∣∣∣∣∣hd,q + N√
L

∑
l′∈Ii

γl
′

Y,qȧ
H
N(ω

l′

Y,q)θ

∣∣∣∣∣
2
 P

σ2


(b)
= log2

1 + E

∣∣∣∣∣hd,q + N

L

∑
l′∈Ii

γl
′

Y,q

∣∣∣∣∣
2
 P

σ2

 , (4.90)

where (a) is due to Jensen’s inequality, γl′Y,q ≜ γ
(1)
l′,Y γ

(2)
l′,q, and Ii denotes the index set of the

common path indices between the IRS and UE-q’s channel such that |Ii|= i, and (b) is

due to Lemma 4.1. By expanding the square term and using the statistics of the random

variables, we can show that the above expectation becomes βd,q + iN
2

L2 βr,q. Plugging this

into (4.88) and evaluating the ergodic sum-SE yields (4.37) when L < N . Now, for L ≥ N

(and hence L̄ ≜ min{L,N} = N), since the IRS can orient to at most N beams, with

probability 1, every channel path of the UE is aligned to one of directions to which the

IRS is steered. Thus, we have ⟨S(Y )
q,L ⟩

≤ log2

1 + E

∣∣∣∣∣hd,q +√N
N∑
l=1

γlY,qȧ
H
N(ω

l
Y,q)θ

∣∣∣∣∣
2
 P

σ2


= log2

1 + E

∣∣∣∣∣hd,q +
N∑
l=1

γlY,q

∣∣∣∣∣
2
 P

σ2

 (4.91)

= log2

(
1 + (βd,q +Nβr,q)

P

σ2

)
. (4.92)

The proof of (4.37) for L ≥ N now easily follows. ■



5 Distributed IRSs Always Benefit
Every Mobile Operator

Chapter Highlights
In this chapter, we investigate the impact of multiple distributed intelligent reflecting surfaces

(IRSs), which are deployed and optimized by a mobile operator (MO), on the performance of
user equipments (UEs) served by other co-existing out-of-band (OOB) MOs that do not control
the IRSs. We show that, under round-robin scheduling, in mmWave frequencies, the ergodic
sum spectral efficiency (SE) of an OOB MO increases logarithmically in the total number of IRS
elements with a pre-log factor that increases with the ratio of the number of OOB paths through
the IRS to the number of elements at an IRS. We further show that the maximum achievable SE
of the OOB MO scales log-linearly with the total IRS elements, with a pre-log factor of 1. Then,
we specify the minimum number of IRSs as a function of the channel parameters and design a
distributed IRS system in which an OOB MO almost surely obtains the maximum SE. Finally, we
prove that the outage probability at an OOB UE decreases exponentially as the number of IRSs
increases, even though they are randomly configured from the OOB UE’s viewpoint. The latter
is attributed to the fact that multiple distributed IRSs enable spatial diversity in the channel at a
UE served by an OOB UE. We numerically verify our theory and conclude that distributed IRSs
always help every MO, but the MO controlling the IRSs benefits the most.
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5.1 Introduction

Intelligent reflecting surfaces (IRSs) have been envisioned to meet the high data re-

quirements for future wireless systems [3, 134, 135]. They are made up of several passive

elements that can be independently tuned to reflect signals in desired directions. Further,

in a distributed version of it, multiple IRSs are uniformly spread out in the environment,

which provides additional diversity benefits to the system. Also, in practice, multiple

mobile operators (MOs) coexist in a geographical area and independently serve multiple

user equipments (UEs) over non-overlapping frequency bands. Then, it is important to

understand how a distributed IRS deployed and optimized by only one of the MOs affects

the performance of other out-of-band (OOB) MOs. This aspect is pertinent because an

IRS does not have a band-pass filter and reflects every signal that impinges on it over a

wide bandwidth. This chapter analyzes the impact of distributed IRSs on other MOs in

the mmWave band.

A few works in the literature have shown that distributed IRSs improve multiplexing

gains in multiple antenna systems [134,135]. Similarly, they have been used to reduce link

blockages in ultra-reliable and low-latency communication (URLLC) applications [136].

Further, multiple IRSs can be used to improve coverage in cellular systems [5]. Also,

distributed IRSs have been leveraged to efficiently mitigate multi-user interference in multi-

user scenarios [137]. Finally, these merits can be obtained with minimal channel estimation

overheads [138].

The above-mentioned existing works implicitly assume that a single MO controls the

IRSs. However, if multiple MOs simultaneously exist and only one of them deploys multiple

IRSs to serve its UEs optimally, then the impact of the IRSs on the performance of the

OOB MOs (which do not control the IRSs) is unexplored but is an important aspect to be

understood in real-world deployment scenarios. Further, BSs of different MOs typically

do not cooperate with each other. Hence, existing approaches that jointly optimize the

IRS phases by cooperation across BSs cannot be used to solve this problem. Although we

studied this aspect in a single IRS case in Chapter 4, which is published in [80], the channel

properties in distributed IRSs are different due to multiple independent links offered by
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the IRSs. This leads to new results & insights, so it merits an independent study for the

multiple IRS scenario.

We consider two MOs, X and Y, operating on non-overlapping mmWave bands. The

(in-band) MO X deploys and optimizes multiple distributed IRSs to serve a UE in every

time slot. The (OOB) MO Y does not deploy any IRS and is oblivious to MO X’s IRSs.1

Then, our key contributions are:

1. Under round-robin (RR) scheduling, we derive the ergodic sum spectral efficiencies (SE)

of the MOs. If N is the total number of IRS elements, we show that the SE of MO X

grows as O(2 log2(N)), and the SE of MO Y scales as O(τ log2(N)), where the pre-log

factor τ ∈ [0, 1] increases with the ratio of the number of OOB paths through the IRS

to the number of elements at an IRS. (See Theorem 5.1.)

2. We design a distributed IRS system and specify the minimum number of IRSs for MO

Y to almost surely achieve the maximum SE (i.e., for τ = 1.) (See Proposition 5.1.)

3. Finally, we show that the outage probability at an arbitrary OOB UE decreases expo-

nentially as the number of IRSs deployed by MO X increases. (See Theorem 5.2.)

Through numerical simulations, we affirm that distributed IRSs enhance the performance

of not only the UEs for which it is optimized but also of other OOB UEs at no additional

signal processing costs, both instantaneously and on average.

Notation: For general notations used in this chapter, see the section on “General Mathe-

matical Notations” on page ix. For the notations/variables specific to this chapter, please

refer to Table 5.1.

5.2 System Model and Problem Statement

We consider a wireless system where two MOs, X and Y, provide services to K and Q UEs

on non-overlapping mmWave frequency bands using their base stations: BS-X and BS-Y,

1The broad conclusions of this chapter can be shown to hold for any number of OOB MOs and also
when every MO has its own set of IRSs.
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Variable Definition Variable Definition
S Number of IRSs γ

(1)
i,s,p Gain of ith path from BS-p to IRS-s

M Number of elements at an IRS γ
(2)
j,s,t Gain of jth path from IRS-s to UE-t

N Total number of IRS elements γp,s,t
Dominant cascaded path from
BS-p to UE-t via IRS-s

K Number of UEs served by BS-X hd,k Direct channel from BS-X to UE-k
Q Number of UEs served by BS-Y hd,q Direct channel from BS-Y to UE-q

L
(1)
s,p Number of paths from BS-p to IRS-s gs,k/

gs,q
Channel from IRS-s to UE-k/q

L
(2)
s,t Number of paths from IRS-s to UE-t fXs /fYs Channel from BS-X/Y to IRS-s

L
No. of cascaded paths via IRS
(L = L1L2)

θs or
Θs

Phase shift vector/matrix at IRS-s

ω1
X,s,k

Dominant cascaded normalized angle
from BS-X to UE-k via IRS-s

ωℓY,s,q
Cascaded normalized angle from
BS-Y to UE-q via IRS-s in ℓth path

P Transmit power at the BS βx Path loss in link-x

σ2 Noise variance at the UE S̄
(X)
M /
S̄
(Y )
M

Achievable ergodic sum-SEs
of MOs X / Y

d/λ
Ratio of inter-elemental spacing
to the signal wavelength

hk/hq
Overall channel from BS-X to UE-k
/ BS-Y to UE-q

Table 5.1: Commonly encountered variables/notations in chapter 5.

as shown in Fig. 5.1. For simplicity and to isolate the impact of IRSs on the system, we

consider a single antenna BSs [139]. However, all our results directly extend to multiple

antenna BSs. MO X deploys and optimizes S > 1 distributed IRSs with M elements each

(with a total of N = SM IRS elements) to optimally serve its (in-band) UEs in every time

slot. On the other hand, MO Y does not have an IRS and is oblivious to the presence of

MO X’s IRSs. The downlink signal received at the kth (in-band) UE served by BS-X is2

yk =

(
hd,k +

S∑
s=1

gTs,kΘsf
X
s

)
xk + nk, (5.1)

where {gs,k, fXs } ∈ CM×1 are the channels from sth IRS to kth UE and BS-X to sth IRS,

respectively; the diagonal matrix Θs contains the phase shifts of the elements at sth IRS,

2We neglect inter-IRS reflections; they experience higher path loss and contribute to negligible received
energy compared to single IRS reflections.
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direct links

Figure 5.1: Network scenario of a distributed IRS-aided two-operator system.

i.e.,

Θs ≜ diag
([
ejζ1,s , ejζ2,s , . . . , ejζM,s

])
∈ CM×M , (5.2)

where ζm,s is the phase shift at mth element of sth IRS, hd,k is the direct channel from BS

to UE-k. Also, xk is UE-k’s data symbol with E[|xk|2] = P , and nk is the additive noise

with nk ∼ CN (0, σ2). Similarly, at OOB UE-q served by BS-Y,

yq =

(
hd,q +

S∑
s=1

gTs,qΘsf
Y
s

)
xq + nq. (5.3)

We consider the Saleh-Valenzuela channel model [65]:

fps =

√
M

L
(1)
s,p

L
(1)
s,p∑
i=1

γ
(1)
i,s,pa

∗
M(ϕis,p); and gs,t =

√
M

L
(2)
s,t

L
(2)
s,t∑
j=1

γ
(2)
j,s,ta

∗
M(ψjs,t), (5.4)

where p ∈ {X, Y }, L(1)
s,p and L(2)

s,t are the number of resolvable spatial paths in the BS-p to

sth IRS, and sth IRS to UE-t links, respectively. For notational simplicity, we let L(1)
s,X =

L
(1)
s,Y ≜ L1, and L(2)

s,t = L2 ∀t, s. Further, ϕis,p and ψjs,t denote the sines of the angle of arrival

of the signal from BS-p at sth IRS in the ith path, and the departure from sth IRS to the

tth UE in the jth path, respectively, where sine of an angle (ϕχ) is related to the physical

angle (χ) by3 ϕχ = (2d/λ) sin(χ). Here, d and λ represent the IRS inter-element distance

3In the sequel, the term “angle" will denote the sine of a physical angle.
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and the signal wavelength, respectively. The fading coefficients, hd,t, γ
(1)
i,s,p and γ

(2)
j,s,t, are

independently sampled from CN (0, βd,t), CN (0, βfp), and CN (0, βg,t), respectively, where

β’s are the link path losses.4 The array response vector of a uniform linear array (ULA)

based IRS is denoted by aM(ϕ), with angle ϕ (and d = λ/2)5:

aM(ϕ) = 1/
√
M
[
1, e−jπϕ, . . . , e−j(M−1)πϕ

]T
. (5.5)

Recall that an M -element IRS forms at most M resolvable beams [65, 121]. So, the path

angles in (5.4) are drawn independently and uniformly at random from the angle-book,

Φ ≜

{(
−1 + 2i

M

)
|i = 0, . . . ,M − 1

}
. Further, since only one of the L ≜ L1L2 cascaded

paths contains most of the energy, aligning the IRS along this path procures near-optimal

benefits at the in-band UEs. So, the overall channels to the in-band UEs can be simplified

by their dominant paths [66]. Using (5.4) in (5.1) with L1 = L2 = 1, the effective channel

for UE-k is, hk

= hd,k +M
S∑
s=1

γ
(1)
1,s,Xγ

(2)
1,s,ka

H
M(ψ1

s,k)Θsa
∗
M(ϕ1

s,X) (5.6)

(a)
= hd,k +M

S∑
s=1

(
γ
(1)
1,s,Xγ

(2)
1,s,k

(
aHM(ϕ1

s,X)⊙ aHM(ψ1
s,k)
))

θs

(b)
= hd,k +M

S∑
s=1

γX,s,kȧ
H
M(ω1

X,s,k)θs, (5.7)

where θs ≜ diag(Θs), (a) is due to the properties of Hadamard products. In (b), ω1
X,s,k ≜

sin−1
(
sin(ϕ1

s,X) + sin(ψ1
s,k)
)
, γX,s,k ≜ γ

(1)
1,s,Xγ

(2)
1,s,k, and ȧM(·) is the array vector normalized

by M (see (5.5)), i.e., ȧM(·) =
1√
M

aM(·). Also, since the IRS is not optimized for the

OOB UEs, we retain the channel at an OOB UE-q with all the paths and simplify it as

hq = hd,q +
M√
L

S∑
s=1

L∑
ℓ=1

γℓY,s,qȧ
H
M(ωℓY,s,q)θs, (5.8)

4We consider the path losses βfp and βg,t to be independent of the IRS index [126]. In practice, the
path losses of these links depend on the exact IRS locations. Optimizing the IRS locations is beyond the
scope of this work.

5The results in the chapter can be extended to other types of IRS geometries. We consider the ULA
geometry for simplicity [55].
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where L ≜ L
(1)
s,YL

(2)
s,q , {γℓY,s,q}Lℓ=1 ≜ {γ(1)i,s,Y γ

(2)
j,s,q}

L
(1)
s,Y ,L

(2)
s,q

i=1,j=1 ∀s.

We can now mathematically state our problem. Suppose the BS-X configures all the S

IRSs to maximize the SE at UE-k by solving the joint optimization problem (across the

IRSs): {
Θopt
s

}S
s=1

= argmax
{Θs}Ss=1

log2

1 +

∣∣∣∣∣hd,k +
S∑
s=1

gTs,kΘsf
X
s

∣∣∣∣∣
2

P

σ2

 , (P1)

subject to Θs ∈ CM×M being diagonal matrices with unit modulus entries. Then, these

phases are randomly tuned from an OOB UE’s viewpoint. This is because different MOs

do not coordinate with each other, and so it is not feasible to configure the IRSs that are

jointly optimal to UEs served by both BS-X and BS-Y. In this context, we address the

following:

1. What is the effect of the randomly configured IRSs on the ergodic SE of the UE served

by the OOB MO Y?

2. What is the best ergodic sum-SE that the OOB MO Y can obtain, and when is it

achievable?

3. How does the outage probability of (OOB) UE-q scale with S, M , and the channel

parameters?

We answer the above questions in the following sections.

5.3 Ergodic Sum Spectral Efficiency Analysis

We begin by noting that the optimal IRS configuration at the sth IRS, i.e., the solution

to (P1), can be obtained as

θopt
s =

hd,kγ
∗
X,s,k

|hd,kγX,s,k|
×M ȧM(ω1

X,s,k). (5.9)

Clearly, θopt
s has nonzero response in the direction of the in-band UE-k’s channel via the sth

IRS [80, Fig. 3]. However, since the OOB channels through the IRSs are also directional,
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with nonzero probability, one or more of the IRSs also align with an OOB UE’s channel.

Specifically, for single IRS with a flat-top beamforming pattern [122], with probability

L̄/M (L̄ ≜ min {L,M}), the IRS aligns with the OOB UE, and with probability 1 −
L̄/M , it does not align to the OOB UE, following a Bernoulli distribution [80, Proof of

Theorem 3]. Now, with S distributed IRSs, since the beam patterns are independent

across IRSs and the channels at the OOB UE via each IRS are independent, the overall

beamforming pattern at the OOB UE follows the distribution of the sum of S independent

and identically distributed Bernoulli random variables, i.e., the Binomial distribution. In

this view, we next characterize the sum-SE of MOs under round-robin (RR) scheduling of

UEs.

Theorem 5.1. Consider a distributed IRS-aided mmWave system consisting of S non-

colocated IRSs, each with M elements. Then, if the IRSs are optimized (as per (5.9)) to

serve the UEs of MO X in every time slot, the ergodic sum-SEs of MOs X and Y, S̄(X)
M

and S̄(Y )
M under RR scheduling, scale as

S̄
(X)
M ≈ 1

K

K∑
k=1

log2

(
1 +

[
N2

(
π2

16
+ η

(
1− π2

16

))
βr,k +N

π3/2

4

√
βd,kβr,k + βd,k

]
P

σ2

)
,

(5.10)

and S̄(Y )
M ≈

1

Q

Q∑
q=1

S∑
s=0

S!

(S − s) ! s!

(
L

M

)s(
1− L

M

)S−s

log2

(
1 +

[
sM2

L
βr,q + βd,q

]
P

σ2

)
, if L < M,

1

Q

Q∑
q=1

log2

(
1 + (βd,q +Nβr,q)

P

σ2

)
, if L ≥M,

(5.11)

respectively, where N is the total number of IRS elements (N = SM), and η ≜M/N .

Proof. See Appendix 5.A. ■

We observe from Theorem 5.1 that the ergodic sum-SE of even an OOB MO monotonically

grows in N , with the peak scaling of O(log2(N)) when L ≥ M . For L < M , as we show

in Sec. 5.6, the OOB SE scales as O(τ log2(N)) for τ ∈ [0, 1). Here, the exact value of

τ depends on how L compares with M . The primary reason for this improvement in the
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OOB SE is that the IRSs create more paths that enrich the channel at the OOB UEs. We

note that the above results generalize the work of [80], which considers S = 1. Further, the

SE at the (in-band) MO X still scales as O(2 log2(N)), similar to single IRS setups. Thus,

deploying multiple IRSs in a distributed manner retains optimal benefits at the in-band

MO and helps other MOs simultaneously at no significant overhead.

5.4 Design for achieving O(log2(N)) growth in OOB SE

From (5.11), it is clear that the OOB SE maximally scales log-linearly in the number of

IRS elements and is achieved when the number of paths L is sufficiently large. Specifically,

if L ≥ M , every IRS contributes to the signal at an OOB UE. We leverage this fact to

design new specifications for distributed IRS systems in the following result to almost

surely procure O(log2(N)) growth in the OOB SE for any L,N .

Proposition 5.1. Consider a system where an MO deploys and controls multiple IRSs in

a distributed fashion, using a total of N IRS elements. If the number of IRSs S each with

M elements providing L cascaded paths at an OOB UE, satisfy

M ≤M∗ ≜ N δ∗ , and, S ≥ S∗ ≜
⌈
N1−δ∗⌉ , (5.12)

where δ∗ = min{1, logN L}, then almost surely, the OOB SE attains the maximum scaling

of O(log2(N)) for any N,L.

Proof. If S and M satisfy (5.12), we have L/M ≥ 1 under any scenario. Thus, almost

surely, every IRS contributes to the signal at an OOB UE. So, the overall channel at the

OOB UE is (5.22), for which the ergodic SE scales as O(log2(N)). ■

Proposition 5.1 says that if the number of paths is L = N δ for 0 ≤ δ ≤ 1, then a dis-

tributed system designed as per (5.12) gives maximum possible benefits at the OOB MO.

In this case, the rate-scaling laws precisely match those derived for the sub-6 GHz bands

in the previous chapter. Specifically, when multiple IRSs are deployed in a distributed

manner, the channel exhibits rich scattering characteristics, and hence, the properties of
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the channel are largely governed by the properties of sub-6 GHz bands of communications.

Further, this does not affect the optimal growth of the SE for MO X.

Next, we analyze the instantaneous channel characteristics at an OOB UE due to these

arbitrarily configured IRSs.

5.5 Outage Probability Evaluation

We now examine the outage probability of an OOB UE-q as a function of the IRS and

channel parameters. The outage probability is P ρ
out,q ≜ Pr(|hq|2≤ ρ), which from (5.8)

becomes

P ρ
out,q = Pr

∣∣∣∣∣hd,q + M√
L

S∑
s=1

L∑
ℓ=1

γℓY,s,qȧ
H
M(ωℓY,s,q)θs

∣∣∣∣∣
2

≤ ρ

 . (5.13)

Intuitively, each IRS provides an independent link at the OOB UE, so multiple IRSs should

provide better diversity gains than single or no IRS scenarios. We have the following result.

Theorem 5.2. The outage probability at an OOB UE-q due to S randomly configured and

distributed IRSs, each with M elements and contributing to L paths, is given by

P ρ
out,q =

(
1− e−ρ/βd,q

)
PS0 , (5.14)

where

P0 = 1− L̄

M

 L̄e
L̄βd,q
M2βr,q

M2βr,q
I0
(
ρ; βd,q,

M2

L̄
βr,q

)
− e

−
ρ

βd,q

− e
−
ρ

βd,q ,

L̄ ≜ min{L,M}, and I0(x; c1, c2) ≜
∫ ∞

c1

e
−

x
t
+
t

c2


dt.

Proof. See Appendix 5.B. ■

Theorem 5.2 clearly shows that the outage probability at an OOB UE decreases ex-

ponentially in S, even though the IRSs are randomly configured from UE-q’s viewpoint.

Thus, a distributed IRS-aided system provides instantaneous benefits even to an OOB
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IRS Locations

Circumcircle of the
region where UEs

are located

Area where all
UEs are located

Figure 5.2: System setup for S = 4.

MO without incurring optimization costs. We next illustrate our findings via Monte Carlo

simulations.

5.6 Numerical Results

We consider that BS-X is located at (50, 0), BS-Y at (0, 50), and the UEs in a rectangular

region R ≜ [900, 1100] × [900, 1100]. The IRSs are uniformly spaced on a semi-circular

part of the circle that circumscribes R, as shown in Fig. 5.2. Note that our results hold

true for any other choice of IRS locations and the distance between the IRSs. The path

loss is modeled as β = C0(d0/d)
α, where C0 is the path loss at the reference distance d0, d

is the node distance, and α is the path loss exponent which is 2, 2.2 and 4.5 in the BS-IRS,

IRS-UE, and BS-UE links. Further, BS-X and BS-Y serve K = 10 and Q = 10 UEs using

an RR scheduler over 10, 000 time slots.

In Fig. 5.3, we plot the ergodic sum-SE of both MOs versus the total number of IRS

elements, N , for different values of S. We use C0 (P/σ
2) = 150 dB and L = 2 [80]. We

first observe that the SE of the MO X is invariant to the number of IRSs in the system.

Thus, the optimal SE scaling of O(2 log2(N)) is retained for any S. However, the OOB

SE significantly changes with S. For e.g., when S = 4, until some point, the OOB SE

log-linearly increases in N and then exhibits log-sub-linear growth for larger values of N

(in the regime where L < M), i.e., the pre-log factor of OOB SE lies in [0, 1). The latter is
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Figure 5.3: Ergodic sum-SE of the MOs X, Y vs. N . Results with S = 1 are reported in [80].

because, for large N and fixed small L, unless S is reasonably large, the OOB UE does not

benefit much. We then plot the OOB SE for S = S∗, where S∗ is as per Proposition 5.1.

In this case, as indicated in the data marked inside the figure, a 4× increase in N leads to

a boost of the SE by 2 bps/Hz. Note that 2 + log2(N) = 1 · log2 ((4N)). In other words,

the OOB SE uniformly achieves the (maximum) scaling of log2(N) with sufficiently many

IRSs. We also compare our results with those in [80], which considers S = 1 on the same

plot. The OOB SE obtained in distributed IRSs is clearly better than the single IRS case.

Also, the simulations match well with Theorem 5.1, illustrating the accuracy of the rate

laws and the Bernoulli distribution-based analysis for an OOB MO.

In Fig. 5.4, we illustrate the tightness of Proposition 5.1. Specifically, we plot the SE

pre-log factor: τ ≜ S̄
(X)/(Y )
M /log2(N) as a function of S. Each sub-plot represents a system

with different L, through δ ≜ logN L with N = 128. The plot shows that the result in

Proposition 5.1 is tight because, in all cases, when S < S∗, τ ∈ [0, 1), i.e., the OOB SE

grows only log-sub-linearly inN . Contrarily, for S ≥ S∗, the OOB-SE scales asO(log2(N))

for any N,L. Also, for the in-band UE, τ = 2, in line with Fig. 5.3. Further, since the

OOB SE does not depend on N in the absence of IRSs, we have τ = 0.
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Figure 5.4: Pre-log factor of OOB SE, τ vs. S as a function of δ (or L).

Finally, in Fig. 5.5, we plot the outage probability at an OOB UE (after normalizing the

channel path losses) with ρ = 0.5 as a function of S for different L through δ = logN L,

and N = 512. For a given δ (or L), the outage probability decreases exponentially in the

number of IRSs, in line with Theorem 5.2. Further, for a fixed S, the outage probability

decreases with δ as the likelihood that the randomly configured IRSs help the OOB UE

increases with the number of paths.

5.7 Conclusions

We studied the impact of distributed IRSs on the performance of an OOB MO that is

oblivious to the presence of the IRSs. We showed that the maximum SE of the OOB MO

grows log-linearly in the number of IRS elements; we also developed design specifications

that almost surely achieve this SE. Finally, we proved that the outage probability at an

OOB UE decays exponentially in the number of IRSs, free of cost. Thus, distributed IRSs
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Figure 5.5: Outage probability vs. S at an OOB UE.

help all MOs in the area. Future work includes extending our results to interference-limited

scenarios in multi-cell systems.

Appendix 5.A Proof of Theorem 5.1

We prove the theorem for MOs X and Y separately, one by one, below.

5.A.a Ergodic sum-SE of MO-X

Let the ergodic SE at an arbitrary UE served by MO X, say k, be ⟨Sk,XM ⟩. Then, the

ergodic sum-SE of MO X under RR scheduling is S̄(X)
M =

1

K

K∑
k=1

⟨Sk,XM ⟩. Computing the

exact expression for ⟨Sk,XM ⟩ leads to intractable forms and is not insightful. So, we apply

the Jensen’s approximation to ⟨Sk,XM ⟩ and obtain

⟨Sk,XM ⟩ = E
[
log2

(
1 + |hk|2

P

σ2

)]
≈ log2

(
1 + E

[
|hk|2

] P
σ2

)
, (5.15)
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where the expectations are taken with respect to the channels of UE-k. To evaluate |hk|2,
we use (5.9) in (5.7), and obtain the overall channel gain at UE-k as shown below:

|hk|2=
∣∣∣∣∣|hd,k|+M

S∑
s=1

|γX,s,k|
∣∣∣∣∣
2

= |hd,k|2+M2

(
S∑
s=1

|γX,s,k|
)2

+ 2M |hd,k|
S∑
s=1

|γX,s,k|. (5.16)

Next, we evaluate the expected values of the three terms in (5.16), below:

Term I: It is clear that E[|hd,k|2] = βd,k. Let βr,k ≜ βfXβg,k.

Term II: We compute this term as following:

E

( S∑
s=1

|γX,s,k|
)2
 = E

 S∑
s,p=1

s ̸=p

|γX,s,k||γX,p,k|+
S∑
s=1

|γX,s,k|2

 = S(S−1)
(π
4

√
βr,k

)2
+Sβr,k.

(5.17)

Collecting and re-arranging the factors, the expected value of M2

(
S∑
s=1

|γX,s,k|
)2

is

M2βr,k

[
S2π

2

16
+ S

(
1− π2

16

)]
.

Term III: Finally, we can show 2ME
[
|hd,k|

S∑
s=1

|γX,s,k|
]
= MS

π3/2

4

√
βr,kβd,k, due to inde-

pendence of hd,k and γX,s,k. Summing the above terms and using it in S̄(X)
M yields (5.10).

5.A.b Ergodic sum-SE of MO-Y

Let the ergodic SE at an arbitrary OOB UE, say q, be ⟨Sq,YM ⟩. Then, under RR scheduling,

the ergodic sum-SE is S̄(Y )
M =

1

Q

Q∑
q=1

⟨Sq,YM ⟩. First, we prove (5.11) for L < M . Define the

random variable As to denote whether the sth IRS aligns with the channel to OOB UE-q

or not; then As ∼ Ber(L/M) for all s. Further, let B count the number of IRSs aligning

to the channel of UE-q; then, B =
S∑

s=1

As. So, B ∼ Bin(S, L/M). Now,

⟨Sq,YM ⟩ = E|hq |2,B

[
log2

(
1 +
|hq|2P
σ2

)
1{B∈{0,1,2,...,S}}

]
(5.18)

(a)
=

S∑
s=0

E|hq |2

[
log2

(
1 +
|hq|2P
σ2

) ∣∣∣∣∣B = s

]
Pr(B = s) (5.19)

(b)≈
S∑

s=0

log2

(
1 + E

[
|hq|2

∣∣∣B = s
] P
σ2

)
Pr(B = s), (5.20)
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where (a) is due to the law of iterated expectations, and (b) is due to Jensen’s approxima-

tion, which is known to be numerically tight. Now, using the probability mass function of

a Binomial distribution, we have Pr(B = s) =
S!

(S − s)! s!

(
L

M

)s(
1− L

M

)S−s

. Further,

E
[
|hq|2

∣∣∣B = s
]

is the average channel gain at UE-q when the beams from exactly s of the

IRSs align with one of the L paths to UE-q through these IRSs. Then, the channel gain

due to these contributing IRSs is computed as (see (5.8))

|hq|2
∣∣∣ {B = s} =

∣∣∣∣∣hd,q + M√
L

s∑
s=1

γℓ
∗

Y,s,q

∣∣∣∣∣
2

, (5.21)

where γℓ∗Y,s,q is the channel gain of the cascaded path that aligns with the sth IRS. We can

now show that E
[
|hq|2

∣∣∣B = s
]
= (sM2/L)βr,q + βd,q, where βr,q ≜ βfY βg,q. Collecting all

the terms for (5.20) and plugging into S̄(Y )
M yields (5.11) for L < M . Now, for L ≥M , the

probability term L̄/M = 1. So, every IRS almost surely aligns with the OOB UE. Thus,

the overall channel gain and its mean are

|hq|2=
∣∣∣∣∣hd,q +√M

S∑
s=1

γℓ
∗

Y,s,q

∣∣∣∣∣
2

, and (5.22)

Nβr,q + βd,q, respectively. The proof can now be finished.

Appendix 5.B Proof of Theorem 5.2

Let Es denote the event that sth IRS aligns with the OOB UE’s channel. Then, E0 is the

event that no IRS aligns with the OOB channel. We can write

P ρ
out,q

(a)
= Pr

(
|hq|21{E0

⋃
E1
⋃
...
⋃

ES} ≤ ρ
)

(5.23)

= E1{E0},...,1{ES}

[
Pr

(
|hq|2≤ ρ

∣∣∣∣∣1{E0}, . . . ,1{ES}

)]
(5.24)

(b)
=

S∏
s=0

E1{Es}

[
Pr

(
|hq|2≤ ρ

∣∣∣∣∣1{Es}

)]
(5.25)

(c)
= Pr(|hd,q|2≤ ρ)

(
E1{E1}

[
Pr
(
|hq|2≤ ρ

∣∣∣1{E1}

)])S
, (5.26)
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where (a) is because {Es}Ss=0 is a set of mutually exhaustive events, (b) is because these

events are independent, and in (c), the first product term is because under E0, the channel

at UE-q is only due to the direct link from BS-Y, and the second term is because {hsq}Ss=1

and {1{Es}}Ss=1 are sets of i.i.d. random variables. Here, hsq is the component of hq via the

sth IRS. We can now evaluate the expectation term in (5.26) as

E1{E1}

[
Pr(|hq|2≤ ρ

∣∣∣1{E1})
]
=

(
1− L̄

M

)
(Pr(|hd,q|2≤ ρ))

+
L̄

M

(
Pr

(∣∣∣∣hd,q + M√
L̄
γℓ

∗

Y,1,q

∣∣∣∣2 ≤ ρ

))
. (5.27)

While it is easy to show that Pr(|hd,q|2≤ ρ) = 1 − e−ρ/βd,q , the second term in the above

can be computed using [80, Appendix C]. Finally, plugging all these values in (5.26)

yields (5.14).



6 Low-Complexity Channel
Estimation for Distributed
IRS-Aided MIMO Exploiting
Subspace Properties

Chapter Highlights
In the previous chapter, it was demonstrated that deploying multiple intelligent reflecting sur-

faces (IRSs) in a distributed manner in the environment enhances performance for all users.
However, this also introduces an additional challenge due to an increase in channel estimation
overhead due to the presence of more channel links. To address this, in this chapter, we propose
a novel method for estimating all cascaded IRS channels in a multiple-IRS-assisted mmWave
massive multiple-input multiple-output (MIMO) system. The proposed approach significantly
reduces pilot overhead compared to existing methods.
We exploit the inherent structure in mmWave channels to reformulate the channel estimation

problem as one of the directions of arrival (DoA) and departure (DoD) estimations in the cascaded
channel. In turn, this allows us to use subspace-based methods from array signal processing to
develop a joint estimation of signal parameters via rotational invariance technique (ESPRIT)-
multiple signal classification (MUSIC) algorithm for estimating the DoA at the BS and the DoD
from the UE. As described earlier, an attractive feature of the scheme is its low pilot overhead
requirement: unlike existing methods, the number of pilot symbols does not scale with the number
of IRS elements or the number of antennas at the BS; it only depends on the number of IRSs
deployed and the number of antennas at the UE. We compare our method against state-of-the-art
methods, and numerically illustrate its superior performance and robustness to the number of
IRSs in the system.

160
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6.1 Introduction

Intelligent reflecting surfaces (IRSs) are made of many passive elements that can be

tuned to reflect an incoming signal in any desired direction by appropriately adjusting the

reflection coefficients of the elements. This can be used to combine the signals coherently

reflected from the IRS elements at a desired location, enhancing the throughput/reliability

without costing additional bandwidth or transmit power [2,3,69]. However, realizing these

benefits is contingent upon accurately estimating the channel state information (CSI) of

all the links in the system.

We first briefly discuss existing work on CSI estimation in IRS-aided multi-antenna

mmWave systems to set the context of this chapter. A few basic approaches to estimating

all the channels (which include the cascaded and direct links) in the system using the

principle of least squares are described in [21,26,27]. However, these methods incur very

high complexity in terms of the number of pilot transmissions required (the overhead scales

linearly with the number of IRS elements in the system.) Furthermore, when multiple

non-co-located IRSs are deployed (called distributed IRS in this chapter) to enhance the

performance in dense heterogeneous networks [3,140–142], the channel estimation problem

becomes even more complex: the pilot overhead is proportional to the total number of

elements across all the IRSs [28, 29]. To circumvent these shortcomings, several works

aim to exploit the structure in the underlying IRS-aided mmWave wireless channels to

reduce the time complexity of the CSI estimation protocol. Specifically, they exploit

the fact that the channels exhibit a spatial sparsity structure that arises because there

are only a few line-of-sight (LoS) paths that propagate through the environment [30],

which in turn makes the BS-IRS and IRS-UE channels low-rank and sparse in the angular

domain. Subsequently, they use a sparse signal recovery-based algorithm to estimate the

CSI [31–35] under the compressed sensing paradigm. However, to successfully recover the

sparse channels under this framework, these algorithms require a certain minimum number

of antennas to be deployed at the BS and/or UE. Moreover, the performance guarantees

are contingent upon the effective measurement matrix satisfying a restricted isometry

property, which is hard to verify because the measurement matrix is not choosable in
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practice. Thus, although these approaches incur a low time complexity, they suffer from

high system requirements and computational complexity.

One approach to overcome the above-mentioned difficulty in CS-based approaches is

to pose the CSI estimation problem as one of direction finding/estimation and solve it

using subspace methods. Along this line, an initial study was conducted in [143], where

the authors use subspace methods, namely, estimation of signal parameters via rotational

invariance technique (ESPRIT) [144] and multiple signal classification (MUSIC) [145]

algorithms, to sequentially estimate the angles in the channel. However, a part of their

work assumes the availability of a few active IRS elements, which not only drives up the

cost of implementation but also requires additional signal processing at the IRS. Moreover,

the authors consider a system with a single IRS, i.e., they do not consider the scenario of

distributed IRSs. Thus, to the best of our knowledge, no existing work explores subspace-

based approaches for low complexity CSI acquisition in distributed IRS-aided mmWave

MIMO systems exploiting the spatial structure in the channels.

Our work, different from the existing approaches, considers a scenario of a distributed

IRS-aided mmWave massive MIMO (mMIMO) system. We exploit the channel structure to

estimate the cascaded CSI using subspace-based methods, namely, ESPRIT and MUSIC,

with low pilot overhead. Our specific contributions are as follows:

1. We reformulate the cascaded CSI estimation problem as one of the direction of arrival

(DoA) and direction of departure (DoD) estimation in an equivalent channel model. We

then develop a cascaded CSI estimation algorithm at the BS (in the uplink mode) for

distributed IRS-aided mMIMO systems by exploiting the spatial structure of mmWave

channels based on a combination of direction-finding algorithms in the array processing

literature. In particular, since the channel model has both DoAs and DoDs coupled,

we develop a joint ESPRIT-MUSIC algorithm that jointly estimates the DoA at the

BS and DoD from the UE, with the estimation being performed at the BS. The DoA is

estimated first and is passed as an input to the DoD estimator using an appropriately

chosen MUSIC-based cost function. Then, the path gain coefficients are estimated

using a low complexity least-squares (LS) method.
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We note that, by virtue of joint DoA-DoD estimations, the number of independent

variables to be estimated reduces to only the number of DoAs, and the corresponding

DoDs are computed using the MUSIC algorithm. As a consequence, the algorithm also

ensures that the DoA and corresponding DoD are paired automatically, without any

ambiguity pertaining to the cascaded links through the IRSs. This approach is different

from the conventional use of ESPRIT and MUSIC, where they are used to estimate

the angles separately. To the best of our knowledge, this is the first work that solves

the CSI estimation problem in a distributed passive IRS-aided mMIMO scenario using

joint subspace-based methods.

2. We show that our approach yields accurate channel estimates with a dramatically

reduced pilot overhead compared to conventional methods. This is made possible by the

aforementioned reformulation, which reduces the number of parameters to be estimated

to depend only on the total number of paths in the system, i.e., on the number of IRSs

and the number of antennas at the UE and not on the total number of IRS elements

and the number of BS antennas, which are generally very large in mmWave mMIMO

systems.

3. We compare our method against that in [33], where the sparsity in the angular domain

of the mmWave channel is exploited to formulate the problem as a multiple measure-

ment vector (MMV) based sparse recovery problem, which is then solved using simul-

taneous orthogonal matching pursuit (SOMP). We numerically show that our method

significantly outperforms SOMP, especially as the number of IRSs increases.

Thus, subspace-based methods are promising for low-complexity and low-overhead cas-

caded channel estimation in multiple IRS-assisted mmWave massive MIMO communica-

tions. The technique described in this chapter is also applicable to time division duplexed

(TDD) communications, where it can aid in acquiring the CSI of the downlink channel

by exploiting channel reciprocity.1 Thus, it can also be useful for IRS-aided downlink

1Our proposed channel estimation method works directly in the downlink also, with the estimation
being performed at the UE instead of at the BS.
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Variable Definition Variable Definition
K Number of IRSs H Overall uplink channel from UE to BS
Lk Number of elements at IRS-k Hd Direct channel from UE to BS
M Number of antennas at BS G Overall UE - BS cascaded channel
N Number of antennas at UE H2,k Channel from UE to IRS-k
Nk No. of paths from IRS-k to UE H1,k Channel from IRS-k to BS

ψk
Direction of arrival at
BS from IRS-k

ϕi,k
Direction of departure at
UE to IRS-k in ith path

Nd

No. of paths from UE to BS
in direct channel

γi,k
Gain of the cascaded channel
in the ith path via IRS-k

Θk Phase shift matrix at IRS-k T1, T2
Number of pilot transmissions in
short, long time scales

Table 6.1: Commonly encountered variables/notations in chapter 6.

communications.

Notation: For general notations used in this chapter, see the section on “General Mathe-

matical Notations” on page ix; and argmax(N) refers to the N dominant argument values.

For the notations/variables specific to this chapter, please refer to Table 6.1.

6.2 Channel Model

We consider a communication system comprising an M -antenna BS, K IRSs which are

deployed at arbitrary locations in the vicinity of the BS, with the kth IRS equipped with

Lk elements, and an N -antenna user equipment (UE), as shown in Fig. 6.1. For ease

of presentation, we assume that the antennas at the UE, BS, and the IRS elements are

configured as a uniform linear array (ULA) [76]. We index the IRSs by the set [K] ≜

{1, 2, . . . , K}. We consider uplink communication from the UE to the BS and focus on

developing low pilot overhead schemes for estimating the cascaded UE-IRS-BS channels

at the BS in this distributed IRS-assisted system.

Let the direct path from the UE to the BS be denoted by Hd ∈ CM×N . Let the channels

between the UE and the kth IRS be denoted by H2,k ∈ CLk×N and that between the kth

IRS and the BS be denoted by H1,k ∈ CM×Lk . We denote the reflection coefficient matrix
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Figure 6.1: An N -antenna UE is transmitting to an M -antenna BS, assisted by K IRSs, with
the kth IRS equipped with Lk elements.

at the kth IRS by the diagonal matrix Θk ∈ CLk×Lk where the diagonal elements are of

the form ηle
jθl , with ηl ≤ 1. The IRSs are envisioned to establish LoS links between the

BS and the IRS and between the IRS and the UE [86]. Hence, in the context of mmWave

communication, we consider the Saleh-Valenzuela model [146] to model all the channels.

The IRSs are typically deployed at a height and have strong LoS links with the BS. So, we

set the number of spatial paths between the BS and IRS to one,2 similar to [76], but there

can exist more than one spatial path between each UE and IRS. Specifically, the links via

the kth IRS are modeled as

H2,k =

Nk∑
i=1

αi,kaLk
(ωi,k)a

T
N(ϕi,k), ∀k ∈ [K], (6.1)

and

H1,k = βkaM(ψk)a
T
Lk
(νk), ∀k ∈ [K], (6.2)

where Nk represents the number of spatial paths between the UE and the kth IRS, αi,k and

βk represent the path gain coefficients of the ith path from the UE to kth IRS and the path

2It is straightforward to extend our algorithm to the case with multiple paths between the BS and
IRS, so this is not a major limitation of this work.



Chapter 6. 166

between the kth IRS and BS, respectively. Here, aX ∈ CX×1, X ∈ {N,M,L1, L2, . . . , LK}
represents the array steering response vector of a ULA (with inter-elemental distance set

to half the wavelength) and is given by aX(θ) = [1, e−jπ sin(θ), . . . , e−j(X−1)π sin(θ)]T , and

ωi,k, ϕi,k, ψk, νk represent the DoA at the kth IRS from the UE through ith path, the DoD

from the UE to the kth IRS in the ith path, the DoA at the BS from the kth IRS and the

DoD at the kth IRS to the BS, respectively. Similarly, the direct path between the UE

and the BS is modeled as

Hd =

Nd∑
j=1

ζjaM(χj)a
T
N(ρj), (6.3)

where Nd represents the number of spatial paths between the UE and BS in the direct

path, ζj represents the path gain coefficient of jth path between the UE and the BS, χj and

ρj represent the DoA at the BS and DoD from the UE through the jth path, respectively.

Thus, the effective uplink channel, denoted by H ∈ CM×N , is given by

H = Hd +
K∑
k=1

H1,kΘkH2,k = Hd +G. (6.4)

We can isolate the cascaded channel links due to the fading components by setting Θk =

ILk
∀k in the above. We use this in the next section.

6.3 Cascaded Channel Estimation Design

The received uplink pilot signal at the BS, y′ ∈ CM×1, is given by

y′ = Hx+ n′, (6.5)

where x ∈ CN×1 is the pilot symbol vector and n′ is additive noise sampled from CN (0, σ2IM),

where σ2 denotes the noise variance. We assume that the direct channel is known at the
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BS.3 Hence, we subtract the direct signal to obtain

y = Gx+ n′. (6.6)

The UE transmits T1 ≥ N orthogonal pilot sequences so that the received pilot signal at

the BS, Y ∈ CM×T1 , is

Y = GX+N′, (6.7)

where X ∈ CN×T1 is a unitary pilot matrix (XXH = T1IN/N) and N′ is the associated

channel noise matrix. Note that, in order to ensure the orthogonality of the pilot sequences,

we need T1 ≥ N , and in the sequel, we choose T1 = N . At the BS, we post-multiply Y by

XH to get Z ∈ CM×N as

Z ≜ YXH = G+N, (6.8)

where N = N′XH . Note that the statistics of N remain the same as N′ since X is unitary.

In what follows, we derive the structure of the effective cascaded channel obtained as a

result of (6.1) and (6.2). From (6.4), we have

G =
K∑
k=1

Nk∑
i=1

αi,kβkaM(ψk) a
T
Lk
(νk)ΘkaLk

(ωi,k)︸ ︷︷ ︸
≜ϵi,k

aTN(ϕi,k) =
K∑
k=1

Nk∑
i=1

αi,kβkϵi,k︸ ︷︷ ︸
≜γtot

i,k

aM(ψk)a
T
N(ϕi,k),

(6.9)

where {γtot
i,k } denotes the effective gain coefficient for the ith path through the kth IRS.

Thus, when Θk = ILk
for k ∈ [K], γtot

i,k = γi,k where γi,k represents the cascaded channel

gain coefficients in the system. We see that the DoA/DoD at the IRS can actually be

abstracted out; in fact, only the cascaded channel is required for IRS optimization. Let

ÃM ≜ [aM(ψ1)1
T
N1
, . . . , aM(ψK)1

T
NK

], (6.10)

where ÃM ∈ CM×
∑K

i=1Ni , and

3This can be accomplished, for example, by deactivating all the IRSs and performing the channel
estimation at the BS, as described in [23]. Alternatively, in many IRS-assisted scenarios, it is common to
assume that the direct path is absent due to blockages [147].
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AN ≜ [aN(ϕ1,1), . . . , aN(ϕN1,1), . . . , aN(ϕ1,K), . . . , aN(ϕNK ,K)] ∈ CN×
∑K

i=1Ni . (6.11)

Then, G in (6.9) can be written as

G = ÃMΓAT
N , (6.12)

where Γ is an
∑K

i=1Ni ×
∑K

i=1Ni diagonal matrix with γi,k as its diagonal entries. From

(6.12), we can write (6.8) as

Z = ÃMΓAT
N +N. (6.13)

Vectorizing (6.13), we get a snapshot of observations

z = Aeffγ + n, (6.14)

where z = vec(Z),γ = diag(Γ),Aeff = AN ⋄ ÃM ∈ CMN×
∑K

i=1Ni and n = vec(N).

Notice that (6.14) is precisely an array signal model for a (virtual) array of MN sensors

[148]. Thus, we can view (6.14) as a direction-finding problem to estimate the DoAs

and the DoDs (with both the operations being performed at the BS.) Interestingly, our

reformulation allows the algorithm to proceed by first estimating the DoAs at the BS and

then estimating the DoDs from the UEs using the DoAs obtained in the first step. The

two steps can be efficiently performed using subspace-based methods, namely, ESPRIT

and MUSIC algorithms, respectively [144], [145]. We call this algorithm a joint ESPRIT-

MUSIC algorithm to indicate that the estimation of DoDs from the UEs utilizes the

knowledge of DoAs at the BS. This simplifies the complexity of the solution to a simple 1-

dimensional grid search for angle estimation, in contrast to employing a brute-force search

over a 2-dimensional grid. Thus, we jointly and non-iteratively estimate the angles and

reduce the number of variables to be estimated to equal the number of DoAs at the BS.

Remark 6.1 (On the number of antennas at BS and UEs). To solve for DoAs and

DoDs from (6.14) using the subspace methods, namely, ESPRIT and MUSIC, we need

MN ≥ (
∑

kNk) + 1. However, this condition can be easily met in practice since M is

large and Nk is small in typical mmWave systems. Hence, the proposed algorithm is robust

to the number of IRSs in the system as long as Nk is not too large.
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Remark 6.2 (On the number of pilot transmissions). In solving for DoAs and DoDs

using subspace methods, we estimate the data covariance matrix from the array response

observations. Suppose T2 independent snapshots of the form (6.14) are used to compute

a sample covariance matrix, which is then used to estimate the DoA and DoDs, with

each snapshot obtained using T1 = N pilot transmissions. Thus, the total number of

pilot transmissions required is NT2. To choose T2, since the rank of the true covariance

matrix is at least
∑

kNk, we require that T2 >
∑

kNk. In contrast, the number of pilot

transmissions required for least squares (LS) channel estimation is at least MN
∑

k Lk,

and, in practice, NT2 ≪ MN
∑

k Lk. Thus, the subspace-based approach entails low pilot

overhead that does not scale with the number of IRS elements.

As mentioned in Remark 6.2, T2 snapshots are collected to form Z′ ∈ CMN×T2 as Z′ =

[z1, z2, . . . , zT2 ]. To obtain independent snapshots, we enable the IRSs with T2−1 random

phase configurations in addition to the first snapshot z1 obtained with Θk = ILk
∀k ∈ [K].4

The sample covariance matrix is computed as R̂ ≜ 1
T2

∑T2
t=1 ztz

H
t , and the DoAs at the

BS from all the K IRS links are estimated using ESPRIT as outlined in Algorithm 6.1.

Next, using the obtained DoA estimates, a joint estimate for the
∑

kNk DoDs from the

UEs is obtained using MUSIC (with a grid size of d), as outlined in Algorithm 6.2.5 The

central idea of joint ESPRIT-MUSIC based estimation is as follows. The received uplink

signal lies in the subspace spanned by the array steering vectors corresponding to the true

DoA(s) at the BS. So, we can use the ESPRIT-based method to identify this subspace,

and this step does not depend on the DoDs from the UEs. Subsequently, an estimate

of the signal vector that corresponds to the true DoD from the UE is identified as the

vector orthogonal to the noise subspace formed using the estimated DoAs at the BS. This

is accomplished through steps 4 and 5 in Algorithm 6.2 [145,148].6 As a result, we obtain

4Any other method which generates independent snapshots of the form (6.14) can be used for selecting
the remaining T2 − 1 IRS phase configurations.

5Algorithm 6.2 requires the knowledge of Nk. We provide a heuristic method to estimate Nk for every
k in Sec. 6.4.

6It is known that while ESPRIT is a computationally efficient algorithm, MUSIC is efficient in its
performance, i.e., it achieves Cramer Rao Lower Bound (CRLB) [149]. Examining the best choice of
subspace methods under various IRS-aided system settings is relegated to future work.
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Algorithm 6.1: DoA estimation at the BS using ESPRIT
Input: R̂,M,N,K

1 Perform the eigenvalue decomposition of R̂ = UΛUH and obtain (Λ,U).
2 Select the K dominant eigenvectors of U to form a basis for the signal subspace,

US.
3 Define selection matrices W1 ≜ [IMN−1 0MN−1] and W2 ≜ [0MN−1 IMN−1].
4 Compute US,1 = W1US and US,2 = W2US.
5 Obtain Ω = U†

S,1US,2.
6 Compute the eigen values of Ω as ξ1, ξ2, ξ3, . . . , ξK .

7 Compute ψ̂k = sin−1
(
−arg(ξk)

π

)
, where arg(x) = tan−1

(
ℑ(x)
ℜ(x)

)
, k = 1, . . . , K

Output:
{
ψ̂k

}K
k=1

an estimate of Aeff, denoted by Âeff and finally, given the DoA and DoD estimates, the

channel path gain coefficients γ are estimated by the LS method. Since the IRS phase

configuration was chosen to be an identity matrix for the first snapshot, we have

γ̂ = Â†
effz1 =

(
ÂH

effÂeff

)−1

ÂH
effz1. (6.15)

Thus,
[
Âeff, γ̂

]
can be used to compute an estimate for the cascaded channel G in (6.12).

Computational complexity: We assess the computational complexity of Algorithms 6.1

and 6.2 in terms of the order of the number of floating point operations (flops) required.

From [150], it is easy to see that the complexity of Algorithm 6.1 scales as O(M3N3 +

M2N3T2), while that of Algorithm 6.2 scales as O(M2N2P +M2NT2) where P = π/d

and d is the desired angular resolution. Thus, the complexity is polynomial in the problem

parameters.

6.4 Numerical Results

In this section, we evaluate the proposed channel estimation algorithm via Monte Carlo

simulations. We set M = 256, N = 2, N1 = 2 and Nk = 1 for k ∈ {2, 3, 4}, K up to 4,

and Li = 512 for i ∈ {1, 2, 3, 4}. Since the proposed scheme requires substantially fewer

pilot transmissions than the LS method, and the LS method completely fails at the low
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Algorithm 6.2: Estimation of the DoD from the UE using MUSIC

Input: M,N,K, {Nk}Kk=1 ,
{
ψ̂k

}K
k=1

, (Λ,U), d

1 Select the MN −∑kNk eigen vectors of U corresponding to the least
MN −∑kNk eigenvalues to form a basis for noise sub-space, UN .

2 for k = 1 to K do
3 for ϕ = −π

2
to π

2
in steps of d do

4 Pspec(k, ϕ) =
1∥∥∥{[aN (ϕ)⊗IM ]aM (ψ̂k)}HUN

∥∥∥2
2

.

5

{
ϕ̂i,k

}Nk

i=1
= argmax

(Nk)
ϕ Pspec(k, ϕ).

Output:
{
ϕ̂i,k

}Nk,K

i=1,k=1
.

pilot levels, we do not compare the proposed method against the LS method. Instead, we

compare its performance with the SOMP approach, which exploits sparsity in mmWave

channels [33].

6.4.a Performance With Number of IRSs

In Fig. 6.2, we plot the normalized mean square error (NMSE) in channel estimation

versus the SNR for different numbers of IRSs in the system, with T1 = N and T2 = 10.

We see that the NMSE of SOMP degrades with increasing K, i.e., when the number of

measurements, MN , remains fixed while the sparsity level increases. This happens because

the theory of CS mandates that the number of measurements needs to scale linearly with

the sparsity level of the vector to be recovered [151], which is not the case here. On

the other hand, the performance of the proposed method is insensitive to increasing K.

This is intuitive because an increase in K only increases the number of sources for which

the angle estimation is sought, and, as per Remark 6.1, as long as (
∑

kNk) + 1 ≤ MN ,

the algorithm successfully estimates the angles. Thus, the performance of the proposed

algorithm is robust to the number of IRSs in the system, in contrast to the performance

of SOMP or LS, whose performance degrades with K, even for small values of K.
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Figure 6.2: NMSE vs SNR for K = 1, 2, 3, 4.

6.4.b Performance With Number of Pilot Transmissions

In Fig. 6.3, we plot the NMSE vs. SNR of the proposed approach and SOMP, for varying

number of snapshots, and with K = 2, N1 = 2 and N2 = 1. Specifically, we consider the

regime of T2 >
∑

kNk as per Remark 6.2. We first observe that increasing the number

of snapshots does not affect the NMSE of SOMP (especially at higher SNRs): this is

because increasing T2 only increases the number of measurement vectors, and success

recovery of CS algorithms only loosely depends on the number of measurement vectors,

provided the number of measurements is large enough. However, as mentioned earlier,

the performance of SOMP can degrade when MN is small or K is large, in which case,

the performance of SOMP will be far inferior to that of the proposed method for any

number of snapshots. This is because when sparse signal recovery algorithms fail, they

typically fail completely. On the other hand, the performance of the proposed algorithm

keeps improving with the number of snapshots because the covariance matrix estimate

becomes more accurate, leading to better estimation of the DoAs and DoDs. We see that

the NMSE stabilizes within as few as 10 snapshots. When T2 = 4 (note that
∑

kNk = 3)

or more, the performance improves dramatically with SNR, and the scheme outperforms
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Figure 6.3: NMSE vs SNR for T2 = 4, 6, 10.

SOMP at higher SNRs. These observations are in line with Remark 6.2.

6.4.c Pairing Capability of the Joint Estimator

In Fig. 6.4, we illustrate the pairing capability of the joint ESPRIT-MUSIC based DoA-

DoD estimator corresponding to each IRS in the system. In particular, we consider K = 4

(with N1 = 2, N2 = N3 = N4 = 1), and the corresponding choice of DoDs ({ϕi,k}) and

DoAs ({ψk}) (in degrees) at the UE and BS, respectively as given in Table 6.2. To show

the pairing, we plot the MUSIC spectrum with a particular DoA estimate ψk (obtained

via ESPRIT) as the input and determine the DoD(s) {ϕi,k}Nk
i=1 from the spectrum. The

figure shows that correct pairing between the DoAs and DoDs is accomplished without any

ambiguity, which illustrates the utility of our approach of using subspace-based methods

for joint estimation of the angles, applied to the scenario of distributed IRS in a mmWave

mMIMO system.

6.4.d Heuristic Method To Determine
∑

kNk and Nk ∀ k

As mentioned in the previous section, Algorithm 6.2 requires the knowledge of Nk ∀ k.
In this subsection, we briefly describe a heuristic approach to estimate Nk based on the
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Figure 6.4: MUSIC spectrum at 20 dB SNR for T2 = 20.

Table 6.2: DoD and DoA Parameters for Fig. 6.4.

Paths indexed by IRSs
Angles IRS-1 IRS-2 IRS-3 IRS-4
DoDs ϕ1,1 = −40◦, ϕ2,1 = 0◦ ϕ1,2 = −80◦ ϕ1,3 = 20◦ ϕ1,4 = 50◦

DoAs ψ1 = −70◦ ψ2 = −50◦ ψ3 = 0◦ ψ4 = 40◦

observed data. Inspired by principal component analysis and the scree plot method [152],

we consider the magnitude of the normalized eigen-spectrum of the sample covariance

matrix of the received signal and plot it in decreasing order in Fig. 6.5. In this figure, the

normalized eigen-spectrums for the cases with 4 IRSs (N1 = 2, Nk = 1 for k ∈ {2, 3, 4})
and 2 IRSs (N1 = 2, N2 = 1) are shown for two different values of SNR. We identify the

transition zone, which demarcates the end of dominant eigenvalues that correspond to

all the signal components, and declare the estimate of
∑

kNk to be the number of such

dominant eigenvalues. We also note from Fig. 6.5 that, at both high and low SNR, the

transition zone is sufficiently sharp to enable accurate estimates of the number of dominant
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Figure 6.5: Normalized eigen-spectrum for T2 = 20.

eigenvalues.

We use the estimate of
∑

kNk in step 1 of Algorithm 6.2; then, for every k, we can

obtain an estimate of Nk from the MUSIC spectrum in steps 4 and 5, by analyzing the

local extremum points (or) by using thresholding methods such as described in [153].

Following this, we can estimate the DODs from the UE as outlined in Algorithm 6.2.

6.5 Conclusions

In this chapter, we presented a novel algorithm for cascaded channel estimation for dis-

tributed IRS-aided mmWave mMIMO systems leveraging techniques from the array signal

processing literature. We showed that accurate channel estimation is possible with far

fewer pilots compared to conventional CSI estimation methods. In particular, the number

of pilots needed only scales with the total number of paths between the IRSs and the UE

and the number of antennas at the UE, but is independent of the number of elements in

the IRS. This is because the proposed technique exploits the structure in the mmWave

channels to dramatically reduce the number of parameters to be estimated, followed by
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using classical array processing methods to solve the nonlinear estimation problem. We

also empirically noted that the proposed estimator offers robust performance as the num-

ber of IRSs in the system is increased, compared to the performance of the SOMP-based

estimator. Future work can theoretically analyze the performance of this estimator and

extend it to non-line-of-sight scenarios.



7 Performance of Multi-IRS-Aided
Multiple Operator Systems

Chapter Highlights
This chapter extends the work pursued in Chapter 4, where we consider that each mobile

operator (MO) deploys and controls an intelligent reflecting surface (IRS) to serve its own user
equipments (UEs), which leads to multiple in-band and out-of-band (OOB) reflections in the
system via each IRS. In this context, this chapter addresses the following questions: Can an MO
still continue to control its IRS independently of other MOs and IRSs? Is joint optimization of the
IRSs deployed by different MOs and inter-MO cooperation needed? To that end, by considering
the mmWave bands, we first derive the ergodic sum spectral efficiency (SE) in a 2-MO system
for the following schemes:

1. Joint optimization of an overall phase angle of the IRSs with MO cooperation,

2. MO cooperation via time-sharing, and

3. No cooperation between the MOs.

We find that even with no cooperation between the MOs, the performance of a given MO is
not degraded by the presence of an OOB MO deploying and independently controlling its own
IRS. On the other hand, the SE gain obtained at a given MO using joint optimization and
cooperation over the no-cooperation scheme decreases inversely with the number of elements in
the IRS deployed by the other MO. We generalize our results to a multiple MO setup and show
that the gain in the sum-SE over the no-cooperation case increases at least linearly with the
number of OOB MOs. Finally, we numerically verify our findings and conclude that every MO
can independently operate and tune its IRS; cooperation via optimizing an overall phase only
brings marginal benefits in practice.
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7.1 Introduction

Millimeter-wave (mmWave) frequency bands have been incorporated into current wireless

standards to enable high data rates by leveraging the availability of large bandwidths [1].

However, a concern with the use of mmWave bands is the high propagation loss, which

limits cellular coverage. Intelligent reflecting surfaces (IRSs) have recently been intro-

duced to tackle this issue by providing virtual line-of-sight paths [3]. Further, in real-life

scenarios, multiple mobile operators (MOs) using different and non-overlapping frequency

bands coexist in a geographical area and provide independent services to different user

equipments (UEs) that are subscribed to them. In such a scenario, since an IRS is a

passive device and does not contain a bandpass filter, it reflects the signals of every MO

in the system. Thus, it remains unclear whether MOs can independently optimize their

IRSs for their UEs or if cooperation among MOs is required due to the presence of IRSs.

This chapter addresses these issues and offers insights into multiple MO systems aided by

IRSs in the mmWave bands.

7.1.a Related Work & Motivation

The IRS literature has seen significant growth in recent years. For instance, [154] and [9]

investigate the joint design of active and passive beamforming for sub-6 GHz and mmWave

systems, respectively. In [89], the authors propose channel estimation and IRS phase opti-

mization techniques tailored to orthogonal frequency division multiplexing (OFDM)-based

systems. The work in [155] explores multiple access schemes in IRS-assisted networks,

while [156] demonstrates the performance gains of IRSs over conventional relays. Addi-

tionally, [39] highlights the potential of IRSs in enhancing physical-layer security. The

study in [157] extends IRS deployment to multi-cell environments, and [158] introduces

machine learning-based techniques for optimizing IRS reflection coefficients. A compre-

hensive review of the applications and benefits of IRSs in mmWave systems can be found

in [3, 159,160].

In [161] and [162], hybrid beamforming architectures were proposed for IRS-aided mmWave

systems using instantaneous and statistical channel state information (CSI), respectively.
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Following this, [163] and [164] solved for optimal power control coefficients/UE associa-

tions and IRS configurations, respectively, to maximize the sum-rate of UEs in multiple-

IRS setups. In [65], a beam training problem for IRSs exploiting the channel sparsity was

solved, and in [25] and [138], novel CSI estimation techniques were proposed for centralized

and distributed IRS setups, respectively. However, all these works implicitly assume the

presence of only one MO that deploys and controls the IRS. The problem becomes more

challenging when we consider more than one MO in the system. To explain, MOs are

typically allotted non-overlapping frequency bands centered at nearby carrier frequencies

to provide service to the UEs subscribed to them. So, the MO that deploys and controls

the IRS (called the in-band MO) tunes the IRS phase configuration in the frequency band

allotted to the MO to best serve its own UEs. However, the IRSs are passive, i.e., they

do not contain any active signal processing/RF circuitry such as a band-pass filter to se-

lectively reflect signals whose frequency content lies only within the band allotted to the

in-band operator. As a result, any other MO providing service in the same geographical

area in a nearby frequency allocation will naturally have its signals reflected off the IRS

with an arbitrary phase shift. For example, the n257 band in 5G new radio (NR) operates

in the mmWave frequencies and spans 26.5-29.5 GHz, i.e., a bandwidth of 3 GHz [165, Ta-

ble 5.2-1]. Given that the maximum carrier bandwidth in 5G NR is 400 MHz, the n257

band could be used by at least 7 different service providers/MOs (and more in geographies

where the allotted bandwidth to each MO is less than 400 MHz). Then, since these MOs

use the same frequency range to provide services to their UEs but use non-overlapping

frequency bands, the IRS elements will reflect signals impinging on them from all MOs

with similar efficiency.

In this context, [108] studied CSI estimation in IRS-aided multiple MO systems, and [166]

experimentally evaluated the performance impact of IRS in the presence of multiple MOs.

Further, [109, 110, 167] and [168–172] considered joint optimization of the IRS configura-

tions and allocation of disjoint IRSs/sub-IRSs to different bands/MOs via cooperation.

However, most of these works assume that complete CSI for all links is available at all

MOs, necessitating extensive inter-MO cooperation. Such cooperation between MOs is
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Table 7.1: Summary of literature on IRS-aided multiple MO systems.

[154] [9] [155] [108] [166] [109] [110] [167] [168] [169] [170] [171] [172] [80] [125] [173] This
work

Frequency band† S6 M S6 S6 S6 S6 S6 M S6 M S6 M M S6, M M S6 M
More than one MO? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Multiple UEs per MO? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Multiple access scheme⋄ T — T, F — — S — S S S S — — T T — T
CSI requirement/exchange# F F F F P F F F F P P P F P P P P
Multiple IRSs? ✓ ✓ ✓ ✓ ✓ ✓ ✓

Low-complexity solution ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MO-cooperative joint
optimization schemes

✓ ✓ ✓ ✓

MO-cooperative resource
sharing schemes

✓ ✓ ✓ ✓

Closed form
performance analysis

✓ ✓ ✓ ✓ ✓ ✓ ✓

Quantifying the effects
of OOB IRSs

✓ ✓ ✓ ✓ ✓

Quantifying the gains of
inter-MO cooperation

✓

† M: mmWave bands; S6: sub-6 GHz bands
⋄ T / F / S: Time / Frequency / Space division multiple access
# F: Full CSI required/exchanged; P: Partial CSI required/exchanged

often infeasible in practice. Moreover, the precise benefits of jointly controlling all IRSs

in enhancing the overall network performance across multiple MOs remain largely un-

clear and unquantified. Our prior works in Chapters 4 and 5, which are also published

in [80, 125], respectively, quantified the out-of-band performance impact of the IRS when

only one MO deploys one or more IRSs, and [173] considered setups where each MO de-

ploys its own IRS in the sub-6 GHz band. Table 7.1 presents a quick comparison of our

work against the prior studies on IRS-assisted multiple-MO systems. For the first time

in the literature, this chapter explores several aspects of IRS-aided multiple MO systems

in mmWaves: quantifying the benefits of inter-MO cooperation and joint optimization,

low-complexity algorithmic solutions for such cooperation, and an in-depth performance

analysis with closed-form expressions. Notably, these closed-form expressions offer useful

insights into the behavior and limits of such systems under various practical transmission

schemes. Further, we make these contributions without compromising the generality of

the system model.
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7.1.b Contributions

To set the context, we use the following terminology: the IRSs and UEs controlled/served

by an MO of interest are termed in-band, and other IRSs/UEs in the system are called out-

of-band (OOB) with respect to this same MO. We make the following key contributions

in this chapter:

1. Considering that 2 MOs, X and Y, control an IRS each, we derive the ergodic sum

spectral-efficiency (SE) of the MOs when an overall phase at each IRS is configured as

per the following implementation schemes (see Theorem 7.1):

(a) Optimization with Time-sharing : In each time slot, while an MO serves its own

UE, the overall phases at the IRSs are optimized for a UE served by either MO-X

or MO-Y.

(b) Joint-optimization with MO cooperation: The overall IRS phases are jointly tuned

to maximize the weighted sum-SE of UEs scheduled by MOs in every time slot.

(c) No MO cooperation: In this scheme, each MO focuses exclusively on optimizing

its IRSs to ensure coherent signal reception at only its own UEs.

2. We show that the IRS controlled by one MO does not degrade the sum-SE of the other

MO. We quantify the gain in the sum-SE of the MOs obtained with/without OOB

IRS, and with/without cooperation (for time-sharing/joint optimization) as a function

of the number of OOB IRS elements (see Theorem 7.2.)

3. We next extend our results to a system with more than 2 MOs, which deploy and

control an IRS each. In particular, we derive the ergodic-sum-SE of the MOs for the

above-mentioned three schemes (see Theorem 7.3.)

4. Finally, even with more than 2 MOs, we show that the OOB IRSs do not degrade the

in-band performance. Further, although joint optimization/time sharing with MO co-

operation still offers marginal gains relative to sum-SE when the MOs do not cooperate,

the gain increases at least linearly with the number of OOB MOs. (see Theorem 7.4.)
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Our results are elegant and insightful in that they readily characterize the ergodic sum-SE

of the MOs in IRS-aided mmWave systems as a function of system parameters such as the

number of IRS elements, in-band and OOB cascaded channel paths, SNR of operation,

etc.

We numerically validate our analytical results and illustrate that joint optimization/co-

operation among MOs provides marginal gains compared to when an MO configures its

IRS without any cooperation. For instance, with 2-MOs, each with 16-element IRSs, the

performance gain in the SE of an MO obtained at 80 dB transmit SNR via joint optimiza-

tion and cooperation over a no-cooperation policy is about 2%. Also, this improvement

monotonically decreases with the number of OOB IRS elements and transmit SNR; for

e.g., it is 0.4% and 0.08% for N = 32, 64, respectively. As a result, cooperation between

MOs to optimize the IRSs may not be needed in IRS-aided mmWave systems with multiple

MOs. Each MO can deploy and control its IRS independently, and the IRS of one MO

does not degrade the performance of another MO.

Notation: For general notations used in this chapter, see the section on “General Mathe-

matical Notations” on page ix. For the notations/variables specific to this chapter, please

refer to Table 7.2.

7.2 System Model and Problem Description

Multiple MOs operating over different and non-overlapping mmWave bands simultaneously

exist in a given geographical area and provide services to the UEs subscribed to them. For

mathematical brevity, we describe the model for a system with two MOs, say X and Y,

but the model directly extends to any number of MOs, as we describe in Sec. 7.5. The

MOs X and Y operate over non-overlapping frequency bands, and both use time-division

multiple access (TDMA) to serve one of K UEs on a frequency band centered at f1 and

one of Q UEs on a frequency band centered at f2, respectively, in each time slot. Also,

their base stations,1 BS-X and BS-Y, deploy and control an N1-element IRS-X and an

1For simplicity, we use single antenna BSs in this work, similar to [110,169]. However, our results can
also be extended to multiple antenna cases.
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N2-element IRS-Y, respectively. Due to the high attenuation in the mmWaves, the direct

links between the BSs and UEs are blocked [25, 174]. The downlink signal received at

UE-k, served by MO-X, is given by

yk =
(
gTXkΘ1fXX + gTYkΘ2fXY

)
xk + nk, (7.1)

where gXk ∈ CN1 and gYk ∈ CN2 are the channels from IRS-X and IRS-Y to UE-k,

respectively; fXX ∈ CN1 and fXY ∈ CN2 are the channels from BS-X to IRS-X and IRS-

Y, respectively, xk is the information symbol for UE-k with average power constraint

E[|xk|2] ≤ P and nk ∼ CN (0, σ2) is the additive noise at UE-k. Similarly, the downlink

signal from BS-Y to UE-q, served by MO-Y, can be written as

yq =
(
tTXqΘ1fYX + tTYqΘ2fYY

)
xq + nq, (7.2)

where tXq ∈ CN1 and tYq ∈ CN2 are the channels from IRS-X and IRS-Y to UE-q, re-

spectively, fYX ∈ CN1 and fYY ∈ CN2 are the channels from BS-Y to IRS-X and IRS-Y,

respectively, xq is the information symbol for UE-q with power constraint E[|xq|2] ≤ P and

nq ∼ CN (0, σ2) is the additive noise at UE-q. In particular, fab denotes the channel from

BS-a to IRS-b, gcd denotes the channel from IRS-c to the dth UE served by MO-X, and

tcd denotes the channel from IRS-c to the dth UE served by MO-Y. Finally, Θ1 ∈ CN1×N1

and Θ2 ∈ CN2×N2 are diagonal matrices with unit modulus reflection coefficients of IRS-X

and IRS-Y, respectively. Figure 7.1 illustrates our system model.

Terminology: Since MO-X configures IRS-X to serve UE-k, we refer to the IRS-X and

UE-k as the in-band IRS and UE, respectively, from MO-X’s viewpoint. Similarly, the

IRSs or UEs that are not controlled/served by the BS-X (operating on a different band)

are out-of-band (OOB) nodes from MO-X’s viewpoint. Further, the link from MO-X to

UE-k via IRS-X is the in-band channel; the links from MO-X to UE-k via OOB IRSs are

OOB channels. These apply to other MOs also.
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Figure 7.1: System Model of 2-BS & 2-IRS system.

7.2.a Channel Model

We use the standard Saleh-Venezuela (SV) model to describe the channels in the mmWave

frequency bands [25,65]. The channel from BS-Z to IRS-W (Z,W ∈ {X,Y}) is

fZW =

√
Np

/
L
(p)
Z

∑L
(p)
Z

l=1
γ
(p)
l,Za

∗
Np
(ϕ

(p)
l,Z), (7.3)

where p = 1 ·1{W=X}+2 ·1{W=Y}, L
(p)
Z is the number of resolvable paths from BS-Z to the

IRS-W and ϕ
(p)
l,Z is the sine of the angle of arrival of the lth path from BS-Z to IRS-W .

Similarly, the channel from IRS-W to UE-r served by MO-X/MO-Y is given by

gWr

/
tWr =

√
Np

/
L
(p)
r

∑L
(p)
r

l=1
γ
(p)
l,r a

∗
Np
(ψ

(p)
l,r ), (7.4)

where L(p)
r is the number of resolvable paths from IRS-W to UE-r, ψ(p)

l,r is the sine of angle

of departure of lth path from IRS-W to UE-r, and Np is the number of IRS elements

in IRS-W . The sine terms are sampled from an appropriate distribution PA, which is

discussed in the sequel. The fading coefficients, γ(p)l,Z and γ
(p)
l,r are independently sampled

from CN (0, β
(p)
Z ) and CN (0, β

(p)
r ), respectively, where β(p)

Z and β(p)
r denote the path loss in
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hk =
N1√
Lk1

Lk1∑
l=1

γ
(1)
l,Xγ

(1)
l,k a

H
N1
(ψ

(1)
l,k )Θ1a

∗
N1
(ϕ

(1)
l,X) +

N2√
Lk2

Lk2∑
l=1

γ
(2)
l,Xγ

(2)
l,k a

H
N2
(ψ

(2)
l,k )Θ2a

∗
N2
(ϕ

(2)
l,X)

(7.6)

(a)
=

N1√
Lk1

Lk1∑
l=1

γ
(1)
l,Xγ

(1)
l,k

(
aHN1

(ϕ
(1)
l,X)⊙ aHN1

(ψ
(1)
l,k )
)
θ1

+
N2√
Lk2

Lk2∑
l=1

γ
(2)
l,Xγ

(2)
l,k

(
aHN2

(ϕ
(2)
l,X)⊙ aHN2

(ψ
(2)
l,k )
)
θ2, (7.7)

BS-IRS and IRS-UE links, respectively. Finally, we consider an N -element uniform linear

array (ULA) based IRS,2 similar to [33], with half-wavelength inter-element spacing; its

array response vector aN(ψ) is

aN(ψ) =
1√
N
[1, e−jπψ, . . . , e−j(N−1)πψ]T ∈ CN . (7.5)

7.2.a.i Cascaded Channel Representation

Substituting the expressions for individual channels given in (7.3), (7.4) into (7.1), the

channel at UE-k can be simplified as in (7.6), (7.7) on the top of a page, where Lk1 ≜

L
(1)
X L

(1)
k is the number of resolvable in-band paths from BS-X to UE-k through IRS-X (see

Sec. 7.2.a.ii for details on resolvability), Lk2 ≜ L
(2)
X L

(2)
k is the number of resolvable OOB

paths from BS-X to UE-k through IRS-Y, θ1 = diag(Θ1) ∈ CN1 , θ2 = diag(Θ2) ∈ CN2 ,

and (a) is obtained using the properties of the Hadamard product. The first and second

terms in (7.6), (7.7) represent the effective channels through the in-band IRS-X and the

OOB IRS-Y, respectively. Since the Hadamard product of two array vectors is also an

array vector aligned to a different angle, we have

hk =
N1√
Lk1

Lk1∑
l=1

γ
(1)
l,Xγ

(1)
l,k ȧ

H
N1
(ω

(1)
X,k,l)θ1 +

N2√
Lk2

Lk2∑
l=1

γ
(2)
l,Xγ

(2)
l,k ȧ

H
N2
(ω

(2)
X,k,l)θ2, (7.8)

2Similar results as in this chapter can also be easily obtained for other array types such as planar
arrays.
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where ω(1)
X,k,l ≜ sin−1

(p)

(
sin(ϕ

(1)
l,X)+sin(ψ

(1)
l,k )
)
, and ω(2)

X,k,l ≜ sin−1
(p)

(
sin(ϕ

(2)
l,X)+sin(ψ

(2)
l,k )
)

denote

the cascaded channel at UE-k from MO-X via IRS-X, and IRS-Y, respectively, in the lth

path. Here, sin−1
(p)(x) is defined so that x ∈ [−1, 1), the principal argument of the inverse

sine function [33], [80, Eq. 32]. Further, ȧN(ω) ≜ 1√
N
aN(ω), with aN(ω) as defined in

(7.5). Similarly, the channel at UE-q is

hq =
N1√
Lq1

Lq1∑
l=1

γ
(1)
l,Y γ

(1)
l,q ȧ

H
N1
(ω

(1)
Y,q,l)θ1 +

N2√
Lq2

Lq2∑
l=1

γ
(2)
l,Y γ

(2)
l,q ȧ

H
N2
(ω

(2)
Y,q,l)θ2, (7.9)

where Lq1 ≜ L
(1)
Y L

(1)
q is the number of resolvable OOB paths from BS-Y to UE-q via

IRS-X; Lq2 ≜ L
(2)
Y L

(2)
q is the number of resolvable in-band paths from BS-Y to UE-q via

IRS-Y.

7.2.a.ii Angle Distribution

We now explain the distribution of the cascaded angles specified in (7.8), (7.9). Since an

N -element ULA can form at most N resolvable beams [65, 119], the paths with angular

separations smaller than the Rayleigh resolution limit, i.e., 2π/N radians, are unresolvable

and appear as a single path with an appropriate fading coefficient. To that end, we define

the set of resolvable beams formed by the IRS as

A ≜ {aN(ω), ω ∈ Ω} ;Ω ≜

{(
−1 + 2i

N

) ∣∣∣∣i = 0, . . . , N − 1

}
,

where Ω is the resolvable anglebook of the IRS. Then, we model its distribution PA by a

uniform distribution:

PA(ω) = (1/|Ω|) · 1{ω∈Ω} = (1/N) · 1{ω∈Ω}. (7.10)

Hence, we sample all the cascaded angles, {ω(1)
X,k,l}l, {ω

(2)
X,k,l}l, {ω

(1)
Y,q,l}l, {ω

(2)
Y,q,l}l from Ω

given above, similar to [33]. Furthermore, since IRS-X(Y) forms at mostN1 (N2) resolvable

paths, we have Lk1, Lq1 ≤ N1; Lk2, Lq2 ≤ N2.
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7.2.b Choice of IRS Configurations

Recall that MO-X controls the (in-band) IRS-X to optimally serve its UEs, while BS-X

cannot directly control the (OOB) IRS-Y. Similarly, MO-Y controls the (in-band) IRS-Y,

and (OOB) IRS-X is not directly controllable by BS-Y. In such a scenario, at any instant

in time, one of the cascaded in-band paths (in (7.8) and (7.9)) contains the maximum

energy, and aligning the in-band IRSs to that path will procure near-optimal benefits [9].

Without loss of generality, we label the strongest path as the first in-band path. Then,

the strongest in-band cascaded path of UE-k is hk,1 ≜ N1√
Lk1
γ
(1)
1,Xγ

(1)
1,kȧ

H
N1
(ω

(1)
X,k,1)θ1. Further,

recall that each MO prioritizes optimizing its IRS to align it along the in-band channel

at its scheduled UE. In particular, since MO-X controls θ1, to maximize the the channel

gain |hk,1|2, by using Cauchy-Schwartz (CS) inequality, the nth entry of the optimal IRS

configuration vector θopt
1 is θ1,n = ejϕ1e

j
(
−̸ γ(1)1,X−̸ γ(1)1,k−π(n−1)ω

(1)
X,k,1

)
, where ϕ1 is an overall

phase angle applied to IRS-X which still preserves the optimality.3 Similarly, we can obtain

the optimal configuration for IRS-Y that maximizes |hq,1|2. Thus, the optimal IRS phase

vectors can be written compactly as [80]

θopt
1 =

γ
(1)∗
1,X γ

(1)∗
1,k∣∣∣γ(1)1,Xγ
(1)
1,k

∣∣∣ ×N1ȧN1(ω
(1)
X,k,1)× ejϕ1 , (7.11)

θopt
2 =

γ
(2)∗
1,Y γ

(2)∗
1,q∣∣∣γ(2)1,Y γ
(2)
1,q

∣∣∣ ×N2ȧN2(ω
(2)
Y,q,1)× ejϕ2 , (7.12)

respectively, and the choice of ϕ1, ϕ2 will be explained next.

Remark 7.1. The IRS configurations in (7.11) and (7.12) do not require knowledge of the

channel through the OOB IRS and hence are scalable for any number of MOs. Notably,

even in the absence of OOB MOs, the in-band IRS associated with the MO will still procure

an SNR that scales quadratically in the number of IRS elements. Consequently, the goal

of this chapter is to demonstrate the utility of choosing the overall phase shifts ϕ1 and ϕ2

3For e.g., it can be chosen to phase-align the channel hk,1 with the overall virtual “direct path” formed
by the cascaded channel through IRS-Y, i.e., with the phase of the second term in (7.8). We will explain
this in the sequel.
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Variable Definition Variable Definition

N1/N2 Number of elements in IRS-X / IRS-Y γ
(p)
l,Z Gain of the lth path from BS-Z to IRS-p

M Total number of MOs γ
(p)
l,r Gain of the lth path from IRS-p to UE-r

Θ1/Θ2 Phase matrix at IRS-X / IRS-Y β
(1)
X,k/β

(2)
X,k

Path loss in the BS-X to UE-k link via
IRS-X / IRS-Y

K Number of UEs served by BS-X β
(1)
Y,q/β

(2)
Y,q

Path loss in the BS-Y to UE-q link via
IRS-X / IRS-Y

Q Number of UEs served by BS-Y fZW Channel from BS-Z to IRS-W

Lk1/Lk2
Number of resolvable paths from BS-X
to UE-k through IRS-X / IRS-Y

gWr

/
tWr

Channel from IRS-W to UE-r
served by MO-X / MO-Y

Lq1/Lq2
Number of resolvable paths from BS-Y
to UE-q through IRS-X / IRS-Y

hk/hq
Overall channel from BS-X to UE-k
/ BS-Y to UE-q

ϕ1/ϕ2

Overall phase shift applied
at IRS-X / IRS-Y by BS-X / BS-Y

ζ
Fraction of time slots to optimize the
IRSs to UE-k served by MO-X

ω
(1)
X,k,l/

ω
(2)
X,k,l

Cascaded normalized angle of lth path
from BS-X to UE-k via IRS-X / IRS-Y

ω
(1)
Y,q,l/

ω
(2)
Y,q,l

Cascaded normalized angle of lth path
from BS-Y to UE-q via IRS-X / IRS-Y

P Transmit power at the BSs CO
Boolean parameter to indicate whether
we allow inter-MO cooperation

σ2 Noise variance at the UEs ⟨RX⟩/
⟨RY⟩

Achievable ergodic sum-SEs
of MOs X / Y

Table 7.2: Commonly encountered variables/notations in chapter 7.

via cooperation rather than cooperatively optimizing the complete IRS phase vectors.

Remark 7.2. For BS-X and BS-Y to configure IRS-X and IRS-Y to phase values given

in (7.11) and (7.12), respectively, both BSs must acquire the knowledge of the respective

in-band CSIs at their in-band UEs-k and q, respectively. A straightforward approach to

achieve this is via inter-MO cooperation during channel estimation (CE), as follows: when

one MO performs in-band CE through its IRS, the OOB IRSs are turned off to prevent

inter-MO pilot and IRS contamination [108]. This allows all MOs to configure their IRSs

according to (7.11) and (7.12). We note that designing and analyzing the feasibility of

practical CE protocols in IRS-aided multiple MO systems remains an open problem. How-

ever, since our goal is to characterize the impact of multiple MOs deploying IRSs on each

other’s achievable data rates, we do not account for these overheads in our analysis.
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7.2.c Problem Statement

In a 2-MO system, as shown in Fig. 7.1, each IRS will reflect the signals transmitted by

both the MOs. Then, the SE achieved by UE-k scheduled by MO-X at time slot t is

Rk(t) = log2

(
1 +

P

σ2

∣∣gTXkΘ1(t)fXX + gTYkΘ2(t)fXY
∣∣2) ,

and the SE achieved by UE-q scheduled by MO-Y is

Rq(t) = log2

(
1 +

P

σ2

∣∣tTXqΘ1(t)fYX + tTYqΘ2(t)fYY
∣∣2) ,

where Θ1(t) and Θ2(t) are set using θopt
1 and θopt

2 as given in (7.11) and (7.12), respectively

for the UEs scheduled in time slot t. However, note that the choice of overall phase shifts

ϕ1 and ϕ2 still offers flexibility in terms of being able to combine signals at UEs across

both in-band and OOB IRSs. In this context, we consider the following scenarios:

1. Joint optimization of IRSs with MO cooperation: Here, the MOs cooperate to jointly

tune the overall phase shifts at the IRSs in every time slot t to maximize the weighted

sum-SE of the scheduled UEs. Mathematically, the problem is

ϕ1
opt(t), ϕ2

opt(t) = argmax
ϕ1(t),ϕ2(t)

wkRk(t) + wqRq(t), (P1)

where wk, wq are the weights associated with acheivable SEs of UEs k, q of MO-X and

Y, respectively.

2. Optimization of IRSs with time-sharing : Here, a subset (denoted by TX) of the time

slots are used by MO-X to configure the overall phase shifts of both IRSs to maximize

the SE of UE-k, and the remaining time slots (denoted by TY ) are used by MO-Y to

optimize the overall phase shifts at the IRSs for UE-q. Mathematically, in every time

slot t,

ϕ1
opt(t), ϕ2

opt(t) = argmax
ϕ1(t),ϕ2(t)

∑
i∈{X,Y }

Ri(t)1{t∈Ti}. (P2)

3. Optimization of IRSs without MO cooperation: Here, the two MOs optimize only their

own IRSs to maximize the SE of their UEs (by ignoring the presence of an IRS deployed
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by another MO.) Mathematically, we realize this by setting:

ϕopt
1 (t) = ϕopt

2 (t) = 0, ∀t. (7.13)

Then, we answer the following questions:

• How does the ergodic SE of the MOs scale with the system parameters in all the cases?

• Does the presence of an OOB IRS degrade the performance of a given MO?

• What is the value of cooperation between the MOs in terms of the achievable ergodic

SE?

• How do the above answers extend to M > 2 MO-systems?

We answer these questions in the following sections.

7.3 Performance Analysis in a 2-MO System

This section analyzes the achievable ergodic sum-SE of the 2-MO system described above.

We first make the following observations about the IRS configurations in (7.11) and (7.12):

1. The IRS vectors are directional in nature and point to the angle of the channel to which

it is optimized.

2. Although the IRS vector θopt
1 aligns to the in-band path at UE-k, it is a random phasor

from the UE-q’s viewpoint. Similarly, θopt
2 is optimal to UE-q’s in-band path, and is

randomly configured from UE-k’s viewpoint.

From these observations, IRS-X aligns with the channel to UE-q with probability Lq1

N1
and it

does not contribute to the channel at UE-q with probability 1− Lq1

N1
[80, Proof of Theorem

3]. Similarly, IRS-Y contributes to the channel at UE-k with probability Lk2

N2
and does not

align with UE-k with probability 1− Lk2

N2
. Based on these, four events arise as summarized

in Fig. 7.2. Hence, the overall achievable performance in a 2-MO system is determined
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Figure 7.2: Illustration of all possible events in 2-IRS aided 2-MO system.

by the choice of the overall phase shifts, ϕ1 and ϕ2, used in these four events.4 We next

analyze the performances of the different schemes listed in Sec. 7.2.c with varying degrees

of cooperation between the MOs under these events.

7.3.a Event A: IRS-X and IRS-Y align to UE-q and UE-k, resp.

In this event, both IRS-X and IRS-Y align with one of the angles of the Lq1 and Lk2

OOB paths at UEs-q and k, respectively. Now, since the alignment of IRS-X with UE-q’s

channel is independent of the alignment of IRS-Y with UE-k’s channel, the probability of

event A is

Pr(A) = (Lq1/N1)× (Lk2/N2). (7.14)

4These events correspond to the OOB effect of the IRSs; by (7.11) and (7.12), each IRS is always
aligned to the in-band UE’s channel from its BS.
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Now, under event A, there exists indices l∗k and l∗q such that

l∗k = argl

{
N2ȧ

H
N2
(ω

(2)
X,k,l)ȧN2(ω

(2)
Y,q,1) = 1

}
, and

l∗q = argl

{
N1ȧ

H
N1
(ω

(1)
Y,q,l)ȧN1(ω

(1)
X,k,1) = 1

}
, (7.15)

where argl{·} returns the index l for which the condition in the braces is satisfied. In other

words, the angles of l∗kth and l∗qth OOB paths at UE-k and UE-q match with the angles

pointed by the phase configurations at IRS-Y and IRS-X, respectively.

Then, using the expressions for IRS vectors in (7.11), and (7.12), we simplify the channels

of UE-k, q in (7.8) and (7.9) as

hk =
N1√
Lk1

∣∣∣γ(1)1,Xγ
(1)
1,k

∣∣∣× ejϕ1 + N2√
Lk2

∣∣∣γ(2)l∗k,X
γ
(2)
l∗k,k

∣∣∣× ej(ϕ2+ϕa), (7.16)

hq =
N1√
Lq1

∣∣∣γ(1)l∗q ,Y
γ
(1)
l∗q ,q

∣∣∣× ej(ϕ1+ϕb) + N2√
Lq2

∣∣∣γ(2)1,Y γ
(2)
1,q

∣∣∣× ejϕ2 , (7.17)

respectively, where ϕa ≜ ̸ γ
(2)
l∗k,X

+ ̸ γ
(2)
l∗k,k
− ̸ γ

(2)
1,Y − ̸ γ

(2)
1,q and ϕb ≜ ̸ γ

(1)
l∗q ,Y

+ ̸ γ
(1)
l∗q ,q
− ̸ γ

(1)
1,X −

̸ γ
(1)
1,k, denote the phase differences between OOB and in-band paths at IRSs X and Y,

respectively. Now, if both the IRSs have to constructively add the received signals at both

UEs-k, q, we need

ϕ1 = ϕ2 + ϕa, (7.18)

(and) ϕ2 = ϕ1 + ϕb, (7.19)

at IRS X and Y, respectively. However, since ϕa, ϕb ∈ U [−π, π) are i.i.d. random variables,

(7.18) and (7.19) hold simultaneously with zero probability. That is, almost surely, neither

IRS can be optimal for both UEs simultaneously. With this in mind, we analyze the 3

schemes in Sec. 7.2.c.

7.3.a.i Joint-optimization of IRSs with MO cooperation

Here, the MOs jointly optimize the overall phase shifts ϕ1 and ϕ2 at the IRSs to maximize

the weighted sum-SE of the UEs scheduled by both MOs. We first rewrite (7.16) and (7.17)
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as

hk = αejϕ1 + γej(ϕ2+ϕa), (7.20)

hq = βej(ϕ1+ϕb) + δejϕ2 , (7.21)

where, α ≜ N1√
Lk1
|γ(1)1,Xγ

(1)
1,k|, γ ≜ N2√

Lk2
|γ(2)l∗k,X

γ
(2)
l∗k,k
|, β ≜ N1√

Lq1
|γ(1)l∗q ,Y

γ
(1)
l∗q ,q
|, and δ ≜ N2√

Lq2
|γ(2)1,Y γ

(2)
1,q |.

Then, ϕ1 and ϕ2 are determined as ϕopt
1 , ϕopt

2 =

argmax
ϕ1,ϕ2

wk log2

(
1 +

P

σ2
|hk|2

)
+ wq log2

(
1 +

P

σ2
|hq|2

)
where ϕ1, ϕ2 are the overall phase shifts set by the BS-X and Y at IRS-X and Y, respec-

tively, wk and wq are the weights allotted to the SE achieved by UEs k and q, respectively.

Let ϕ ≜ ϕ2 − ϕ1, x ≜ 1 + P
σ2 (α

2 + γ2), v ≜ 2αγ, y ≜ 1 + P
σ2 (β

2 + δ2) and z ≜ 2βδ. Then

the above problem is equivalent to ϕopt

= argmax
ϕ

f(ϕ) = ((x+ v cos(ϕ+ ϕa))
wk(y + z cos(ϕ− ϕb))wq) .

Since f(ϕ) depends only on the difference ϕ = ϕ2 − ϕ1, the optimization variables can

be reduced to a single variable ϕ. Notably, the solution to this optimization problem

inherently accounts for the operating SNR. By the first order condition, f ′(ϕ) = 0, which

is

f(ϕ)

{
wkv sin(ϕ+ ϕa)

x+ v cos(ϕ+ ϕa)
+

wqz sin(ϕ− ϕb)
y + z cos(ϕ− ϕb)

}
= 0. (7.22)

Since the roots of (7.22) do not admit a closed-form solution, we employ a low complexity

Newton-Raphson’s algorithm [175] to solve for ϕ, which is outlined in Algorithm 7.1.

Although the Newton-Raphson method entails multiple iterations, we use only a single

iteration to reduce complexity. In Sec. 7.6, we numerically show that a single iteration

with appropriate initialization yields comparable solutions to high-complexity off-the-shelf

optimizers. In particular, we initialize ϕ based on the weights allotted to the MOs: we

compute the weighted sum rate with ϕ = −ϕa and ϕ = ϕb, and choose the value that

yields the higher weighted sum-SE. Finally, with ϕopt in hand, the ergodic SEs of UEs k
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Algorithm 7.1: Newton-Raphson based single iteration method

1 If wkRk(ϕa, 0) + wqRq(ϕa, 0) ≥ wkRk(0, ϕb) + wqRq(0, ϕb), ϕinit ← −ϕa.
2 else ϕinit ← ϕb.

3 Obtain f ′(ϕ)← −f(ϕ)
{
wkv sin(ϕ+ϕa)
x+v cos(ϕ+ϕa)

+ wqz sin(ϕ−ϕb)
y+z cos(ϕ−ϕb)

}
.

4 Compute the second-derivative, f ′′(ϕ) as follows:

f ′′(ϕ) =
(f ′(ϕ))2

f(ϕ)
− f(ϕ)

{
wkv{x cos(ϕ+ ϕa) + v}
(x+ v cos(ϕ+ ϕa))2

+
wqz{y cos(ϕ− ϕb) + z}
(y + z cos(ϕ− ϕb))2

}
.

(7.25)

5 Update ϕopt ← ϕinit − f ′(ϕ)
f ′′(ϕ)

∣∣∣ϕ=ϕinit

and q are given by

⟨Rk|A⟩ ≈ log2

(
1 +

P

σ2

∣∣∣∣ N1√
Lk1

∣∣∣γ(1)1,Xγ
(1)
1,k

∣∣∣ ejϕopt1 +
N2√
Lk2

∣∣∣γ(2)l∗k,X
γ
(2)
l∗k,k

∣∣∣ ej(ϕopt2 +ϕa)

∣∣∣∣2
)
, (7.23)

⟨Rq|A⟩ ≈ log2

1 +
P

σ2

∣∣∣∣∣ N1√
Lq1
|γ(1)l∗q ,Y

γ
(1)
l∗q ,q
|ej(ϕopt1 +ϕb) +

N2√
Lq2
|γ(2)1,Y γ

(2)
1,q |ejϕ

opt
2

∣∣∣∣∣
2
 . (7.24)

7.3.a.ii Optimization of IRSs with time sharing

Here, the MOs optimize the overall phase shifts of the IRSs to the UE scheduled by either

MO-X or MO-Y, in a time-shared manner. Now, in the time slots used to optimize ϕ1

and ϕ2 to UE-k scheduled by BS-X, from (7.16), we need to choose ϕ1 = ϕa and ϕ2 = 0,

respectively. Then, (7.16) and (7.17) simplify to

hk =

(
N1√
Lk1

∣∣∣γ(1)1,Xγ
(1)
1,k

∣∣∣+ N2√
Lk2

∣∣∣γ(2)l∗k,X
γ
(2)
l∗k,k

∣∣∣) ejϕa , (7.26)

hq =
N1√
Lq1

∣∣∣γ(1)l∗q ,Y
γ
(1)
l∗q ,q

∣∣∣ ej(ϕa+ϕb) + N2√
Lq2

∣∣∣γ(2)1,Y γ
(2)
1,q

∣∣∣ . (7.27)

We have the following lemma to characterize the in-band SE.

Lemma 7.1. Let {Xi}Ni=1 be i.i.d random variables such that Xi ∼ CN (0, 1). If M ≜

max(|X1|, |X2|, . . . , |XN |), and G ≜ max(|X1|2, |X2|2, . . . , |XN |2), the expected values of
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M,G are

E[M ] = f(N) ≜ N
∑N−1

n=0

(
N − 1

n

)
(−1)n 1

(n+ 1)
3
2

√
π

4
, (7.28)

and

E[G] = g(N) ≜ N
∑N−1

n=0

(
N − 1

n

)
(−1)n 1

(n+ 1)2
, (7.29)

respectively.

Proof. Straightforward, hence omitted. ■

Using Lemma 7.1, we can show that E
[
|γ(1)1,Xγ

(1)
1,k|
]
= (f(Lk1))

2

√
β
(1)
X,k, and E

[
|γ(1)1,Xγ

(1)
1,k|2

]
=

(g(Lk1))
2β

(1)
X,k, where β(1)

X,k ≜ β
(1)
X β

(1)
k and β(2)

X,k ≜ β
(2)
X β

(2)
k . Similarly, let β(1)

Y,q ≜ β
(1)
Y β

(1)
q and

β
(2)
Y,q ≜ β

(2)
Y β

(2)
q . Conditioned on event A, by Jensen’s approximation, the ergodic SE of

UE-k, q is

⟨Ri|A⟩ ≈ log2
(
1 + E[|hi|2]P/σ2

)
, i ∈ {k, q}, (7.30)

where using (7.26), (7.27), we obtain the following:

E[|hk|2] =
N2

1

Lk1
(g(Lk1))

2β
(1)
X,k +

N2
2

Lk2
β
(2)
X,k +

πN1N2

2
√
Lk1Lk2

(f(Lk1))
2

√
β
(1)
X,kβ

(2)
X,k, (7.31)

E
[
|hq|2

]
=
N2

1

Lq1
β
(1)
Y,q +

N2
2

Lq2
β
(2)
Y,q(g(Lq2))

2 +
πN1N2

2
√
Lq1Lq2

(f(Lq2))
2

√
β
(1)
Y,qβ

(2)
Y,q × E[cos(ϕa + ϕb)].

(7.32)

Since ϕa, ϕb ∼ U [−π, π), we have E[cos(ϕa + ϕb)] = 0. So,

E
[
|hq|2

]
=
N2

1

Lq1
β
(1)
Y,q +

N2
2

Lq2
(g(Lq2))

2β
(2)
Y,q. (7.33)

Using (7.31) and (7.33) in (7.30), the ergodic SEs of UE-k, q when ϕ1, ϕ2 are optimized

only for UE-k can be obtained as

⟨Rk|A⟩ ≈ log2

(
1 +

P

σ2

{
N2

1

Lk1
(g(Lk1))

2β
(1)
X,k +

N2
2

Lk2
β
(2)
X,k +

(
πN1N2

2
√
Lk1Lk2

)
(f(Lk1))

2

√
β
(1)
X,kβ

(2)
X,k

})
,

(7.34)

⟨Rq|A⟩ ≈ log2

(
1 +

P

σ2

{
N2

1

Lq1
β
(1)
Y,q +

N2
2

Lq2
(g(Lq2))

2β
(2)
Y,q

})
. (7.35)
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Similarly, in the time slots used to optimize ϕ1, ϕ2 for UE-q, from (7.17), ϕ1 = 0 and

ϕ2 = ϕb. Then, similar to (7.34) and (7.35), the ergodic SE of UE-k, q is

⟨Rk|A⟩ ≈ log2

(
1 +

P

σ2

{
N2

1

Lk1
(g(Lk1))

2β
(1)
X,k +

N2
2

Lk2
β
(2)
X,k

})
, (7.36)

⟨Rq|A⟩ ≈ log2

(
1 +

P

σ2

{
N2

1

Lq1
β
(1)
Y,q +

N2
2

Lq2
(g(Lq2))

2β
(2)
Y,q +

(
πN1N2

2
√
Lq1Lq2

)
(f(Lq2))

2

√
β
(1)
Y,qβ

(2)
Y,q

})
.

(7.37)

Therefore, using the expressions in (7.34) to (7.37), under a time-sharing scheme, with a

fraction of time-slots, say ζTc, ζ ∈ (0, 1) (Tc is the coherence time) used to optimize overall

phase shifts of both IRSs to UE-k, and remaining (1− ζ)Tc slots used to tune the overall

phase shifts at both IRSs to serve UE-q, the overall ergodic SEs of the MOs are as

⟨Rk|A⟩time-sharing ≈ (1− ζ) log2
(
1 +

P

σ2

{
N2

1

Lk1
(g(Lk1))

2β
(1)
X,k +

N2
2

Lk2
β
(2)
X,k

})
+ ζ log2

(
1 +

P

σ2

{
N2

1

Lk1
(g(Lk1))

2β
(1)
X,k +

N2
2

Lk2
β
(2)
X,k +

πN1N2

2
√
Lk1Lk2

(f(Lk1))
2

√
β
(1)
X,kβ

(2)
X,k

})
,

(7.38)

⟨Rq|A⟩time-sharing ≈ ζ log2

(
1 +

P

σ2

{
N2

1

Lq1
β
(1)
Y,q +

N2
2

Lq2
(g(Lq2))

2β
(2)
Y,q

})
+ (1− ζ) log2

(
1 +

P

σ2

{
N2

1

Lq1
β
(1)
Y,q +

N2
2

Lq2
(g(Lq2))

2β
(2)
Y,q +

πN1N2

2
√
Lq1Lq2

(f(Lq2))
2

√
β
(1)
Y,qβ

(2)
Y,q

})
.

(7.39)

7.3.a.iii Optimization of IRSs without cooperation

In this case, the MOs optimize their IRSs by only considering the in-band channels at

their UEs. So, the overall phase shifts can be set to ϕ1 = ϕ2 = 0 as per (7.13). Hence,

the ergodic SE at UE-k, q is given by (7.36) and (7.35), respectively. The cross terms (as

in (7.34) and (7.37)) do not appear in these expressions as the signals from the IRSs do

not add coherently at the UEs.
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7.3.b Evt. B: IRS-X aligns to UE-q, IRS-Y does not align to UE-k

Here, one of the Lq1 OOB paths at UE-q aligns with IRS-X’s beam, while none of the Lk2

OOB paths at UE-k match with IRS-Y’s beam. Hence, the probability of event B is

Pr(B) = (Lq1/N1) · (1− (Lk2/N2)) . (7.40)

There is no need for joint optimization of ϕ1, ϕ2 here because only one of the MO’s UE

gets signals reflected from both IRSs. Then, the channels at UE-k, q are

hk =
N1√
Lk1

∣∣∣γ(1)1,Xγ
(1)
1,k

∣∣∣× ejϕ1 , (7.41)

hq =
N1√
Lq1

∣∣∣γ(1)l∗q ,Y
γ
(1)
l∗q ,q

∣∣∣ ej(ϕ1+ϕb) + N2√
Lq2

∣∣∣γ(2)1,Y γ
(2)
1,q

∣∣∣ ejϕ2 . (7.42)

Since IRS-Y does not contribute to UE-k, the SE achieved by UE-k is only due to IRS-X

and is independent of ϕ1. On the other hand, for coherent addition of in-band and OOB

paths to maximize |hq|2 in (7.42), we need ϕ2 = ϕ1 + ϕb, and we choose the simplest

solution for this, namely {ϕ1 = 0;ϕ2 = ϕb} so that BS-X need not apply any additional

overall phase. Then,

hk =
N1√
Lk1

∣∣∣γ(1)1,Xγ
(1)
1,k

∣∣∣ , and

hq =

(
N1√
Lq1

∣∣∣γ(1)l∗q ,Y
γ
(1)
l∗q ,q

∣∣∣+ N2√
Lq2

∣∣∣γ(2)1,Y γ
(2)
1,q

∣∣∣)× ejϕb . (7.43)

So, the ergodic SE of UE-k, q when ϕ1, ϕ2 are optimized to UE-q in (1 − ζ)Tc time slots

can be obtained as

⟨Rk|B⟩ ≈ log2

(
1 +

P

σ2

{
N2

1

Lk1
(g(Lk1))

2β
(1)
X,k

})
, (7.44)

and (7.39), respectively. Similarly, with no MO cooperation, the SE at UE-k, q are as

in (7.44) and (7.35), respectively.

To summarize, when event B occurs, for 1) joint optimization with MO cooperation, the

SEs of UEs k and q are given by (7.44) and (7.37), respectively; for 2) optimization with

time-sharing schemes, the SEs of UEs k and q are given by (7.44) and (7.39), respectively.
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With 3) no cooperation, the SEs are given by (7.44) and (7.35), respectively.

7.3.c Evt. C: IRS-X does not align to UE-q, IRS-Y aligns to UE-k

This event is the complement of event B described above, i.e., one of the Lk2 OOB paths

at UE-k aligns with IRS-Y, but none of the Lq1 OOB paths at UE-q matches with the

beam formed by IRS-X. Hence,

Pr(C) = (1− (Lq1/N1)) · (Lk2/N2). (7.45)

Following the analysis similar to event B, the final expressions for the ergodic SEs of UE-k,

q when ϕ1, ϕ2 are optimized to UE-k for ζTc time slots are given in (7.38), and as

⟨Rq|C⟩ ≈ log2

(
1 +

P

σ2

{
N2

2

Lq2
(g(Lq2))

2β
(2)
Y,q

})
, (7.46)

respectively. Similarly, without MO cooperation, the SEs at UEs k and q are given by

(7.36) and (7.46), respectively.

Thus, whenever event C occurs, for 1) joint optimization with MO cooperation, the SEs

of UEs k, q are given by (7.34) and (7.46); for 2) optimization with time-sharing, the SEs

of UEs k, q are given by (7.38) and (7.46), respectively. With 3) no cooperation, the SEs

are as in (7.36), and (7.46), respectively.

7.3.d Event D: IRS-X, Y do not align to UE-q, k, respectively

In this final event, none of the Lq1 and Lk2 OOB paths match with IRS-X and IRS-Y,

respectively. The probability of this event is given by

Pr(D) = (1− (Lq1/N1)) · (1− (Lk2/N2)) . (7.47)

Since none of the IRSs align with an OOB UE, this event completely obviates the need

for tuning ϕ1, ϕ2. The channel coefficients under this event are

hk =
N1√
Lk1

∣∣∣γ(1)1,Xγ
(1)
1,k

∣∣∣ ejϕ1 , hq = N2√
Lq2

∣∣∣γ(2)1,Y γ
(2)
1,q

∣∣∣ ejϕ2 , (7.48)
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respectively, and the ergodic SEs of UE-k, q are given by

⟨Rk|D⟩ = ⟨Rk|B⟩, and ⟨Rq|D⟩ = ⟨Rq|C⟩, (7.49)

where ⟨Rk|B⟩ and ⟨Rq|C⟩ are as per (7.44), (7.46), respectively.

To summarize, whenever event D occurs, for 1) joint optimization with MO cooperation,

2) optimization with time-sharing, and 3) with no MO schemes cooperation, the SEs of

UEs k and q are the same for all 3 schemes as given in (7.49). We now state our main result

on the overall ergodic sum-SEs of both the MOs under round-robin (RR) scheduling.

Theorem 7.1. Under the SV channel model in the mmWave bands, when MOs X & Y

control an IRS each to serve their subscribed UEs, the ergodic sum-SE of MOs X and Y

under RR scheduling is characterized in the following:

1. Optimization of IRSs with time sharing where ζTc time slots are alloted to MO-X and

(1− ζ)Tc time slots are alloted to MO-Y: ⟨Rζ
X⟩TS, ⟨Rζ

Y ⟩TS as in (7.50) and (7.51), with

CO = 1:

⟨Rζ
X⟩TS ≈

1

K

K∑
k=1

{(
1− Lk2

N2

)
log2

(
1 +

P

σ2

N2
1

Lk1
(g(Lk1))

2β
(1)
X,k

)
+(1− ζ)Lk2

N2

log2

(
1 +

P

σ2

{
N2

1

Lk1
(g(Lk1))

2β
(1)
X,k +

N2
2

Lk2
β
(2)
X,k

})
+ζ

Lk2
N2

log2

(
1 +

P

σ2

{
N2

1

Lk1
(g(Lk1))

2β
(1)
X,k +

N2
2

Lk2
β
(2)
X,k

+1{CO=1}
πN1N2(f(Lk1))

2

√
β
(1)
X,kβ

(2)
X,k

2
√
Lk1Lk2


 , (7.50)

⟨Rζ
Y ⟩TS ≈

1

Q

Q∑
q=1

{(
1− Lq1

N1

)
log2

(
1 +

P

σ2

N2
2

Lq2
(g(Lq2))

2β
(2)
Y,q

)
+ζ

Lq1
N1

log2

(
1 +

P

σ2

{
N2

1

Lq1
β
(1)
Y,q +

N2
2

Lq2
(g(Lq2))

2β
(2)
Y,q

})
+(1− ζ)Lq1

N1

log2

(
1 +

P

σ2

{
N2

1

Lq1
β
(1)
Y,q +

N2
2

Lq2
(g(Lq2))

2β
(2)
Y,q

+1{CO=1}
πN1N2(f(Lq2))

2

√
β
(1)
Y,qβ

(2)
Y,q

2
√
Lq1Lq2


 . (7.51)
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2. Joint-optimization of IRSs with MO cooperation: The ergodic rates for MO-X and MO-

Y are given as in (7.52) and (7.53), respectively, where ϕopt
1 and ϕopt

2 are chosen such

that ϕopt = ϕopt
2 − ϕopt

1 is a solution obtained from Algorithm 7.1:

⟨RX⟩JO ≈
1

K

K∑
k=1

{
Lq1Lk2
N1N2

log2

(
1 +

P

σ2

∣∣∣∣ N1√
Lk1

∣∣∣γ(1)1,Xγ
(1)
1,k

∣∣∣ ejϕopt1 +
N2√
Lk2

∣∣∣γ(2)l∗k,X
γ
(2)
l∗k,k

∣∣∣ ej(ϕopt2 +ϕa)

∣∣∣∣2
)

+

(
1− Lk2

N2

)
log2

(
1 +

P

σ2

{
N2

1

Lk1
(g(Lk1))

2β
(1)
X,k

})
+

(
1− Lq1

N1

)
Lk2
N2

log2

(
1 +

P

σ2

{
N2

1

Lk1
(g(Lk1))

2β
(1)
X,k

+
N2

2

Lk2
β
(2)
X,k +

πN1N2(f(Lk1))
2

√
β
(1)
X,kβ

(2)
X,k

2
√
Lk1Lk2


 , (7.52)

⟨RY ⟩JO ≈
1

Q

Q∑
q=1

Lq1Lk2N1N2

log2

1 +
P

σ2

∣∣∣∣∣ N1√
Lq1
|γ(1)l∗q ,Y

γ
(1)
l∗q ,q
|ej(ϕopt1 +ϕb) +

N2√
Lq2
|γ(2)1,Y γ

(2)
1,q |ejϕ

opt
2

∣∣∣∣∣
2


+

(
1− Lq1

N1

)
log2

(
1 +

P

σ2

{
N2

2

Lq2
(g(Lq2))

2β
(2)
Y,q

})
+

(
1− Lk2

N2

)
Lq1
N1

log2

(
1 +

P

σ2

{
N2

2

Lq2
(g(Lq2))

2β
(2)
Y,q

+
N2

1

Lq1
β
(1)
Y,q +

πN1N2(f(Lq2))
2

√
β
(1)
Y,qβ

(2)
Y,q

2
√
Lq1Lq2


 . (7.53)

Further, an upper bound on the SEs ⟨RX⟩JO and ⟨RY ⟩JO without relying on Algo-

rithm 7.1 can be obtained as ⟨RX⟩JO ≤ ⟨Rζ
X⟩TS

∣∣∣
ζ=1

and ⟨RY ⟩JO ≤ ⟨Rζ
Y ⟩TS

∣∣∣
ζ=0

, respec-

tively, where ⟨Rζ
X⟩TS, ⟨Rζ

Y ⟩TS are given as in (7.50) and (7.51), with CO = 1.

3. Optimization of IRSs without MO cooperation: ⟨RX⟩NCO, ⟨RY ⟩NCO as given in (7.50)

and (7.51) with CO = 0.

Proof. We only prove (7.50) (and (7.52)), for MO-X; the proof of (7.51) (and (7.53)) is

similar. Using the law of total expectation, at a given UE-k, the ergodic SE (for all three

schemes) is

⟨Rk⟩ =
∑

i∈{A,B,C,D}

⟨Rk|i⟩Pr(i), (7.54)

where the probabilities can be found using (7.14), (7.40), (7.45), and (7.47) for events
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A,B, C, and D, respectively. As a consequence, under RR scheduling, the ergodic sum-SE

of MO-X is

⟨RX⟩ = (1/K)
K∑
k=1

⟨Rk⟩. (7.55)

Next, the scheme-specific ergodic SE is characterized below.

• Optimization of IRSs with time-sharing: In this scheme, ⟨Rk|i⟩ can be obtained from (7.38),

(7.44), (7.38), and (7.49) for events A,B, C, and D, respectively, then using (7.54) and

(7.55), the result in (7.50) for MO-X follows.

• Joint-optimization of IRSs with MO cooperation: We obtain the values of ⟨Rk|i⟩ by

using (7.23), (7.44), (7.34), and (7.49) for events A,B, C, and D, respectively. Then,

substituting these values into (7.54) and in (7.55) yields the expression in (7.52).

Further, the ergodic SE obtained at a UE by jointly optimizing the IRSs is, at most,

the SE obtained by optimizing the overall phases of both the IRSs to that UE in all

time slots when it is scheduled. Thus, the SE with joint optimization is upper bounded

by the expressions for the time-sharing scheme given above, but with ζ = 1 and ζ = 0

for MO-X and MO-Y, respectively. This establishes the upper bounds in the Theorem.

• For the no cooperation scheme, ⟨Rk|i⟩ can be found from (7.36), (7.44), (7.36), (7.44) for

events A,B, C, and D, respectively, and using them in (7.54), (7.55), the result follows.

This completes the proof of the theorem. ■

We interpret Theorem 7.1 as follows. At MO-X, in the time-sharing scheme, among the

time slots in which the OOB IRS-Y aligns with UE-k (which happens with probability

Lk2/N2), for a ζ fraction of the total time slots, the overall phase shifts of both IRSs

are optimized to UE-k only and procures an array gain that scales as O ((N1 +N2)
2).

For the other (1 − ζ) fraction of time slots, since the IRSs add the signals coherently at

UE-q served by MO-Y, the array gain at UE-k is only due to an incoherent addition of

signals from the IRSs, i.e., it scales as O(N2
1 +N2

2 ). On the other hand, when IRS-Y does

not align with UE-k (which happens with probability 1 − Lk2/N2), the array gain scales
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only as O (N2
1 ). Similarly, under the joint-optimization scheme, whenever IRS-Y aligns

with UE-k, but IRS-X does not align with UE-q, i.e., with event C which happens with

probability (1−Lq1/N2)Lk2/N2, the solution for joint optimization boils to that obtained

under time-sharing with ζ = 1, which procures a full array gain of O ((N1 +N2)
2). When

both the IRSs align with both the UEs, i.e., under event A, due to the non-availability of

closed-form expressions for ϕopt
1 and ϕopt

2 , we do not have an explicit SE-scaling law for this

event. However, it is expected that the scaling of the array gain in this case lies between

O (N2
1 +N2

2 ) and O ((N1 +N2)
2). Finally, when IRS-Y does not align with UE-k, the

array gain again scales only as O(N2
1 ). We can have similar interpretations at MO-Y as

well. Based on the above, we make the following observations:

• The sum-SE of MO-X scales at least as O(log2(N2
1 )) in all cases, which is due to the

array gain that is obtained in the absence of OOB IRSs. Thus, in general, IRS deployed

by one MO does not degrade the achievable SE at other MOs.

• When both IRSs align to their respective OOB UEs, the best possible SE of an MO can

potentially scale as O (log2(N1 +N2)
2). However, this is not simultaneously achievable

at both MOs, as noted in the discussion following (7.19) in Sec. 7.3.a. Further, even

if it were possible to satisfy (7.18) and (7.19) simultaneously and achieve a sum-SE of

O (log2(N1 +N2)
2) at both MOs, we will next show that the resultant gain in the overall

SE is small because of the low-probability nature of both IRSs aligning to OOB UEs.

7.4 Quantifying the Effect of Out-of-Band IRSs

In the previous section, we characterized the ergodic sum-SE of a system with 2 MOs,

each optimizing an IRS to serve its UEs. We analyzed three schemes that allow different

degrees of cooperation between MOs. However, from a practical viewpoint, it is helpful

to explicitly quantify the gain/loss in the ergodic SE with/without OOB IRSs and with-

/without cooperation between MOs. To that end, considering one of the MOs, say MO-X,

we present the following result.
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Theorem 7.2. Under the SV channel model in the mmWave bands, under RR scheduling,

the maximum gain in the ergodic sum-SE of MO-X

1. with, versus without, OOB IRS-Y is given by

△⟨RX⟩OOB =
1

K

K∑
k=1

Lk2
N2

log2

1 +


(

N2
2

Lk2
β
(2)
X,k + 1{CO=1}

πN1N2(f(Lk1))
2
√
β
(1)
X,kβ

(2)
X,k

2
√
Lk1Lk2

)
(
σ2

P
+

N2
1

Lk1
(g(Lk1))2β

(1)
X,k

)

 .

(7.56)

2. with cooperation (i.e., jointly optimize/time-share the IRSs) versus no cooperation be-

tween MOs in the presence of the OOB IRS-Y is bounded as

△⟨RX⟩CO ≤
1

K

K∑
k=1

Lk2
N2

log2

(
1 + Ψ(Lk1)

π

4

)
, (7.57)

where Ψ(Lk1) ≜ (f(Lk1))
2
/
g(Lk1).

Proof. We prove the two statements separately below.

7.4.a Gain with versus without OOB IRS

To bound the gain in sum-SE obtained by MO-X with and without the OOB IRS, we

consider two cases: 1) the OOB IRS is present, and it coherently adds the signals at the

UEs of MO-X in all time slots if cooperation is allowed, and 2) the OOB IRS is absent.

Let the sum-SE ⟨Rζ
X⟩TS given in (7.50) with and without the OOB IRS be denoted by

⟨Rζ
X⟩W-IRS and ⟨Rζ

X⟩WO-IRS, respectively. Then the maximum gain in SE is given by

△⟨RX⟩OOB ≜ ⟨Rζ
X⟩W-IRS

∣∣∣
ζ=1
− ⟨Rζ

X⟩WO-IRS, (7.58)

where ζ = 1 captures that the overall phase shifts at both the IRSs are used to coherently

add the signals at the UEs served by MO-X in all time slots. Then, substituting for the

resulting values in the above equation and noting that the sum-SE without the OOB IRS

follows by substituting N2 = 0 in (7.50) and recognizing that the pre-log term Lk2/N2 is

unity in the absence of the OOB IRS, we obtain (7.56).
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7.4.b Gain with versus without cooperation

We first consider time-sharing. Let the sum-SE at MO-X with and without cooperation be

denoted as ⟨RX⟩TS
W-CO and ⟨RX⟩TS

WO-CO, respectively, i.e., from (7.50), ⟨RX⟩TS
W-CO = ⟨Rζ

X⟩TS

with CO = 1, and ⟨RX⟩TS
WO-CO = ⟨Rζ

X⟩TS with CO = 0. Then, the maximum gain in the

sum-SE of MO-X with versus without cooperation is

△⟨RX⟩TS ≜ ⟨RX⟩TS
W-CO

∣∣∣
ζ=1
− ⟨RX⟩TS

WO-CO (7.59)

=
1

K

K∑
k=1

Lk2
N2

log2

1 +
π

2
·

N1N2√
Lk1Lk2

(f(Lk1))
2

√
β
(1)
X,kβ

(2)
X,k

σ2

P
+
(
N2

1

Lk1
(g(Lk1))2β

(1)
X,k +

N2
2

Lk2
β
(2)
X,k

)


(b)

⪅
1

K

K∑
k=1

Lk2
N2

log2

(
1 + Ψ(Lk1)

π

4

)
, (7.60)

where Ψ(Lk1) is as defined in the theorem and in (b) we used a high SNR approximation

and the fact that
(
(N1/

√
Lk1)g(Lk1)

√
β
(1)
X,k − (N2/

√
Lk2)

√
β
(2)
X,k

)2
≥ 0.

Next, under the joint optimization scheme, let the SE with and without cooperation

be ⟨RX⟩JO
W-CO and ⟨RX⟩JO

WO-CO, respectively, i.e., from (7.52), ⟨RX⟩JO
W-CO = ⟨RX⟩JO, and

⟨RX⟩JO
WO-CO = ⟨Rζ

X⟩TS with CO = 0. Then, the maximum gain in the SE is

△⟨RX⟩JO = ⟨RX⟩JO
W-CO − ⟨RX⟩JO

WO-CO (7.61)
(c)

≤ ⟨RX⟩TS
W-CO

∣∣∣
ζ=1
− ⟨RX⟩TS

WO-CO, (7.62)

where in (c), we use Theorem 7.1 that the SE achieved by jointly optimizing the IRSs is

upper bounded by the SE when the IRSs are optimized for the UE served by MO-X in

all time slots. Finally, we note that (7.62) can be characterized as given in (7.60). Thus,

under both schemes, the gain with versus without cooperation can be unified into a single

expression, △⟨RX⟩CO, in (7.57). This completes the proof. ■

From (7.56) of Theorem 7.2, we observe that the gain in the sum-SE is strictly non-

negative. Thus, the ergodic sum-SE at MO-X can only improve in the presence of an

OOB IRS. In particular, we also make the following observations:
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• Gain with OOB IRS at Low-SNR: In the low SNR regime, since
σ2

P
≫ 1, we have

σ2

P
+
N2

1

Lk1
(g(Lk1))

2β
(1)
X,k ≈

σ2

P
. Using this in (7.56), and also using log2(1 + x) ≈ x

ln(2)
when x ≪ 1, we obtain the simplified expression for the gain obtained by an in-band

MO due to an OOB-IRS in (7.63), at low-SNR scenarios:

△⟨RX⟩L-SNR
OOB ≈ 1

K

K∑
k=1

1

ln(2)

N2β
(2)
X,k + 1{CO=1}

πN1(f(Lk1))
2

√
β
(1)
X,kβ

(2)
X,k

2
·
√
Lk2
Lk1

 P

σ2
.

(7.63)

In this case, the gain increases linearly with the number of IRS elements, particularly

those of the OOB IRS, and the SNR of operation. This behavior can be attributed to

the fact that the OOB IRS enables the reception of additional copies of the signal at

the UE (either coherently or incoherently, depending on the level of MO cooperation)

whenever the OOB IRS aligns with the UE served by MO-X (an event occurring with

probability Lk2/N2). These additional signal paths enhance the average received SNR

at the in-band UE.

• Gain with OOB IRS at High-SNR: Here, since
σ2

P
≪ 1, we have

σ2

P
+
N2

1

Lk1
(g(Lk1))

2β
(1)
X,k

≈ N2
1

Lk1
(g(Lk1))

2β
(1)
X,k. Using this approximation, along with the fact that log2(1 + x) ≈

log2(x) when x ≫ 1, we get the simplified expression for the SE gain in the high-SNR

regime as given in (7.64):

△⟨RX⟩H-SNR
OOB ≈ 1

K

K∑
k=1

Lk2
N2

log2

(
1 +

(
N2

N1

)2
Lk1
Lk2
·

β
(2)
X,k

(g(Lk1))2β
(1)
X,k

+1{CO=1} ·
πN2

2N1

·
(f(Lk1))

2

√
β
(2)
X,kLk1

(g(Lk1))2
√
β
(1)
X,kLk2

 . (7.64)

Contrary to the low-SNR regime, the gain at high SNR exhibits a unimodal behavior

with respect to the number of elements at the OOB IRS. This arises because, although a

larger OOB IRS can potentially deliver more signal copies when aligned with the in-band

UE, the probability of such alignment decreases as the number of elements at the OOB

IRS increases. The alignment probability is initially high, allowing the overall SE gain
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Table 7.3: Variation of Ψ(L) as a function of L.

L 1 2 5 10 25 40
Ψ(L) 0.79 0.87 0.93 0.96 0.97 0.98

to improve with N2. However, the alignment probability decreases as N2 increases, and

this outweighs the logarithmic increase in the gain. This leads to an overall reduction

in the gain, resulting in the observed unimodal trend. Moreover, the gain does not

scale significantly with SNR, since the in-band UE already enjoys high SE at high SNR.

Thus, only marginal improvements are observed unless the OOB IRS offers substantial

additional contribution (which is less likely as N2 increases.)

• The best SE gain in (7.57) obtained by cooperation is directly proportional to Lk2/N2,

but depends weakly on Lk1 through the Ψ(Lk1) term, as shown in Table 7.3. However,

the gain decreases as the number of OOB IRS elements N2 increases.

In the next section, we extend our results to a general setting where more than two

operators exist and each deploys its own IRS to serve its UEs optimally.

7.5 Performance Analysis with M > 2 MOs

We consider that M MOs serve a given geographical area, and their respective BSs: {BS-

1, BS-2,. . . , BS-M} provide services to {K1, K2, . . . , KM} UEs at the same time over

non-overlapping bands. Further, UE-kl denotes the kth UE served by the lth MO. For

simplicity, we let the number of elements in each IRS equal N . At any UE served by an

in-band MO, due to the presence of M − 1 OOB IRSs, M different events arise, similar to

Sec. 7.3, and we denote them by E0, . . . , EM−1. Specifically, Em is the event that exactly

m OOB IRSs align with UE-k1 on one of the OOB paths through them. Further, the

event that an OOB IRS phase configuration aligns with an OOB path is independent

across the OOB IRSs, so, the number of OOB IRSs, m, that contribute to the channel

at any UE follows a binomial distribution, i.e., m ∼ Bin
(
M − 1, Lk1

N

)
. As a consequence,

Pr(Em) =
(
M−1
m

)(Lk1

N

)m(
1 − Lk1

N

)
(M−1−m), where Lk1 is the number of resolvable OOB

paths at UE-k1 via an IRS, and here Lk1 ≤ N . Then, similar to (7.16), conditioned on
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Em, the channel from BS-1 to UE-k1 is given by

hk1 =
N√
Lk1

{∣∣∣γ(1)1,B1
γ
(1)
1,k1

∣∣∣ejϕ1 + m+1∑
i=2

∣∣∣γ(mi)
l∗,B1

γ
(mi)
l∗,k1

∣∣∣ej(ϕmi+ϕmi1 )

}
,

where symbols have similar meanings as in Sec. 7.3. For example, γ(1)1,B1
denotes the channel

coefficient between the first IRS (superscript) and BS-1 (second subscript) along the first

(dominant) path (first subscript); γ(1)1,k1
denotes the channel coefficient between the first

IRS and the k1th UE along the first path. Also, mi ∈ {2, . . . ,M}, such that mi ̸= mj

when i ̸= j, i.e., {mi}m+1
i=2 denotes the indices of the m OOB IRSs for which some l∗th path

aligns with UE-k1. Further, γ(mi)
l∗,B1

and γ
(mi)
l∗,k1

denote the coefficients of the channnels from

BS-1 to IRS-mi and IRS-mi to UE-k1 that correspond to the l∗th OOB cascaded path via

the aligning IRS-mi which contributes to the recieved signal at UE-k1. Then, we model

γ
(mi)
l∗,B1
∼ CN (0, βB1), γ

(mi)
l∗,k1
∼ CN (0, βk1), where βB1 and βk1 are the path losses in the BS-1

to IRS-1 and IRS-1 to UE-k1 links, respectively.5 Finally, ϕmi1
is the phase difference of

the matching cascaded OOB path at UE-k1 via the mith IRS and the in-band path, and

ϕmi
is an overall extra phase applied at IRS-mi. Next, we analyze the ergodic sum-SE of

MO-1 for different schemes as discussed in the 2-MO case, which entails varying degrees

of cooperation among the MOs.

7.5.a Time-sharing of the IRSs with MO Cooperation

In this scheme, under event Em, for a ζ1 fraction of time slots, all the m matching OOB

IRSs coherently add the signals at UE-k1 and in the other 1− ζ1 fraction of slots, UE-k1

receives an incoherent addition of signals from the OOB IRSs. Then, similar to Sec. 7.3.a,

to maximize |hk1|2 at UE-k1 in the ζ1 fraction of slots, we set ϕmi
= −ϕmi1

, and ϕ1 = 0.

The overall channel coefficient at UE-k1 under event Em is

h
(ζ1)
k1

d
=

N√
Lk1

{∣∣∣γ(1)1,B1
γ
(1)
1,k1

∣∣∣+m+1∑
i=2

∣∣∣γ(mi)
l∗,B1

γ
(mi)
l∗,k1

∣∣∣}, (7.65)

5For simplicity of exposition, the path losses are equal across IRSs [126].
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and its average gain in (7.66) is obtained as

E
[∣∣∣h(ζ)k1 ∣∣∣2 ] = N2

Lk1

{
E
[∣∣∣γ(1)1,B1

γ
(1)
1,k1

∣∣∣2 + m+1∑
i=2

∣∣∣γ(mi)
l∗,B1

γ
(mi)
l∗,k1
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=
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where βB1,k1 ≜ βB1βk1 . For other (1− ζ1) fraction of slots,

h
(1−ζ1)
k1

≜
N√
Lk1

{∣∣∣γ(1)1,B1
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(1)
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γ
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∣∣∣ejϕmi1

}
, (7.68)

and its average gain can be similarly obtained as

E
[∣∣∣h(1−ζ1)k1

∣∣∣2 ]= N2

Lk1
βB1,k1

{
(g(Lk1))

2 +m

}
. (7.69)

Then, by using Jensen’s approximation, the ergodic sum-SE of MO-X conditioned on event

Em is given in (7.70):

⟨R(ζ1)
k1
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σ2

N2

Lk1
βB1,k1

{
(g(Lk1))

2+m
(
1+

π

2
(f(Lk1))

2+
π2

8

(m− 1)

2

)})
+ (1− ζ1) · log2

(
1 +

P

σ2

N2

Lk1
βB1,k1

{
(g(Lk1))

2 +m

})
. (7.70)

7.5.b Joint-Optimization of IRSs with MO Cooperation

In the joint optimization scheme, the overall phase angles at the IRSs, i.e., ϕmi
, are chosen

to maximize the weighted sum-SE of all UEs scheduled by every MO in a time slot. In

this case, the SE of each MO under different events can be characterized similarly to the

previous section. Consequently, the overall sum-SE of any given MO can be obtained

similarly to (7.52), and we omit the details for brevity.
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7.5.c No cooperation among the MOs

When the MOs do not cooperate, the overall IRS phase-shifts are set as {ϕ1, ϕmi
}m+1
i=2 = 0.

So, the channel becomes

hk1 =
N√
Lk1

{∣∣∣γ(1)1,B1
γ
(1)
1,k1

∣∣∣+m+1∑
i=2
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γ
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l∗,k1

∣∣∣ejϕmi1

}
,

for which, we have E
[
|hk1|2

]
= N2

Lk1
βB1,k1

{
(g(Lk1))

2 +m

}
. Then the ergodic SE of MO-1,

under event Em, is

⟨Rk1|Em⟩NCO ≈ log2

(
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{
(g(Lk1))

2 +m
})

.

We next characterize the overall ergodic sum-SE of a MO (say MO-1) when M > 2 MOs

coexist, similar to Theorem 7.1.

Theorem 7.3. Under the SV channel model in the mmWave bands, when M > 2 MOs

control an IRS each to serve its subscribed UEs, the ergodic sum-SE of MO-1 under RR

scheduling is characterized as:

1. Optimization of IRSs with time sharing where ζ1Tc time slots alloted to MO-X and

(1− ζ1)Tc time slots are alloted to other MOs: ⟨Rζ1
1 ⟩TS, as given in (7.71) with CO = 1:
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, (7.71)

2. Joint-optimization of IRSs with MO cooperation: The ergodic rate for MO-1 can be

obtained similar to (7.52) with ϕopt
mi

determined similar to Algorithm 7.1. Further, an

upper bound on the SEs ⟨R1⟩JO without relying on ϕopt
mi

can be obtained as ⟨R1⟩JO ≤
⟨Rζ1

1 ⟩TS

∣∣∣
ζ1=1

, where ⟨Rζ1
X ⟩TS is given in (7.71) with CO = 1.

3. No MO Cooperation: ⟨R1⟩NCO as in (7.71) with CO = 0.
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Proof. By the law of total expectation, ⟨Rk1⟩ =
∑

m⟨Rk1 |Em⟩Pr(Em), and under RR

scheduling, we note ⟨R1⟩ ≜ 1
K1

∑K1

k1=1⟨Rk1⟩. Using the values of ⟨Rk1⟩ under the three

schemes in ⟨R1⟩ completes the proof. ■

Next, similar to Theorem 2, we can characterize the gain in the sum-SE due to the

presence of the OOB IRSs over that in the absence of OOB IRSs and the gain due to

cooperation over the no-cooperation case. We illustrate this in the following result, which

shows that cooperation offers only a marginal improvement in the sum-SE.

Theorem 7.4. Under the SV channels in mmWaves and RR scheduling, the maximum

gain in the ergodic sum-SE of MO-1

1. with vs. without OOB IRSs is approximately given by (7.72):

∆⟨R1⟩OOB ≈
1

K1

K1∑
k1=1

M−1∑
m=1

(
M − 1

m

)(
Lk1
N

)m(
1− Lk1

N

)(M−m−1)

× log2

1 +
m+ 1{CO=1}m

π
2

(
(f(Lk1))

2 + π(m−1)
8

)
(g(Lk1))2

 . (7.72)

2. with cooperation (i.e., jointly optimize/time-share the IRSs) vs. no cooperation between

MOs in the presence of the OOB IRSs is bounded as in (7.73):

△⟨R1⟩CO ≤
1

K1

K1∑
k1=1

M−1∑
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(
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m

)(
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(
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π
√
m

4

{
Ψ(Lk1) +

π(m− 1)

8g(Lk1)

})
. (7.73)

Proof. It is similar to Theorem 7.2. We omit for brevity. ■

Considering the m = 1 term in (7.72) and (7.73), and comparing them with (7.64) and

(7.57) respectively, we see that the gain in SE due to the presence of M IRSs scales

approximately as M − 1 times the gain in the 2-MO case. This is because there are M − 1

OOB IRSs that can align with a given UE. In addition, we can obtain further gains in the

SE, captured by the summands corresponding to m = 2 to m =M −1, when m ≥ 2 OOB
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IRSs happen to be aligned to the UE. However, the event that m IRSs align with a UE

occurs with exponentially lower probability due to the (L/N)m term. Thus, the presence

of M MOs does not degrade the sum SE of a given operator; in fact, it provides a gain in

the sum SE that increases at least linearly with M .

In the next section, we numerically illustrate our findings via Monte Carlo simulations.

7.6 Numerical Results and Discussion

We first illustrate the results for 2 MOs as in Sec. 7.3 and 7.4.

7.6.a 2-MO and 2-IRS System

BS-X and BS-Y are located at (0, 200), and (200, 0) (in meters), and IRS-X and IRS-Y are

located at (0, 0) and (200, 200), respectively. All UEs are uniformly located in a rectangu-

lar region with diagonally opposite corners (0, 0) and (200, 200). The path loss is modeled

as β = C0 (d0/d)
α, where C0 = −60 dB is the path loss at the reference distance d0 = 1

m, d is the distance between nodes, and α is the path loss exponent [154]. We use α = 2

for both BS-IRS, and the IRS-UE paths [9]. We use RR scheduling to serve K = Q = 10

UEs over 1000 time slots by the respective MOs.

In Fig. 7.3, we plot the achievable ergodic sum-SE of MO-X vs. log2N (where

N = N1 = N2), under event A, and study the performance of the three schemes de-

scribed in Sec. 7.3.a. The SE, when jointly optimal overall IRS phases are used to

maximize the equal-weighted sum-SE of UEs scheduled by the MOs using a general

high complexity off-the-shelf solver using the findpeaks function of MATLAB (curve

labeled Joint optimization solver) nearly overlaps with that obtained using the low-

complexity single-iteration Algorithm 7.1 (curve labeled Joint optim. with Alg. 1).

This shows that the proposed single-iteration Newton’s algorithm is a practically viable

solution, offering near-optimal performance with significantly reduced complexity. This

effectiveness is largely due to the carefully chosen initialization strategy (given in lines 1–5

of Algorithm 7.1), which provides provable convergence guarantees [175, Theorem 9.1].

Further, the SE using the joint optimization scheme is slightly inferior to the time-sharing
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Figure 7.3: Ergodic sum-SE of MO-X vs. log2N conditioned on Event A at C0γ = 150 dB and
Lk1 = 1, Lk2 = 10.

scenario with ζ = 1 (curve labeled Time sharing ζ = 1). This is because no UE gets the

full array gain of O((N1 +N2)
2) in any time slot under a joint-optimization scheme. The

performance obtained by MO-X with time-sharing (ζ = 1) is about 0.5 bps/Hz higher than

that obtained without an OOB IRS (curve labeled No OOB IRS). This is because, under

event A, the OOB IRS approximately doubles the SNR at the UE (thereby improving the

SE by 1 bps/Hz) when the UE is closer to the OOB IRS than the in-band IRS. On the

other hand, when the UE is closer to the in-band IRS than the OOB IRS, the SNR is

nearly the same as that in the absence of the OOB IRS. These two events are equally likely

under the simulation setup considered, hence, the average gain in SE through cooperation

is about 0.5 bps/Hz. The performance obtained by MO-X with no cooperation nearly

matches that obtained in the absence of the OOB IRS (the bottom two curves), because

the SNR gain from the OOB IRS under event A is negligible when the overall phase of

the IRS is arbitrary. More importantly, the OOB IRS does not degrade the SE even if the

MOs do not cooperate. Finally, the ergodic sum-SE of MO-X is log-quadratic in N in all

scenarios, thus, the array gain from IRS-X is always obtained.
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Figure 7.4: Diff. in sum-SE of MO-X with and without OOB IRS vs. log2(N2).

Figure 7.5: Rate Region of the MOs at Lk1 = 1, Lk2 = 5, Lq1 = 8, Lq2 = 1.

Next, in Fig. 7.4, for a fixed number of elements at IRS-X (at N1 = 64), we plot the dif-

ference between the ergodic sum-SE of MO-X obtained in the presence and absence of the

OOB IRS-Y vs. the number of OOB IRS elements (in the log-domain) as a function of the

number of OOB paths, Lk2. To capture the maximum possible difference, we consider that
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whenever IRS-Y aligns to the in-band UE of MO-X, both MOs cooperate and implement

the time-sharing scheme with ζ = 1. Then, for a given Lk2, we observe that the difference

is non-negative, and further, this gain in the SE due to the presence of OOB IRS-Y is an

unimodal function in N2 with the peak occurring at N2 = Lk2. This is in line with the

theoretical expression given by (7.64) in Theorem 7.2. Intuitively, at smaller values of N2,

with high probability, IRS-Y aligns with the in-band UE of MO-X; so, when N2 increases,

the overall SNR increases for MO-X. However, for larger values of N2, the probability that

the IRS-Y aligns to MO-X’s UE becomes small, in turn causing the difference (or) gain

in the SE with and without an OOB IRS to decrease. Finally, as Lk2 increases, the gain

increases because the probability of IRS-Y aligning to MO-X increases, further enhancing

the channel gain at in-band UEs of MO-X. Thus, an OOB IRS benefits MO-X more when

there are many paths via the OOB IRS at the UEs served by MO-X.

In Fig. 7.5, we plot the achievable rate regions of the two MOs (normalized by the band-

widths) forN1 = N2 = 256 and C0γ = 150 dB under two different schemes: 1) time-sharing

(corresponding to the curve B - C - D with B , C , and D obtained at ζ = 0, 0.5,

and 1, respectively), and 2) weighted-sum-SE joint optimization given in Algorithm 7.1

(corresponding to the curve B - E - D ). The sum-SE obtained via Algorithm 7.1 up-

per bounds the sum-SE of the time-sharing scheme. This is because, in the former, the

IRS overall phases are jointly optimal for scheduled UEs of both the MOs in any time

slot. Also, the achievable sum-SE under the joint optimization peaks at the point at E

when w1 = w2 = 0.5. On the same plot, point A , which denotes the no-cooperation

scenario, provides a sum-SE that is smaller than that obtained by cooperation. In any

case, the overall gain between the points A and E is small due to the sparse scattering

of mmWave channels. Therefore, while the presence of the OOB IRS always enhances

the ergodic SE achieved by the UEs served by all MOs, the additional gain obtained via

optimizing the overall phase of the IRS is marginal.
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Figure 7.6: Sum-SE of MO-1 vs. log2N with 4-MOs, C0γ = 150 dB, L = 5.

7.6.b M > 2-MO and M > 2-IRS System

We next investigate the performance obtained with more than 2 MOs for different schemes

with and without cooperation. We consider 4 MOs, with each MO deploying an IRS to

serve its UEs optimally. The BSs of MO-1, 2, 3, and 4 are located at (0, 0), (200, 0),

(200, 200), and (0, 200) (in meters), respectively, and the IRSs are located in a circular

region centered at (100, 100) with radius 5 meters. The rest of the settings are the same

as considered for the 2-MO case.

In Fig. 7.6, we plot the ergodic sum-SE of MO-1 vs. log2N for C0γ = 150 dB, and

L = 5, where N is the number of IRS elements in each IRS, and investigate the SE

performance of MO-1 for three extreme scenarios: a) time-sharing with ζ1 = 1, b) no

MO cooperation scheme, and in 3) absence of all IRSs except IRS-1 which is deployed by

MO-1. We observe that the SE of MO-1 in the presence of OOB IRSs strictly outperforms

the achievable SE in the absence of OOB IRSs. This is because, besides the in-band

IRS, the OOB IRSs contribute to the signal strength at the UE served by MO-1. With

cooperation, the performance can be further improved by ensuring the coherent addition of

signals arriving at the UE via the contributing IRSs. However, for large N , the probability
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that an OOB IRS aligns with a given UE becomes small, and the SE in the presence of

OOB IRSs coincides with that obtained in the absence of OOB IRSs. Nonetheless, even

with an arbitrary number of MOs, the ergodic SE of an MO does not degrade due to the

presence of uncontrollable IRSs deployed by other MOs.

7.7 Conclusions

In this chapter, we addressed an important problem in IRS-aided practical mmWave wire-

less systems: the effect of IRSs deployed by one MO on the performance of another existing

OOB MO, which has an IRS of its own. Starting with the case where 2 MOs each deploy

an IRS to serve their UEs optimally, we first examined different scenarios that arise due to

the impact of an IRS on the OOB MOs. Subsequently, we derived the ergodic sum-SE of

the MOs under three schemes. In the first scheme, the MOs cooperate and jointly optimize

an overall phase angle of the IRSs; in the next, the MOs only cooperate by optimizing the

overall phase in a time-sharing manner, and in the final scheme, the MOs do not cooperate

and function independently. Our key findings were two-fold: 1) even when the MOs do not

cooperate, the IRS of one MO does not degrade the sum-SE of another MO, and 2) the

best possible gain obtained in the sum-SE by allowing for MO cooperation compared to

no cooperation scheme decreases inversely with the number of IRS elements in the OOB

MO. The primary reason behind these observations is the spatial sparsity in the mmWave

band channels. This avoids degradation due to the OOB IRS and also makes significant

enhancement unlikely. We extended our results to a system with more than 2 MOs, and

showed that a given MO’s performance improves linearly with the number of OOB MOs in

the area. Future work could include extending our results to interference-limited scenar-

ios and accounting for multi-user and inter-cell interferences, different duplexing modes,

user-mobility with statistical CSI, adopting multi-user scheduling techniques [79,103], etc.
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8 Wideband Beamforming in
IRS-Aided Communications:
Mitigating Beam-Split Effects

Chapter Highlights
This chapter addresses the mitigation of spatial-wideband (SW) and the resulting beam-

split (B-SP) effects in intelligent reflecting surface (IRS)-aided wideband systems. The SW
effect occurs when the signal delay across the IRS aperture exceeds the system’s sampling
duration, causing the user equipment’s (UE) effective channel to vary with frequency. This
leads to the B-SP effect, wherein the IRS cannot coherently beamform at a given UE over
the entire bandwidth, reducing array gain and throughput.
We demonstrate that partitioning a single IRS into multiple smaller IRSs and distributing

them in the environment can naturally mitigate the SW effect (and hence the B-SP effect)
by parallelizing the spatial delays and exploiting angle diversity benefits. By determining
the maximum number of IRS elements to limit B-SP effects and analyzing the achievable
sum-rate, we demonstrate that our approach ensures a minimum positive rate over the
entire bandwidth of operation. However, distributed IRSs may introduce temporal delay
spread (TDS) due to multipath propagation and reduce the achievable flat channel gain.
To minimize TDS and maintain the full array gain, we show that the optimal placement
of the IRSs is on an ellipse with the base station (BS) and UE as the focal points. We
subsequently analyze the impact of the optimal IRS placement on TDS and throughput for
a UE located within a hotspot served by the IRSs. Finally, we illustrate that distributed
IRSs enhance angle diversity, which exponentially reduces the outage probability due to
B-SP effects as the number of IRSs increases. Numerical results validate the efficacy and
simplicity of our method compared to state-of-the-art solutions.
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8.1 Introduction

Intelligent reflecting surfaces (IRS) are envisioned to improve the performance of wireless

systems by beamforming signals in desired directions using independently reconfigurable

passive phase shifters [2, 69, 176]. One of the key use cases for IRSs is to create a virtual

line-of-sight (LoS) path to multiple user equipments (UEs) clustered in a hotspot area

when the LoS path between the hotspot and a base station (BS) is obstructed. However,

the cascaded link via the IRS encounters a multiplicative path loss, and an IRS with

a large number of elements has to be used to achieve appreciable benefits [177]. Large

arrays cause the signal delay across the aperture to be comparable to or even exceed the

sampling duration. This results in spatial-wideband (SW) effects [178], which manifests

as the beam-squint (B-SQ) and beam-split (B-SP) effects in the frequency domain, and

severely degrades the array gain and the throughput at a UE. This chapter addresses this

problem using distributed IRSs that naturally mitigate the SW and resulting B-SP effects

at almost no additional complexity.

8.1.a The Beam-Split: Curse of the Spatial-Wideband Effect

In high-frequency millimeter wave (mmWave) bands with large bandwidths (BW), the

channel between two nodes is typically directional because there are only a few significant

scatterers. These directions are independent of the operating frequencies as long as the

delay spread of the channel is much smaller than the system sampling duration, known

as the narrowband condition. However, when an IRS with a large number of elements is

used, the spatial delay spread across the aperture can easily exceed the sampling period

and violate the narrowband condition. This results in the spatial-wideband effect, where

even a LoS channel becomes frequency-selective.

In this scenario, the main challenge is that the IRS fails to coherently beamform across

the entire BW allotted to a UE in the system. Specifically, when the IRS is configured as

a phased array tuned to a specific frequency component within the BW, e.g., the carrier

frequency (which is typically the case), the SW effect induces the B-SQ and B-SP effects in

the frequency domain, which severely degrades the array gain at other frequencies within
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the BW. In the B-SQ effect, the beam formed by the IRS squints at different angles across

frequencies, though the angular spread across the BW remains within the main lobe of the

beam. In contrast, the B-SP is a more severe form of B-SQ and occurs when the number

of IRS elements or allotted BW (or both) further increases. In the B-SP effect, the beam

formed by the IRS at the tuned frequency splits into distinct, resolvable beams on other

frequencies within the BW. Consequently, the IRS fails to beamform and constructively

combine signals at the UE over the full BW, severely degrading the achievable channel

gain and spectral efficiency. While the SW effects can be circumvented by reducing the

number of IRS elements or the total BW, this also lowers the achievable channel gain and

system throughput. Therefore, it is crucial to design efficient methods, preferably with low

complexity, to mitigate SW and the resulting B-SP effects in IRS-aided wideband systems.

8.1.b Related Work & Motivation

Most existing studies on IRS-aided systems overlook the B-SP effects resulting from the

SW effects and overestimate the achievable benefits of an IRS. Only a few works address

the wideband effects; we summarize them below.

In [46, 47], and [48], methods for channel estimation and beam training were developed

accounting for the SW effects. Localization of UEs using SW effects was discussed in [49].

Optimization of IRS phases to maximize the sum-rate in orthogonal frequency division

multiplexing (OFDM) systems with B-SQ effects was studied in [179]. In [13] and [14],

joint optimization of the IRS configuration and BS precoder was explored for multiple-

input multiple-output (MIMO) terahertz systems. In [20], the achievable ergodic rate of

a MIMO-OFDM system with B-SQ effects was examined, and [180] solved for optimal

IRS configuration to maximize the signal-to-interference-plus-noise ratio (SINR) with B-

SQ effects. Finally, [50] and [51] used B-SQ effects to enhance the cell coverage and

performance of OFDM-based multiple access.

Along the lines of mitigating the SW (and hence the B-SP effects), existing works often

use true time-delay (TTD) units at the IRS to compensate for the excess signal delay across

the aperture, thereby eliminating the SW effects [52]. In [54], a hardware-efficient design
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of TTD-enabled IRS was investigated, and [53] used delay-phase units to eliminate the

B-SP effects in both far-field and near-field scenarios. In [55], the TTDs and BS precoder

were jointly optimized to maximize the sum-rate of a multi-user system, and [181] used

TTDs to design an efficient IRS-aided cell-free wideband MIMO system. Further, in [182],

TTD units were proposed as a means to mitigate B-SP effects in holographic RIS-assisted

systems. In contrast, [183] utilized TTD units to control the B-SP effect for improving

the accuracy of sensing multiple UEs in the network. However, using TTD units at an

IRS presents a number of challenges: 1) the number of TTD units increases with the

number of IRS elements, requiring more hardware and space; 2) high-resolution TTDs

are necessary for precise delay compensation, which increases power consumption, and

3) since the IRS elements continuously receive signals from the BS, apply a delay, and

then reflect the signal toward the UE, the overall operation becomes full-duplex in nature.

This introduces self-interference (SI) at each IRS element, and to alleviate it, sophisticated

SI cancellation techniques are required at each element of the IRS [177], which further

complicates the design and hardware requirements. These issues can potentially undermine

the hardware cost and energy efficiency benefits of using IRSs. In particular, to the best

of our knowledge, no paper in the literature describes the hardware implementation and

demonstration of a TTD-enabled IRS. Yet another approach is to virtually partition a

single large IRS into multiple sub-IRSs, with each sub-IRS optimized to the channels over

distinct frequency bands [184]. Although this provides a flat response across the BW, the

achievable array gain scales only with the number of elements at a sub-IRS and not with

the total number of IRS elements. Finally, while [185] and [186] suggest that multiple

IRSs can reduce the impact of B-SQ, they do not analyze the performance of distributed

IRSs accounting for B-SQ or explicitly design a distributed IRS architecture to mitigate

these wideband effects.

To address the above issues, in this work, we propose an alternative approach without

relying on TTDs and use a distributed IRS design instead of a single large IRS. When

properly designed, we show that a distributed IRS can inherently overcome the SW effect
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without increasing complexity or sacrificing performance.1

8.1.c Contributions & Takeaways

We now list the key contributions of this work.

1. SW effect reduction: We mathematically show that a distributed IRS design natu-

rally parallelizes the spatial delays and mitigates the SW effect. (See Sec. 8.3.a.)

2. Number of IRS elements: We determine the maximum number of elements at each

IRS so that the loss in the array gain due to B-SP is within acceptable limits while

retaining the achievable peak gain. (See Theorem 8.1.)

3. Sum-rate and array gain: Next, we analyze the impact of the temporal delay spread

(TDS) caused by multiple paths arriving at the UE through different IRSs. We show

that the achievable rate on every subcarrier (SC) scales log-quadratically in the number

of elements at each IRS and at least log-linearly in the number of IRSs, thus effectively

mitigating deep nulls in the channel response due to the B-SP effect. Further, when the

TDS is zero, the sum-rate across all the SCs spanning the BW grows log-quadratically

in the total number of IRS elements. (See Theorem 8.2.)

4. Optimizing the IRS locations: Having noted that the value of TDS is crucial in

determining the achievable flat channel gain, we next focus on optimizing the IRS

locations:

(a) Single UE: To minimize the TDS at a single UE, we show that it is optimal to

position the IRSs on an ellipse with the locations of BS and UE as its foci. The

optimal TDS then becomes zero. (See Theorem 8.3.)

(b) Multiple UEs: With multiple UEs located within a hotspot, we position the IRSs

over an ellipse whose foci are given by the location of the BS and the centroid of

1Note that B-SQ and B-SP effects can arise in both far-field and near-field scenarios [53]. To illustrate
our core idea, this chapter will focus on cases where the BS/UEs are in the far-field of the IRS(s).
Extensions to near-field scenarios will be considered for future work.
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the distribution of the UE locations. We derive the achievable TDS at an arbitrary

location and subsequently characterize a lower bound on the achievable sum-rate

using the distributed IRSs. (See Prop. 8.1 and Theorem 8.4.)

5. Angle diversity gain: Finally, we reveal that multiple IRSs additionally introduce

angle diversity gain due to multiple independent paths seen by the UE. In particular,

we show that the probability that the array gain equals the worst-case acceptable value

(due to the residual B-SQ) decreases exponentially with the number of IRSs. On the

other hand, the outage probability of a centralized IRS for a target SNR close to the

peak array gain is bounded away from zero as the number of IRS elements increases.

(See Theorem 8.5.)

We numerically validate our results and illustrate the efficacy of our solution in mitigating

the SW and the resulting B-SP effects. For instance, when the BW is 400 MHz around

fc = 30 GHz, with a total of 1024 IRS elements, if we use a centralized large IRS, only

12.5% of the total BW gets an array gain which is within 3 dB of the peak array gain. On

the other hand, if we deploy 8 distributed IRSs, each with 128 elements, the entire 400

MHz BW obtains an array gain that is within the 3 dB margin of the peak array gain (see

Fig. 8.6). As a result, the difference in the sum-rate obtained with the distributed IRS

and the TTD-enabled IRS (which completely eliminates the B-SP, albeit at a higher com-

plexity) is less than 0.5 bps/Hz (see Fig. 8.7.) Finally, even with finite TDS, distributed

IRS still performs far superiorly to the centralized case, with the sum-rate exhibiting log-

quadratic growth in the total number of IRS elements. (see Fig. 8.10.) Thus, distributed

IRS mitigates B-SP effects and provides the full array gain over the entire BW at almost

no added complexity.

Notation: For general notations used in this chapter, see the section on “General Mathe-

matical Notations” on page ix. For the notations/variables specific to this chapter, please

refer to Table 8.1.
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Variable Definition Variable Definition
S Number of IRSs λ Signal wavelength at carrier frequency
M Number of elements at an IRS NCP Number of samples in the cyclic prefix

N Total number of IRS elements ϵ
Tolerable loss factor in array gain
due to residual beam-squint

η(1),
η(2), η

Propagation delay in BS-IRS, IRS-
UE, cascaded links in centralized case

η
(1)
s ,
η
(2)
s ,
ηs

Propagation delay in BS-IRS-s, IRS-s-
UE, cascaded links in distributed case

ψ/ω
Direction of arrival/departure at IRS
from BS/to UE in centralized case

ψs/ωs
Direction of arrival/departure at IRS
-s from BS/to UE in distributed case

ϕ/ϕs
Cascaded channel angle via the IRS
in centralized/distributed scenarios

h(t) Impulse response of channel at a UE

θ,θs
Phase shift vector at a centralized
IRS/ IRS-s in distributed scenario

H[k] Frequecy response of channel at a UE

c Velocity of light: 3× 108 m/s
∆τC/
∆τD

s

Delay spread in the channel via IRS
/IRS-s in centralized/distributed cases

W Bandwidth of operation pk/σ
2 Ratio of transmit power to noise

power on subcarrier-k
K Number of subcarriers in the OFDM α, γ, β Complex ch. gains with path loss

fc, fk
Carrier frequency, baseband
frequency of kth subcarrier

d0 Radius of the region Ru

d Inter-elemental spacing at the IRS Pkρ ρ-outage probability on subcarrier-k

Table 8.1: Commonly encountered variables/notations in chapter 8.

8.2 System Model

8.2.a Channel Impulse Response and Spatial-Wideband Effect

Consider the system depicted in Fig. 8.1(a), where a BS communicates with a UE, and

is assisted by an N -element IRS in the mmWave frequency band. For simplicity, and

following past work in the area, we assume that the IRS is implemented as a uniform

linear array (ULA) with inter-element spacing denoted by d [46,53,55,179]. The baseband

impulse response of the channel from the BS to the nth IRS element is given by [54]

h1,n(t) =
√
αδ

(
t− η(1) − (n− 1)

d

c
sin(ψ)

)
× e−j2πfcη(1) × e−j2πfc(n−1) d

c
sin(ψ), (8.1)

where α, η(1), fc, and ψ represent the path-loss, propagation delay in the link from BS to

a reference element (either the first or last element, depending on whether ψ is positive
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or negative) of IRS, the carrier frequency, and the direction of arrival (DoA) of the signal

from the BS to the IRS, respectively. Finally, c = 3× 108 m/s denotes the speed of light,

and δ(t) stands for the Dirac-delta function.

Similarly, the baseband impulse response of the channel from the nth IRS element to the

UE is

h2,n(t) =
√
γδ

(
t− η(2) + (n− 1)

d

c
sin(ω)

)
× e−j2πfcη(2) × ej2πfc(n−1) d

c
sin(ω), (8.2)

where γ, η(2), and ω denote the path-loss, delay, and direction of departure (DoD) from

the IRS to the UE, respectively. Hence, the effective channel from the BS to the UE is2

h(t) =
N∑
n=1

θnh2,n(t)⊛ h1,n(t)

=
N∑
n=1

θnh̃1h̃2δ

(
t− η − (n− 1)

d

c
(sin(ψ)− sin(ω))

)
× e−j2πfc(n−1) d

c
sin(ϕ), (8.3)

where h̃1 ≜
√
αe−j2πfcη

(1) , h̃2 ≜
√
γe−j2πfcη

(2) , and ⊛ stands for the convolution operator.

Further, θn, η ≜ η(1) + η(2), and ϕ ≜ sin−1
(p) (sin(ψ)− sin(ω)) denote the phase shift in-

troduced by the nth IRS element, the total propagation delay, and the effective cascaded

angle at the UE, respectively. Also, sin−1
(p)(x) is defined so that x ∈ [−1, 1), the principal

argument of the inverse sine function [33], [80, Eq. 32]. Thus, the spatial delay spread of

the channel through the IRS is

∆τC = (N − 1)
d

c
|(sin(ψ)− sin(ω))| . (8.4)

When both N and the BW (denoted by W ) are large, the narrowband condition: ∆τC ≪
1/W , ceases to hold. Then, the spatial delay incurred by the signal while traversing across

the IRS aperture becomes comparable to or more than the sampling duration, leading to

the spatial-wideband effect [178]. To elaborate, from (8.3), the channel frequency response

2The direct path from the BS to UE can be blocked/weak compared to the channel via the IRS, so
we do not account for direct path in our model [46].



Chapter 8. 226

    

                       
     

 
     
     

 
     

Figure 8.1: Distributed IRSs reduce spatial delays and mitigate SW & B-SP effects. The TDS is
0 only when the propagation delays are equal: η1 = η2 . . . = ηS .

is

H(f)
(a)
= h̃

N∑
n=1

θne
−j2π(n−1) d

c
{f(sin(ψ)−sin(ω))+fc sin(ϕ)}

(b)
= h̃

N∑
n=1

θne
−jπ(n−1) sin(ϕ){1+ f

fc
}

(c)
=
√
Nh̃θHaN

(
sin−1

(p) {(1 + (f/fc)) sin(ϕ)}
)
, (8.5)

where, in (a), we absorbed η into receiver timing offset and defined the cascaded channel

coefficient as h̃ ≜ h̃1h̃2; in (b), we set d = λc/2, where λc is the carrier wavelength and

used the definition of ϕ; in (c), we defined the IRS configuration vector θ ≜ [θ∗1, . . . , θ
∗
N ]

T ,

where (·)∗ stands for complex conjugation and aN(·) is the array steering vector given by

aN(x) ≜ 1/
√
N
[
1, e−jπ sin(x), . . . , e−jπ(N−1) sin(x)

]T
.

Therefore, considering an OFDM system with K SCs, the channel on the kth SC is

H[k] ≜ H(fk) =
√
Nh̃θHaN

(
sin−1

(p) {(1 + (fk/fc)) sin(ϕ)}
)
, (8.6)

where fk is the baseband frequency of the kth SC, given by

fk = −
W

2
+
W

2K
+ (k − 1)

W

K
, k = 1, . . . , K.
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Figure 8.2: B-SP effect at fc = 30 GHz, W = 400 MHz, ϕ = 90◦.

8.2.b The Beam-split Effect

Consider the setting where a BS provides service to a UE over a wide bandwidth, W . Then,

in the presence of a large IRS, the channel coefficient on the kth SC is given in (8.6). So,

the physical angle ϕ of the cascaded channel manifests as

ϕfk = sin−1
(p)

{(
1 +

fk
fc

)
sin(ϕ)

}
(8.7)

on the kth SC, which equals ϕ only if fk = 0 or ϕ = 0. Thus, if the frequency-independent

phase shifters at the IRS are tuned at the carrier frequency, fk = 0, i.e., θ = aN(ϕ), they

can only beamform to ϕ over a small BW around fk = 0 3 (unless ϕ = 0.) This results

in the beam-split effect, and it degrades the array gain on SCs for which fk ̸= 0. Further,

the B-SP effect is more pronounced at a UE whose cascaded angle is ϕ = 90◦. For e.g., in

Fig. 8.2, we plot the normalized channel gain, |H[k]|2 vs. the SC frequency, fk when the

IRS is tuned to fk = 0. We see that only a few SCs around fk = 0 achieve the full array

gain of N2, while other SCs face a loss of at least 13 dB. In particular, B-SP reduces the

3This holds true even if the IRS is tuned at a different frequency, f ′
k ̸= 0.
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array gain to 0, producing deep nulls in the channel gain of SCs at frequencies

fNULL =
2fc
N
q, q = ±1,±2, . . . ,±

⌊
WN

4fc

⌋
.

Moreover, the B-SP effect is exacerbated when N increases and further reduces the system

throughput. In this view, to mitigate the B-SP effect, in this chapter, we propose a

distributed IRS design using S non-colocated M -element IRSs with SM = N to limit the

degradation in the array gain across all SCs. Specifically, the number of IRS elements, M ,

can be adjusted to control the B-SP effect, and the number of IRSs, S, can be chosen to

obtain an array gain of O(N2) over the complete BW. Furthermore, in this case, unless

the IRSs are positioned appropriately, the signal from each IRS experiences a different

propagation delay and leads to a non-zero temporal delay spread (TDS) in the overall

channel, as shown in Fig. 8.1(b). Then, we address the following questions.

1. Considering a TDS = 0 case, what (S,M) ensures that the worst-case B-SP results in

a loss of no more than (1 − ϵ)2 in the channel gain compared to the peak IRS array

gain:

{S,M} : min
k∈[K]

|H[k]|2
∣∣∣
ϕs=90◦

≥ (1− ϵ)2|H[K/2]|2, (8.8)

where ϕs denotes the cascaded angle via IRS-s and ϵ ∈ [0, 1) dictates the acceptable

loss in array gain relative to the center SC. Here, ϕs = 90◦ captures the worst-case

B-SP. Note that the condition in (8.8) ensures that the array gain is within a tolerable

and residual B-SQ controlled by ϵ.

2. How does the solution perform when multiple IRSs cause a non-zero TDS due to signals

from each IRS arriving at the UE at different sampling time instants?

Remark 8.1. Fundamentally, the B-SP effect arises due to the interplay of using phase

shifters and SW effects at the IRS. In particular, phase shifters are effective for compensat-

ing the differential delays across the IRS aperture and form a beam only if the narrowband

condition, ∆τ ≪ 1/W , is met [63]. However, we enforce the narrowband criterion by

limiting the number of IRS elements to retain the low complexity phased array-based IRS
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architectures for beamforming even in wideband systems. Since defining the boundary be-

tween narrowband and wideband regimes is hard in the time domain, we resolve this by

examining the B-SP effect in the frequency domain and ensuring that the narrowband

condition is satisfied.

8.3 Mitigating beam-split Via Distributed IRSs

As discussed, the B-SP effect in the frequency domain arises due to the SW effect caused

by the propagation delay across the IRS aperture in the time domain. This can be cir-

cumvented if ∆τC ≪ 1/W is satisfied. Given the bandwidth W , this can be ensured

by reducing the number of IRS elements. However, this also has the undesirable effect

of decreasing the array gain from the IRS and, hence, the throughput. This loss can be

avoided by a distributed IRS design, as explained below.

8.3.a Parallelizing the Spatial Delays using Distributed IRSs

The advantage of a distributed design is that it parallelizes the spatial delay across the

aperture, which otherwise increases serially in the number of elements in a large centralized

IRS. In particular, partitioning and distributing a single large IRS into multiple non-

colocated smaller IRSs reduces the delay across each IRS, i.e., if an N -element IRS is split

into S IRSs with M -elements, the delay across the aperture of sth IRS is

∆τD
s = (M − 1) (d/c) |(sin(ψs)− sin(ωs))| ≈ ∆τC/S, (8.9)

where ψs and ωs denote the DoA and DoD at the sth IRS, respectively. Thus, the delay

across the aperture of each IRS is reduced approximately by a factor S, as shown in

Fig. 8.1(b), decreasing the influence of the SW effect. Further, in Sec. 8.5, we also show

that distributed IRSs provide angle diversity gains, making it unlikely for the worst-case

B-SP to happen at every IRS, further reducing the impact of the B-SP effect.
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8.3.b Number of Elements per IRS

We now determine the number of elements per IRS, M , which parallelizes the spatial

delay and guarantees (8.8) for the TDS = 0 case, and extend it to the TDS ̸= 0 case in

Corollary 8.1.

Theorem 8.1. Consider a system with S non-colocated M-element IRSs with a total of

N IRS elements (i.e., SM = N) with TDS = 0. Then, the maximum M for which the

array gain due to all IRSs on every SC is at least (1− ϵ)2N2 is

M∗ ≜ min

{
max

{⌊
4
√
6ϵ

π

fc
W

⌋
, 1

}
, N

}
, (8.10)

ϵ ∈ [0, 1) dictates the tolerable loss in array gain w.r.t. N2.

Proof. See Appendix 8.A. ■

Therefore, if N is the total number of IRS elements, then deploying at least S = N/M

IRSs with M as per Theorem 8.1 will prevent the adverse impact of the B-SP effect.

8.3.c Sum-Rate Analysis: Centralized vs. Distributed IRSs

In this section, we analyze the achievable sum-rate of the distributed design and also

analyze the achievable performance when the channel experiences a nonzero TDS.

In general, the signal arriving at the UE through each IRSs could be time-offset relative

to the UE’s timing, giving rise to a TDS in the signals arriving through the different IRSs.

For analytical tractability, we model the propagation delay via the sth IRS as a random

variable, η̃s ∼ U [0, T0], independent and identically distributed (i.i.d.) across IRSs. Here,

T0 is the maximum TDS that the IRSs can introduce at the UE’s location. We now

characterize the achievable sum-rate across SCs at a UE under centralized and distributed

IRS scenarios.

Theorem 8.2. In an mmWave-OFDM system with K SCs spanning a BW of W at carrier

frequency fc and a total of N IRS elements, the sum-rate at a UE with channel angle ϕ
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and ϕ1, . . . , ϕS under centralized and distributed IRS setups with M = M∗ set as per

Theorem 8.1 satisfy

R̄C ≈
1

K +NC
CP

K∑
k=1

log2

(
1 +

pkσ
2
h

σ2
N2 sinc2

(
N
fk
2fc

sin(ϕ)

))
, (8.11)

and

R̄D ≥ Rmin ≜
1

K +ND
CP

K∑
k=1

log2

(
1 +

pkσ
2
h

σ2
M2 (1− ϵ)2

[
S2 sinc2(fkT0)

+S
(
1− sinc2(fkT0)

)])
, (8.12)

≥ RL-bound
min ≜

1

K +ND
CP

K∑
k=1

log2

(
1+

pkσ
2
h

σ2
SM2 (1− ϵ)2

)
, (8.13)

respectively, where σ2
h = |h̃|2= |h̃1|2≈ . . . ≈ |h̃S|2 is the channel gain via the IRSs4, pk

and σ2 are the transmit and noise power at the kth SC, and NC
CP, N

D
CP are the cyclic prefix

(CP) lengths in the centralized and distributed IRS setups5, which are respectively

NC
CP =

⌈
(N − 1)

W

fc

⌉
, ND

CP =

⌈
(M − 1)

W

fc
+WT0

⌉
, (8.14)

where T0 is the maximum TDS induced by the IRSs at a UE.

Proof. See Appendix 8.B. ■

From Theorem 8.2, we observe that, unlike a centralized scenario, which results in zero

rates on many SCs, the distributed IRS provides a positive rate that scales at least as

much as O(log(SM2)) on all SCs, which guarantees a lower bound on the sum-rate given

4We consider equal path losses in the paths across all IRSs only for the sake of analysis and to present
how the performance scales with the number of IRSs and IRS elements. Our solution is applicable even
when path losses are unequal among the cascaded links through each IRS.

5The CP in OFDM is used to (a) eliminate inter-symbol interference, and (b) convert the linear
convolution with a frequency-selective channel into circular convolution, which diagonalizes the channel
in the frequency domain. However, this does not eliminate the SW effect itself. Specifically, large IRS
apertures cause significant delay spreads, which result in the B-SP effect with SC-dependent channel
variations as shown in Fig. 8.2. The gain on a given SC is still governed by the time-domain channel’s
impulse response via a Fourier transform. Thus, while CP simplifies OFDM-based signal processing, it
does not mitigate the SW-induced B-SP effects inherent to large IRSs.
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by RL-bound
min in (8.13). Hence, distributed IRSs can effectively mitigate the SW and the

resulting B-SP effects in the system under any circumstance. We also make the following

observations from this theorem:

8.3.c.i Effect of nonzero TDS on the number of IRS elements, M∗

Even in the presence of non-zero TDS in the overall channel at the UE, our design based

on Theorem 8.1 ensures that SW effect gets mitigated. We formalize this in the following.

Corollary 8.1. For a distributed IRS system having a finite TDS, the value of M given

by Theorem 8.1 still mitigates the B-SP in the sense of procuring an array gain which is

at least a (1− ϵ)2 factor of the peak array gain obtained on SCs around fk = 0.

Proof. See Appendix 8.C. ■

Fundamentally, the TDS does not affect the value of M used to mitigate the B-SP effects.

This is because by controlling M , we directly tune the tolerable spatial delay at each IRS,

which is independent of the presence and location of other IRSs.

8.3.c.ii Channel gain via distributed IRSs

Although the distributed IRSs provide (an almost) flat response over the entire BW, this

flat gain can go as low as O(SM2). In particular,

(a) From (8.12), the (flat) gain is dictated byM and the convex combination, S2 sinc2(fkT0)+

S(1− sinc2(fkT0)):

• If T0 ≪ 1/W , then sinc(fkT0) ≈ 1 on all SCs, ensuring a array gain of S2M2 = N2

on all SCs.

• If T0 ≳ 1/W , then sinc(fkT0) ≈ 0 around the band-edge frequencies. Then, an

array gain of at least SM2 is obtained over the BW of the operation.

• If fk = 0, sinc(fkT0) = 1 for any T0, and a full array gain of N2 is obtained. This

is because when the IRS is tuned to the center frequency: fk = 0, for any T0,

there exists a smaller BW around fk = 0, in which the IRS phase shifts can always
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compensate for the differential delays across the IRSs, yielding the array gain of

N2.

(b) From the above, the locations of the IRSs are important:

• If the locations of IRSs are such that T0 ≪ 1/W , then TDS ≈ 0, and the signals

from IRSs can coherently add at the UE, giving O(N2) gain on all SCs.

• If the IRSs are positioned such that they introduce a finite TDS, then the IRSs

whose propagation delays are within the same sampling interval constructively add

the signals at the UE, and the IRSs whose propagation delays fall at different

sampling bins incoherently add the signals at the UE. This gives rise to a channel

gain fluctuation between O(SM2) and O(N2).

• Finally, if the IRSs are positioned such that the propagation delays of each IRS

fall on distinct sampling bins, giving rise to larger TDS, the signals from different

IRSs do not coherently superimpose at the UE, leading to an incoherent channel

gain that scales as O(SM2).

In summary, a distributed IRS design:

1. overcomes the SW effect in IRS-aided wideband systems without any deep-nulls in

the channel gain at the UE, and

2. results in an almost flat response whose gain varies as

∀k ∈ [K] : O(SM2) ≤ |H[k]|2≤ O(S2M2 = N2),

depending on the relative location of IRSs and the TDS.

Remark 8.2 (Choice of ϵ). The parameter ϵ in Theorems 8.1, 8.2, which captures the

tolerable loss in the array gain across SCs, is the designer’s choice; a few suggestions are

given below.

1. The spatial range in the half-power beam width (HPBW) procures most of the array

gain of the IRS [187]. So, setting ϵ = 1 − 1√
2

ensures that the HPBW of each IRS
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spans full BW at a UE. Then, the signal lies within the HPBW of a virtual array with

N = SM elements if the TDS is small.

2. In the 5G NR setting, all SCs are alloted the same modulation & coding scheme index

(MCSI) [188]. Then, an ϵ that maps the spectral efficiencies of all SCs to the same

MCSI can be chosen to reap the full achievable throughput.

Remark 8.3. Our solution to mitigate the SW effect applies to any IRS geometry. In

particular, the aperture length, measuring the farthest distance between two IRS elements,

determines the impact of the SW effect. For instance, for a uniform planar array (UPA)

based IRS, the number of elements in Theorem 8.1 corresponds to the number of diagonal

elements of the UPA. We numerically illustrate the performance of our solution under a

UPA configuration in Fig. 8.7.

Further, when the number of IRSs increases, the number of IRS controllers also increases

in the system. On the other hand, one can still use low-pilot overhead channel estimation

algorithms with multiple IRSs, as given in [138].

8.3.d Extension to Multiple-Antenna Systems

We now extend our solution to a multi-antenna BS scenario; the approach can be easily

adapted to the setup where the UEs are also equipped with multiple antennas. We consider

an Nt-element ULA at a BS serving a UE via an N -element IRS over a bandwidth W , as

shown in Fig. 8.3. Let pm(t) denote the precoding filter at the mth BS antenna, and gm(t)

be the cascaded channel between the mth antenna and the UE, for m ∈ [Nt]. Following

the same steps as in (8.3), we obtain

gm(t) =
N∑
n=1

θnh̃1,mh̃2δ

(
t− ηm − (n− 1)

d

c
(sin(ψ)− sin(ω))

)
e−j2πfc(n−1) d

c
sin(ϕ), (8.15)

where h̃1,m =
√
αe−j2πfcη

(1)
m with η(1)m being the propagation delay from the mth BS antenna

to a reference IRS element, and ηm (= η
(1)
m + η(2)) is the total propagation delay from the

mth antenna to the UE via the reference element of the IRS. By using the properties of
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Figure 8.3: System with multiple-antenna BS.

the ULA, we can express η(1)m as

η(1)m = η(1) + (m− 1)
dBS

c
sin(ϱ), (8.16)

where η(1) is the delay from the reference BS antenna to the reference IRS element, dBS is

the inter-antenna spacing at the BS, and ϱ is the DoD of the signal at the BS. Then, we

simplify (8.15) and obtain

gm(t) =
N∑
n=1

θnh̃1h̃2δ

(
t− η − (m− 1)

dBS

c
sin(ϱ)− (n− 1)

d

c
(sin(ψ)− sin(ω))

)

× e
−j2πfc

(m−1)
dBS

c
sin(ϱ)+(n−1)

d

c
sin(ϕ)


, (8.17)

where η and h̃1 are defined as given in (8.3). From (8.17), the overall channel experiences

a two-tier B-SP effect, one originating from the IRS and the other from the BS array—due

to SW effects at both ends. However, since the BS is not as constrained by power and

hardware limitations, it is practically feasible to equip each antenna with a TTD unit,

enabling effective compensation for the SW and the resulting B-SP effect at the BS.

Accordingly, the impulse response of the precoding filter at the mth antenna is given
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by [53]

pm(t) = ejϕm,BSδ (t− τm,BS) , (8.18)

where ϕm,BS and τm,BS denote the phase and delay applied at the mth antenna. Then, the

overall channel is given by

h(t) =
Nt∑
m=1

gm(t)⊛ pm(t). (8.19)

Substituting gm(t) and pm(t) from (8.17) and (8.18) into (8.19), we obtain the overall

channel expression as

h(t) =
N∑
n=1

θnh̃1h̃2

Nt∑
m=1

δ

(
t− η − (m− 1)

dBS

c
sin(ϱ)− (n− 1)

d

c
(sin(ψ)− sin(ω))− τm,BS

)

× ejϕm,BS × e
−j2πfc

(m−1)
dBS

c
sin(ϱ)+(n−1)

d

c
sin(ϕ)


. (8.20)

To mitigate the B-SP effect, we configure the TTD units as follows:

τm,BS = τ0,BS − (m− 1)
dBS

c
sin(φ), and (8.21)

ϕm,BS = 2πfc(m− 1)
dBS

c
sin(φ), (8.22)

where τ0,BS is a common delay applied at all the antenna elements to ensure a causal

implementation of the TTDs at the BS array. As a result, the overall channel boils down

to

h(t) = Nt

N∑
n=1

θnh̃1h̃2δ

(
t− η − τ0,BS − (n− 1)

d

c

× (sin(ψ)− sin(ω))
)
× e−j2πfc(n−1) d

c
sin(ϕ), (8.23)

which is a scaled version of the channel with a single-antenna BS (as in (8.3)), except for

an extra timing offset of τ0,BS, with the scaling factor equal to the number of BS antennas.

Thus, the results we develop in this chapter identically hold for any number of antennas at

the BS, without changing the core contributions and the main conclusions of the chapter.
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8.4 Optimizing the Locations of Distributed IRSs

From the preceding discussions, we further make the following crucial observations. For a

channel with a large TDS,

• The achievable channel gain flattens at O(SM2), with a loss of 10 log10(S) dB from the

maximum gain of O(N2),

• The required length of the CP increases linearly with the TDS, increasing the OFDM

overheads with many IRSs.

As a consequence, selecting arbitrary locations for the IRSs results in diminished perfor-

mance compared to the maximum achievable performance (for e.g., the array gain that

scales as N2 on all SCs), despite its benefit in alleviating the SW effect and preventing deep

nulls in the channel response. Thus, we now shift our focus to optimizing the placement

of the IRSs to minimize the resulting TDS in the system.

Optimizing the locations of IRSs is critically dependent on the positions of the UE

and the BS. Further, the BS usually serves multiple non-colocated UEs, especially in

densely populated hotspot scenarios where IRSs are used to enhance service quality [104].

In such cases, determining the IRS locations based on a single UE’s location may be

suboptimal. However, since optimizing the IRS locations with multiple UEs makes the

problem intractable, we first focus on optimizing the IRS locations considering a single

UE, gain insights, and then analyze the scenario for multiple UEs.

8.4.a Optimizing the Locations of IRSs For a Single User

Let the BS be located at 0 ≜ [0, 0]T on the x-y plane without loss of generality. Let the

location of the UE be p = [p1, p2]
T ∈ R2, and the location of IRSs be Q = {q1,q2, . . . ,qS},

where qs ∈ R2. Then, define the following:

Tmax(Q) = max
1≤s≤S

(∥qs∥2+∥p− qs∥2) /c, (8.24)

Tmin(Q) = min
1≤s≤S

(∥qs∥2+∥p− qs∥2) /c, (8.25)
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the maximum and minimum propagation delays from BS to the UE via the IRSs. The

TDS in the BS-UE channel is

TD
d (Q) ≜ Tmax(Q)− Tmin(Q).

Then, the locations of the IRSs can be found as

Q∗ ≜ {q∗
1,q

∗
2, . . . ,q

∗
S} = arg min

q1,...,qS

TD
d (Q). (P1)

We have the following result that solves the problem in (P1).

Theorem 8.3. When BS and UE are located at points 0 and p, respectively, the optimal

locations of IRSs (q∗
1, . . . ,q

∗
S) as the solution to (P1) satisfy the equation:

gλ,p(q) ≜
∥∥∥Rλ

ω,p

(
q− p

2

)∥∥∥2
2
− 1 = 0, (8.26)

where we define ω ≜ tan−1

(
p2
p1

)
, and

Rλ
ω,p ≜


2 cos(ω)

λ

2 sin(ω)

λ
2 sin(ω)√
λ2 − ∥p∥22

− 2 cos(ω)√
λ2 − ∥p∥22

 , (8.27)

with λ ∈ R+ being a constant satisfying λ > ∥p∥2. Further, when the points in Q sat-

isfy (8.26), the optimal TDS is TD
d

∗
= 0.

Proof. See Appendix 8.D. ■

From Theorem 8.3, we note that for a point-point system, the geometric locus of all

optimal IRS locations belongs to a family of confocal ellipses, with the BS and UE located

at their foci. Specifically, we can choose any λ > ∥p∥2, as per the required distance

between the BS/UE and IRSs, and find S distinct solutions to (8.26); these provide a set

of IRS locations that solve (P1). Then, the TDS can be avoided entirely (i.e., T0 = 0

in (8.12)), in turn ensuring the maximum array gain scaling of O(N2) on all SCs.

More intuitively, a centralized IRS leads to a non-negligible spatial delay spread in the

channel, causing the SW effects. On the other hand, a distributed IRS splits a single
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IRS into several non-colocated IRSs with fewer elements each that are placed on the

circumference of an ellipse, as described in Theorem 8.3. This ensures that the IRSs do

not cause significant spatial or temporal delay spread, resulting in a nearly flat response

over the full BW at the peak array gain.

8.4.b Performance with Multiple Users

Note that Theorem 8.3 cannot be used to determine the IRS locations that are jointly

optimal to multiple UEs because:

1. Unless the UEs are colocated, the locations given by (8.26) are not optimal to all the

UEs, i.e., no single solution exists for IRS locations so that the TDS in the channels

at all UEs can simultaneously be minimized to TD
d

∗
= 0.

2. Even if the optimization problem in (P1) is solved for each scheduled UE, the solu-

tions are not practically realizable because the locations of IRSs are typically fixed

once deployed and do not change with time.

To that end, we adopt a reasonable choice of IRS locations that minimize the TDS across

all the UEs, as explained next.

We now consider a scenario where the BS serves multiple UEs located in a small square

hotspot region, assisted by the distributed IRSs. In this case, a metric of interest is the

TDS computed using the propagation delays averaged over the distribution of UE locations

within the hotspot area. The expected value of the propagation delay of a path from the

BS to UE via an IRS placed at q is

τ̄(q) = Ep∼fp [∥q∥2+∥p− q∥2] /c,

where p and fp denote the UE location and its distribution, respectively. We now make

the following observation:

Ep∼fp [∥q∥2+∥p− q∥2] ≈ ∥q∥2+∥Ep∼fp [p]− q∥2, (8.28)

where we used the Jensen’s approximation over the convex ∥·∥2 norm. Note that this



Chapter 8. 240

Figure 8.4: Geometric locus of IRS locations in the presence of multiple UEs.

approximation is accurate when the sum-variance of the components of p is small, e.g.,

when the UEs are clustered in a hotspot region around a central point, as is the case in

typical IRS deployments [104]. Now, using (8.28) yields propagation delays via the IRSs

similar to (8.24) and (8.25), except that the UE location, p, is replaced by the centroid

of the distribution of the UE locations, p̄ ≜ Ep∼fp [p]. Thus, Theorem 8.3 can be re-used

for multiple UEs also: when multiple UEs are randomly distributed in a hotspot zone,

a pragmatic choice of IRS locations is to place them on an ellipse with foci at BS and

C = E[p], the centroid of the UE distribution, fp(p),p ∈ Ru, as shown in Fig. 8.4. Then,

a natural question is: What is the TDS at a UE arbitrarily located in the hotspot area?

We have the following result.

Proposition 8.1. Consider S distributed IRSs with M elements each, such that the IRSs

are positioned at q1,q2, . . . ,qS which lie on ellipse whose focal points are given by the

locations of the BS and the centroid, p̄ (i.e., the IRS locations satisfy gλ,p̄(q) = 0 in (8.26),

for some λ satisfying λ > ∥p̄∥2.) Then the TDS at a UE located within the hotspot at a

distance r (in meters) from the centroid, and at an angle φ, measured anticlockwise w.r.t.

the major axis of the ellipse, is

∆τ =
2r

c
sin

(
φ+

νS̄ + νs̄
2

)
sin

(
νs̄ − νS̄

2

)
, (8.29)
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where νs ≜ sin−1

( ∥qs∥2
∥qs − p̄∥2

sin(χs)

)
, c = 3× 108 m/s, S̄ ≜ argmax1≤s≤S r cos(νs + φ),

s̄ ≜ argmin1≤s≤S r cos(νs + φ), and χs ≜ tan−1

(
[qs]2
[qs]1

)
− tan−1

(
[p̄]2
[p̄]1

)
.

Proof. See Appendix 8.E. ■

From Proposition 8.1, we see that the TDS at an arbitrary UE scales at most linearly

with the distance between the UE and the centroid within the hotspot zone. In particular,

if the UE is located in a square hotspot zone with side length 2d0, the maximum TDS

experienced at a UE is ∆τ = 2
√
2d0
c

and is obtained when the UE is located at a corner of

the hotspot region and φ + (νS̄ + νs̄)/2 = νs̄ − νS̄ = π/2. The minimum TDS is 0 and is

obtained when the UE is at the centroid (r = 0) or φ+ (νS̄ + νs̄)/2 is an integer multiple

of π. In the sequel, for a given deployment of the IRSs, we model the TDS as a random

variable ∆τ i.i.d.∼ U [0, 2
√
2d0/c] across UEs. Then, similar to Theorem 8.2, we characterize

the average sum-rate obtained under a time-division multiple access (TDMA) of UEs over

the hotspot region in the following result.

Theorem 8.4. Consider an mmWave OFDM system with K SCs where a BS serves UEs

within a hotspot zone of radius d0 using S distributed IRSs as shown in Fig. 8.4, each with

M =M∗ elements as in Theorem 8.1. When the IRSs are placed on an ellipse whose focal

points are given by the locations of BS and the centroid of the hotspot zone, the average

achievable sum-rate, R̄opt
D , within the hotspot region obeys

R̄opt
D ≥ Ropt

min ≜
1

K +ND
CP

K∑
k=1

log2

(
1 +

pkσ
2
h

σ2
M2 (1− ϵ)2

×
[
S2 sinc2

(
2
√
2d0fk
c

)
+ S

{
1− sinc2

(
2
√
2d0fk
c

)}])
,

where the parameters ND
CP, pk, σ2, σ2

h and ϵ are the same as defined in the statement of

Theorem 8.2.

Proof. For a hotspot zone shaped in the form of a square with semi-side length d0, the far-

thest distance a UE can be located from the centroid is
√
2d0. Then, using Proposition 8.1,

the proof follows by setting T0 = 2
√
2d0/c in Theorem 8.2. ■
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Theorem 8.4 explicitly characterizes a lower bound on the achievable sum-rate as a

function of the parameters of the hotspot region, unlike the characterization in Theo-

rem 8.2, which is for some value of the maximum TDS, T0, introduced by the IRSs.

Also, Theorem 8.2 characterizes the rate at a given UE location when the IRSs are de-

ployed such that the TDS at the UE is U [0, T0]. To obtain Theorem 8.4, we deploy the

IRSs on an ellipse and consider a UE deployed in a small hotspot region such that the

TDS across the UE locations is U [0, 2
√
2d0/c]. In particular, for smaller hotspot sizes,

sinc2(2
√
2d0fk/c) ≈ 1 − 8π2d20f

2
k/3c

2. As a result, the channel gain on each SC scales as

S2 − 8π2d20f
2
k (S + S2) /3c2. Thus, for a fixed M,S, the array gain at any UE within the

hotspot and not located at its centroid deviates away from the full array gain of S2M2 at

no more than a rate of O(d20) when the IRSs are placed on the circumference of an ellipse

as shown in Fig. 8.4. Further, an array gain of at least SM2 is obtained on all SCs, in line

with the preceding discussions.

Remark 8.4. Note that the elliptical deployment scenario as considered in this chapter

serves only as a representative use case to explicitly quantify the reduction in array gain

due to finite TDS, and does not affect the generality of the central idea pursued in this

chapter. Also, as explained earlier, this setup, where the IRSs serve a dense hotspot of

UEs, is a well-recognized use case to reap the benefits of the IRS in the literature [104,189].

In this view, even when UEs are arbitrarily located, our results still hold in the sense that

the radius of the hotspot can be appropriately scaled by the maximum UE-IRS distance.

8.5 Distributed IRSs Enable Angle Diversity

Thus far, we have discussed the advantages of a distributed design in mitigating the SW

effects by parallelizing the spatial delays. Yet another useful characteristic of a distributed

implementation is the diversity benefits that multiple IRSs can bring into the system [125].

In light of this, we now demonstrate a different flavor of how distributed IRSs can aid

in mitigating the SW effects. Specifically, in the following, we evaluate the ρ-outage
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Figure 8.5: Computing the TDS at an arbitrary UE.

probability on SC-k, k = 1, . . . , K, defined as

Pkρ ≜ Pr
({
ϕ1, . . . , ϕS : |H[k]|2 ≤ ρ

})
, (8.30)

where H[k] is UE’s channel on SC-k. Our result shows that as long as the target channel

gain is below an upper bound ρkD, the outage probability decreases exponentially with the

number of IRSs deployed. On the other hand, the outage probability of a centralized IRS

is bounded away from zero regardless of the value of N , the number of IRS elements.

Theorem 8.5. Let the IRSs be tuned to match the cascaded channel angle on the carrier

frequency, i.e., at fk = 0. Then, on SC-k, the ρ-outage probability

1. of an M-element S-distributed IRSs obeys

Pkρ ≤ e
−2S

1−

√
ρ

SMξσmin
h

 24f 2
c

π2M2f 2
k

−µmax
X

2

, ρ ∈ (0, ρkD), (8.31)

where ρkD ≜M2S2ξ2(σmin
h )2

(
1− µmax

X

π2M2f 2
k

24f 2
c

)
, µmax

X ≜ max
s∈[S]

{
1
2
− sin

(
2ϕ

(2)
s

)
−sin

(
2ϕ

(1)
s

)
4
(
ϕ
(2)
s −ϕ(1)s

)
}

and [ϕ
(1)
s , ϕ

(2)
s ] denotes the cascaded angular range of the area as seen by the sth IRS,

σmin
h ≜ mins|h̃s|, and ξ ∈ (0, 1) is a constant.
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2. of an N-element centralized IRS obeys

Pkρ ≥ 1− 1

ϕ0

{
sin−1

(
2fcσh
πfk
√
ρ

)}
, for ρ ≥ 4f 2

c σ
2
h

π2f 2
k c

2
0

, (8.32)

where [−ϕ0, ϕ0] ⊆ [−π/2, π/2] is the cascaded angular range of the area as seen by the

IRS, and c0 = sin(ϕ0).6

Proof. See Appendix 8.F. ■

Thus, with high probability, while a centralized IRS severely degrades the achievable

array gain due to the SW effect, a distributed IRS prevents the adverse impact of the B-

SP effect. The exponential fall of Pkρ in S with distributed IRSs is due to the angle diversity

provided by multiple IRSs, i.e., each IRS provides a path at the UE whose cascaded angle

is independent of other IRSs. This advantage is in addition to parallelizing the spatial

delays across the IRSs.

The upper bound on the target array gain, ρkD, is the product ofM2S2ξ2(σmin
h )2, the maxi-

mum array gain obtainable from S IRSs withM elements each, and (1− (µmax
X π2M2f 2

k/24f
2
c )),

which captures the unavoidable loss in array gain due to the spatial delay spread incurred

by an M -element IRS. The value of the 2nd term depends on the angular range [ϕ
(1)
s , ϕ

(2)
s ]

seen by the IRSs. If the interval is narrow and concentrated about 0, then this term

is nearly 1. Also, as µmax
X decreases, the outage probability in (8.31) decreases and ρkD

increases, allowing for better channel gains from the system. On the other hand, in the

centralized scenario, as N increases, the SW effect kicks in, and the outage probability

in (8.32) at any fk other than the central SC remains bounded away from zero for all

ρ = O(N2). Notably, as the angular range widens, the outage probability becomes high

even at moderate target SNR.
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Figure 8.6: Mitigating B-SP effects via distributed IRSs for N = 1024.

8.6 Numerical Results and Discussions

We now illustrate our findings through Monte Carlo simulations. Unless mentioned other-

wise, the BS is positioned at the origin 0, while the UE can be located within a rectangular

hotspot region Ru with diagonally opposite corners specified by [90, 30]T and [110, 50]T .

The multiple IRSs are located on an ellipse with λ = 140. The path loss for each link

is modeled as PL = C0(dref/d)
χ, where C0 = −50 dB is the reference path loss measured

at dref = 1 meter, d is the link distance, and χ is the path-loss exponent, set equal to 2

for both BS-IRS and IRS-UE links. We consider an OFDM system with W = 400 MHz,

K = 2000 SCs, and fc = 30 GHz, assisted by an IRS with N = 1024 elements [80,121,190].

Further, we consider a transmit SNR of P/σ2 = 130 dB.

6We consider a symmetrical angular range for ease of presentation. The approach easily extends to
any arbitrary angular interval.
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Figure 8.7: Sum-rate vs. Transmit SNR.

8.6.a Results for Zero Temporal Delay Spread: T0 = 0

Channel gain

For the zero TDS scenario, we consider that the UE is located at p̄ = Ep∼fp [p], the centroid

of the distribution of UE locations within the region Ru. In this case, since the IRSs are

positioned as per Theorem 8.3, the signals via the paths from all the IRSs arrive at the

UE simultaneously, leading to zero TDS. In Fig. 8.6, we plot the channel gain (normalized

by the path loss) at the UE vs. the baseband SC frequency for different values of M , the

number of elements at each IRS. Each curve corresponds to the system with S = N/M

IRSs, where the IRSs are positioned on the ellipse such that ϕs = 90◦ ∀s, capturing the

worst-case B-SP effect. First, for M = 1024, S = 1, which denotes the centralized IRS

case, the channel obtains the full array gain of N2 only at fk = 0 (i.e., at fc) and decays

by several dB on SCs away from fk = 0, illustrating the B-SP effect. When M < N , i.e.,

S > 1, the channel gain becomes flatter across the BW and eventually achieves the full-

array gain of N2 on all SCs, illustrating the mitigation of the B-SP effect using multiple
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Figure 8.8: TDS vs. d0 for different number of IRSs, S.

distributed IRSs. We also validate Theorem 8.1 (marked as “Theorem 1” on the plot) for

ϵ ≈ 0.3, which ensures that the channel gain on all SCs is within the HPBW of the IRS

beam (note the 3 dB mark.) Using (8.10), ϵ = 0.3, we get M = 128, and we plot the

channel gain for this system and benchmark it with the theoretical gain of (1− ϵ)2N2.

The gain is clearly above the benchmark on all SCs, in line with Theorem 8.1.

8.6.a.i Sum-rate

Next, in Fig. 8.7, we plot the achievable sum-rate vs. the transmit SNR P/σ2 for the

distributed system and contrast it with the centralized IRS setup, under uniform transmit

power allocation across the SCs. We consider systems with M = 100, 175, 250, which

correspond to channel gains that are at least 66%, 20%, and 2% of the peak array gain of

N2 over the entire BW. The sum-rate of the distributed setup is better than the centralized

version, and this gets more pronounced as M decreases. The reasons for this are twofold:

1. The B-SP effect reduces in the distributed setup due to the smaller aperture delays

and angle diversity effects (Sec. 8.3.a and Sec. 8.5.) So, the per-SC rate and the overall

sum-rate increase as S (M) increases (decreases.)
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Figure 8.9: Mitigating B-SP effects with finite TDS for ∆ = 3 dB.

2. The CP overheads are larger in the centralized case compared to the distributed case.

This is due to parallelizing aperture delays, resulting in a smaller channel delay spread

in the latter. Thus, the centralized IRS suffers a further loss in the achievable sum-rate.

The plot also confirms that the scaling law derived in Theorem 8.2 indeed lower-bounds

the achievable rate for the distributed IRS scenario. Further, we compare the performance

of the distributed IRS solution against the existing approach of using TTDs as described

in [52–55, 181]. TTDs apply an additional delay at each IRS element and counteract the

signal delay across the IRS, thereby eliminating the SW and the resulting B-SP effects.

However, this comes at the cost of additional complexities: 1) the number of TTDs scales

with N , requiring more hardware & space; 2) high-resolution TTDs are needed for precise

delay compensation, which consumes power, and 3) a sophisticated full duplex capability

at the IRS to simultaneously receive, delay and reflect signals toward the UE, all of which

defeats the energy-efficient nature of IRSs. From Fig. 8.7, the distributed IRS achieves the

same performance as that obtained using TTDs without any extra complexity. Finally,

we demonstrate that our approach achieves better performance than an N/4× 4 UPA in

place of the ULA. Although a UPA-based IRS outperforms its ULA counterpart with the
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Figure 8.10: Sum-rate vs. Transmit SNR with non-zero TDS.

same N owing to the reduced impact of the B-SP effect in the former [185], it does not

fully eliminate the B-SP effect. In contrast, our approach is IRS geometry agnostic and

effectively mitigates the B-SP effect to deliver superior performance.

8.6.b Results for Non-zero Temporal Delay Spread: T0 > 0

We now analyze how distributed IRSs can alleviate the B-SP effect even when the IRSs

introduce non-zero TDS in the channel at the UE located at an arbitrary location within

the hotspot zone Ru of radius d0, as illustrated in Fig. 8.4.

8.6.b.i Amount of TDS

We first assess the amount of TDS experienced by a UE located away from the centroid. In

Fig. 8.8, we plot TDS versus d0 for different S, the number of IRSs, considering two distri-

butions for the UE locations: 1) a uniform distribution within Ru, and 2) a 2-dimensional

truncated Gaussian distribution with mean p̄ and standard deviation σU = d0/3, with its

support being SU ≜ {p ∈ R2 : ∥p − p̄∥∞≤ d0}. We observe that both the average TDS

and the maximum TDS increase as d0 increases. This is because the IRS placements are
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optimized to achieve zero TDS only at the centroid of the location distribution within Ru,

and the TDS increases as we move away from the centroid (see Proposition 8.1). Further-

more, since the truncated Gaussian distribution is more concentrated around the centroid

than the uniform distribution, the TDS in the former is smaller than that in the latter, but

both are well upper-bounded by the maximum TDS predicted by Proposition 8.1 (marked

as “Prop. 1” on the plot.)

8.6.b.ii Channel gain

In Fig. 8.9, considering the worst-case B-SP effect, we plot the channel gain vs. the SC

frequency for different values of T0. The sampling time is Ts = 1/W = 2.5× 10−9 seconds.

We also plot the following equations:

p1 : g1(fk) = N2; fk ∈ [−W/2,W/2].

ℓ1 : g2(fk) = (1− ϵ)2M2
[
S2h2(10−11) + S

(
1− h2(10−11)

)]
ℓ2 : g3(fk) = (1− ϵ)2M2

[
S2h2(10−9) + S

(
1− h2(10−9)

)]
p2 : g4(fk) = SM2; fk ∈ [−W/2,W/2].

ℓ3 : g5(fk) = (1− ϵ)2M2
[
S2h2(10−8) + S

(
1− h2(10−8)

)]
ℓ4 : g6(fk) = (1− ϵ)2M2

[
S2h2(10−6) + S

(
1− h2(10−6)

)]
where h2(t) ≜ sinc2(Wt/2). The lines ℓ1, ℓ2, ℓ3, ℓ4 represent the minimum channel gains in

non-zero TDS scenarios, unlike the zero gains that occur from the B-SP effect. As long

as T0 < Ts (i.e., when the paths from all IRSs arrive within the same sampling interval),

the IRS phase configurations can compensate for differential delays across the IRSs, and

provide a full array gain of S2M2 = N2 on all SCs, with only a minor loss due to permissible

B-SQ (in this case, it is set to 3 dB.) However, when T0 ≥ Ts and as T0 increases, the

array gain over the SCs decreases and flattens below N2, as described in Theorem 8.4. For

large T0 (e.g., 10−5 s), the channel gain flattens at around approximately O(SM2), with

a 3 dB residual B-SQ loss. This is because, in this case, the gain at the UE is obtained

only due to the incoherent superposition of signals from the IRSs. However, at the SC

where fk = 0, since the IRSs’ phase shifts can fully compensate for any differential path
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Figure 8.11: Jain’s index, J across SCs for K = 2000.

delay, the channel gain still scales as N2. Thus, the distributed IRS effectively mitigates

the B-SP effect and ensures a flat response across the BW, even after accounting for the

nonzero TDS.

8.6.b.iii Average sum-rate

In Fig. 8.10, we evaluate the average sum-rate of the distributed IRS system, designed

for ϵ ≈ 0.3, by plotting it against the transmit SNR, P/σ2, for N = 1024 and 4096. The

results are averaged over multiple UE locations within a hotspot defined by p̄ = [80, 80]T ,

d0 = 12 meters, and the IRSs placed on an ellipse with λ = 160. For N = 1024, the

distributed IRS significantly outperforms the centralized IRS, even after accounting for

the nonzero TDS in the former setup. Further, the curve obtained based on Theorem 8.4

(labeled “Theorem 4” on the plot) lower-bounds the empirical sum-rate, confirming the

accuracy of our analysis. Additionally, we show the worst-case lower bound on the rate

that scales as O(log(SM2)) on the plot. The gap between the achievable sum-rate and

this lower bound is high, showing that our solution can perform much better than the

incoherent gain of O(log(SM2)) on all SCs. Finally, when the number of IRS elements
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Figure 8.12: B-SP induced outage probability versus S.

quadruples from N = 1024 to N = 4096, the rate improves by 4 bps/Hz, demonstrating

that our method achieves the full array gain of O(N2) (since log2((4N)2) = 4+ log2(N
2)).

In contrast, the sum-rate using centralized IRS marginally reduces due to the B-SP effect.

8.6.b.iv Jain’s index

Next, in Figure 8.11, we demonstrate the flatness in the channel gain across SCs by plotting

the Jain’s index as a function of T0. The Jain’s index is calculated using the channel gains

on different SCs as

J ≜

(
K∑
k=1

|H[k]|2
)2

K
K∑
k=1

|H[k]|4
.

We can show that 1
K
≤ J ≤ 1, with J = 1 achieved when the channel gains are equal

on all SCs. In Fig. 8.11, we depict Jain’s index for both the centralized and distributed

IRS setups for different values of N . For any given N , the index J for a distributed

IRS is approximately 1 for small T0, then decreases below 1 for moderate T0, and returns

to 1 for large T0. This behavior can be explained as follows. For small T0, the channel
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Figure 8.13: Channel gains in centralized vs. distributed IRSs.

gain uniformly scales as O(N2) on all SCs within the HPBW of the main lobe, yielding

J ≈ 1. As T0 increases, the channel gain fluctuates between O(SM2) and O(S2M2) across

different SCs as illustrated in Fig. 8.9, causing J to drop below 1. When T0 becomes high,

J increases again to 1 because the channel exhibits an almost flat response within 3 dB of

the peak gain of O(SM2) due to the incoherent addition of signals from the IRSs. Since

S increases with N (M remains constant since we design the system for ϵ ≈ 0.3), the gap

between SM2 and S2M2 increases as N increases, leading to larger fluctuations in the

channel gain at moderate T0. This results in a lower Jain’s index J for intermediate T0

as N increases. Importantly, the Jain’s index obtained using a distributed IRS is much

higher than in the corresponding centralized IRS scenario, showing that the distributed

IRS can effectively flatten the channel frequency response even after accounting for the

nonzero TDS.

8.6.c Diversity Benefits of Distributed IRSs

We next showcase how distributed IRSs can also leverage diversity benefits to further

mitigate the B-SP effects in Fig. 8.12. To this end, we simulate the B-SP induced outage
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probability Pkρ as a function of S for various UE location realizations. The plot clearly

shows that Pkρ decreases exponentially with the number of IRSs, in line with Theorem 8.5.

Multiple IRSs provide independent paths with different channel angles, and the resulting

angle diversity makes it unlikely that all IRSs experience the worst-case spatial delay

spread. Further, Pkρ decreases as ρ decreases, in line with the inferences from Theorem 8.5.

Note that ρ = N2σ2
h/2

ℓ corresponds to an allowed loss of 3ℓ dB relative to the peak array

gain of N2. Thus, larger degradation in the array gain due to the B-SP is less likely to

happen with distributed IRSs. Similarly, since the B-SP effects are less pronounced near

the center SC, Pkρ reduces as |fk| is near 0, in line with Theorem 8.5. Thus, distributed IRSs

also provide instantaneous benefits to minimize the SW and the resulting B-SP effects.

8.6.d Array Gain Using Distributed vs. Centralized IRS

Finally, in Fig. 8.13, we summarize a big picture of the solution by comparing the channel

gain obtained using a distributed IRS with the conventional centralized IRS. Distributed

IRSs can completely combat the B-SP effect and provide a significantly better array gain

on all SCs. Although the channel gain with distributed IRSs concentrates about O(SM2)

when the TDS is arbitrarily large and is less than O(N2), this still avoids deep nulls,

ensuring that the IRS can focus on the desired UE on all SCs. Even the reduced gain with

distributed IRSs due to large TDS is much better than the array gain using a centralized

IRS on all SCs other than the center SC. Thus, the distributed IRSs effectively mitigate

the SW effect (and hence the B-SP) and outperform the centralized IRS at almost no

additional complexity.

8.7 Conclusions

We tackled the issue of SW and the resulting B-SP effects in IRS-aided wideband systems

by identifying that the SW effect primarily stems from the linear increase of spatial delay

spread across the IRS aperture. In this view, we proposed a distributed IRS design that

a) parallelizes spatial delay and b) utilizes angle diversity, collectively mitigating the SW

and B-SP effects. In particular, we detailed how to determine the number of elements
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at each IRS, the number of IRSs, and the placement of the IRSs that can eliminate the

SW effects while procuring the optimal array gain over the entire BW for a given total

number of IRS elements. Our solution provides uniformly positive benefits over the full

BW at any UE with no significant complexity compared to existing methods. Potential

future work includes extending the solutions to account for near-field effects and mobility

scenarios. Another interesting direction is to extend the setup for serving multiple UEs

in a multiplexed manner using distributed IRSs in the presence of B-SP effects, and to

rigorously compare and contrast this approach with schemes that serve only a single UE.

Appendix 8.A Proof of Theorem 8.1

We begin the proof by noting that similar to (8.6), the channel at the UE on SC-k due to

S IRSs can be written as

H[k] =
S∑
s=1

√
Mh̃sθ

H
s aM (ϕfk,s) e

−j2πfk(ηs−τ0), (8.33)

where h̃s, ηs, τ0 denote the cascaded channel coefficient via the sth IRS, the propagation

delay via the sth IRS, and receiver timing offset, respectively; θs ∈ CM is the phase shift

vector at the sth IRS, and ϕfk,s is the cascaded angle at the UE via the sth IRS on SC-k as

given in (8.7) with ϕs being the physical angle via the sth IRS. Since we consider that the

TDS is 0, (ηs−τ0)W ≪ 1 holds, and hence, we drop the exponential term in (8.33). Then,

by tuning θs, s = 1, . . . , S to the center SC at fk = 0, and by invoking the Cauchy-Schwarz

(CS) inequality, we obtain the optimal phase configurations:

θs =
√
Mej

̸ h̃saM(ϕs), ∀s = 1, . . . , S. (8.34)

Substituting (8.34) in (8.33), we have

|H[k]|2=
∣∣∣∣∣M

S∑
s=1

|h̃s|aHM(ϕs)aM (ϕfk,s)

∣∣∣∣∣
2

, (8.35)
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Now, when M > 1, to account for the worst-case B-SP effect, we use ϕs = 90◦ as in (8.8)

and simplify the channel gain as |H[k]|2=∣∣∣∣∣
S∑
s=1

|h̃s|
1− e−jπM

fk
fc

1− e−jπ
fk
fc

∣∣∣∣∣
2

(a)
= M2 sinc2

(
M

fk
2fc

) ∣∣∣∣∣
S∑
s=1

|h̃s|
∣∣∣∣∣
2

, (8.36)

where, in (a), we use sin(x) ≈ x for x = πfk/(2fc) ≪ 1, and sinc(x) ≜ sin(πx)/πx.

Clearly, at fk = 0, the response in (8.36) is maximum and decreases as fk → ±W/2. Now

using (8.36), the condition in (8.8) becomes

min

{
sinc2

(
M

fk
2fc

)
, k = 1, 2, . . . , K

}
≥ (1− ϵ)2 . (8.37)

A necessary condition for (8.37) to hold is not to have a null response across the entire

BW. Since sinc2(x) = 0 when x ∈ Z, the set of integers, from (8.37) we need to satisfy

MW/4fc ≤ 1 =⇒ M ≤M∗
1 ≜ ⌊4fc/W ⌋ . (8.38)

This ensures that the channel response across the BW lies within the main lobe width of

the beam formed by the IRS at the center SC. Now, since sinc2(x) is a decreasing function

for x ∈ [0, 1], a sufficient condition for (8.37) is

|H[0]|2= |H[K]|2 ≥ (1− ϵ)2|H[K/2]|2, i.e.,

sinc2
(
±MW

4fc

)
≥ (1− ϵ)2 (b)

=⇒ M ≤M∗
2 ≜

⌊
4
√
6ϵ

π

fc
W

⌋
, (8.39)

where in (b), we used the 1st order Taylor’s approximation: sinc(x) ≈ 1 − π2x2/6, which

is tight in the region of design interest. Now, from (8.38), and (8.39), we get

M ≤M∗ ≜ min{M∗
1 ,M

∗
2} =M∗

2 , (8.40)

where the last step follows because for ϵ ∈ [0, 1), M∗
2 ≤ M∗

1 . Finally, since 1 ≤ M ≤ N ,

we modify (8.40) as

M ≤M∗
mod ≜ min{max{M∗

2 , 1}, N},
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yielding the desired result in (8.10).

Appendix 8.B Proof of Theorem 8.2

In an OFDM system with K SCs, the sum-rate is

R̄ ≜ EH[k]

[
1

K +NCP

K∑
k=1

log2

(
1 +

pk
σ2
|H[k]|2

)]
(a)≈ 1

K +NCP

K∑
k=1

log2

(
1 +

pk
σ2

E
[
|H[k]|2

])
, (8.41)

where in (a), we used the Jensen’s approximation. We next compute E [|H[k]|2] for cen-

tralized & distributed IRSs below:

Centralized scenario: The channel gain for a centralized scenario can be found us-

ing (8.36) with M = N , S = 1. Then,

E
[
|H[k]|2

]
= N2 sinc2

(
N
fk
2fc

sin(ϕ)

)
E[|h̃|2]︸ ︷︷ ︸

=σ2
h

, (8.42)

and substituting the above into (8.41) yields (8.11).

Distributed scenario: Let η̃s ≜ ηs − τ0 be the propagation delay of the path via the sth

IRS w.r.t the timing offset at the UE. Since (ηs − τ0)W ≪ 1 may not hold always in

general, from (8.33), the channel gain at a UE on SC-k is given by

|H[k]|2=
∣∣∣∣∣M

S∑
s=1

|h̃s|aHM(ϕs)aM (ϕfk,s) e
−j2πfkη̃s

∣∣∣∣∣
2

.

Similar to (8.36), the expected channel gain is E [|H[k]|2]

= E

∣∣∣∣∣
S∑
s=1

|h̃s|
1− e−jπM

fk
fc

sin(ϕs)

1− e−jπ
fk
fc

sin(ϕs)
e−j2πfkη̃s

∣∣∣∣∣
2
 (8.43)
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(b)

≥ M2 sinc2
(
M

fk
2fc

)
E

∣∣∣∣∣
S∑
s=1

|h̃s|e−j2πfkη̃s
∣∣∣∣∣
2
 , (8.44)

where in (b), we applied the result from Theorem 8.1. We now simplify the above expec-

tation term as

E

∣∣∣∣∣
S∑
s=1

|h̃s|e−j2πfkη̃s
∣∣∣∣∣
2
 =

S∑
s=1

|h̃s|2+
S∑
s=1

S∑
s′=1

s ̸=s′

|h̃s||h̃s′|E
[
e−j2πfkη̃s

]
E
[
ej2πfkη̃s′

]
. (8.45)

Now we compute E
[
ej2πfkη̃s

]
as shown below.

E
[
ej2πfkη̃s

]
=

1

T0

∫ T0

0

ej2πfkηdη =
1

T0

ej2πfkη

j2πfk

∣∣∣∣∣
T0

0

=
1

T0

ejπfkT0
(
ejπfkT0 − e−jπfkT0

)
j2πfk

= ejπfkT0 · sin (πfkT0)
πfkT0

= ejπfkT0 sinc (fkT0) . (8.46)

Similarly, we can show that

E
[
e−j2πfkη̃s

]
= e−jπfkT0 sinc (fkT0) . (8.47)

Using (8.46) and (8.47) in (8.45), we get

E

∣∣∣∣∣
S∑
s=1

|h̃s|e−j2πfkη̃s
∣∣∣∣∣
2
 = Sσ2

h + S(S − 1)σ2
h sinc

2 (fkT0)

= σ2
h

(
S2 sinc2(fkT0) + S(1− sinc2(fkT0))

)
.

Now, using the above in (8.44), we obtain

E
[
|H[k]|2

]
≥ (1− ϵ)2M2σ2

h

(
S2 sinc2(fkT0) + S(1− sinc2(fkT0))

)
. (8.48)

Substituting (8.48) in (8.41) and by the monotonicity of log(·), (8.12) follows. We get

(8.13) by lower bounding the convex combination: S2 sinc2(fkT0)+S(1−sinc2(fkT0)) ≥ S.

Next, note that the CP lengths should exceed the channel delay spread. The delay spread,

τ under centralized and distributed IRSs are ∆τC from (8.4), and maxs∈[S]
{
∆τD

s + η̃s
}

from (8.9), respectively. In particular, the CP length in the distributed IRS case should
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account for the residual spatial delay spread and the temporal delay spread introduced by

the multiple IRSs. Then, using these expressions in the length of discrete-time channel

taps: NCP = ⌈Wτ⌉, we get

NC
CP =

⌈
(N − 1)

W

2fc
∆SC

⌉
, and

ND
CP =

⌈
max
1≤s≤S

{
(M − 1)

W

2fc
∆SD

s +Wη̃s

}⌉
,

respectively, where ∆SC ≜ |sin(ψ)− sin(ω)|, ∆SD
s ≜ |sin(ψs)− sin(ωs)|. Now, to satisfy

the CP requirements at any UE, we upper bound the delays and set ∆SC = ∆SD = 2,

and η̃s = T0. Then the desired CP lengths in (8.14) follow.

Appendix 8.C Proof of Corollary 8.1

When the TDS is non-negligible, we set ϕ1 = ϕ2 = . . . ϕS = 90◦ in (8.43) to capture the

worst case B-SP and obtain the simplified channel gain on SC-k as

|H[k]|2=M2 sinc2
(
M

fk
2fc

) ∣∣∣∣∣
S∑
s=1

|h̃s|e−j2πfkη̃s
∣∣∣∣∣
2

. (8.49)

Next, using (8.49), the condition in (8.8) can be simplified as

sinc2
(
M

fk
2fc

)
≥ (1− ϵ)2

∣∣∣∣∣
S∑
s=1

|h̃s|
∣∣∣∣∣
2/∣∣∣∣∣

S∑
s=1

|h̃s|e−j2πfkη̃s
∣∣∣∣∣
2

(a)

≥ (1− ϵ)2

∣∣∣∣ S∑
s=1

|h̃s|
∣∣∣∣2

S
S∑
s=1

|h̃s|2
(b)
= (1− ϵ)2

∥∥∥h̃∥∥∥2
1

/
S
∥∥∥h̃∥∥∥2

2
, (8.50)

where (a) follows by the CS inequality, and in (b), we define h̃ ≜ [|h̃1|, . . . , |h̃S|]T . Since

∥h̃∥1≤
√
S∥h̃∥2 [191], a sufficient condition for (8.50) becomes that given in (8.37), and

hence rest of the proof follows similar to TDS = 0 case.
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Appendix 8.D Proof of Theorem 8.3

By their definitions, we note that Tmax(Q) ≥ Tmin(Q) ≥ 0 for all Q ⊂ R2
S ≜ R2 × . . .× R2︸ ︷︷ ︸

S times

.

In other words, TD
d

∗
= 0 is the global minimum of the problem: minQ⊂R2

S
TD
d (Q), and is

achieved by a Q∗ for which Tmax(Q∗) = Tmin(Q∗). Thus, the possible global optimal set

of IRS locations, Q∗, should be such that ∥qs∥2+∥p − qs∥2= λ for all s ∈ [S] and λ is

some constant. In other words, the sum-distance of the IRS from the BS and UE should

be constant across the IRS locations. Now, using [192, Page 2], it can be shown that

an ellipse with the focal points coinciding with the locations of BS and UE satisfies this

property. Hence, the IRS locations should lie on an ellipse constructed with the BS and

UE as foci. Particularly, the equation of the ellipse is

((q1 − q10) cos(ω) + (q2 − q20) sin(ω))2
a2

+
((q1 − q10) sin(ω)− (q2 − q20) cos(ω))2

b2
= 1,

(8.51)

where q = [q1, q2]
T is a candidate IRS location, q0 = [q10, q20]

T is the center of the ellipse,

ω is the angle made by the major axis of ellipse with the x-axis, a and b are lengths of the

semi-major axis and semi-minor axis, respectively. Now, with focal points given by 0 and

p, the centre of the ellipse is q0 = p/2. Similarly, using the properties of the ellipse, we

can show a = λ/2, b =
√
λ2 − ∥p∥22

/
2,7 and ω = tan−1 (p2/p1), with p = [p1, p2]

T . Using

these values in (8.51) and compactly representing it through (8.26) completes the proof.

Appendix 8.E Proof of Proposition 8.1

To measure the TDS at an arbitrary UE located at (say) A(p), we first compute the total

propagation delay of the signal from the BS to A via the sth IRS. For convenience, we

label the locations of the BS, IRS-s, and centroid by F1, Is, F2, respectively, as shown in

Fig. 8.5. For the triangle IsAF2, we apply the cosine rule [193, Sec. 12.7] to obtain

d(Is,A)2 = d(Is,F2)
2 + d(F2,A)2 − 2d(Is,F2) · d(F2,A) cos(Ωs), (8.52)

7Note that, by applying the triangle inequality property to the triangle formed by BS, UE, and an
IRS, it holds that λ > ∥p∥2.
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where d(A,B) measures the distance between points A and B, and Ωs is the angle between

the lines IsF2 and AF2. Using (8.52), we make the following simplifications:

d(Is,A) =
√

d(Is,F2)2 + r2 − 2r · d(Is,F2) cos(Ωs)

=

√
d(Is,F2)2

(
1 +

r2

d(Is,F2)2
− 2

r

d(Is,F2)
cos(Ωs)

)
(a)
= d(Is,F2)

(
1− r

d(Is,F2)
cos(Ωs) +O

(
r2

d(Is,F2)2

))
(b)≈ d(Is,F2)− r cos(Ωs)

(c)
= d(Is,F2) + r cos(νs + φ),

where in (a), we used Taylor’s expansion:
√
1 + x = 1+ x/2+O(x2); in (b), we neglected

higher order terms because the UEs are clustered in a hotspot, i.e., r ≪ d(Is,F2); and in

(c), we used the fact φ + Ωs + νs = π and cos(π − θ) = − cos(θ). As a result, the total

propagation delay in the channel at the UE from BS via the sth IRS can be written as

τA
s =

d(F1, Is) + d(Is,A)

c
≈ d(F1, Is) + d(Is,F2) + r cos(νs + φ)

c
.

Then, the TDS at the UE is given by ∆τA =

max
1≤s≤S

τA
s − min

1≤s≤S
τA
s =

r

c
(cos(νS̄ + φ)− cos(νs̄ + φ)) , (8.53)

where we used the constant sum-distance property of the ellipse stated in Theorem 8.3, i.e.,

d(F1, Is)+d(Is,F2) = λ ∀s, and the definition of S̄, s̄ as in the statement of the Proposition.

Using the trigonometric identity of the difference between two cosines in (8.53), (8.29)

follows. Finally, using the sine rule [193, Sec. 12.7] in triangle F1IsF2, we get νs ≜

sin−1 ({∥qs∥2/∥qs − p̄∥2} sin(χs)), where χs can be determined as χs = tan−1([qs]2/[qs]1)−
ω (see Fig. 8.5.) Collecting all these terms into (8.53) completes the proof.
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Appendix 8.F Proof of Theorem 8.5

Distributed IRS : Using (8.35), the ρ-outage probability in (8.30) is simplified as:

Pkρ
(a)
= Pr


(

S∑
s=1

|h̃s|cos(ζs,k) sinc
(
Mfk
2fc

sin(ϕs)

))2

+

(
S∑
s=1

|h̃s|sin(ζs,k) sinc
(
Mfk
2fc

sin(ϕs)

))2

≤ ρ/M2


≤ Pr


(

S∑
s=1

|h̃s|cos(ζs,k) sinc
(
Mfk
2fc

sin(ϕs)

))2

≤ ρ/M2

 ,

where in (a), ζs,k ≜ π(M − 1)fk sin(ϕs)/2fc. By design, ζs,k ≪ π/2, so that cos(ζs,k) >

ξ > 0, for s ∈ [S] and some constant ξ. Using the definition of σmin
h , we upper bound the

above as

Pkρ ≤ Pr

(
S∑
s=1

sinc

(
Mfk
2fc

sin(ϕs)

)
≤ √ρ

/
Mξσmin

h

)
. (8.54)

Now, by using the 1st order Taylor’s series, sinc(x) ≥ 1−π2x2/6; so, we can further upper

bound (8.54) as

Pkρ ≤ Pr

(
S∑
s=1

{
1− π2M2f 2

k

24f 2
c

sin2(ϕs)

}
≤ √ρ

/
Mξσmin

h

)

= Pr

(
S∑
s=1

sin2(ϕs) ≥
{
S −

√
ρ

Mξσmin
h

}
24f 2

c

π2M2f 2
k

)
. (8.55)

For s = 1, . . . , S, ϕs ∼ U [ϕ(1)
s , ϕ

(2)
s ] are independent across IRSs, so that Xs ≜ sin2(ϕs) are

also independent random variables with mean µXs ≜ E[sin2(ϕs)] given by

µXs =
1

ϕ
(2)
s − ϕ(1)

s

∫ ϕ
(2)
s

ϕ
(1)
s

sin2(ϕ)dϕ =
1

2
−

sin
(
2ϕ

(2)
s

)
− sin

(
2ϕ

(1)
s

)
4
(
ϕ
(2)
s − ϕ(1)

s

) .
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Let µX ≜
S∑
s=1

µXs . Then, we simplify (8.55) as:

Pkρ ≤ Pr

(
S∑
s=1

(Xs − µXs) ≥
{
S −

√
ρ

Mξσmin
h

}
24f 2

c

π2M2f 2
k

− µX
)

(8.56)

(b)

≤ Pr

(
S∑
s=1

(Xs − µXs) ≥
{
S −

√
ρ

Mξσmin
h

}
24f 2

c

π2M2f 2
k

− Sµmax
X

)
(8.57)

(c)

≤ e
−2S

({
1−

√
ρ

SMξσmin
h

}
24f2c

π2M2f2
k

−µmax
X

)2

,

where in (b), we upper bounded the probability by lower bounding the tail in (8.56) using

µmax
X ≜ max

s∈[S]
µXs ; in (c), since ρ ∈ (ρkD, 1), the tail value in (8.57) is positive, and we used

the Hoeffding’s inequality for bounded random variables [194], i.e., 0 ≤ Xs ≤ 1 ∀s ∈ [S].

This completes the proof of (8.31).

Centralized IRS : Consider the complementary probability

P̄kρ ≜ Pr
({
ϕ : |H[k]|2 ≥ ρ

})
. (8.58)

Upon simplifying (8.58) similar to the above, we get

P̄kρ = Pr

(
sinc

(
Nfk sin(ϕ)

2fc

)
≥
√
ρ

Nσh

)
(8.59)

(d)

≤ Pr

(
|sin(ϕ)|≤ 2fcσh

πfk
√
ρ

)
(e)
=

1

ϕ0

sin−1

(
2fcσh
πfk
√
ρ

)
,

where in (d), we used sinc(x) ≤ 1/π|x|, and this upper bounds the probability in (8.59);

and in (e), for the values of ρ as in the statement of the theorem, with ϕ ∼ U [−ϕ0, ϕ0], we

used the cumulative distribution function of Y ≜ |sin(ϕ)| given by

FY (κ) =
1

ϕ0

∫ κ

0

1√
1− y2

dy, if κ ∈ (0, c0) ,

with κ = 2fcσh

/
πfk
√
ρ. Computing the complementary probability completes the proof

of (8.32) and the theorem.



9 Wideband Beamforming in
IRS-Aided Communications:
Exploiting Beam-Split Effects via
Opportunistic OFDMA

Chapter Highlights
In wideband systems operating at mmWave frequencies, intelligent reflecting surfaces (IRSs)

equipped with many passive elements can compensate for channel propagation losses. Then, as
mentioned in Chapter 8, a phenomenon known as the beam-split (B-SP) occurs in which the
phase shifters at the IRS elements fail to beamform at a desired user equipment (UE) over the
total allotted bandwidth (BW). While B-SP is commonly regarded as a performance-limiting
impairment, in this chapter, we take an optimistic viewpoint and exploit the B-SP to improve
system performance using orthogonal frequency division multiple access (OFDMA). We first
show that, under the B-SP effect, the IRS inherently exhibits a multi-directional beamforming
behavior, directing its energy toward different spatial angles at different frequency components.
Capitalizing on this property, we then propose an opportunistic OFDMA scheme wherein the
IRS phase shifts are randomly configured, and multiple UEs are opportunistically scheduled over
different subcarriers (SCs) using a max-rate scheduling policy. We rigorously prove that, when
the number of UEs is large, the B-SP can almost surely procure the optimal array gain on all SCs
(possibly at different UEs). Subsequently, we characterize a sufficient condition on the number
of UEs to witness near-optimal gains in practical systems. Finally, we show that the proposed
OFDMA scheme enjoys multi-user diversity benefits, yielding further throughput enhancements
beyond that obtained via optimal beamforming. Numerical simulations reveal that the OFDMA
scheme outperforms the existing IRS-aided wideband beamforming solutions at low cost and
complexity.

264
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9.1 Introduction

Intelligent reflecting surfaces (IRSs) are envisioned to enhance the throughput of next-

generation wireless systems [2, 176]. An IRS comprises numerous passive elements that

apply controllable phase shifts to manipulate the wireless channel between nodes. By

appropriately configuring these phase angles, the IRS can coherently combine the sig-

nal copies at the receiver (e.g., a user equipment (UE)), thereby improving the signal-

to-noise ratio (SNR) and throughput. In high-frequency bands such as millimeter waves

(mmWaves), where the propagation losses are severe, IRSs can help to enhance the channel

quality [174, 195]. However, a large number of IRS elements is typically required to over-

come the multiplicative path loss experienced in the cascaded base station (BS)-IRS-UE

channel. In such cases, signal delay as it propagates across the IRS aperture may become

comparable or even exceed the sampling duration, leading to the spatial-wideband (SW)

effect, and, consequently, the beam-split (B-SP) effect in the frequency domain [178]. This

chapter rigorously analyzes how the B-SP effect alters the directional response of an IRS

and proposes an opportunistic orthogonal frequency division multiple access (OFDMA)

scheme that exploits the B-SP to enhance system performance.

9.1.a Challenges, Importance and Novelty

A key objective of the next-generation wireless systems is to deliver enhanced mobile

broadband (eMBB) connectivity to all devices, and one way to facilitate this is to per-

form communications in high-frequency bands like mmWave, where abundant spectrum is

available, which can enhance the data rates [196]. However, mmWave signals suffer from

severe propagation losses, which degrade the SNR and limit the coverage. To address this,

IRSs have been proposed to create virtual line-of-sight (LoS) links between the BS and

UE, thereby improving the signal strength [9]. As explained before, an IRS consists of

numerous passive elements with individually tunable phase shifts that allow for construc-

tive combining of the signals at the UE, in turn providing a beamforming/array gain. A

large number of IRS elements is typically used to provide sufficient beamforming gain to

compensate for the high path losses [140]. However, when a wide bandwidth (BW) is used
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in conjunction with a large IRS array, the signal propagation delay across the IRS aperture

can become comparable to or exceed the sampling period, even under LoS settings. This

violates the narrowband condition and leads to a multi-tap channel in the time domain,

and causes the beam-split (B-SP) effect, where the IRS fails to focus its beam at a given

UE over the entire BW, thereby degrading the array gain and throughput [52,54,178].

Addressing the B-SP effect at the IRS is generally challenging because phase shifters can

only approximate delays under narrowband conditions, where beamforming by controlling

the phases is effective [63]. In wideband regimes, this approximation breaks down, making

it difficult for an IRS to coherently beamform across the entire bandwidth. This reduction

in array gain is a fundamental consequence of the fact that IRSs use phase shifters for

beamforming. Thus, it is important and non-trivial to mitigate the B-SP effect for two

main reasons: (a) the B-SP effect undermines the core advantage of using an IRS for

enhancing the throughput in mmWave bands, and (b) existing solutions for mitigating B-

SP in conventional antenna arrays cannot be directly applied to an IRS due to the passive

nature and associated hardware & power constraints at the IRS.

As explained in the sequel, most prior work treats the B-SP effect as detrimental and

advocates solutions to suppress it. In our work, we adopt a novel perspective wherein we

propose a new scheme that exploits the B-SP effect, while still limiting the loss of array

gain and improving the system performance.

9.1.b Related Work

First, most of the existing work on IRS-aided mmWave systems ignores B-SP-induced

impairments (e.g., [9, 174, 195]), and hence overestimates the performance of IRS-aided

wideband systems. This literature survey focuses on chapters discussing wideband effects

in IRS-aided systems.

Considering beam-squint (B-SQ), a milder form of the B-SP effect, channel estimation

and beam training methods were proposed in [46,47], while [49] explored UE localization.

IRS phase optimization to maximize sum-rate in OFDM systems was considered in [179],
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and joint design of IRS and BS precoding for multiple-input multiple-output (MIMO) tera-

hertz systems was studied in [13,14]. The ergodic rate performance of MIMO-OFDM under

B-SQ was analyzed in [20], signal-to-interference-plus-noise ratio (SINR) maximizing IRS

configurations were derived in [180], and in [51], phase shifts are optimized to adjust the

beam widths of the IRS in an OFDMA framework. Along the lines of mitigating the SW

effect, existing works often use true time-delay (TTD) units at the IRS to compensate for

the excess signal delay across the aperture, thereby eliminating the SW effects [52]. In [54],

the design of TTD-enabled IRS was investigated, [53] considered the use of delay-phase

units to eliminate the B-SP effects in both far-field and near-field scenarios, and in [55], the

TTDs and BS precoder were jointly optimized to maximize the sum-rate of a multi-user

system. However, using TTD units at an IRS 1) increases the number of TTD units and

demands more hardware and space; 2) increases the power consumption due to necessity

for precise delay compensation, and 3) requires a self-interference cancellation mechanism

due to the full-duplex nature of the IRS elements that have to continuously receive signals

from the BS, apply a delay, and then reflect the signal toward the UE [177]. In particular,

to the best of our knowledge, no chapter in the literature describes the hardware imple-

mentation and demonstration of a TTD-enabled IRS. Finally, in our prior work [197], also

described in Chapter 8, we show that instead of a TTD-based IRS, appropriately splitting

a large IRS into multiple distributed IRSs and placing them at carefully chosen locations

can naturally mitigate the B-SP effects without compromising on the performance and has

low complexity. However, this approach targets scheduling a single UE across the entire

BW, and the effectiveness of it to mitigate the B-SP critically depends on the placement of

IRSs relative to the BS and UE locations. Hence, this solution is well suited for scenarios

where a single UE or a cluster of UEs, such as those in a small, dense hotspot; it is less

effective when the UEs may be arbitrarily located.

In contrast with the above approaches, which aim to mitigate the B-SP effect, this chapter

explores an opportunistic OFDMA scheme that takes an optimistic view of the B-SP effect

and leverages it to enhance system performance through randomly configured IRS phase

shifts. Although [16, 198] address problems related to IRS-assisted OFDMA, they focus



Chapter 9. 268

on sub-6 GHz bands where B-SP effects are not significant.

9.1.c Contributions of this chapter

By revisiting the modeling of a large IRS-aided mmWave wideband system from first

principles, we first demonstrate the emergence of the B-SP effect at a given UE and how

it degrades the array gain at the UE across the BW allocated to it. We then argue that,

by the law of conservation of energy, the IRS must redirect energy towards other spatial

directions on frequencies where the IRS fails to coherently reflect towards the intended UE.

Motivated by this observation, we make the following key contributions in this chapter.

1. Directional response: We first show that an IRS configured to reflect in a specific

direction at one frequency also exhibits directionality at other angles on different fre-

quency components. We derive a closed-form expression that illustrates this directional

response of the IRS (see Lemma 9.1.)

2. Multi-directional beamforming: Using the derived directional response of the IRS,

we identify the sub-BW over which the IRS beamforms in a fixed direction while main-

taining the array gain within the half-power beamwidth. Subsequently, we show that

the B-SP effect enables the IRS to simultaneously beamform toward multiple resolvable

directions over non-overlapping sub-bands within the total system BW (see Lemma 9.2

and Theorem 9.1.)

3. Exploiting B-SP via opportunistic OFDMA: Leveraging the multi-directional

response of IRS under the B-SP effect, we show that when there are a large number of

UEs and the IRS phases are randomly sampled from an appropriate distribution, on

every subcarrier (SC), at least one UE will almost surely procure the full array gain

from the IRS (see Theorem 9.2.)

4. Scaling of number of UEs: We next determine a sufficient number of UEs to obtain

near-optimal beamforming gain across the entire BW with high probability; we show

that the number of UEs scales linearly in the number of resolvable beams formed by

the IRS (see Proposition 9.1.)
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5. Rate-scaling law: Finally, considering an opportunistic OFDMA framework which

employs a max-rate scheduler, we derive the system throughput, and show that it

not only exploits the B-SP effect and delivers full array gain on every SC but also

harnesses multi-user diversity benefits over the BW to further enhance performance.

(see Theorem 9.3.)

Through extensive numerical simulations, we validate that the proposed scheme effectively

exploits the B-SP effect to achieve full beamforming gain across all SCs, thereby signif-

icantly improving overall throughput. For example, we show that with just 20 UEs, in

a system with 1024 element IRS operating over a BW of 400 MHz centered at 30 GHz,

the proposed opportunistic OFDMA with randomized IRS configuration outperforms the

conventional round-robin (RR) scheduling-based scheme, where the entire BW is allocated

to a single UE with the IRS optimized for it. Thus, an opportunistic OFDMA framework,

even with randomly configured IRS phase coefficients, can effectively mitigate the adverse

impact of the B-SP effect from a network-level perspective while requiring low time and

computational complexities.

9.2 System Model and Problem Statement

We consider a downlink wideband mmWave system where a BS equipped with Nt antennas

serves K UEs. The system uses OFDM modulation with N SCs spanning a total BW of

W centered at a carrier frequency fc, and is assisted by an M -element IRS to enhance the

throughput of the system. We consider that the antenna array at the BS and the IRS are

implemented as a uniform linear array (ULA) with inter-element spacing dBS, and dIRS,

respectively.1 For simplicity of exposition, we consider a single antenna at the UEs, and

the approach directly extends to multiple antenna UEs also. Further, due to the sparse

scattering of signals at mmWave frequencies, we model the channel between the nodes

with line-of-sight (LoS) components, as described next.

1The ideas pursued in this chapter can be directly applied to other types of array geometries at the
BS/IRS. For example, in Remark 9.2, we discuss how the results of this chapter extend to a planar
array-based geometry.
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9.2.a Channel Model

In the downlink mode of the communication, the baseband impulse response of the channel

from the n′th antenna at BS to the mth IRS element can be written as [46]

gn′,m(t) = αn′,me
−j2πfcτBIn′,mδ(t− τBIn′,m), (9.1)

where δ(t) is the Dirac-delta function, αn′,m corresponds to the large scale channel param-

eter (accounting for the path loss) from the n′th antenna at the BS to mth element of

the IRS, and τBIn′,m is the delay in the channel from n′th BS antenna to mth IRS element.

Similarly, the impulse response of the channel in the baseband domain from the mth IRS

element to UE-k is given by

um,k(t) = βm,ke
−j2πfcτ IUm,kδ(t− τ IUm,k), (9.2)

where βm,k and τ IUm,k denote the large-scale parameter and delay in the channel from the

mth IRS element to UE-k.

Thus, the impulse response of the overall channel from the n′th BS antenna to UE-k via

the IRS can be written as2

hn′(t) =
∑M

m=1
θmgn′,m(t)⊛ um,k(t) (9.3)

=
∑M

m=1
θmαn′,mβm,kδ

(
t− τBIn′,m − τ IUm,k

)
e
−j2πfc

(
τBI
n′,m+τ IUm,k

)
, (9.4)

where ⊛ denotes the linear convolution operator, and θm is the reflection coefficient tuned

at the mth IRS element modeled as θm = ζme
jϑm , where ζm and ϑm denote the amplitude

and phase of the reflection coefficient at mth IRS element. For simplicity, we consider that

ζm = 1 ∀m ∈ [M ] ≜ {1, . . . ,M}.
Using the properties of the ULA geometry, the channel delays via the IRS relative to a

2We neglect the direct path between the BS and the UEs due to the high attenuation losses faced by
the mmWave signals [31], [80, Sec. IV.A].
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hn′(t) =
∑M

m=1
θmαn′,mβm,kδ

(
t− τBI0n′ − ηI0Uk −

dIRS

c
(m− 1) (sin(ψ)− sin(ωk))

)

× e−j2πfc(τ
BI0
n′ +η

I0U
k )e

−j2πfc
dIRS

c
(m−1)(sin(ψ)−sin(ωk))

. (9.7)

reference IRS element can be expressed as:

τBIn′,m = τBI0n′ +
dIRS

c
(m− 1) sin(ψ), (9.5)

τ IUm,k = ηI0Uk −
dIRS

c
(m− 1) sin(ωk), (9.6)

where τBI0n′ , η
I0U
k are the signal propagation delays from n′th BS antenna to reference IRS

element, and reference IRS element to UE-k, respectively; c = 3 × 108 m/s denotes the

speed of light; ψ and ωk represent the direction of arrival (DoA) from the BS and departure

(DoD) towards UE-k, respectively, at the IRS. Now, using (9.5) and (9.6) in (9.4), the

channel to UE-k from the n′th BS antenna can be simplified as given in (9.7) at the top

of the next page.

Similarly, we express the delay from n′th BS antenna as

τBI0n′ = ηBI0 + (n′ − 1)
dBS

c
sin(χ), (9.8)

where ηBI0 is the propagation delay from the reference BS antenna to the reference IRS

element, and χ is the DoD at the BS towards the IRS. Let ηk ≜ ηBI0 + ηI0Uk denote the

overall propagation delay from the reference antenna at the BS to UE-k via the reference

element of the IRS. Further, since the large-scale path loss is nearly the same across the

BS/IRS array, we let αn′,m ≈ α, and βm,k ≈ βk ∀n′ ∈ [Nt],m ∈ [M ] [46].

Let pn′(t) denote the response of the transmit precoding filter used at the n′th BS antenna.

Then, the effective channel at UE-k is given by

h(t) =
Nt∑
n′=1

hn′(t)⊛ pn′(t). (9.9)

Now, using (9.7) in (9.9) and simplifying, the final form of h(t) can be obtained as given
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h(t) =
Nt∑
n′=1

M∑
m=1

θmᾱβ̄kδ

(
t− ηk −

dBS

c
(n′ − 1) sin(χ)− dIRS

c
(m− 1) (sin(ψ)− sin(ωk))

)
⊛pn′(t)

× e
−j2πfc

dBS

c
(n′−1) sin(χ)+

dIRS

c
(m−1)(sin(ψ)−sin(ωk))


, (9.10)

Figure 9.1: Illustration of SWE when the SDS ∆τk spans LM taps.

in (9.10) on the next page, where ᾱ ≜ αe−j2πfcη
BI0 and β̄k ≜ βke

−j2πfcη
I0U
k denote the

complex channel gain in the BS-IRS and IRS-UE links, respectively.

9.2.b Spatial-Wideband Effect

The expression for the channel given in (9.10) corresponds to a multipath scenario where

every BS antenna and each IRS element act as a scatterer and provide a copy of the

transmitted signal at the UE. Thus, the spatial delay spread (SDS) induced by the channel

at UE-k, denoted by ∆τk, is

∆τk =
dBS

c
(Nt − 1) sin(χ) +

dIRS

c
(M − 1) (sin(ψ)− sin(ωk)) . (9.11)

Clearly, the SDS in the channel at UE-k depends on the DoD at the BS, DoA, and DoD

at the IRS: If sin(ψ) − sin(ωk) = 0, and χ = 0, the SDS is 0, and if sin(ψ) − sin(ωk) = 2

and χ = 90◦, the SDS takes the maximum value given by ∆τk,max = (Nt − 1)
dBS
c

+

2(M − 1)
dIRS
c

. However, when the SDS becomes comparable to or exceeds Ts = 1/W , the

narrowband condition is violated and the channel becomes frequency-selective, resulting in

the spatial-wideband effect (SWE) [178]. The SWE occurs when the delay incurred by the

signal while propagating across the aperture of the BS or IRS becomes comparable to the



Chapter 9. 273

sampling duration of the signal, and gives rise to a frequency-selective multi-tap channel

(see Figure 9.1). Note that the SWE arises even with pure LoS paths in the channel.

Hence, different from conventional multipath links due to multiple distributed scatterers,

the frequency-selective properties under the SWE result in a different phenomenon called

the beam-split effect, as described next.

9.2.c The Beam-Split Effect

Owing to the frequency selectivity induced by the SWE, OFDM becomes a natural choice

for the transmission of data signals. To this end, applying a Fourier transform to (9.10),

the frequency response of the channel to UE-k on a baseband frequency f (with |f |≤ W/2)

can be obtained as

Hk(f) = ᾱβ̄ke
−j2πfηk

Nt∑
n′=1

e
−j2π(f+fc)(n′−1)

dBS

c
sin(χ)

Pn′(f)

×
M∑
m=1

e
−j2π(f+fc)(m−1)

dIRS

c
(sin(ψ)−sin(ωk))

ejϑm , (9.12)

where the symbols are as defined previously and Pn′(f) is the frequency response of the

filter pn′(t). Since our goal is to enhance the throughput, maximizing the channel gain

in (9.12) is desirable. In this view, by using the Cauchy-Schwarz inequality, we can obtain

|Hk(f)|2 ≤ |Uk(f)|2, where

|Uk(f)|2≜
∣∣ᾱβ̄kNt

∣∣2 ∣∣∣∣∣∣
M∑
m=1

e
−j2π(f+fc)(m−1)

dIRS

c
sin(ϕk)

ejϑm

∣∣∣∣∣∣
2

, (9.13)

with ϕk ≜ sin−1
(p) (sin(ψ)− sin(ωk)) being the cascaded channel angle at UE-k via the IRS,

and sin−1
(p)(x) is defined such that x lies in the principal argument of the inverse sine

function, [−1, 1) [33], [80, Eq. 32]. Note that, for any k, we can achieve the upper bound

|Uk(f)|2 in (9.13) when

Pn′(f) = e
j2π(f+fc)(n′−1)

dBS

c
sin(χ)

, (9.14)
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which corresponds to the transmit filter response given by

pn′(t) = δ

(
t+ (n′ − 1)

dBS

c
sin(χ)

)
e
j2πfc(n′−1)

dBS

c
sin(χ)

. (9.15)

Interestingly, the transmit filter achieving the upper bound is independent of the UE being

served, so that the full-beamforming gain from the BS array can be obtained using a single

UE-independent precoding configuration (of course, the array gain achieved does depend

on the UE index). We refer the reader to Remark 9.1 at the end of this section for further

details on the implementation of the transmit filter in (9.15).

Suppose we tune the IRS phase to maximize the channel gain at the centre frequency,

f = 0, that is, we set

ϑm = j2πfc(m− 1)
dIRS

c
sin(ϕk). (9.16)

Then, with Pn′(f) chosen as per (9.14), the overall channel gain on a baseband frequency

f with M > 1 can be simplified as

|Hk(f)|2 =
∣∣ᾱβ̄kNt

∣∣2 ∣∣∣∣∣∣
∑M

m=1
e
−j2πf(m−1)

dIRS

c
sin(ϕk)

∣∣∣∣∣∣
2

(a)
=
∣∣γCk ∣∣2M2 sinc2

(
Mf

2fc
sin(ϕk)

)
, (9.17)

where in (a), we defined γCk ≜ ᾱβ̄kNt and the fact that sin(x) ≈ x, when x = πfdIRS sin(ϕk)/c≪
1; sinc(x) ≜ sin(πx)

πx
, and we set dIRS = λc/2, where λc is the carrier wavelength. From (9.17),

we see that, unless f = 0 or ϕk = 0, the UE experiences a reduced array gain relative to

the maximum value of M2 at other frequency components within the BW; this is known

as the beam-split (B-SP) effect.

More generally, if we configure the IRS coefficients to form a beam at UE-k on the nth

SC of the OFDM system, n ∈ [N ], the overall channel gain at UE-k on frequency f is

|Hk(f)|2≈M2
∣∣γCk ∣∣2 sinc2(M(fn − f)

fc
sin(ϕk)

)
, (9.18)

where fn = nW
N
− W

2
− W

2N
is the baseband frequency of nth SC. We pictorially illustrate

the adverse impact of the B-SP effect in Fig. 9.2. When the BW, or the number of IRS
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Variable Definition Variable Definition
M Number of elements at an IRS hk(t) Impulse response of channel at UE-k

K Total number of UEs Hk(f),
H(k,t,f)

Frequency response of channel at UE-k
Channel at UE-k in time slot t on frequency f

N Number of subcarriers in OFDM Nt Number of antennas at the BS
τ IUm,k,
τBIn′,m,
τBI0n′

Delay from mth IRS element to UE-k;
n′th BS antenna to mth IRS element;
n′th BS antenna to reference IRS element

ηI0Uk ,
ηBI0 ,
ηk

Delay from reference (ref.) IRS elmnt. to UE-k;
Ref. BS antenna to ref. IRS element;
Ref. BS antenna tto UE-k via ref. IRS element

pn(t),
Pn(f)

Impulse/Frequency response of
precoding filter at nth BS antenna

ᾱ, β̄k
Complex ch. gains of BS-IRS,
IRS-UE-k links

ϕk, φ
C
k

Cascaded channel angle at UE-k in
physical and normalized domain

ρ1, ρ2,k Path loss of BS-IRS, IRS-UE-k links

χ, ωk,
ψ

Angle of departure from BS-IRS; IRS to
UE-k; angle of arrival at IRS from BS

P/σ2 Ratio of total transmit power to noise
power on a subcarrier

θ, ϑm
Phase shift vector at the IRS,
phase applied at the mth IRS element

fc, fn
Carrier frequency, baseband
frequency of nth subcarrier

c Velocity of light: 3× 108 m/s W Bandwidth of operation
dBS, dIRS Inter-elemental spacing at BS/IRS λ Signal wavelength at carrier frequency

Table 9.1: Commonly encountered variables/notations in chapter 9.

elements, or both, become large, the resulting degradation in array gain due to the B-SP

effect becomes a major limitation in the deployment of IRSs for wideband communication

systems.

9.2.d Problem Statement

From the above discussion, it is evident that the B-SP effect prevents a single UE from

achieving the full array gain of M2 over the entire signal BW. Although the B-SP effect

can be mitigated by reducing the number of IRS elements M or the BW W , it has the

undesirable consequence of decreasing the overall system throughput. On the other hand,

intuitively, if the IRS does not form a beam in a single direction on all SCs, by the law

of conservation of energy, the reflected energy must necessarily be radiated in different

directions across the SCs. In effect, the IRS forms beams pointing towards different UEs

in the system across the SCs. Motivated by this, we propose to employ an OFDMA

scheme, where different UEs are scheduled across the SCs, thereby exploiting the B-SP

effect. Specifically, we answer the following:

1. How does the directional response of the IRS vary across the BW under the B-SP
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effect when IRS configurations are tuned to reflect in a specific direction at a given

frequency?3

2. Under the B-SP effect, develop and analyze an OFDMA scheme that schedules different

UEs on distinct SCs by formulating and solving the following scheduling problem:

Maximize the system throughput obtained over T time slots w.r.t. all schedulers

SCH(n, t), where SCH : [N ] × [T ] → [K] maps the SC index n and time slot t to

UE index k:

max
SCH(n,t)

1

T

T∑
t=1

N∑
n=1

W

N
log2

(
1 +

P

NtNσ2
|H(SCH(n, t), t, fn)|2

)
, (P0)

where P is the total transmit power, which is divided equally across the N SCs, σ2 is

the noise variance per SC, and H(k, t, f) is the channel to UE-k at time (slot) t and

on frequency f . The factor Nt accounts for the power normalization since the BS is

equipped with Nt antennas.

We address these aspects in Secs. 9.3 and 9.4, respectively.

Remark 9.1 (Using true-time delay units at the BS and IRS). From (9.15), we note that

each BS antenna applies a timing advance via a TTD unit, which introduces a frequency-

dependent phase shift, followed by a frequency-independent phase. While a TTD-enabled

array is feasible at the BS, equipping each IRS element with a TTD unit to counteract

the SW effect significantly increases hardware complexity and power consumption due to

the need for high-precision delays and the requirement of a self-interference cancellation

mechanism to handle the full-duplex operation, as explained in Sec. 9.1.b. These practical

limitations restrict the applicability of TTDs at the IRS.

Remark 9.2 (Extension to other geometry). The B-SP effect arises regardless of the array

geometry employed at the BS or IRS. However, its severity is governed by the number of

3We note that B-SQ and B-SP effects can arise in both far-field and near-field scenarios [53]. For
the sake of illustrating our core idea, in this chapter, we focus on the case where the BS/UEs are in the
far-field of the IRS(s). Extension to near-field scenarios is relegated to future work.
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Figure 9.2: Average array gain vs. SC frequency when IRS is optimized to fn = 0 for different
number of IRS elements, M , with W = 400 MHz. Although the gain at fn = 0 increases with
M , the gain on other SCs degrades as M increases due to the B-SP effect.

elements across the array aperture. For example, in planar arrays, elements along the

diagonal contribute to the B-SP effects. Accordingly, our proposed ideas and methods

generalize to arbitrary array geometries by appropriately scaling the number of elements

across the aperture of the array geometry.

Notation: For general notations used in this chapter, see the section on “General Mathe-

matical Notations” on page ix. For the notations/variables specific to this chapter, please

refer to Table 9.1.

9.3 Beam-split Enables Multi-Directional Beamforming
at the IRS

To accurately characterize the frequency-selective properties of the channel at a UE under

the B-SP effect, we first rewrite (9.13) for dIRS = λc/2 compactly as follows:

|Hk(f)|2=
∣∣γCk ∣∣2 ∣∣∣∣θHaM(sin−1

(p)

{(
1 +

f

fc

)
sin(ϕk)

})∣∣∣∣2, (9.19)
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where θ ≜
[
e−jϑ1 , e−jϑ2 , . . . , e−jϑM

]T is the IRS configuration vector (with conjugate

phases introduced for notational compactness), and aM(x) is the array steering response

vector of an M -element ULA oriented at the angle x given by

aM(x) ≜
[
1, e−jπ sin(x), . . . , e−j(M−1)π sin(x)

]T
. (9.20)

9.3.a Directional Response of the IRS under B-SP effect

In Lemma 9.1 below, we determine the directional response of the IRS on the frequencies

across the BW of operation when the IRS is tuned to a given frequency within the BW.

Lemma 9.1. Let f0, f̃0 ∈ [−W/2,W/2] be two frequency components within the BW of

operation in the baseband domain. If the IRS is configured to reflect in a cascaded spatial

direction of ϕ at frequency f0, then, on frequency f̃0, the IRS reflects at a cascaded angle

ϕ̃ given by

ϕ̃ = sin−1
(p)

{(
f0 + fc

f̃0 + fc

)
sin(ϕ)

}
. (9.21)

Proof. See Appendix 9.A. ■

Lemma 9.1 reinforces the fact that under the influence of the B-SP effect, the IRS can no

longer focus towards the desired UE located in a given cascaded angle over the entire BW

of operation unless ϕ = 0. However, as alluded to in Sec. 9.2.d, by the law of conservation

of energy, the IRS has to necessarily form a beam in a different direction on frequencies

other than the frequency to which the IRS is tuned, and the above lemma formally captures

this aspect.

9.3.b Frequency Response of the IRS under B-SP effect

We note that Lemma (9.1) characterizes the directional response of an IRS, specifying the

direction at which the IRS beamforms on a given frequency when it is actually tuned to

reflect in a chosen direction on a different frequency. However, if the angular shift across

two different frequencies exceeds the Rayleigh resolution limit of an array [63], the IRS

effectively beamforms in multiple resolvable directions over the system bandwidth. In this

view, we have the following result.
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Lemma 9.2. In an M-element IRS-aided wideband system with BW equal to W , the half-

power beam width (HPBW) of the beam formed by the IRS towards the cascaded angle of

ϕ on frequency f spans only a sub-band whose BW is given by

Wϕ = min

{
4

π

√
6

(
1− 1√

2

)
· fc
M sin(ϕ)

,W

}
. (9.22)

Proof. See Appendix 9.B. ■

We now make the following remarks based on Lemma 9.2:

1. The BW Wϕ corresponding to the HPBW of the beam formed by the IRS in direction ϕ

is independent of the tuned frequency f0. This indicates that the IRS exhibits a multi-

directional response when it is tuned to any frequency within this BW. However, Wϕ

varies with ϕ because the impact of the B-SP depends on ϕ, as characterized in (9.17).

2. Even if the entire BW W is allotted to a single UE located at a physical angle of ϕ,

the IRS provides the beamforming gain to this UE only over an effective BW given

by (9.22).

9.3.c The Multi-directional Beamforming

Based on the preceding discussions, when the IRS is tuned to reflect in direction ϕ1 at a

particular frequency, Lemma 9.1 characterizes its response across spatial directions, while

Lemma 9.2 captures its response as a function of different frequency components within

the BW. We now combine both these results and provide the main result of this section,

which establishes the multi-directional beamforming property of the IRS under the B-SP

effect.

Theorem 9.1. Consider an M-element IRS-aided wideband system operating over a band-

width of W around the carrier frequency fc. Let fL ≜ fc −W/2 denote the lower-edge

frequency component of the band, and suppose the IRS is tuned to align with a cascaded

angle ϕ1 on the 1st sub-band, whose center frequency is

f ′
1 ≜ fL +

Wϕ1

2
= fL +

2

π

√
6

(
1− 1√

2

)
· fc
M sin(ϕ1)

. (9.23)
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Figure 9.3: Illustration of multi-directional beamforming with B-SP effect.

Now construct the set Φϕ1 ≜ {ϕ1, . . . , ϕLϕ1
} as follows:

ϕℓ = sin−1
(p)

{(
f ′
1 + fc
f ′
ℓ + fc

)
sin(ϕ1)

}
, ℓ = 2, . . . , Lϕ1 , (9.24)

where the frequencies {f ′
ℓ}ℓ are given by

f ′
ℓ = f ′

1 + (ℓ− 1)

√
6

(
1− 1√

2

)
4fc

Mπ sin(ϕ1)
, (9.25)

for ℓ = 2, . . . , Lϕ1 and Lϕ1 is given by

Lϕ1 ≜

⌈
MW sin(ϕ1)

1.7fc

⌉
. (9.26)

Then, Φϕ1 constitutes a set of resolvable angles, i.e., |sin(ϕi)− sin(ϕj)| ≥ O
(

1
M

)
for i ̸= j,

i, j = 1, 2, . . . , Lϕ1, and such that the normalized correlation response of the IRS on the

ℓth sub-band obeys

ρℓ,ℓ′ ≜
1

M2

∣∣aHM(ϕℓ)aM(ϕℓ′)
∣∣2=
1, if ϕℓ′ = ϕℓ,

κ, if ϕℓ′ ̸= ϕℓ,
(9.27)

∀ℓ′ ∈ [L], where κ is a small number s.t. κ→ 0 as M →∞. Consequently, Lϕ1 in (9.26)

is the number of resolvable beams formed by the IRS when it is tuned to reflect in direction

ϕ1.

Proof. See Appendix 9.C. ■
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From Theorem 9.1, we note that the number of beams formed by the IRS, Lϕ, de-

pends on the ratio MW/fc, which is the term that controls the impact of the B-SP effect

in (9.17). Clearly, when B-SP is not negligible, MW/fc > 1, and the number of beams

formed increases linearly with this ratio. Similarly, when the B-SP effect is negligible,

i.e., MW/fc ≪ 1, (9.26) yields Lϕ = 1, which is consistent with the existing studies on

IRS-aided mmWave systems where the IRS is envisioned to beamform at a given UE over

the full BW [9, 174, 195]. To illustrate Theorem 9.2 in a practical case, consider a 5G

NR compliant IRS-aided mmWave system with M = 1024, W = 400 MHz, ϕ = 90◦, and

fc = 30 GHz. Then, using (9.26), we get Lϕ ≈ 8; which means the IRS can beamform up

to 8 resolvable directions at the same time; each covering a BW equal to 400/8 = 50 MHz

and spanning the HPBW of a beam. Theorem 9.1 is pictorially illustrated in Fig. 9.3.

Capitalizing on the multi-directional beamforming, we next propose the opportunistic

OFDMA scheme that exploits the B-SP effect of the IRS to maximize the system through-

put.

9.4 Exploiting Beam Split Via Opportunistic OFDMA

Since the B-SP effect causes a degradation in the achievable array gain over the BW if

a single UE were to be scheduled over the entire BW, we propose to adopt an OFDMA

framework wherein we schedule multiple UEs on different SCs. This fits naturally into

the constraints imposed by the B-SP effect since no single UE is typically allotted the

full BW. This motivates us to exploit the B-SP effect and enhance the throughput via an

opportunistic OFDMA scheme.

To this end, we first solve for the optimal scheduler SCH(·) in (P0) and then analyze the

effectiveness of OFDMA in exploiting the B-SP effect to enhance the system performance.

9.4.a The Opportunistic OFDMA for Exploiting the Beam-Split

From (P0), we note that the scheduler SCH(n, t) is decoupled across all N SCs and T time

slots; thus it can equivalently posed as solvingNT independent optimization problems with

the solution to SCH(n, t) depending on only the nth SC and tth time slot. Then, invoking
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the monotonicity property of the log(·) function, the optimal scheduler that solves (P0) is

one that maximizes the channel gain on each SC in every slot, i.e.,

∀n ∈ [N ], t ∈ [T ], SCHopt(n, t) = argmax
k∈[K]

|H(k, t, fn)|2, (9.28)

and scheduler which implements (9.28) is referred to as the max-rate scheduler in the rest

of this chapter. We call the overall scheme opportunistic OFDMA because the system

opportunistically schedules different UEs across the system BW and time to maximize the

aggregate throughput, for a given IRS configuration (or sequence of configurations over

time). However, note that different IRS configurations can lead to different scheduling

outcomes and throughputs. Hence, we propose to randomly configure the IRS from a

distribution that is aware of the channel model in every time slot [103]. Now, since the

UEs can be located anywhere at random in the system, we model the sine of the cascaded

angle at different UEs as a uniform random variable: φC
k ≜ sin(ϕk)

d
= φ̃C i.i.d.∼ U [−1, 1],

where d
= stands for “equal in distribution” [80]. Then, using [103, Sec. III.C], the random

IRS configurations are sampled independently across slots as

ϕm(t) = π(m− 1)a(t), a(t)
i.i.d.∼ U [−1, 1], t ∈ [T ]. (9.29)

Further, in [199], it has been shown that randomly sampling the IRS phase angles as

per (9.29) is throughput-optimal in a narrowband setting. We use the above random

configuration in the wideband setting also, mainly because it is simple to implement (no

coordination with the BS is required), and, as we will see, it offers superlative performance.

Now, to illustrate how the B-SP effect can be exploited, using (9.29) in (9.19), we deduce

that the channel gain at the kth UE on the nth SC at time slot t is given by

|H(k, t, fn)|2=M2
∣∣γCk ∣∣2sinc2(M (

a(t)− φC
k

(
1 +

fn
fc

)))
. (9.30)

Then, for a given a(t) at slot t ∈ [T ], on every SC n ∈ [N ], if there exists at least one UE

k∗(t, n) ∈ [K] such that

a(t)− φC
k∗(t,n)

(
1 +

fn
fc

)
≈ 0, (9.31)
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Figure 9.4: Illustration of opportunistic OFDMA by exploiting the B-SP. Different colors indicate
different frequency sub-bands.

we can nearly achieve the maximum array gain of M2 for every t ∈ [T ] and n ∈ [N ] by

scheduling UE k∗(t, n). This way, in mmWave bands with large bandwidth, each SC can

obtain the optimal array gain of M2 in every time slot by exploiting multi-user diversity.

This is illustrated in Fig. 9.4. In Sec. 9.4.b, we formally show that under the B-SP effect

and with a large number of UEs, at least one UE almost surely achieves the full array gain

on every SC and time slot. Subsequently, we use this to analyze the achievable throughput

of the above-described opportunistic OFDMA scheme in Sec. 9.4.d.

9.4.b Eliminating B-SP via Multi-user Diversity Almost Surely

To facilitate further analysis, we define the normalized array gain, GM(k, t, n), acheived by

UE-k on SC-n in slot t via an M -element IRS whose configurations are randomly chosen

according to (9.29) as

GM(k, t, n) ≜
|H(k, t, fn)|2

M2
∣∣γCk ∣∣2 ∈ [0, 1], (9.32)

withGM(k, t, n) = 1 implying that a full-array gain is obtained. We then have the following

theorem.

Theorem 9.2. In an M-element IRS-aided wideband system with N subcarriers and K

UEs, when we tune the IRS using randomized configurations sampled as per (9.29), the
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normalized array gain defined in (9.32) satisfies

lim
K→∞

Pr

(
N⋂
n=1

K⋃
k=1

{
φC
k ∈ [−1, 1] : GM(k, t, n) = 1

})
= 1. (9.33)

As a result, the IRS almost surely provides the full array gain of M2 (possibly at different

UEs) over the entire BW, i.e.,

Pr
({

lim
K→∞

∀t ∈ [T ],∀n ∈ [N ],∃ k∗(t, n) ∈ [K] : |H(k∗, t, fn)|2 =
∣∣γCk∗∣∣2M2

})
= 1, (9.34)

where k∗(t, n) denotes UE selected at slot t and SC n.

Proof. See Appendix 9.D. ■

Theorem 9.2 shows that the B-SP effect at the IRS can be positively leveraged to obtain

the full-array gain at multiple UEs. In hindsight, the result can be attributed to the

multi-directional beamforming capability of the IRS under the B-SP effect, as described in

Theorem 9.1, which enables the IRS to form beams across a range of spatial directions.

9.4.c How Many UEs are Sufficient in Practice?

In the previous section, we theoretically proved hat we can obtain full array gain from

the IRS as K → ∞. A related question of practical interest is: Under what scaling of

the number of UEs does the near-beamforming condition hold with high probability? We

answer this next.

Proposition 9.1. Let ϵ, δ ∈ (0, 1) be small positive constants. Consider an IRS-aided

wideband system with M reflecting elements, N subcarriers spanning a total bandwidth of

W , and a carrier frequency of fc. If the number of UEs, K, satisfies

K ≥ K∗ ≜ −
ln

(
N

δ

)
ln

(
1−

√
3ϵ

πM (1 + (W/2fc))

) , (9.35)

then, with probability at least 1 − δ, there exists at least one UE on every subcarrier that

achieves an array gain of (1− ϵ)M2.
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Proof. See Appendix 9.E. ■

Based on Proposition 9.1, to effectively exploit the B-SP effect and obtain full array gain

over the BW, the minimum number of UEs, K∗, scales as follows:

1. As δ decreases, we target a higher probability of success. For this, the number of UEs

scales as O(ln(1/δ)). In particular, as δ → 0, K∗ →∞, consistent with Theorem 9.2.

2. Reducing ϵ corresponds to a lower tolerance for degradation in the achievable array gain

of M2. This, in turn, requires K∗ to scale roughly as O(1/√ϵ) so that at least one UE

aligns closely with the IRS beam direction. This is again consistent with Theorem 9.2.

(see also [127, Prop. 1].)

3. As either M (the number of IRS elements) or W (system BW) increases, the B-SP

effect becomes more pronounced, leading to a larger number of IRS-formed beams, in

accordance with Theorem 9.1. Consequently, more UEs are needed so that at least one

can be scheduled corresponding to every distinct beam formed by the IRS.

In fact, when MW/2fc ≪ 1, we can approximate − ln(1 − x) ≈ x in the denominator

of (9.35), and observe that K∗ ∼ Ω
(
MW

/
fc

)
∼ Ω(L90◦), where L90◦ is the number

of resolvable beams formed by the IRS as given in (9.26) with ϕ = 90◦. This is because

the system requires at least as many UEs as the maximum number of resolvable beams

that can be formed by the IRS via the B-SP effect.

We note that the requirement on the number of UEs in our design aligns well with current

wireless system practices and does not represent an additional requirement specific to our

study. Notably, one of the key wireless use-cases is massive machine-type communications

(MMTC), which is envisioned to support 106 users per km2 [77].4

9.4.d Acheivable Throughput

Having established that the B-SP effect enables full array gain at different UEs across the

BW, we now derive the achievable throughput under the opportunistic OFDMA scheme

4For example, in a small cell of radius 100 m and a user activity rate of 10%, there will be a few
hundred active UEs at a given time; roughly the scale of the number of UEs we consider in this work.
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described in Sec. 9.4.a when ᾱ is modeled as a deterministic channel with |ᾱ|2 = ρ1 [199],

while β̄k ∼ CN (0, ρ2,k) represents a Rayleigh fading channel. Here, ρ1 and ρ2,k denote

the respective path losses. For analytical tractability, we assume that all UEs experience

identical path loss, similar to [75].

Theorem 9.3. The system throughput of an OFDMA scheme in a randomly configured

IRS (as per (9.29)) aided wideband system using a max-rate scheduler (as per (9.28)) and

equal power allocation across all SCs satisfies

lim
K→∞

(
R(K) −O

{
W log2

(
1 +

ρP

Nσ2
NtM

2 lnK

)})
= 0,

where ρ ≜ ρ1ρ2 is the cascaded path loss across the UEs, and other symbols are as defined

earlier.

Proof. See Appendix 9.F. ■

Theorem 9.3 confirms that a channel gain of O(M2) can indeed be obtained on all SCs

by exploiting the B-SP effects at the IRS. Further, in the presence of channel fading, we

can get an additional SNR boost by a factor of lnK, which is the benefit of multi-user

diversity, similar to that derived in [103, Theorem 4] for sub-6 GHz systems on top of the

array gain from the BS antennas that scales linearly in Nt.

Remark 9.3. In our proposed scheme, to implement the opportunistic scheduler, the BS

should know the index of the UE with the best channel gain on each SC. This can be

obtained using efficient, low-complexity feedback schemes on an SC-by-SC basis. For e.g.,

the timer-feedback mechanism in [82] uses a single pilot, and on every SC, the UE with

the best channel quality feeds back to the BS much earlier than other UEs. Thus, the

proposed scheme reaps optimal IRS gains without requiring channel estimation or phase

optimization algorithms, making it attractive for implementing and performing wideband

communications using an IRS.
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Figure 9.5: Heat map of the normalized array gain as a function of angle & frequency at ϕ = 90◦.

9.5 Numerical Results

We numerically illustrate the throughput enhancement obtained by exploiting the B-SP

effect via OFDMA using Monte Carlo simulations. The OFDM framework spans a band-

width of W = 400 MHz at an mmWave carrier frequency of fc = 30 GHz using N = 1024

SCs. The BS is located at (0, 0) and an M = 1024 element IRS is located at (100, 100)

(meters). The UEs are uniformly distributed around the IRS such that the cascaded angles

span the interval (50◦, 90◦). The BS uses a total transmit power of P = 40 dBm, and the

receiver noise power is σ2 = −120 dBm. The path loss is modeled as PL = C0 (d0/dlink)
µlink ,

where C0 = −60 dB is the path loss at the reference distance of d0 = 1 m, dlink is the link

distance, and µlink denotes the path loss exponent, set to 2 and 2.2 in the BS-IRS and

IRS-UE links, respectively [46,106].

9.5.a Multi-Directional Property of the IRS under B-SP Effect

We first illustrate the multi-directional beamforming property of the IRS given in Theo-

rem 9.1 under the B-SP effect.

In Fig. 9.5, we present a heatmap of the normalized array gain as a function of angle
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Figure 9.6: Envelope of the normalized array gain vs. SC frequency at ϕ = 90◦.

and subcarrier frequency in the baseband domain. The values along the x-axis represent

the angles specified in Theorem 9.1. From the heatmap, we observe that the IRS indeed

reflects its energy in different directions as we sweep across the BW.

In Fig. 9.6, we plot the normalized gain of the IRS as a function of SC frequency when

it is configured to reflect toward ϕ = 90◦ at the center frequency, fn = 0. Each curve,

labeled Beam #1 to #8, represents the IRS response in a specific direction, corresponding

to the angles derived in Lemma 9.1 for fn = 0, ϕ = 90◦, and f̃0 set to {f ′
ℓ}
Lϕ

ℓ=1 determined

using (9.25) from Theorem 9.1. The figure shows that the IRS achieves full array gain

in different resolvable directions (i.e., the angles which do not lie within the HPBW of

the beam formed on other angles) over distinct frequency bands centered around the

frequencies given by (9.25), thereby confirming that the IRS exhibits multi-directional

beamforming simultaneously across multiple contiguous and non-overlapping sub-bands.

Furthermore, the number of resolvable beams formed across the system BW is 8 in this

figure, which matches the theoretical value derived in Theorem 9.1.

In Fig. 9.7 and Fig. 9.8, we repeat the previous experiment with the IRS now configured

to reflect toward ϕ = 50◦ at the center frequency fn = 0. Similar to the earlier case,

we observe that the IRS provides beamforming gain in multiple directions across different
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Figure 9.7: Heat map of the normalized array gain as a function of angle & frequency at ϕ = 50◦.

SCs, showing its ability to form several resolvable beams over the BW. However, unlike

Fig. 9.5 and Fig. 9.6, the number of beams formed across the system bandwidth is smaller

for ϕ = 50◦ compared to ϕ = 90◦. This reduction arises because, as the reflection angle

moves away from 90◦, the signal experiences a relatively smaller SDS through the IRS, as

described in (9.11). Consequently, the SWE and the resulting B-SP phenomenon become

less pronounced. According to Theorem 9.1, a weaker B-SP leads to fewer resolvable

beams. Thus, this experiment highlights that both the beamforming capability of the IRS

and the number of beams it can form depend on the angle at which it is configured to

reflect at fn = 0.

9.5.b Performance of Opportunistic OFDMA under B-SP Effect

Leveraging the multi-directional beamforming capability of the IRS, we now turn our at-

tention to demonstrating the performance of the proposed opportunistic OFDMA scheme.

Figure 9.9 illustrates the normalized array gain averaged over the UEs vs. the baseband

SC frequency for three scenarios:

1. A single UE is scheduled in each time slot across the full BW using RR scheduling,
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Figure 9.8: Envelope of the normalized array gain vs. SC frequency at ϕ = 50◦.

where the IRS is optimized for the scheduled UE at fn = 0 in every slot.

2. The IRS is randomly configured according to (9.29), and UEs are served via OFDMA

using a max-rate scheduler, assuming no channel fading (i.e., γCk is deterministic.)

3. The IRS is again randomly configured as per (9.29), but UEs are scheduled using the

max-rate scheduler while accounting for random channel fading.

In the RR case (with the curve marked as “Round-robin SU-OFDM..."), the array gain

peaks at O(M2) only at fn = 0, and significantly deteriorates at other subcarriers due to

the B-SP effect. This clearly demonstrates how a phase-shifter is not sufficient to beamform

a wideband signal. In contrast, when multiple UEs are multiplexed via OFDMA, the

average channel gain observed at the BS becomes more uniform across the BW. Notably,

in the absence of fading, the gain remains flat at its peak value of O(M2), highlighting

the advantage of leveraging B-SP through OFDMA. When channel fading is included,

the average gain increases further owing to multi-user diversity and clearly outperforms

even the peak gain achieved with RR scheduling. Finally, we also benchmark our scheme

against the widely adopted approach that employs TTD units at the IRS to mitigate the
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Figure 9.9: Avg. normalized array gain with K = 1000, M = 1024.

B-SP effect, as discussed in Sec. 9.1.b. The results show that the proposed method not

only outperforms the TTD-based scheme but also offers significant advantages in terms

of implementation. Specifically, the proposed scheme retains the use of a more practical

phased-array-based IRS and circumvents the three major sources of complexity associated

with TTD-based IRSs, as detailed in Sec. 9.1.b. This validates that our approach is a

low-complexity yet effective solution for harnessing the benefits of IRSs even in wideband

beamforming scenarios.

Next, in Fig. 9.10, we evaluate the system throughput as a function of the number of UEs,

K, for the three scenarios outlined in the previous paragraph. In the RR case, the rate

falls short of the ideal scaling O(log2(M2)) due to the B-SP effect and remains constant

with increasing K, since RR scheduling does not exploit multi-user diversity. In contrast,

with a max-rate scheduler, the rate increases with K because it opportunistically schedules

the UEs with better channel conditions. In the absence of channel fading, the throughput

exceeds that achieved under RR scheduling with as few as 20 UEs and gradually converges

to the optimal rate scaling of O(log2(M2)) for larger values of K (in fact, just K = 200

UEs are sufficient), in line with Theorem 9.2. When channel fading is present, multi-user

diversity yields an additional gain, improving the rate toO(log2(M2 lnK)), as predicted by
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Figure 9.10: Throughput vs. No. of UEs, K, for M = 1024.

Theorem 9.3. These results demonstrate that by leveraging the B-SP effect and employing

opportunistic scheduling across the SCs with multiple UEs, the proposed scheme achieves

near-optimal performance on all SCs simultaneously.

Finally, in Fig. 9.11, we evaluate the effectiveness of the proposed scheme by plotting

the system throughput versus the number of IRS elements (on a log-scale) for the three

scenarios. For small M , all curves exhibit a slope of 2W , indicating that the full array

gain of M2 is realized across all SCs spanning a BW of W . However, as M increases, the

B-SP effect becomes significant, causing the slope of the RR scheduler curve to fall below

2W . In contrast, the slope remains close to 2W for the max-rate scheduling scenarios,

confirming that the full array gain from the IRS is retained across all SCs by exploiting the

B-SP effect via opportunistic scheduling. The vertical offsets between the curves with and

without fading reflect the additional rate gains from multi-user diversity in the presence

of fading, which scale as O(log lnK).
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Figure 9.11: Throughput vs. No. of IRS elements, M , for K = 5000.

9.6 Conclusions

In this chapter, we demonstrated that the B-SP effect, which is typically considered a

limitation in IRS-aided wideband systems, can instead be harnessed to enhance the system

performance. We first established that, under the B-SP effect, the IRS exhibits a multi-

directional beamforming property, which enables the IRS to focus its reflected energy

toward different spatial directions on different SCs. Exploiting this property of the B-SP

effect, we showed that by employing an OFDMA framework with a max-rate scheduling

policy, it is possible to almost surely achieve the full array gain of the IRS on all SCs,

provided a sufficiently large number of UEs are present in the system. We then derived the

corresponding rate scaling laws and proved that the proposed scheme not only achieves the

optimal beamforming gain over the entire BW, but also benefits from multi-user diversity,

leading to further performance enhancements. Future directions can include integrating

fairness-aware UE scheduling and addressing quality-of-service constraints like guaranteed

rate requirements, etc.
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Appendix 9.A Proof of Lemma 9.1

From (9.19), dropping the index k for simplicity, and using the Cauchy-Schwarz inequality,

the IRS phase configuration that maximizes |H(f)|2 and reflects the transmitted signal in

a cascaded angle of ϕ on frequency f0 is given by

θopt = aM

(
sin−1

(p)

{(
1 +

f0
fc

)
sin(ϕ)

})
. (9.36)

To determine the directional response of the IRS vector in (9.36) on another frequency f̃0,

we first evaluate the beam-scanning function, which is defined as follows.

g(ν) ≜

∣∣∣∣∣θoptHaM

(
sin−1

(p)

{(
1 +

f̃0
fc

)
sin(ν)

})∣∣∣∣∣
2

(9.37)

=

∣∣∣∣∣
M∑
m=1

e
jπ(m−1)

{
(1+ f0

fc
) sin(ϕ)−

(
1+

f̃0
fc

)
sin(ν)

}∣∣∣∣∣
2

(9.38)

=
sin2

(
πM
2

{(
1 + f0

fc

)
sin(ϕ)−

(
1 + f̃0

fc

)
sin(ν)

})
sin2

(
π
2

{(
1 + f0

fc

)
sin(ϕ)−

(
1 + f̃0

fc

)
sin(ν)

}) (9.39)

(a)≈ M2F2
M

((
1 +

f0
fc

)
sin(ϕ)−

(
1 +

f̃0
fc

)
sin(ν)

)
, (9.40)

where in (a), FM(x) is the Fejér Kernel [200], which satisfies

FM(x) =


1 + o(M), if x = 0,

0, if x ∈ Z\{0},

o(M), if x ∈ R\Z.

(9.41)

Thus, to evaluate the angle at which the IRS vector has the largest response on frequency

f̃0, we set the argument of FM(x) in (9.40) to 0, which upon simplification along with

letting ν = ϕ̃ yields the desired result in (9.21).
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Appendix 9.B Proof of Lemma 9.2

When the IRS is set to align with the channel at a UE whose cascaded angle is ϕ on

frequency f0, the corresponding IRS configuration vector is given by (9.36). Then, the

normalized IRS response on another frequency band centered at f̃0 in the direction of ϕ

can be evaluated as

ρ(f̃0) ≜
1

M2

∣∣∣∣∣θoptHaM

(
sin−1

(p)

{(
1 +

f̃0
fc

)
sin(ϕ)

})∣∣∣∣∣
2

. (9.42)

By simplifying (9.42) similar to the proof of Lemma 9.1, we get

ρ(f̃0) =

 sin
{
πM
2

(
f0−f̃0
fc

)
sin(ϕ)

}
M sin

{
π
2

(
f0−f̃0
fc

)
sin(ϕ)

}
2

, (9.43)

which achieves the maximum when f0 = f̃0 or ϕ = 0. Now, the frequency points corre-

sponding to the HPBW of the beam formed by the IRS towards ϕ at f0 can be obtained

by setting ρ(f̃0) = 0.5. Further, by using |f0 − f̃0|/fc ≪ 1 and sin(x) ≈ x for x ≪ π,

from (9.43), we obtain a simplified relation for determining the sub-BW covering the

HPBW of the beam as:

sinc

(
M sin(ϕ)

2

(
f0 − f̃0
fc

))2

≥ 1

2
. (9.44)

Using the 1st order Taylor’s approximation: sinc(x) ≈ 1− π2x2

6
, which is tight in the regime

of our interest, (9.44) simplifies to

∣∣∣f0 − f̃0∣∣∣ ≤ ∆fϕ ≜
2

π

√
6

(
1− 1√

2

)
· fc
M sin(ϕ)

, (9.45)

From (9.45), we deduce that on a frequency component f̃0 which is away from f0 by a

factor of least ∆fϕ, the IRS gain response in the direction of ϕ drops below the peak gain

by at least a factor of 1/2. Therefore, (9.45) characterizes the effective one-sided bandwidth

for which appreciable array gain (corresponding to the HPBW) can be obtained from the
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IRS in the direction of ϕ. Since f̃0 can lie on either side of the frequency component

f0, (9.22) can be obtained by setting Wϕ = 2∆fϕ and noting that Wϕ cannot exceed W .

Appendix 9.C Proof of Theorem 9.1

We first note that the frequencies {f ′
ℓ}
Lϕ1
ℓ=1 form an arithmetic progression with a common

difference precisely equal to Wϕ1 , as characterized in Lemma 9.2. According to Lemma 9.1,

the angles {ϕℓ}Lϕ1
ℓ=1 defined in (9.24) correspond to the directions in which the IRS forms

beams at frequencies f ′
ℓ, for ℓ = 2, . . . , Lϕ1 , when the IRS is actually configured to reflect

toward the direction ϕ1 at frequency f ′
1.

Now, sinceWϕ1 quantifies the effective sub-BW over which the HPBW of the beam formed

by the IRS extends, a frequency separation of at least Wϕ1 between adjacent f ′
ℓ ensures

that the corresponding beam directions ϕℓ are sufficiently separated in the angular domain,

i.e., by O(1/M), which marks the Rayleigh resolution limit of the array. Consequently,

these directions become resolvable by the IRS, and hence satisfy the resolvability condition

given in (9.27).

Finally, the total number of resolvable beams formed by the IRS across the entire band-

width when it is tuned to reflect toward ϕ1 at f = f ′
1 can be obtained by taking the ratio

of the total bandwidth W to the effective sub-BW Wϕ1 associated with the HPBW of a

single beam. That is,

Nres =
W

Wϕ1

=
π

4

(√
6

(
1− 1√

2

))−1

· MW sin(ϕ1)

fc
, (9.46)

which, upon simplification and rounding up to the next largest integer, denoted by Lϕ1 ,

gives the expression in (9.26).
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Appendix 9.D Proof of Theorem 9.2

To prove (9.33), by using the continuity of probability, it suffices to show that

Pr

(
lim
K→∞

N⋂
n=1

K⋃
k=1

{
φC
k ∈ [−1, 1] : GM(k, t, n) = 1

})
= 1, (9.47)

which means to establish that as K → ∞, the event AK ≜
N⋂
n=1

K⋃
k=1

{
φC
k ∈ [−1, 1] :

GM(k, t, n)=1
}

occurs almost surely.

Now, by involking a result from [201, Sec 7.2, Lemma 10(a)], a necessary and sufficient

condition for (9.47) to hold true can be rewritten as: ∀ϵ > 0,

Pr

(
lim
K→∞

sup
N⋃
n=1

K⋂
k=1

{
φC
k : |GM(k, t, n)− 1| > ϵ

})
= 0. (9.48)

Define the event AϵK ≜
N⋂
n=1

K⋃
k=1

{
φC
k :|GM(k, t, n)− 1| ≤ ϵ

}
, and the probability of its com-

plementary event is computed as

Pr ((AϵK)c) = Pr

(
N⋃
n=1

K⋂
k=1

{
φC
k : |GM(k, t, n)− 1| > ϵ

})
(a)

≤
N∑
n=1

Pr

(
K⋂
k=1

{
φC
k : |GM(k, t, n)− 1| > ϵ

})
(b)
=

N∑
n=1

K∏
k=1

Pr
({
φC
k : |GM(k, t, n)− 1| > ϵ

})
, (9.49)

where in (a), we used the union-bound over the events associated with all the N -SCs,

and in (b), we used the fact that the events Aϵ,k,nK ≜
{
φC
k : |GM(k, t, n)− 1| ≤ ϵ

}
(and

their complements) are independent across k ∈ [K]. In the sequel, we characterize the

probability of Bϵ,k,nK ≜
(
Aϵ,k,nK

)c
, the complementary event of Aϵ,k,nK . To this end, note

that

Bϵ,k,nK

(c)
=
{
φC
k : sinc2

(
M

(
a(t)−

(
1 +

fn
fc

)
φC
k

))
≤ 1− ϵ

}
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(d)
=

{
φC
k ∈ [−1, 1] :

∣∣∣∣a(t)− (1 + fn
fc

)
φC
k

∣∣∣∣ ≥ √3ϵπM

}

=

{
φC
k ∈ [−1, 1] : φC

k /∈
(
a(t)±

√
3ϵ

πM

)/(
1 +

fn
fc

)}
, (9.50)

where in (c), we used the expressions in (9.32) followed by (9.30), and in (d), we used the

Taylor’s approximation: sinc2(x) ≈ 1−π2x2/3, which is tight under the regime of interest

to us. Now, since φC
k ∼ U [−1, 1], we can show that

Pr
(
Bϵ,k,nK

)
= 1−

√
3ϵ

πM
(
1 + fn

fc

) (e)

≤ 1−
√
3ϵ

πM
(
1 + W

2fc

) , (9.51)

where we noted that |fn|≤ W/2, n ∈ [N ]. Using (9.51) in (9.49), we obtain

Pr ((AϵK)c) ≤ N

1−
√
3ϵ

πM
(
1 + W

2fc

)
K

. (9.52)

Now, consider the infinite sum:

P ϵ
∞ ≜

∞∑
K=1

Pr ((AϵK)c)
(e)

≤ N
∞∑
K=1

1−
√
3ϵ

πM
(
1 + W

2fc

)
K

(g)
= P ϵ,U

∞ ≜
πNM

(
1 + W

2fc

)
√
3ϵ

, (9.53)

where in (e), we used (9.52), and in (g), we used the formula of an infinite geometric series.

Now since we have ∀ϵ > 0, 0 ≤ P ϵ
∞ ≤ P ϵ,U

∞ < ∞, by using Borel-Cantelli Lemma [201,

Sec 7.3, Theorem 10(a)], we deduce that

∀ϵ > 0, Pr
(
lim
K→∞

sup (AϵK)c
)
= 0, (9.54)

which proves the statement in (9.48). Consequently, we have

Pr
(
lim
K→∞

AK
)
= Pr

(
lim
K→∞

N⋂
n=1

K⋃
k=1

{
φC
k : GM(k, t, n) = 1

})
= 1, (9.55)

which completes the proof of (9.33). Note that this holds for all time slots t ∈ [T ]. Finally,
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using the sequential definition of the almost sure convergence of random variables in (9.47),

the result in (9.34) follows. Importantly, (9.34) rigorously shows that, in every slot and

SC, despite exhibiting a B-SP, the IRS will provide a full-array gain to at least one UE

when the number of UEs is large. This completes the proof.

Appendix 9.E Proof of Proposition 9.1

We first define the “(1− ϵ)M2 success event":

E ϵk,n ≜
{
φC
k ∈ [−1, 1] : GM(k, t, n) ≥ 1− ϵ

}
, (9.56)

that denotes the event that the array gain on SC-n at UE-k is at least (1− ϵ)M2 at some

time t. Since the success of the overall scheme is determined by obtaining a near-optimal

array gain for at least one UE, we define the overall probability of (1− ϵ)M2 success event

as

P ϵ
succ ≜ Pr

(
N⋂
n=1

K⋃
k=1

E ϵk,n

)
. (9.57)

Note that the above probability is exactly the probability of the event, AϵK defined af-

ter (9.48) in the proof of Theorem 9.2. Thus, by directly using the expression given

in (9.52), we get

P ϵ
succ ≥ 1−N

1−
√
3ϵ

πM
(
1 + W

2fc

)
K

. (9.58)

Finally, by substituting for P ϵ
succ = 1−δ, and upon rearranging the terms above, we obtain

the desired expression in (9.35).

Appendix 9.F Proof of Theorem 9.3

Note that the throughput under equal power allocation across all SCs (from (P0)) with a

max-rate scheduler is

RMR ≜
1

T

T∑
t=1

N∑
n=1

W

N
log2

(
1 +

P

NtNσ2
max
k∈[K]
|H(k, t, fn)|2

)
. (9.59)
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Now, considering that the channels are jointly stationary and ergodic and using Jensen’s

approximation over the log2(·) function, we simplify (9.59) as RMR ≈

R(K) ≜
N∑
n=1

W

N
log2

(
1 +

P

NtNσ2
E
[
max
k∈[K]
|H(k, t, fn)|2

])
. (9.60)

To characterize the expectation in (9.60), using (9.30), we can show that |H(k, t, fn)|2=

M2N2
t ρ1ρ2

∣∣γ̃Ck ∣∣2 sinc2(M (
a(t)− φC

k

(
1 +

fn
fc

)))
, (9.61)

with γCk ≜
√
ρ1ρ2Ntγ̃

C
k , where γ̃Ck

i.i.d.∼ CN (0, 1) and ρ2 = ρ2,k ∀ k under the equal path

loss assumption. From Theorem 9.2, as K →∞, we know that on every SC, at least one

UE will be in near-beamforming configuration. Then, the maximum of the terms given

in (9.61) is the maximum over the channel gains among those UEs for whom the IRS

phases are in near-beamforming configurations (i.e., for those UEs for whom |H(k, t, fn)|2=
M2N2

t ρ1ρ2
∣∣γ̃Ck ∣∣2). Thus, we have

E
[
max
k∈[K]
|H(k, t, fn)|2

]
≈M2N2

t ρ1ρ2E
[
max
k∈[K]

∣∣γ̃Ck ∣∣2]+O(1). (9.62)

Now, to characterize the expected value of the order statistic in (9.62), we first recognize

that
∣∣γ̃Ck ∣∣2 is an exponential random variable with mean 1, and then by using results from

extreme value theory [103, Lemma 3], we can show that, for large K, maxk∈[K]

∣∣γ̃Ck ∣∣2 grows

as lK , where F (lK) = 1 − 1
K

with F (z) = 1 − e−z, which is the cumulative distribution

function of a unit mean exponential random variable. Then, using the value of lK =

lnK in (9.62), and substituting the resulting expression in (9.60), we can show that the

throughput scales as

R(K) ≲ W log2

(
1 +

ρP

Nσ2
NtM

2 lnK

)
, (9.63)

which is restated in the statement of the theorem.



10 Wideband Beamforming in
IRS-Aided Communications:
Optimization for Sub-6 GHz
Bands

Chapter Highlights
Exploiting the benefits of intelligent reflecting surfaces (IRSs) requires optimizing the discrete

reflection coefficients of the IRS elements, which crucially depend on the availability of accu-
rate channel state information (CSI) of all links in the system. Further, in wideband systems
employing orthogonal frequency division multiplexing (OFDM), a given IRS configuration can-
not be simultaneously optimal for all the subcarriers, and hence, the phase optimization is not
straightforward.
In this final technical chapter of the thesis, we propose a novel IRS phase configuration scheme

in OFDM systems by first leveraging the sparsity of the channel in the angular domain to es-
timate the CSI using a simultaneous orthogonal matching pursuit (SOMP) algorithm, which
incurs low-pilot overheads and then devising a novel and computationally efficient binary IRS
phase configuration algorithm using majorization-minimization (MM). The key highlight of this
technique is that it directly optimizes the sum-rate across the OFDM subcarriers at a given UE,
as opposed to the existing sub-optimal approaches to maximize an upper bound on the sum-rate.
The proposed MM approach addresses the original problem by reformulating it into a sequence of
sub-problems derived using a series of matrix inequalities, each of which can be efficiently solved
in closed form. Simulation results illustrate the efficacy of the approach in comparison with the
state-of-the-art.

301
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10.1 Introduction

The use of intelligent reflecting surfaces (IRSs) for enhancing the throughput and cov-

erage of wireless communications is a topic of intense research [2, 69]. IRSs are made

of passive meta-material elements, and by optimizing the reflection coefficient at every

IRS element, we can improve the data rate, especially in mmWave bands. However, this

requires accurate knowledge of the channel state information (CSI) of all the links in

the system, which is resource-intensive and computationally expensive to acquire. For

example, least squares (LS) channel estimation [202] incurs a pilot overhead that grows

linearly with the number of IRS elements. Moreover, optimizing the IRS configuration

for OFDM-based wideband communications is challenging because the discrete-valued re-

flection coefficients need to be chosen to maximize the sum rate across all subcarriers.

In this direction, a few IRS phase optimization methods in an OFDM framework have

been developed [202,203]; but due to the underlying complicated objective function, they

optimize an upper bound on the sum rate, potentially making the solution suboptimal.

Further, using LS-based channel estimation makes the overall procedure complex in terms

of both time and computations.

In this work, we propose a powerful and elegant solution for optimizing the IRS reflec-

tion coefficients (or phase angles) that directly maximizes the sum rate in single-input

single-output (SISO)-OFDM systems and a low pilot overhead CSI estimation procedure

that exploits the underlying joint row-sparsity in the channel. For ease of exposition, we

consider the IRS phases to be sampled from a binary set {−1,+1}, but we briefly discuss

the extension to the case of arbitrary discrete phase angles in Remark 10.2.

The specific contributions of this chapter are as follows. We first develop a low pilot

overhead channel estimation algorithm by leveraging the sparsity in the OFDM channel

induced by the IRS. To elaborate, the cascaded BS-IRS and IRS-UE channels are sparse

in the angular domain and further exhibit joint row sparsity across the OFDM subcarriers.

We exploit this to estimate the CSI using the simultaneous orthogonal matching pursuit

(SOMP) algorithm [204]. Next, we propose a novel and computationally efficient binary
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phase optimization procedure for IRS-assisted OFDM systems using the majorization-

minimization (MM) [67] and directly optimize the sum rate. The key novelty of using an

MM-based approach is finding a lower bound on the non-convex sum rate that is tight at

the current iterate and amenable to optimization via closed-form solutions. We develop

such bounds using a series of matrix inequalities and eventually provide a closed-form

solution to the inner optimization problem.

We empirically evaluate the performance of the IRS configuration algorithm in Sec. 10.4

and compare it with existing approaches. The results show that using SOMP for channel

estimation reduces the pilot overhead by 96% while achieving a lower normalized mean

squared error (NMSE) compared to the LS estimate. Also, by directly optimizing the sum

rate, our binary IRS phase optimization algorithm offers 10% better sum rate, on average,

compared to the method in [203], where the authors optimize an upper bound on the sum

rate, with the computational complexity of two methods being similar. Also, the proposed

method achieves the same average sum rate as [203] with a reduction in SNR by ≈ 21.5%,

illustrating that it is a promising approach to IRS phase configuration.

Notation: For general notations used in this chapter, see the section on “General Mathe-

matical Notations” on page ix. For the notations/variables specific to this chapter, please

refer to Table 10.1.

10.2 System Model

We consider a wideband OFDM communication link between a single antenna base station

(BS) and a single antenna user equipment (UE) in a wireless environment equipped with

an N -element IRS, as in [70]. Let x[n] denote the baseband signal transmitted by the BS

in the discrete-time domain. The downlink signal y[n] received at the UE is given by

y[n] =
M−1∑
ℓ=0

hθ[ℓ]x[n− ℓ] + w[n], (10.1)
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Variable Definition Variable Definition
N Number of IRS elements Ld Total number of direct paths
M No. of taps in the time-domain channel La No. of paths from BS to IRS
θ IRS phase shift vector Lb No. of paths from IRS to UE
K Number of OFDM sub-carriers βx Path loss in link-x

vℓ Cascaded channel vector in ℓth tap ϕℓ1
Direction of arrival in ℓ1th
path from BS to IRS

hd[ℓ] Direct channel in the ℓth tap ϕℓ2
Direction of departure in ℓ2th
path at the IRS to UE

hθ[ℓ]
Overall channel in ℓth tap
parameterized by θ

P Total transmit power at BS

B Bandwidth of the signal N0 Noise power spectral density
η Propagation delay of 1st path h̃k Composite channel on subcarrier-k

τd,ℓ Delay of ℓth direct path ωℓ1,ℓ2

Angle of the cascaded path corr.
to ℓ1th path from BS to IRS, and
ℓ2th path from IRS to UE in mth tap

τr,ℓ1,ℓ2

Delay in the cascaded path
corresponding to the ℓ1th path from BS
to IRS and ℓ2th path from IRS to UE

γm,ℓ1,ℓ2

Cascaded channel gain corresponding
to ℓ1th path from BS to IRS, and
ℓ2th path from IRS to UE in mth tap

Table 10.1: Commonly encountered variables/notations in chapter 10. Note: All variables with a
bar on top of them denote the frequency-domain representations of the time-domain expressions.

where {hθ[ℓ]}M−1
ℓ=0 is the M -tap time-domain impulse response of the channel, which de-

pends on the fading coefficients and the IRS phase configuration θ, and w[n] ∼ CN (0, N0)

is the independent and identically distributed (i.i.d.) AWGN. In an OFDM setup with

K subcarriers (M < K), denoting the K-point discrete Fourier transform (DFT) of the

received signal after removing the cyclic prefix, the impulse response of the channel, the

transmitted signal, and noise by ȳ, h̄θ, x̄, and w̄, respectively, all K × 1 complex vectors,

we can rewrite (10.1) in the frequency domain as

ȳ = h̄θ ⊙ x̄+ w̄. (10.2)

We model the ℓth tap of the time-domain channel in (10.1) as

hθ[ℓ] = hd[ℓ] + vTℓ θ, (10.3)

where hd[ℓ] is the ℓth tap in the direct path (not involving the IRS), vℓ ∈ CN is the
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cascaded channel vector1 in the ℓth tap via each of the N elements, and θ denotes the IRS

phase configuration, i.e., the reflection coefficients programmed in the N IRS elements,

with entries in {−1,+1}. Consequently,

h̄θ = F


hd[0] + vT0 θ

...

hd[M − 1] + vTM−1θ

 = Fhd︸︷︷︸
≜h̄d

+FVTθ︸ ︷︷ ︸
≜V̄T θ

, (10.4)

where hd = [hd[0], . . . , hd[M − 1]]T , V = [v0, . . . ,vM−1] ∈ CN×M , F is a matrix containing

the first M columns of the K ×K DFT matrix. Now, we model the direct path as

hd =

Ld∑
ℓ=1

βd,ℓ


sinc(0 +B(η − τd,ℓ))

...

sinc(M − 1 +B(η − τd,ℓ))

 , (10.5)

where Ld is the number of propagation paths, βd,ℓ is the path gain of the ℓth path, and B,

η, and τd,ℓ denote the system bandwidth, common delay applied at the receiver for time

synchronization, and the propagation delay in the ℓth direct path. Furthermore, since IRSs

are envisaged to be installed at tall locations, we consider line-of-sight communications

between BS and IRS and between IRS and the UE, as in [86]. Thus, the cascaded channel

is given as

V =
La∑
ℓ1=1

Lb∑
ℓ2=1

βr,ℓ1,ℓ2(a(ϕℓ1)⊙ a(φℓ2))×


sinc(0 +B(η − τr,ℓ1,ℓ2))

...

sinc(M − 1 +B(η − τr,ℓ1,ℓ2))


T

, (10.6)

where La and Lb are the number of paths from the BS to the IRS and from the IRS to

the UE, respectively. βr,ℓ1,ℓ2 and τr,ℓ1,ℓ2 represent the path gain and propagation delay

associated with the cascaded ℓ1-ℓ2th path. Further, ϕℓ1 and φℓ2 represent the direction

of arrival (DoA) and the direction of departure (DoD) at the IRS, respectively. Here, a

represents the array steering response vector of the IRS. We consider the IRS arranged as

1The cascaded channel is the linear convolution of the BS-IRS and IRS-UE channels in the time
domain (Hadamard product in the frequency domain.)
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a uniform linear array (ULA) [86], whence

a(ψ) =
[
1, e−j

2πd
λ

sin(ψ), . . . , e−j(N−1) 2πd
λ

sin(ψ)
]T
, (10.7)

where d is the inter-elemental spacing and λ is the wavelength.

10.3 Proposed IRS Configuration Approach

10.3.a Channel Estimation

We perform channel estimation in two stages. In the first stage, the direct path hd is esti-

mated using two pilot symbols. In the second stage, the cascaded channel V is estimated

by exploiting the sparsity in the angular domain.

10.3.a.i Stage I: Direct channel estimation

In this step, the BS transmits a pilot signal to the UE with the IRS phase configuration set

to 1N during the first transmission and −1N in the second transmission. As a consequence,

ȳ1 = F
(
hd +VT1N

)
⊙ x̄+ w̄1, (10.8)

ȳ2 = F
(
hd −VT1N

)
⊙ x̄+ w̄2, (10.9)

where the subscripts 1 and 2 denote the pilot transmission indices. The maximum likeli-

hood (ML) estimate of the direct path in the frequency domain (h̄d), denoted by ˆ̄hd, is

ˆ̄hd = ((ȳ1 + ȳ2)/2)⊘ x̄. (10.10)

10.3.a.ii Stage II: Cascaded channel estimation

In this stage, the component due to the direct path is removed from the received pilot

signals prior to the cascaded channel estimation. Specifically, for Q pilot transmissions,

Ȳ =
(
H̄d + FVTΘ

)
⊙ X̄+ W̄, (10.11)
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where Ȳ ∈ CK×Q is the received OFDM signal, H̄d = h̄d ⊗ 1TQ, Θ ∈ {−1,+1}N×Q is the

IRS phase configuration matrix, X̄ is the pilot symbol matrix, and W̄ is the noise matrix

at the receiver. After matched filtering and removing the contribution from the direct

path, we get

Z̄ = FVTΘ+ N̄, (10.12)

where Z̄ ≜ (Ȳ⊘X̄)−(ˆ̄hd⊗1TQ), and N̄ is the residual noise matrix. To exploit the sparsity

in the angular domain of the cascaded channel, we first decompose the channel V as given

below. Let ã(ωℓ1,ℓ2) ≜ a(ϕℓ1)⊙ a(φℓ2) and γm,ℓ1,ℓ2 ≜ βr,ℓ1,ℓ2 sinc(m+B(η− τr,ℓ1,ℓ2)). From

(10.6), we have

V =

[
La∑
ℓ1=1

Lb∑
ℓ2=1

γ1,ℓ1,ℓ2 ã(ωℓ1,ℓ2), · · · ,
La∑
ℓ1=1

Lb∑
ℓ2=1

γM,ℓ1,ℓ2 ã(ωℓ1,ℓ2)

]
,

which can be compactly written as V = ÃΓ, where Ã ∈ CN×LaLb collects the steer-

ing vectors corresponding to the LaLb paths, and Γ ∈ CLaLb×M contains the path gains

associated with the LaLb paths. Since the path gains, delays, and DoA/DoDs are un-

known, we first sparsify Γ, denoted by Γ̃t ∈ Cd×M , using a dictionary matrix DÃ ≜

[ã(ω1), ã(ω2), . . . , ã(ωd)] ∈ CN×d. Here, d ≫ LaLb depends on the resolution required for

estimating the DoA/DoD. As a result, from (10.4), we have V̄ = DÃΓ̃ where Γ̃ ∈ Cd×K

is a jointly row LaLb-sparse matrix with row support S s.t. S ⊆ [d]. Note that S depends

on the true DoA/DoDs, and the values of Γ̃ depend on Γ̃t. From (10.4) and (10.12),

Ysens ≜ Z̄T = ΘTDÃ︸ ︷︷ ︸
≜Asens

Γ̃+ N̄T︸︷︷︸
≜Nsens

.

To estimate V̄, consider the compressed sensing problem:

min
Γ̃

d∑
j=1

1

{∥∥∥[Γ̃]j,:∥∥∥
0
= K

}
,

s.t. Ysens = AsensΓ̃+Nsens.

(P0)
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Algorithm 10.1: SOMP for cascaded channel estimation
Input: Y = Ysens,A = Asens, ϵ = error tolerance.

1 Initialize: S(0) = ∅, Γ̃(0) = Od×K , n = 0.
2 while ∥Y −AΓ̃(n)∥2F ≥ ϵ do
3 jn+1 = arg max

j∈[d]\S(n)

{∥[AH(Y −AΓ̃(n))]j,:∥
2
2},

4 S(n+1) ← S(n) ∪ {jn+1},
5 Γ̃n+1 =

(
[A]:,S(n+1)

)†
Y,

6 n ← n+ 1,

7 Let Sfin ≜ S(n), Afin ≜ [A]:,Sfin , Γ̃fin ≜ (Afin)†Y.
Output: Sfin, Γ̃fin.

In the sequel, we use the simultaneous orthogonal matching pursuit (SOMP) algorithm [204]

to solve (P0), which first estimates the row support of Γ̃ followed by its entries (see Algo-

rithm 1.) Let Sfin and Γ̃fin be the estimated row support and the path gains, respectively.

Then, the cascaded channel estimate is

ˆ̄V = [DÃ]:,SfinΓ̃
fin. (10.13)

10.3.b Phase Optimization

As described earlier, we consider the sum rate across subcarriers as the metric, which we

seek to maximize by choosing the IRS phase configuration, θ, with entries ∈ {−1,+1}.
For a given configuration, with equal power allocation and perfect CSI at the receiver, the

sum rate over the subcarriers in (10.2) is

R =
B

K +M − 1

K−1∑
k=0

log2

(
1 +

P |h̄θ[k]|2
BN0

)
bit/s, (10.14)

where P is transmit power and N0 is the noise power spectral density. We also define the

transmit SNR, ρ ≜ P
BN0

. For the kth subcarrier (k = 0, 1, . . . , K − 1), we have

h̄θ[k] =
N∑
j=1

θjv̄k[j] + h̄d[k] = θ̃Hh̃k, (10.15)
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where h̃k = [h̄d[k], v̄
T
k ]
T ∈ C(N+1)×1, and θ̃ = [1,θT ]T . Letting hk ≜

√
ρh̃k, we formulate

the following problem:

max
θ̃

R = B
K+M−1

K−1∑
k=0

log2 (1 + θ̃Hhkh
H
k θ̃)︸ ︷︷ ︸

≜R(K)

,

s.t. θ̃ ∈ {−1,+1}N+1 , θ̃[1] = 1.

(P1)

We solve this optimization problem using the majorization-minimization (MM) method [67].

In what follows, we make a sequence of simplifications to (P1) and eventually formulate

an equivalent problem (see (P3)) which can be solved computationally easily. We now use

the following lemma.

Lemma 10.1. ([205, Lemma 4]) Let P and Q be two S × S Hermitian matrices such

that Q ⪰ P. Then, for any x0 ∈ CS, the quadratic function xHPx is majorized by

xHQx+ 2ℜ
(
xH (P−Q)x0

)
+ xH0 (Q−P)x0 at x0.

Lemma 10.1 implies that, for matrices P and Q that satisfy the assertion in the lemma,

∀x ∈ CS×1, xHPx ≤ xHQx + 2ℜ(xH(P − Q)x(i)) + x(i)H (Q−P)x(i), with equality at

x = x(i). Let P = O(N+1), Q = hkh
H
k and x = θ̃. Note that Q ⪰ P. Then, from (P1),

we get

R(K) ≥
K−1∑
k=0

log2

(
1 + 2ℜ(θ̃HhkhHk θ̃(i))θ̃(i)Hhkh

H
k θ̃

(i)
)
, (10.16)

for all θ̃ ∈ C(N+1)×1 with equality at θ̃ = θ̃(i), where i is the iteration index of the

algorithm. Let C(i)
k ≜ 1 − θ̃(i)Hhkh

H
k θ̃

(i) and ȟ
(i)
k ≜ hkh

H
k θ̃

(i). The above equation

simplifies to

R(K) ≥
K−1∑
k=0

log2

(
C

(i)
k + 2ℜ(θ̃Hȟ(i)

k )
)
. (10.17)

We now use the following lemma.

Lemma 10.2. ([206, Lemma 1]) For Z,Y ⪰ 0, the function f(Z,Y) ≜ log|(Z−1Y)| can
be lower bounded as f(Z,Y) ≥ −

{
log|Z(i)|+tr((Z(i))−1Z− IK) + log|(Y(i))−1|+

tr(Y(i)Y−1 − IK)
}
,with equality at Z = Z(i);Y = Y(i).
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Let Y ≜ diag({C(i)
k + 2ℜ(θ̃Hȟ(i)

k )}K−1
k=0 ), Z ≜ IK , and Y(i) = Y |θ̃=θ̃(i) . By Lemma 10.2,

we can majorize (10.17) as

R(K) ≥ −
K−1∑
k=0

C
(i)
k + 2ℜ(θ̃(i)Hȟ

(i)
k )

C
(i)
k + 2ℜ(θ̃Hȟ(i)

k )
+ ξ,

where ξ represents terms which are irrelevant for optimization of θ̃. Hence, by the MM

technique, problem (P1) simplifies to

min
θ̃

K−1∑
k=0

fk(θ̃),

s.t. θ̃ ∈ {−1,+1}N+1 , θ̃[1] = 1,

(P2)

for some θ̃(i), where fk(θ̃) ≜ (C
(i)
k + θ̃(i)Tg

(i)
k )/(C

(i)
k + θ̃Tg

(i)
k ), with and g

(i)
k ≜ 2ℜ(ȟ(i)

k )

and the terms independent of θ̃ are ignored. We now consider the following optimization

problem, which we will use to solve for θ̃ in (P2).

max
θ̃

K−1∑
k=0

θ̃Tq
(i)
k ,

s.t. θ̃ ∈ {−1,+1}N+1 , θ̃[1] = 1,

(P3)

where, for some θ̃(i), q(i)
k is defined as follows.

q
(i)
k ≜

g
(i)
k

C
(i)
k + θ̃(i)Tg

(i)
k

+ 1

{
C

(i)
k ≥ ∥g

(i)
k ∥1

} 2 θ̃(i)∥g(i)
k ∥22

(
C

(i)
k + ∥g(i)

k ∥1
)

(C
(i)
k − ∥g

(i)
k ∥1)3

. (10.18)

Lemma 10.3. The variable θ̃ that solves (P3) also solves (P2).

Proof. See Appendix 10.A. ■

Thus, in a given MM-based iteration, the solution to (P3) is

θ̃(i+1) = sgn((q(i)
sum[1])

∗q(i)
sum), (10.19)
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where q
(i)
sum =

K−1∑
k=0

q
(i)
k . In summary, we first converted the problem (P1) which is loga-

rithmic in θ̃ and hence not amenable for optimization, into an equivalent problem (P2)

which is polynomial in θ̃. Finally, we simplified it to (P3) which is linear in θ̃, and whose

solution can be computed easily using (10.19). Thus, the complete procedure is as follows:

For every UE,

1. Compute the frequency domain channel estimate of the direct and cascaded channels

between the BS and the UE as per (10.10) and (10.13), respectively.

2. Randomly initialize a phase configuration vector and iteratively compute (10.19)

until the rate converges, e.g., until the normalized change in the rate obtained in

successive iterates falls below a threshold δ, say 0.001.

Remark 10.1. Since the algorithm for phase optimization is based on the MM principle,

convergence to a stationary point of the rate is guaranteed from any initialization [67].

Remark 10.2. If the IRS phase angles are drawn from a discrete set T containing more

than two levels, following a similar approach, equation (10.19) modifies to

θ̃(i+1) = round(q(i)
gen/(q

(i)
gen[1])), (10.20)

where round(x) outputs the nearest element in T to x with θ̃(i+1)[1] = 1 ∀i, and q
(i)
gen is

q(i)
gen ≜

K−1∑
k=0

 2ℜ(ȟ(i)
k )

C
(i)
k + 2ℜ

(
θ̃(i)Hȟ

(i)
k

) + 1

{
C

(i)
k ≥2∥ℜ(ȟ(i)

k )∥1
} 8 θ̃(i)∥ℜ(ȟ(i)

k )∥22
(
C

(i)
k + 2∥ȟ(i)

k ∥22
)

(C
(i)
k − 2∥ℜ(ȟ(i)

k )∥1)3

 .

(10.21)

10.4 Numerical Results

In this section, we evaluate the performance of the algorithms presented in this chapter

and compare them against existing methods in the literature. A single antenna BS is

located at (0, 0) (in meters), the IRS is at (0, 50) with N = 256, and single antenna
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Figure 10.1: Average NMSE as a function of the number of pilots.

UEs are uniformly distributed in the rectangular region with diagonally opposite corners

(−50, 100) and (50, 150). The path losses are computed as β = 1/dα where d is the

distance, and α is the path loss exponent. We use α = 1.2, 2.4 and 3.2 in the BS-IRS,

IRS-UE, and BS-UE (direct) links, respectively. For simplicity, we set La = 1, Lb = 1,

and Ld = 10 for all the UEs. Further, we consider a BS with transmit SNR, ρ = 65 dB.

We consider a system with M = 10, K = 16 with the total number of UEs set to 20, and

all share the same total bandwidth, B = 10 MHz. Then, in the absence of the IRS, a UE

closest to the BS witnesses an average SNR of ≈ 9 dB, while it is ≈ −5 dB for a UE at

the farthest point.

In Fig. 10.1, we plot the average normalized mean square error (NMSE) of SOMP-

based channel estimation, which exploits sparsity in the angular domain of the channel.

We use NMSE (rather than MSE) in order to compare the performances of the channel

estimation algorithms in a manner that is independent of parameter scales. At each

SNR value, the NMSE is averaged across all the UEs and is plotted as a function of

the number of pilot transmissions Q. We also plot the performance of LS-based channel

estimation on the same figure. LS estimation requires Q ≥ N + 1 = 257, while the
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Figure 10.2: Sum rate as a function of UE index. Results are compared against method in [203].

SOMP estimator performs nearly as well with as few as 10 pilots, representing a saving

of 96% of the pilot overhead. In fact, even with N + 1 pilot transmissions, the NMSE

obtained with SOMP is still lower than the LS counterpart. Also, the computational

complexity of SOMP is much smaller than LS estimation. From [207], SOMP requires

O(dQKLaLb + QK(LaLb)
2 + Q(LaLb)

3 + (LaLb)
4) flops in the worst case using naive

implementation methods, while LS incurs O((N+1)3+K(N + 1)2) flops. Since LaLb ≪ d,

the complexity of SOMP is dominated byO(dQKLaLb)≪ O((N + 1)3+K(N + 1)2) when

N is large compared to other system parameters.

Next, in Fig. 10.2, we study the performance boost obtained by optimizing the IRS

with binary phase configurations ({−1,+1}) in an OFDM system and compare it against

the non-IRS aided counterpart. We also compare the performance against the solution

reported in [203], which uses the classical power method to compute the eigenvalues and

eigenvectors of matrices and optimizes the IRS. However, this approach optimizes Jensen’s

inequality-based upper bound on the sum rate instead of directly optimizing (10.14),

leading to a suboptimal solution. On average, the proposed method yields 10% better

rate than the power method and 191% better rate than that obtained without an IRS. In
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terms of the SNR, the MM-based method developed in this chapter achieves the same rate

as in [203] at ≈ 21.5% lower SNR (not illustrated in the plot for brevity.) Furthermore,

while the power-based approach took ≈ 4 average iterations per UE for convergence, the

proposed method took ≈ 6 average iterations for convergence. Thus, the MM method

exhibits superior performance with approximately the same time complexity.

10.5 Conclusions

We developed a new algorithm for IRS phase configuration in OFDM systems. We ex-

ploited the joint row sparsity in the IRS-aided links to estimate the channel using the

SOMP algorithm with low pilot overhead. Our IRS phase optimization procedure uses

matrix inequalities that enable the use of majorization-minimization to obtain an elegant

and computationally efficient iterative solution. We empirically showed that sparsity-

based channel estimation combined with MM-based phase optimization outperforms the

state-of-the-art.

Appendix 10.A Proof of the Lemma 10.3

Recall that the multivariate Taylor series expansion is

f(y) = (x) + (y − x)T ▽ f(x) +
1

2
((y − x)T ▽2 f(ζ)(y − x)),

for ζ = αx+(1−α)y with α ∈ [0, 1]. We let x = θ̃(i), y = θ̃, and f(·) =∑k fk(·). For our

problem, ▽fk
(
θ̃(i)
)
=

−g(i)
k

C
(i)
k + θ̃(i)Tg

(i)
k

and ▽2fk (ζ) =
g
(i)
k g

(i)T
k

(
C

(i)
k + θ̃(i)Tg

(i)
k

)
(
C

(i)
k + ζTg

(i)
k

)3 . Since

g
(i)
k g

(i)T
k is a rank-1 matrix, we have ∥g(i)

k ∥22I ⪰ g
(i)
k g

(i)T
k . So, the third term in the Taylor

expansion can be bounded as

K−1∑
k=0

(
θ̃ − θ̃(i)

)T C
(i)
k + θ̃(i)Tg

(i)
k(

C
(i)
k + ζTg

(i)
k

)3g(i)
k g

(i)T
k

(
θ̃ − θ̃(i)

)
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≤
K−1∑
k=0

1

{
C

(i)
k ≥ ∥g

(i)
k ∥1

}(
θ̃ − θ̃(i)

)T C
(i)
k + θ̃(i)Tg

(i)
k(

C
(i)
k − ∥g

(i)
k ∥1

)3 × ∥g(i)
k ∥22

(
θ̃ − θ̃(i)

)
, (10.22)

and note that equality is satisfied at the current iterate, i.e., θ̃ = θ̃(i). We obtain the right

hand side using the fact that ζTg(i)
k ≤ ∥g

(i)
k ∥1, as the entries of ζ ∈ [−1, 1]. The last term

in the above can be simplified as (θ̃ − θ̃(i))T (θ̃ − θ̃(i)) = 2(N + 1)− 2θ̃T θ̃(i).

Finally, collecting terms that are important for the optimization of θ̃, (P2) boils down

to (P3). ■



11 Conclusion

This thesis has, on the whole, focused on (a) intelligent reflecting surface (IRS)-assisted

opportunistic communications, (b) performance of IRS-assisted wireless systems with mul-

tiple operators, and (c) IRS-assisted wideband beamforming. On opportunistic commu-

nications, the major contribution was the development of a low-complexity scheme to

procure optimal benefits from the IRS but without explicitly optimizing the IRS, by har-

nessing the multi-user diversity benefits. With multiple operators, we found that an IRS

deployed by one mobile operator positively aids the other out-of-band (OOB) mobile op-

erator (MO) free of cost. Finally, on wideband beamforming, we devised low-complexity

techniques to enable a phased-array based IRS architecture to beamform a wideband sig-

nal by efficiently handling the beam-split and frequency-selective effects that arise in the

mmWave and sub-6 GHz bands, respectively. Importantly, this thesis elucidates how a

randomly configured IRS can extract its benefits with very low complexity and overhead.

In the following, we recapitulate our key findings in these three aspects of IRS-aided

wireless systems as they were developed across the chapters.

11.1 Summary of the Thesis

In Chapter 2, we investigated IRS-assisted opportunistic communication (OC) schemes

to leverage and enhance multi-user diversity gains in both narrowband and wideband

channels within the sub-6 GHz spectrum. These schemes eliminate the need for explicit

channel estimation and computationally intensive phase optimization, requiring minimal

or no signaling between the base station (BS) and the IRS. We began by showing that in

narrowband i.i.d. channels, an OC scheme with a randomly configured IRS can approach

316
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the performance of an optimized IRS as the number of user equipments (UEs) increases.

The key idea here is that with many UEs whose channels are independent across UEs, a

randomly chosen IRS configuration will be nearly-optimal to at least one UE in the system,

and opportunistically scheduling such a UE yields optimal benefits. However, achieving

this requires the number of UEs to grow exponentially with the number of IRS elements,

which can limit the practical applicability of the approach. To alleviate this, we developed

two alternative approaches: one leveraging additional reflection diversity, and the other

exploiting the underlying channel structure in IRS-assisted systems. The latter approach,

in particular, enables substantial performance gains even with large IRS arrays, without

requiring a very large number of UEs. We then extended the OC scheme to wideband or-

thogonal frequency division multiplexing (OFDM) systems and analyzed the performance

of two variants: single-user (SU)-OFDM and OFDMA. Overall, our results show that IRS-

assisted OC schemes can deliver significant performance improvements over conventional

designs, while maintaining low overhead and complexity. Next, in Chapter 3, we extended

our analysis to spatially correlated IRS channels. We first derived the optimal sampling

distribution for IRS phase configurations and showed that, under this distribution, the

number of UEs required scales exponentially only with the rank of the IRS channel covari-

ance matrix, rather than with the number of IRS elements. In summary, we demonstrated

that it is possible to realize near-optimal beamforming gains with a moderate number

of users and minimal computational or signaling overhead, without explicit IRS phase

optimization.

In Chapter 4, we explored another scenario where randomly configured IRS phases can

benefit practical multi-operator wireless networks. We began by analyzing a two-operator

system where only one MO deploys and controls an IRS. Due to its passive nature and lack

of band-pass filtering, the IRS also reflects signals from the OOB MO, imparting random

phase shifts to its channel. Interestingly, we demonstrated that the IRS still improves

OOB performance by enabling the reception of multiple signal copies at the OOB UE.

Specifically, in the sub-6 GHz band, the IRS enhances the rich-scattering environment,

while in the mmWave regime, it establishes a virtual line-of-sight (LoS) path with nonzero
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probability. Next, in Chapter 5, we showed that multiple distributed IRSs can further im-

prove the OOB performance without affecting the performance of the in-band MO, which

controls the IRS. This improvement is primarily due to spatial diversity and multiplexing

gains. Also, to ensure a low complexity implementation of a multiple IRS setup, Chapter 6

introduced a novel channel estimation algorithm that leverages the subspace structures to

ensure that the pilot overhead is smaller compared to the number of channel parameters

in the system. Finally, in Chapter 7, we generalized the setup to scenarios involving more

than two MOs, each with its own IRS. Our analysis revealed that the benefits of inter-

operator cooperation during data transmission are limited, suggesting that each MO can

operate effectively and independently while still benefiting from its IRS.

In the final part of the thesis, we investigated the challenges of wideband beamforming

using IRSs. In Chapter 8, we first established that while wideband signals propagate over

frequency-selective channels, IRS phase shifters exhibit a frequency-flat response, limiting

their ability to beamform across the entire bandwidth. This issue is especially pronounced

in the mmWave band, where large IRS apertures violate the narrowband assumption, lead-

ing to a spatial-wideband (SW) effect and the resulting beam-split (B-SP) phenomenon.

When the IRS is configured for a specific frequency component, the array gain deterio-

rates at other frequencies, thereby reducing the overall throughput. To address this, we

developed two low-complexity solutions. The first, presented in Chapter 8, employs a

distributed IRS architecture that mitigates the B-SP effect by parallelizing spatial delays

and leveraging angle diversity. We derived the maximum permissible number of elements

per IRS to ensure a minimum array gain across the entire bandwidth. Additionally, we

analyzed the temporal delay spread (TDS) caused by asynchronous signal arrivals from

different IRSs and showed that while TDS introduces performance loss, it still enables a

uniform array gain across frequencies, unlike the frequency-dependent degradation seen

with B-SP. We also formulated an optimization problem to determine the optimal IRS

placement that minimizes TDS over a given UE distribution. In contrast, the second

approach in Chapter 9 exploits the B-SP effect itself. Using the principle of energy conser-

vation, we showed that the IRS inherently forms different beams at different frequencies.
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Capitalizing on this behavior, we developed an opportunistic OFDMA scheme wherein IRS

phase configurations are randomly generated and UEs are opportunistically scheduled over

sub-bands. On each sub-band, the IRS will likely favor at least one UE; selecting that UE

for data transmission captures the full array gain from a system-level perspective. Finally,

in Chapter 10, we considered the sub-6 GHz regime, where frequency selectivity arises

from rich multipath scattering. Here, we focused on jointly optimizing the IRS configu-

ration to maximize the OFDM system’s sum-rate. The optimization was tackled using a

majorization-minimization framework that reformulated the problem into a sequence of

analytically solvable sub-problems, each admitting a closed-form solution.

In summary, this thesis explored low-complexity strategies across three key aspects of

IRS-assisted wireless systems. Additionally, a comprehensive performance analysis was

conducted under diverse channel conditions, including narrowband and wideband regimes,

sub-6 GHz and mmWave frequencies, centralized and distributed IRS architectures, and

both optimized and random IRS phase configurations.

As with most research, there is always room for further studies and improvement. We

catalog a few promising directions below.

11.2 Future Work

1. Randomly configured IRSs with user mobility and strict latency: An in-

teresting direction for extending opportunistic scheduling schemes is to incorporate

user mobility. When user movement causes significant temporal variations in channel

statistics, it becomes essential to adaptively update the sampling distribution of the

IRS phase configurations. Designing efficient schemes that can preserve the perfor-

mance benefits of IRSs while maintaining low complexity in such dynamic scenarios

remains a key challenge. Another promising direction is to extend the framework to

scenarios where UEs are subject to stringent latency requirements, in which case a

straightforward application of opportunistic scheduling may no longer be adequate.
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2. Out-of-band performance in interference-limited scenarios: This thesis fo-

cused on analyzing OOB performance in noise-limited systems. In practical deploy-

ments, the coverage area could be divided into multiple cells, each equipped with

a BS and one or more IRSs deployed by an MO. In such settings, with a smaller

frequency reuse factor, the system experiences multi-cell interference. Also, simul-

taneous data transmission to multiple UEs by a multi-antenna BS adds multi-user

interference even within a single cell. Thus, studying the OOB performance of IRS-

aided systems in interference-limited scenarios is a good direction for future research.

3. Machine learning for programming of IRS phase configurations: As dis-

cussed in Sec 1.2.a, a key challenge in integrating IRSs into practical systems is the

significant time and computational overhead required to configure them in real-time.

One potential solution to reduce these overheads is to use machine learning (ML)

methods that, based on observed measurements, can directly predict the optimal

IRS configuration. This approach can avoid explicit channel estimation and phase

optimization, thereby simplifying real-time implementation.

4. Low-complexity beam management in IRS-aided systems: A major chal-

lenge in high-frequency bands like mmWave is establishing beam connectivity be-

tween nodes before data transmission begins. The associated overhead of this grows

rapidly, as the number of possible beam combinations increases exponentially with

the number of devices involved in closing the BS-to-UE transmission loop, which is

exacerbated by the presence of IRSs. Thus, designing low-complexity beam man-

agement schemes for IRS-aided systems is a promising direction for future research.

5. Multiplexing capabilities of spatial-wideband effects: As shown in Chapter 9,

a single IRS configuration can effectively serve multiple UEs across different fre-

quency components. This suggests that the SW effect introduces additional degrees

of freedom, which may be exploited to enhance the multiplexing gains in multiple

antenna systems. A formal mathematical characterization of this intuition could

yield insights into the capabilities of large IRS-aided wideband systems.
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