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Lecture 5: OOPs Classes and Objects 
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• Intent is asynchronous 

• Sending notification a service? 

• SensorEventListener component 

• Why does BroadcastReciever not extend 
service? 

• Can 2 activities use same screen space? 

• Lifecycle: what is the limit to #of processes? 

Questions from Lecture 3 
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Android Stack 

Ref: http://www.tutorialspoint.com/android/android_architecture.htm 
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JAVA and C++ mainly: (others C# and Objective-C)  
 

• Object oriented programing: Classes and objects 

• Inheritance, polymorphism, abstract class, const 

• Templates and generics 

• Data structures 

• Standard library, JCF, STL   

• Complexity analysis 

• Multithreading and synchronization 

• Good programming styles 
 

Module 1: OOPs and DS 
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• Assembler 

 

• Compiler 

 

• Interpreter 

 

• Just-in-time Compiler 

Code Conversion 
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JAVA VM 

http://www.javatpoint.com/features-of-java 
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JAVA VM 

http://www.javatpoint.com/features-of-java 
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• First Programming Language 

    - Fortran 

    - 1957 

    - IBM 

• First OOPs Language 

    - Simula 

    - 1967 

    - Norwegian Computing Center 

Fun Facts 
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• Java 

    - 1994 

    - James Gosling, Sun Microsystems 

    - Licensed by Netscape for navigator 

• C language 

    - 1972 

    - Dennis Ritchie 

    - Bell Labs 

 

 

Fun Facts 
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Evolution of Programming Languages 

Paul Boutin and Bret Hailpern at IBM Research and Todd Proebsting at Microsoft,  
The Retrocomputing Museum, and Gio Wiederhold at Stanford University. 
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Top 10 Programming Languages 

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html 
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int a; # how many bytes? 

 

int *pA; # how many bytes? 

 

int &rA = a; # how many bytes? 

 

Recap: Pointers and References 
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When to use pointers? 

- Pointer arithmetic 

- NULL initialization 

 

Recap: Pointers vs References 

Pointers References 

NULL Yes No 

Point changed to a 
different object 

Yes No 

Initialization Anytime On creation 
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• Class 

• Object 

• Polymorphism 

• Inheritance 

• Abstraction 

• Encapsulation 

• Overloading 

Object Oriented Programming System 
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• Code Reuse and Recycling 

• Encapsulation: Hide details, prevent tampering 

• Design benefits 

• Software maintenance 

 

 

• Run-time errors become compiler errors 

 

Advantages of OOPs 

https://www.cs.drexel.edu/~introcs/Fa12/notes/06.1_OOP/Advantages.html?CurrentSlide=3 
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class Rectangle 

{ 

 # Methods 

Public: 

Private: 

Protected: 

 # Field: Member data 

Public: 

Private: 

Protected: 

} 

Class 

Fields: Member data 
Local Variables: Variables in piece of code 
Parameters: Variables in function declaration 
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Public, Protected, Private 

JAVA Modifiers C++ Access Specifier 

http://docs.oracle.com/javase/tutorial/ 
java/javaOO/accesscontrol.html 

Specifier Class Project Sub-
class 

public Y Y Y 

protected Y N Y 

no specifier Same as private 

private Y N N 

http://docs.oracle.com/javase/tutorial/
http://docs.oracle.com/javase/tutorial/
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• Instance of a class 

• Just like: int    i;  

• Occupies memory in RAM; 

 

• E.g. Rectangle rectangle1; 

Object 
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class Student 

{ 

private: 

        float CGPA; 

        int rollNumber; 

        double height; 

        int schoolID; // string schoolName;  

} 

Object: Example 
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• Static member data: 

    - common to all objects of the class 

    - single memory location for all classes 

    - e.g. static string schoolName 

 

• Static member function: 

    - belongs to class rather than object 

    - may be invoked without object instance 

    - can access static variables 

Static 
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• Special member function  

• Same name as the class 

• No return type (not even void) 

• Used for: 

    - variable initialization 

    - memory allocation (perhaps) 

    - called on “new” or instantiation 

 

Constructor 
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• Constructor overloading 

    - Multiple forms of constructors (polymorph) 

    - different input arguments 

• Special types of constructors: 

    - Default constructor (different for diff compilers) 

    - Copy constructor 

 

Constructor 
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Constructor 

Rectangle rectangle1; 
Rectangle* pRectangle2 = new Rectangle; 
 
 
Rectangle rectangle1(1,1.5); 
Rectangle* pRectangle2 = new Rectangle(1,1.5); 
 

Rectangle rectangle1 = new Rectangle; 
 
 
Rectangle rectangle2 = new Rectangle(1,1.5); 
 

JAVA reference-based 

C++ pointer-based 
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• Special member function  

• Same name as the class with ~ 

• No return type (not even void) 

• Used for: 

    - memory creation 

    - called on “out of scope” or “delete” 

• JAVA: Garbage collector 

 

Destructor (C++) 
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Project Organization 

JAVA C++ 
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Code Organization 

JAVA C++ 

Rectangle Class 

Main 


