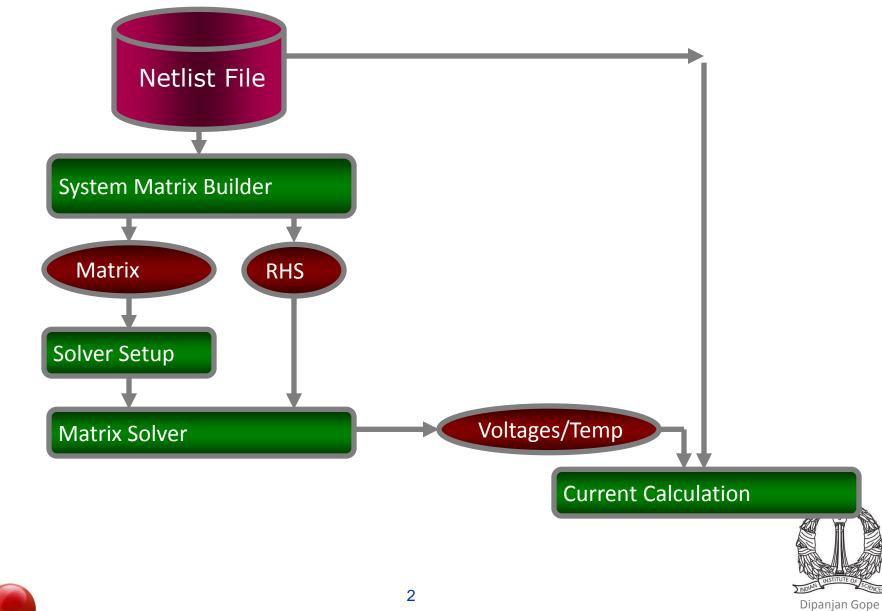


Multigrid-based DC Power Integrity Analysis

E8-262: CAD for High-Speed Chip-Package-Systems

Flow



MGCG: Prior Art and Motivation

Reduce Number of Iterations in Iterative Solution

- Stand-alone Multigrid (Ref: Briggs *et al*. 1982) and then...
- Multigrid preconditioned Conjugate Gradient (Ref: Tatabe 1996)

Stand-Alone Multigrid Basics

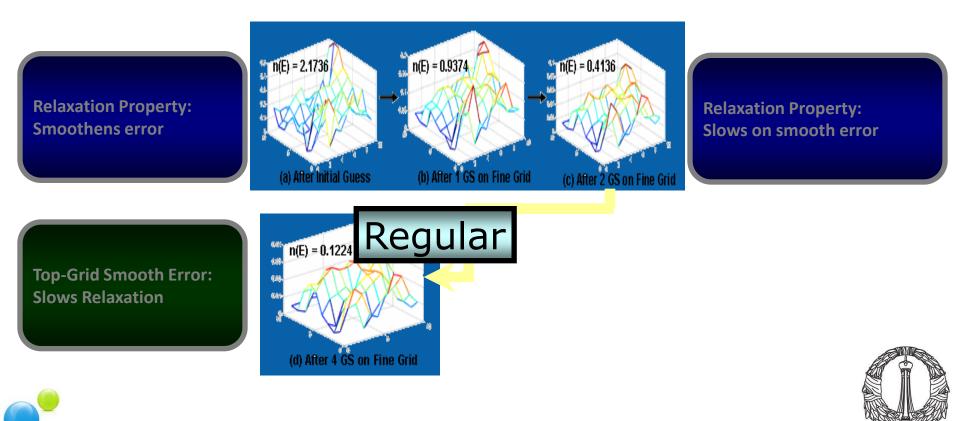
Basic Essence: Hierarch

Grid Hierarchy Is Necessary

- Basic Principle is Based on Two Complimentary Ideas I
 - Relaxation (GS, Jacobi) iterations: Effective when error is oscillatory
 - Accurate interpolation to coarse grid: Effective when error is smooth

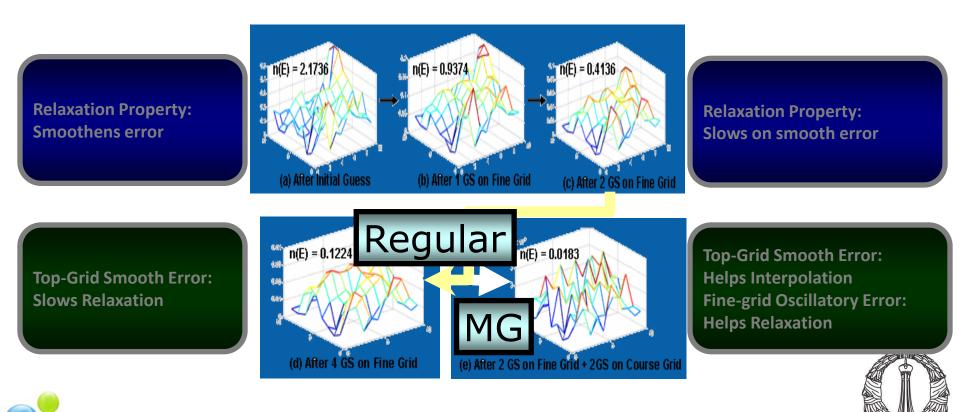
Stand-Alone Multigrid Basics

- Basic Principle is Based on Two Complimentary Ideas
 - Relaxation (GS, Jacobi) iterations: Effective when error is oscillatory
 - Accurate interpolation to coarse grid: Effective when error is smooth



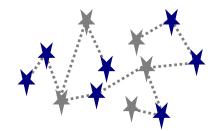
Stand-Alone Multigrid Basics

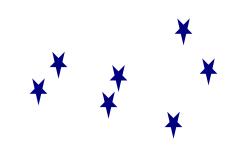
- Basic Principle is Based on Two Complimentary Ideas
 - Relaxation (GS, Jacobi) iterations: Effective when error is oscillatory
 - Accurate interpolation to coarse grid: Effective when error is smooth



Stand-Alone Multigrid Ingredients

- Coarse Grid Selection
 - Way to select nodes to form the coarse level
- Interpolation Operator
 - Dependence relation between levels
- Coarse Grid Matrix Operator
 - Dependence relation

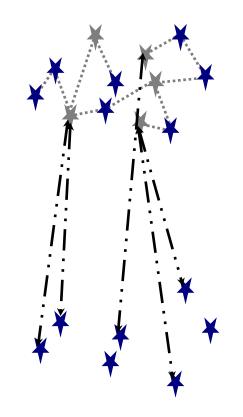




Stand-Alone Multigrid Ingredients

- Coarse Grid Selection
 - Way to select nodes to form the coarse level
- Interpolation Operator
 - Dependence relation between levels
- Coarse Grid Matrix Operator

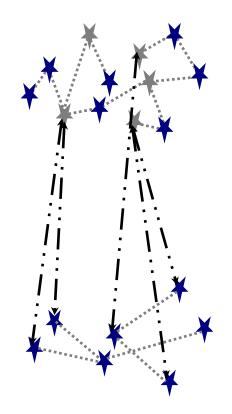
- Dependence relation



Stand-Alone Multigrid Ingredients

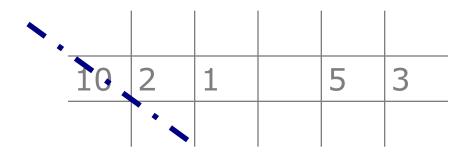
- Coarse Grid Selection
 - Way to select nodes to form the coarse level
- Interpolation Operator
 - Dependence relation between levels
- Coarse Grid Matrix Operator

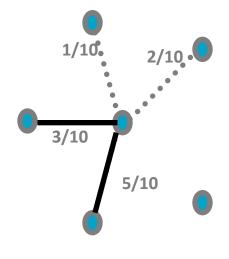
- Dependence relation



Coarse Grid Selection: Algebraic

• Strong/Weak Dependence Enumerated from Matrix Elements

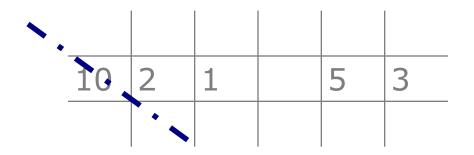


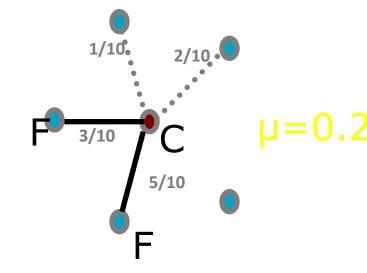


- Select Subset of Nodes (C) such that:
 - All remaining nodes (F) depend strongly on at least one node in (C)
 - Minimum possible number of nodes are chosen for (C)

Coarse Grid Selection: Algebraic

• Strong/Weak Dependence Enumerated from Matrix Elements



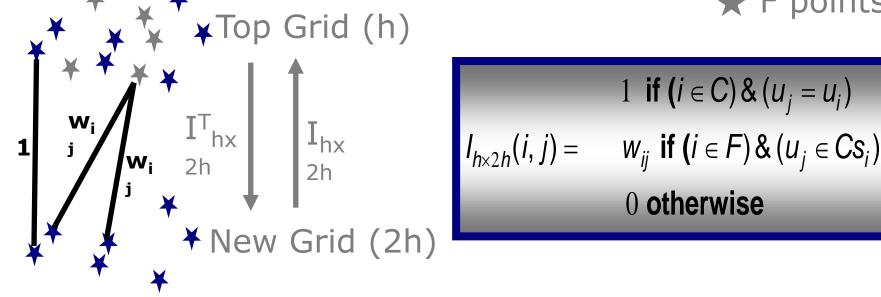


- Select Subset of Nodes (C) such that:
 - All remaining nodes (F) depend strongly on at least one node in (C)
 - Minimum possible number of nodes are chosen for (C)

Interpolation Operator

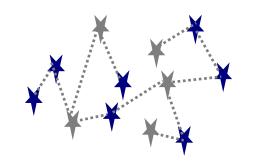
- Coarse Grid To Top Grid Interpolation (2h->h)
- Top Grid To Coarse Grid Restriction (h->2h)

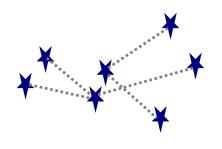
★ C points ★ F points



- The Oth Level Operator is the Starting Matrix
- Subsequent Level Operators/Matrices are obtained as follows:

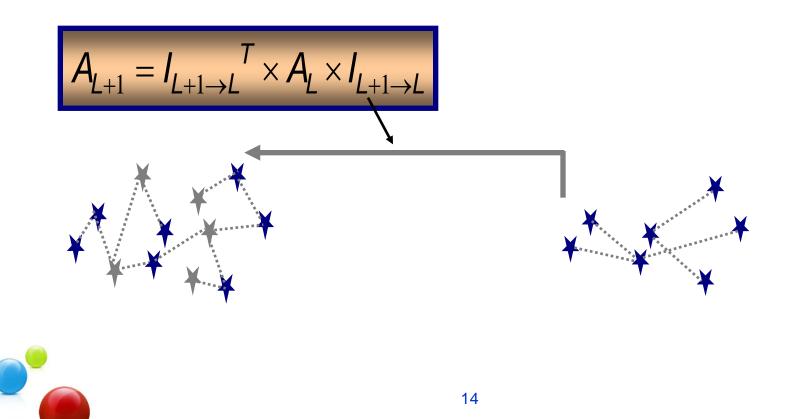
$$\boldsymbol{A}_{L+1} = \boldsymbol{I}_{L+1 \to L}^{T} \times \boldsymbol{A}_{L} \times \boldsymbol{I}_{L+1 \to L}$$



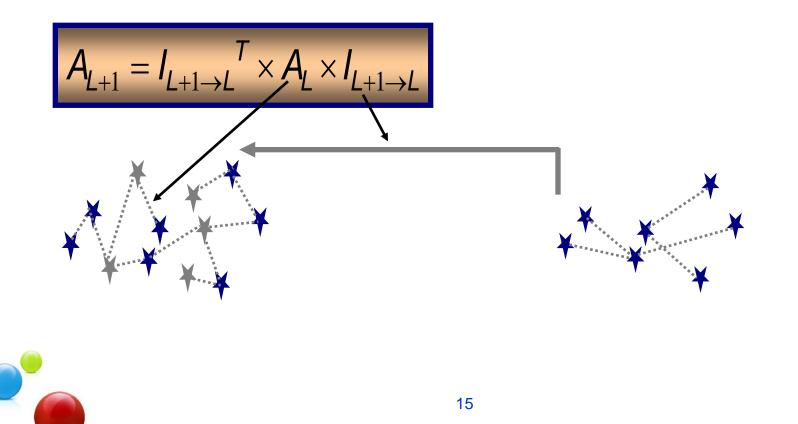


- The Oth Level Operator is the Starting Matrix
- Subsequent Level Operators/Matrices are obtained as follows:

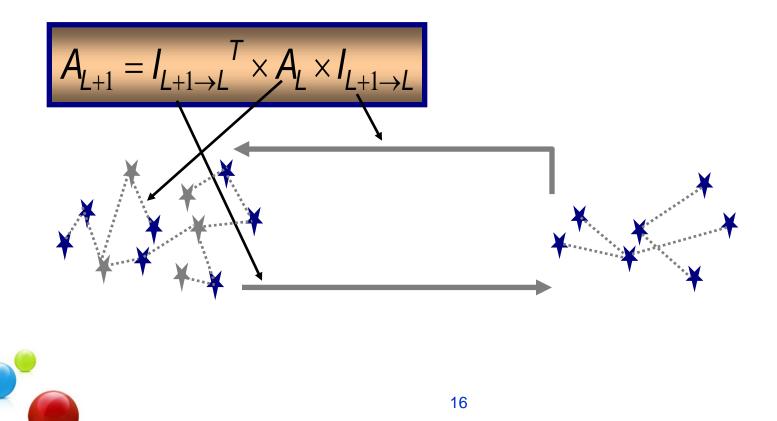
Dipanjan Gope



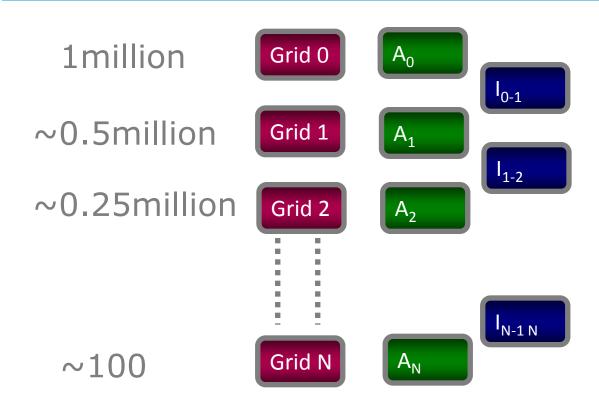
- The Oth Level Operator is the Starting Matrix
- Subsequent Level Operators/Matrices are obtained as follows:



- The Oth Level Operator is the Starting Matrix
- Subsequent Level Operators/Matrices are obtained as follows:

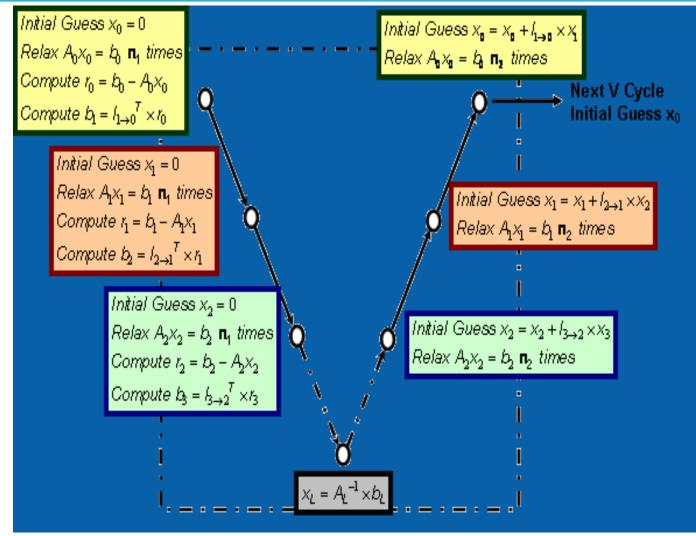


Multigrid Setup: One Time

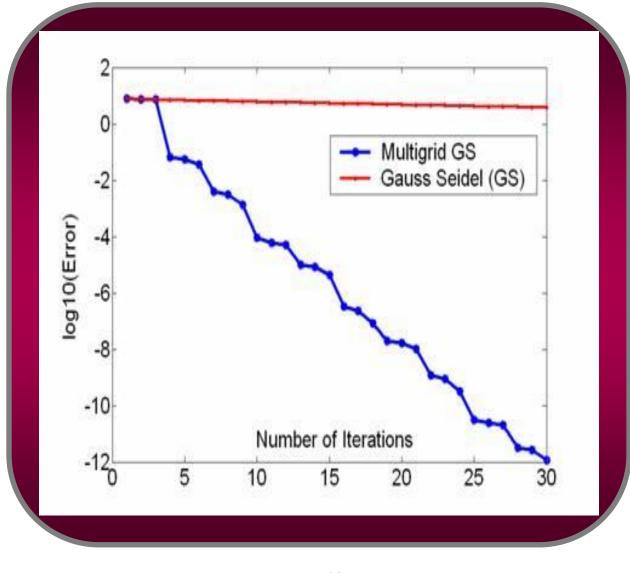


- Storage is Dominated by Matrices at All Levels
- If A₀ is Symmetric, then A_i is Symmetric

Multigrid Solve: V Cycle



Stand-Alone Multigrid Convergence



Dipanjan Gope

Multigrid Preconditioned Conjugate Gradient

- Direct Solver: x=A⁻¹b
- Iterative Solver: Ax₀-b... Ax₁-b... AX_n-b

Convergence Depends on Distribution of Eigen Values of Matrix A

• Preconditioning
$$PAx = Pb... P$$
 is close to A^{-1}

One V-Cycle of Stand-Alone Multigrid is Employed as P

Conjugate Gradient

MGCG Convergence

MGCG Convergence is Often Superior to Stand-Alone MultiGrid

