

E8-262: CAD for High-Speed Chip-Package-Systems

Lecture: 2+3

Module 1: Electrical Challenges in High-Speed CPS

- Types of packages and PCBs
- Packaging Trends
- Review of Electromagnetic and Circuit basics
- Signal Integrity Introduction
- Power Integrity Introduction
- Electromagnetic Interference and Electromagnetic Compatibility Introduction
- Review of SPICE basics
- Lumped models, distributed RLGC, S/Y/Z parameters

Signal Integrity: On-Chip

- Noise Analysis
- Timing Analysis

Sources of Noise:

- 1. Interconnect or parasitic noise
- 2. Propagated Noise
- 3. Charge-Sharing Noise
- 4. Power-supply noise

Harmony: static noise analysis of deep submicron digital integrated circuits; Shepard, K.L.; Narayanan, V.; Rose, R. "Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 1999, Page(s): 1132 - 1150

Interconnect Noise Importance: Facts

Switching Characteristics Dictate Operating Speed of Digital Systems

Interconnect Noise Importance: Reasons

Methodology

- Channel-Connected-Components
- RC Extraction
 - Random Walk
 - 3D solver + Pattern Matching
- Worst case vector generation
- SPICE simulation of CCC

Signal Integrity: High Frequency Aspect

• What is high frequency for interconnect?

 $a = b = \frac{1}{c}$ $f_{\rm R} \gg f_{\rm Y}$. $\frac{\ell}{c} \gg \frac{1}{104}$

1. Delay

2. Inductive effects become significant

 $R + j\omega L$

Skin Effect: R vs. L

Interconnect Modeling for SI

- R
- RC
- RLGC: Transmission Lines Module 2
- S-params: Full-Wave Module 4

Channel Simulation: SPICE + S-params Eye Diagram TDR-TDT

Power Integrity

DC Power Integrity

IR drop plot over PDN Sense-line placement Current through vias

Simultaneous Switching Noise (SSN)

Power Integrity: On-Chip: Methodology

Cholesky

$$A(:,j) = \sum_{k=1}^{j} G(j,k)G(:,k)$$
$$G(j,j)G(:,j) = A(:,j) - \sum_{k=1}^{j-1} G(j,k)G(:,k) = v$$

DC Power Grid Solver

• R only Symmetric Positive Definite: Cholesky

Before Cholesky

Χ X X X χX x x x x x X x

After Cholesky

DC Power Grid Solver

• Multigrid Iterative Solvers

AC Power Integrity

Power Integrity Analysis and Management for Integrated Circuits, Raj Nair and Donald Bennett, Prentice Hall Modern Semiconductor Design Series, 2010.

Interconnect/Plane Modeling for Pl

- R
- RC
- RLGC: MFDM Module 3
- Z-params: Full-Wave Module 4

↓ Z Params Ground bounce

Importance of Inductance

Extreme Case: Inductor on ground plane

Ground Bounce

Typical Mixed Signal Board

High Speed Switching noise

mm

Voltage Fluctuation @ 100MHz (Max = 0.8mV)

Voltage Fluctuation @ 3GHz (Max = 10mV) Yong Wang, Dipanjan Gope, Vikram Jandhyala and C.J. Richard Shi, "Generalized KVL-KCL Formulation for Coupled Electromagnetic-Circuit Simulation with Surface Integral Equations", *IEEE Transactions on. Microwave Theory Tech.*, vol. 52, no. 7, pp. 1673-1682, July 2004.

Dipanjan Gope

Decoupling Capacitor Placement

V_{peak}: 10mV

Decoupling Capacitor Placement

 V_{max} =10mV; V_{analog} < 1mV

• Details of the field, current, or voltage distribution on EM structure

EMI/EMC

- Near electric field
- Near magnetic field

Common Mode Current

Dipanjan Gope

Existing Solution: Design Rule Check

- Rule #1 Critical next crossing gaps/slots/splits.
- Rule #2 Parallelism/long nets coupling.
- Rule #3 Differential pair length matching.
- Rule #4 Differential pair return path.
- Rule #5 Ground under clock/critical signals.
- Rule #6 Power and ground plane separation.
- Rule #7 Power and ground trace width.
- Rule #8 Reference plane change.

R. Murugan, S. Chakraborty, S. Mukherjee, D. Gope, and V. Jandhyala, "Building IC-package-PCB-system EMI/EMC verification and early design flows: Challenges and methods", *Proceedings of DESIGNCON conf.*, Santa Clara, February 2010.

DRC Too Pessimistic

Magnetic Field: No Slots

1mA Noise Current is Injected

Maximum Magnetic Field: 38.97mA/m

Magnetic Field: Longitudinal Slot

Maximum Magnetic Field: 39.15mA/m

Minimal Change in Maximum Radiation Intensity

Magnetic Field: Transverse Slot

Maximum Magnetic Field: 50.9mA/m

Large Increase in Maximum Radiation Intensity

Transverse Vs Logitudinal Slots

Longitudinal

Size of the slot: d (mm)

3D Fullwave Explanation

Current Density On Ground: Without Slot

Current Density On Ground: Longitudinal Slot

Current Density On Ground: Transverse Slot

