

# E8-262: CAD for High-Speed Chip-Package-Systems



### Module 1: Electrical Challenges in High-Speed CPS

- Types of packages and PCBs
- Packaging Trends
- Review of Electromagnetic and Circuit basics
- Signal Integrity
- Power Integrity
- Electromagnetic Interference and Electromagnetic Compatibility
- Review of SPICE basics
- Lumped models, distributed RLGC, S/Y/Z parameters





### **Function of Packages**

- Power Distribution
- Signal Distribution
- Heat Dissipation
- Mechanical stability or package protection





### **Desired Package Properties**

- Electrical performance
  - High speed (short delay)
  - High bandwidth
  - High Pin Count
  - Power distribution with low R
  - Power distribution with low L
- Thermal performance
- Mechanical performance



## **Types of Packages**

### **Based on connection to Printed Circuit Board**



Dipanjan Gope

## **Types of Packages**

### **Based on connection to Die**

#### Wire Bond

- Gold wire (also Al, Cu)
- Inexpensive
- Reliable



### Flip Chip

- Solder bumps, under-fill epoxy
- Controlled Collapsible Chip Connection
- Lower inductance
- Smaller package size



#### **Tape Automatic Bond**





## Chip Scale Package (CSP)

- Chip size ~ package size (typically 120%)
  - Smaller package
  - Lighter package
  - Tolerant to die-size change





### Package-on-package (PoP)

- Package on package
  - Memory-Memory
  - Logic-Memory
  - Minimized track-length, better electrical performance





### **Stacked Die**

- 2 or more dies stacked on top
  - Wire bond connections
  - Smaller, thinner, lighter
  - Reduced costs
  - Memory intensive applications



http://www.palomartechnologies.com







## System-in-Package (SiP)

- Integration of multiple ICs, discrete components into 1 package
  - Mixed technology support (CMOS, SiGe)
  - Inexpensive integration
  - Smaller form factor
  - Popular for hand-helds



[1] V. Jandhyala, D. Gope, S. Chakraborty, F. Ling, X. Wang, D. Williams and J. Pingenot, "3D Chip-Package-Board Modeling", *Printed Circuit Design and Fab.*, pp. 24-28, Nov 2008.





## System-on-Chip

- Integration of multiple functionalities, discrete components into 1 chip
  - Digital
  - Analog
  - RF
  - Opto-electronics
  - Buses and interconnects
  - Discrete components
  - MEMS





### **Past Trends**



System on chip or system on package? – Tummala 1999





### **3D Integration**



### **3D Integration Today**





### **Interconnect Density**







