Srinivasa Ramanujan and Signal Processing

P. P. Vaidyanathan

California Institute of Technology, Pasadena, CA

Indian Institute of Science, Bangalore
16 October 2020

Self-educated Indian mathematician
Grew up in poverty (Kumbakonam, Tamil Nadu)
His genius discovered by Prof. G. H. Hardy Worked with Hardy in 1914-1919 (Cambridge)

1877-1947

Ramanujan created history in mathematics
Became a Fellow of the Royal Society at 32
Passed away at 33

A SYNOPSIS

or

ELEMENTARY RESULTS

IN

PURE AND APPLIED MATHEMATICS:
 containing

PROPOSITIONS, FORMULÆ, AND METHODS OF ANALYSIS, WITH

ABRIDGED DEMONSTRATIONS.

BY
G. S. CARR, B.A.,

Expansion of the sine and cosine in factors.
$807 \quad x^{2 n}-2 x^{n} y^{n} \cos n \theta+y^{2 n}$

$$
=\left\{x^{2}-2 x y \cos \theta+y^{2}\right\}\left\{x^{2}-2 x y \cos \left(\theta+\frac{2 \pi}{n}\right)+y^{2}\right\} \ldots
$$

to n factors, adding $\frac{2 \pi}{n}$ to the angle successively.
$P_{\text {roor. }}-$ By solving the quadratic on the left, we get $x=y(\cos n \theta+i \sin n \theta)^{\frac{1}{n}}$. The n values of x are found by (757) and (626), and thence the factors. For the factors of $x^{n} \pm y^{n}$ see (480).
$808 \sin n \phi=2^{n-1} \sin \phi \sin \left(\phi+\frac{\pi}{n}\right) \sin \left(\phi+\frac{2 \pi}{n}\right) \ldots$
as far as n factors of sines.
Proor.-By putting $x=y=1$ and $\theta=2 \phi$ in the last.
809 If n be even,
$\sin n \phi=2^{n-1} \sin \phi \cos \phi\left(\sin ^{2} \frac{\pi}{n}-\sin ^{2} \phi\right)\left(\sin ^{2} \frac{2 \pi}{n}-\sin ^{2} \phi\right) \& c$. 810 If n be odd, omit $\cos \phi$ and make up n factors, reckoning two factors for each pair of terms in brackets.

Obtained from (808), by collecting equidistant factors in pairs, and applying (659).
$811 \cos n \phi=2^{n-1} \sin \left(\phi+\frac{\pi}{2 n}\right) \sin \left(\phi+\frac{3 \pi}{2 n}\right) \ldots$ to n factors.
Proor.-Pat $\phi+\frac{\pi}{2 n}$ for ϕ in (808).
812 Also, if n be odd,
$\cos n \phi=2^{n-1} \cos \phi\left(\sin ^{2} \frac{\pi}{2 n}-\sin ^{2} \phi\right)\left(\sin ^{2} \frac{3 \pi}{2 n}-\sin ^{2} \phi\right) \ldots$
813° If n be even, omit $\cos \phi$.
Proved as in (809).
$814 \quad n=2^{n-1} \sin \frac{\pi}{n} \sin \frac{2 \pi}{n} \sin \frac{3 \pi}{n} \ldots \sin \frac{(n-1) \pi}{n}$.
Proof.-Divide (809) by $\sin \phi$, and make ϕ vanish; then apply (754).
$815 \sin \theta=\theta\left\{1-\left(\frac{\theta}{\pi}\right)^{2}\right\}\left\{1-\left(\frac{\theta}{2 \pi}\right)^{2}\right\}\left\{1-\left(\frac{\theta}{3 \pi}\right)^{2}\right\} \ldots \ldots$
$816 \cos \theta=\left\{1-\left(\frac{2 \theta}{\pi}\right)^{2}\right\}\left\{1-\left(\frac{2 \theta}{3 \pi}\right)^{2}\right\}\left\{1-\left(\frac{2 \theta}{5 \pi}\right)^{2}\right\} \ldots \ldots$.
Proor.-Put $\phi=\frac{\boldsymbol{\theta}}{\boldsymbol{n}}$ in (809) and (812); divide by (814) and make n infinite.
$817 e^{*}-2 \cos \theta+e^{-*}$

$$
=4 \sin ^{3} \frac{\theta}{2}\left\{1+\frac{x^{2}}{\theta^{2}}\right\}\left\{1+\frac{x^{2}}{(2 \pi \pm \theta)^{2}}\right\}\left\{1+\frac{x^{2}}{(4 \pi \pm \theta)^{2}}\right\} \ldots
$$

Proved by substitating $x=1+\frac{z}{2 n}, y=1-\frac{z}{2 n}$, and $\frac{\theta}{n}$ for θ in (807), making n infinite and reducing one series of factors to $4 \sin ^{2} \frac{\theta}{2}$ by putting $z=0$.

De Moivre's Property of the Circle. - Take P any point, and $P O B=\theta$ any angle,

$$
\begin{gathered}
B O C=C O D=\& c .=\frac{2 \pi}{n} \\
O P=x ; \quad O B=r
\end{gathered}
$$

$819 x^{2 n}-2 x^{n} r^{n} \cos n \theta+r^{2 n}$
$=P B^{2} P C^{2} P D^{2} \ldots$ to n factors.

By (807) and (702), since $P B^{2}=x^{2}-2 x r \cos \theta+r^{2}$, \&c.
820 If $x=r, \quad 2 r^{n} \sin \frac{n \theta}{2}=P$ B. PC. PD ... \&c.
821 Cotes's properties.-If $\theta=\frac{2 \pi}{n}$,
$x^{n} \sim r^{n}=P B . P C . P D . . . \& c$.
$822 \quad x^{n}+r^{n}=P a . P b . P c . . . \& c$.

ADDITIONAL FORMULA.

829.

$\operatorname{cosec} 2 A+\cot 2 A=\cot A . \quad \sec A=1+\tan A \tan \frac{A}{2}$.

$$
\cos A=\cos ^{4} \frac{A}{2}-\sin ^{4} \frac{A}{2}
$$

$\tan A+\sec A=\tan \left(45^{\circ}+\frac{A}{2}\right)$.
$\frac{\tan A+\tan B}{\cot A+\cot B}=\tan A \tan B$.
$\sec ^{2} A \operatorname{cosec}^{2} A=\sec ^{2} A+\operatorname{cosec}^{2} A$.

vi $\phi(x)+\phi(-x)=2 \phi\left(x^{4}\right)$
vii $\phi(x)-\phi(-x)=4 x \psi\left(x^{8}\right)$
viii $\phi(x) \phi(-x)=\phi^{2}\left(-x^{2}\right)$.
ix $\quad \phi(x) \psi\left(x^{2}\right)=\psi^{2}(x)$
x. $\phi^{2}(x)-\phi^{2}(-x)=8 \times \psi^{2}(x)$
xi. $\phi^{2}(x)+\phi^{2}(-x)=2 \phi^{2}\left(x^{2}\right)$
xii. $\phi^{4}(x)-\phi^{4}(-x)=16 x \psi^{4}\left(x^{2}\right)$.
xiii. $\psi^{2}(x)+\psi^{2}(-x)=2 \psi\left(x^{2}\right) \phi\left(x^{4}\right)$
xiv. \&f $\left(\frac{1-z}{1+z}\right)^{2}=\left\{\frac{\phi(-x)}{\phi(x)}\right\}^{4}$ then $1-z^{2}=\left\{\frac{\phi\left(-x^{2}\right)}{\phi\left(x^{2}\right)}\right\}^{4}$
E_{x} 1. $\frac{\psi(x)}{\psi(-x)}=\sqrt{\frac{\phi(x)}{\phi \in x}}$.
2. $\psi(x) \psi\left(-x^{x}\right)=\psi\left(x^{2}\right) \phi\left(-x^{2}\right)$
3. $\frac{\psi(x) \psi(-x)}{\psi\left(x^{2}\right) \psi\left(-x^{2}\right)}=\frac{\psi\left(-x^{2}\right)}{\psi\left(x^{3}\right)}$.

ii. $F\left(1-\frac{1}{x}\right)+\theta=\frac{\log _{x} x}{10+\sqrt{36+\left(\log _{e} x\right)^{2}}}$ when θ is numerically 5 much less them $\frac{2}{135} F^{5-\left(1-\frac{2}{2}\right)} \theta=\frac{1}{2160} \cdot\left\{\frac{\log _{c} x}{8+g_{4}(6-x)^{2}}\right\}^{5}$.
iii. $\log _{e} F(x) \log _{e} F(1-x)=\pi^{2}$
iv. $F(1-x)+F\left(1-\frac{1}{x}\right)=0$
V. $F\left\{\frac{4 x}{1+x)^{2}}\right\}=\sqrt{F\left(x^{2}\right)}$
V. B. If we know the expansion of $F\left(\frac{2 x}{1+x}\right)$ Eoxturms, then we can find its expansion to $2 n$ terms as follows suppose we inow the expansion of $\bar{p}\left(\frac{2 x}{1+x}\right)$ if $\frac{1}{2}$....

Talk Outline

- Ramanujan sums (RS): 1918
- Representing periodic signals
- From RS to Subspaces
- From Subspaces to Dictionaries
- From Dictionaries to Filter Banks
- iMUSIC
- Conclusions, Acknowledgements, ...

Periodic $x(n)$

$$
x(n)=x(n+P)
$$

Smallest such integer P is called the period

Periodic $x(n)$

DF'T representation:

$$
x(n)=\sum_{k=0}^{N-1} X[k] e^{j(2 \pi k / N) n} \longleftarrow=\begin{gathered}
\text { a divisoriod of } N
\end{gathered}
$$

Let $N=\mathbf{6}$, look at these
period $1 \quad e^{\frac{j 2 \pi(0 n)}{6}}$
period $2 e^{\frac{j 2 \pi(3 n)}{6}}$
period $3 e^{\frac{j 2 \pi(2 n)}{6}}, e^{\frac{j 2 \pi(4 n)}{6}}$
period $6 e^{\frac{j 2 \pi n}{6}}, e^{\frac{j 2 \pi(5 n)}{6}}$
periods 4 and 5 missing!

Periodic $x(n)$

DFT representation:

$$
x(n)=\sum_{k=0}^{N-1} X[k] e^{j(2 \pi k / N) n} \longleftarrow \begin{gathered}
\text { period }=\boldsymbol{N}
\end{gathered}
$$

$N=32 ; \quad$ divisors $=1,2,4,8,16,32$
Very few periods in basis

Ramanuijan-sum representation: $x(n)=$
Every period q is in basis!

$$
=\sum_{q=1}^{N} a_{q} c_{q}(n)
$$

Limitations of DFT: Example

Period 8 (Re part)

Period 9 (Re part)

Identifying periods vs spectrum est.

DFT, MUSIC, HMUSIC, HMP, etc., are not the best ...
Ramanujan offers something new

Hidden periodic components

Does not "look" periodic
Ramanujan offers
sparse representation ...

Importance of periodicity

- Pitch identification acoustics (music, speech, ...)
- Time delay estimation in sensor arrays
- Medical applications
- Genomics and proteomics
- Radar
- Astronomy
- Physics

Ramanujan sum (1918)

$$
c_{q}(n)=\sum_{\substack{k=1 \\
(k, q)=1}} e^{j 2 \pi k n / q} \begin{aligned}
& q=\text { positive } \\
& \text { integer } \\
& k \text { and } \boldsymbol{q} \\
& \text { coprime }
\end{aligned}
$$

$c_{q}(n+q)=c_{q}(n)$ period q
\# of terms $=\phi(q)=$ Euler totient

$$
C_{q}[k]= \begin{cases}q & \text { if }(k, q)=1 \\ 0 & \text { otherwise }\end{cases}
$$

$$
c_{q}(n)=\sum_{\substack{k=1 \\(k, q)=1}}^{q} e^{j 2 \pi k n / q}
$$

primitive frequencies with same period q

Theorem: Ramanujan sum is integer valued!

Examples: $c_{1}(n)=1$

$$
\begin{aligned}
& c_{2}(n)=1,-1 \\
& c_{3}(n)=2,-1,-1 \\
& c_{4}(n)=2,0,-2,0 \\
& c_{5}(n)=4,-1,-1,-1,-1 \\
& c_{6}(n)=2,1,-1,-2,-1,1
\end{aligned}
$$

Orthogonal: $\sum_{n=0}^{m-1} c_{q_{1}}(n) c_{q_{2}}(n)=0, \quad q_{1} \neq q_{2}$.

What did Ramanujan do with these?

He expanded arithmetic functions (1918):

Number-of-divisors: $\quad \sigma_{0}(n)=-\sum_{q=1}^{\infty} \frac{\ln q}{q} c_{q}(n)$
Sum-of-divisors: $\sigma(n)=\frac{n \pi^{2}}{6} \sum_{q=1}^{\infty} \frac{c_{q}(n)}{q^{2}}$
Euler-totient: $\quad \phi(n)=\frac{6 n}{\pi^{2}}\left(c_{1}(n)-\frac{c_{2}(n)}{2^{2}-1}-\frac{c_{3}(n)}{3^{2}-1}-\frac{c_{5}(n)}{5^{2}-1}\right.$

$$
\begin{aligned}
& +\frac{c_{6}(n)}{\left(2^{2}-1\right)\left(3^{2}-1\right)}-\frac{c_{7}(n)}{7^{2}-1}+\frac{c_{10}(n)}{\left(2^{2}-1\right)\left(5^{2}-1\right)} \\
& \left.-\frac{c_{11}(n)}{11^{2}-1}-\frac{c_{13}(n)}{13^{2}-1}+\frac{c_{14}(n)}{\left(2^{2}-1\right)\left(7^{2}-1\right)}+\ldots\right)
\end{aligned}
$$

von Mangoldtfunction: $\Lambda(n)=\frac{n}{\phi(n)} \sum_{q=1}^{\infty} \frac{\mu(q)}{\phi(q)} c_{q}(n)$
$\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{k} \text { for prime } p, \text { with } k \geq 1 \\ 0 & \text { otherwise } .\end{cases}$

Our goal

$$
c_{q}(n)=\sum_{\substack{k=1 \\(k, q)=1}}^{q} e^{j 2 \pi k n / q}
$$

$$
c_{q}(n+q)=c_{q}(n)
$$

- Use this to represent periodic signals efficiently
- Significant advantages over traditional ...

Representation for periodic signals?

What do we do about it?

$$
x(n)=\sum_{q=1}^{N} a_{q} c_{q}(n)
$$

Replace each Ramanujan-sum with a subspace:

Ramanujan subspace \mathcal{S}_{q}

Leads to a nice representation!

Ramanujan subspace \mathcal{S}_{q}

[Vaidyanathan 2014, IEEE SP Trans.]
Space of signals of the form:

$$
\begin{aligned}
& \sum_{\substack{k=1 \\
(k, q)=1}}^{q} a_{k} W_{q}^{k n} \quad \text { complex basis } \\
= & \sum_{l=0}^{\phi(q)-1} \beta_{l} c_{q}(n-l) \quad \text { real integer basis }
\end{aligned}
$$

Dimension $=\phi(q)=$ Euler's totient function

Ramanujan subspace: look at the DFT

Think of the $q \times q$ DFT matrix

$c_{q}(n)$: sum of dark cols. Ramanujan sum
\mathcal{S}_{q} : space spanned by dark cols. Ramanujan subspace

Periodicity Theorems ${ }_{\text {IPPV } 2014, \text { EEEESP Trams } .}$

1. Nonzero signals in \mathcal{S}_{q} have period \boldsymbol{q}.

(can't be smaller).
2. Any period- P signal can be written as

$$
x(n)=\sum^{K} x_{q_{m}}(n) \quad x_{q_{m}}(n) \in \mathcal{S}_{q_{m}}
$$

where q_{m} are divisors of \boldsymbol{P}.

Periodicity Theorems ${ }_{\text {IPPV } 2014, \text { EEEESP Trams } .}$

3. Consider the sum $x(n)=\sum_{m=1}^{K} x_{q_{m}}(n)$
where $x_{q_{m}}(n) \in \mathcal{S}_{q_{m}}$.

This has period $=\operatorname{lcm}\left(q_{1}, q_{2}, \ldots, q_{K}\right)$ (can't be smaller).

Farey dictionary (PPV and Piya Pal, 2014)

$$
\phi(4)=2 \quad \phi(5)=4 \quad W_{q}=e^{-j 2 \pi / q}
$$

$\left.\begin{array}{c|r|rr||rr|rrrr|rr}1 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 5 & 5 & 6 & 6 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & W_{2} & W_{3} & W_{3}^{2} & W_{4} & W_{4}^{3} & W_{5} & W_{5}^{2} & W_{5}^{3} & W_{5}^{4} & W_{6} & W_{6}^{5} \\ 1 & W_{2}^{2} & W_{3}^{2} & W_{3}^{4} & W_{4}^{2} & W_{4}^{6} & W_{5}^{2} & W_{5}^{4} & W_{5}^{6} & W_{5}^{8} & W_{6}^{2} & W_{6}^{10} \\ 1 & W_{2}^{3} & W_{3}^{3} & W_{3}^{6} & W_{4}^{3} & W_{4}^{9} & W_{5}^{3} & W_{5}^{6} & W_{5}^{9} & W_{5}^{12} & W_{6}^{3} & W_{6}^{15} \\ 1 & W_{2}^{4} & W_{3}^{4} & W_{3}^{8} & W_{4}^{4} & W_{4}^{12} & W_{5}^{4} & W_{5}^{8} & W_{5}^{12} & W_{5}^{16} & W_{6}^{4} & W_{6}^{20} \\ 1 & W_{2}^{5} & W_{3}^{5} & W_{3}^{10} & W_{4}^{5} & W_{4}^{15} & W_{5}^{5} & W_{5}^{10} & W_{5}^{15} & W_{5}^{20} & W_{6}^{5} & W_{6}^{25}\end{array}\right)$

Farey Frequency Grids

Non-uniform frequency grids for period estimation

Farey series, in Number Theory [Hardy and Wright 1938, 2008]

Ramanujan dictionary

[Srikanth Tenneti, PPV 2015, 2016, IEEE SP Trans].

$$
\begin{aligned}
& \Phi(N) \triangleq \sum_{m=1}^{N} \phi(m)=\frac{3 N^{2}}{\pi^{2}}+O(N \log N) \\
& \mathbf{A}=\left[\begin{array}{r|r|rr|rr|rrrr}
1 & 1 & 2 & -1 & 2 & 0 & 4 & -1 & -1 & -1 \\
1 & -1 & -1 & 2 & 0 & 2 & -1 & 4 & -1 & -1 \\
1 & 1 & -1 & -1 & -2 & 0 & -1 & -1 & 4 & -1 \\
1 & -1 & 2 & -1 & 0 & -2 & -1 & -1 & -1 & 4 \\
1 & 1 & -1 & 2 & 2 & 0 & -1 & -1 & -1 & -1
\end{array}\right] \downarrow N \\
& \begin{array}{llllll}
\mathcal{S}_{1} & \mathcal{S}_{2} & \mathcal{S}_{3} & \mathcal{S}_{4} & \mathcal{S}_{5}
\end{array}
\end{aligned}
$$

$\Phi(8)=22, \Phi(10)=32, \Phi(14)=64, \Phi(32)=324, \ldots$
Frame, rather than basis

Finding period using Ramanujan dictionary

Given \mathbf{x}, find a sparse representation: $\mathrm{x}=\mathbf{A y}$

$$
x(n)=\sum_{m=1}^{K} x_{q_{m}}(n) \quad x_{q_{m}}(n) \in \mathcal{S}_{q_{m}}
$$

Then period $\boldsymbol{P}=\operatorname{lcm}\left(q_{1}, q_{2}, \ldots, q_{K}\right)$

Example

Hidden periods: 3, 7, 11

S. Tenneti, P. P. Vaidyanathan

Ramanujan vs other methods

Ramanujan works much better when:

- periods are integers (DNA, proteins, ...)
- datalength is short
- multiple hidden periods should be found

On the lighter side ...

The Taxicab number

$$
\begin{aligned}
1729 & =1^{3}+12^{3} \\
& =9^{3}+10^{3}
\end{aligned}
$$

Smallest integer that can be written as a sum of two cubes in two ways!

Bruce C. Berndt

 Ramanujan's

 Ramanujan's
 Notebooks

Part III

Springer

George E. Andrews Bruce C. Berndt

Ramanujan's Lost Notebook

Part I

Prof. George Andrews
 Penn State

Prof. Bruce Brendt UIUC

Tracking periodicity as it changes ...

Time-Period plane plot is needed

Ramanujan Filter-Banks

Ramanujan Filter-Banks

$\therefore \quad c_{q}^{(l)}(n)= \begin{cases}c_{q}(n) & 0 \leq n \leq q l-1 \\ 0 & \text { otherwise } .\end{cases}$

Theorem: Suppose the filters with nonzero outputs are
$C_{q_{1}}(z), C_{q_{2}}(z), \cdots C_{q_{K}}(z)$
Then $P=\operatorname{lcm}\left\{q_{1}, q_{2}, \cdots, q_{K}\right\}$

FIR Ramanujan filters

$$
c_{q}^{(l)}(n)= \begin{cases}c_{q}(n) & 0 \leq n \leq q l-1 \\ 0 & \text { otherwise }\end{cases}
$$

Can show:

$$
\begin{array}{r}
C_{q}^{(l)}(z)=\sum_{q_{k} \mid q} \alpha_{q_{k}} q_{k} \times\left(\frac{1-z^{-q l}}{1-z^{-q_{k}}}\right) \\
\alpha_{q_{k}} \in\{0,1,-1\}
\end{array}
$$

$d \mid q: d$ is a divisor (or factor) of q

Multiplierless FIR Ramanujan FB

In practice: $D_{i}(z / \rho)=\left(\frac{1}{1-\rho^{i} z^{-i}}\right), F_{q}(z / \rho)=1-\rho^{q l} z^{-q l}$

Protein molecules ${ }_{\text {(amino acid sequences) }}$

The HetL protein

- Has strong period 5 component
- Contains insertion loops
- Kyte-Doolittle scale, EIIIP scale

Time-period plane from RFB

More proteins ...

Comparison with other methods ...

RFB always works

Repeat type	PDB ID	FTw.	WAV.	RAD.	REPw.	RFB
β propeller	1 hxn	X	\checkmark	\checkmark	X	\checkmark
TIM barrel	1tim	X	\checkmark	>	X	\checkmark
LRR 1Irv	1dfj	X	\checkmark	\checkmark	\checkmark	\checkmark
	1 lrv	X	N.A.	\checkmark	\checkmark	\checkmark
	4 cil	X	N.A.	\checkmark	\checkmark	\checkmark
HEAT	1b3u	X	N.A.	\checkmark	\checkmark	\checkmark
Ankyrin	1n11	X	N.A.	\checkmark	\checkmark	\checkmark
	NCBI: NP_848 605.1	X	N.A.	\checkmark	\checkmark	\checkmark
Armadillo	3 wpt	X	N.A.	\checkmark	\checkmark	\checkmark
Pentapeptide	3du1	X	N.A.	X	\checkmark	-
	2bm4	\times	N.A.	X	,	\checkmark
	3n90	X	N.A.	>	-	\checkmark

iMUSIC

Traditional MUSIC spectrum

$x(n)$ periodic: spectrum is harmonic

Modified MUSIC:

HMP, Gribonval and Bacry, 2003.
HMUSIC, Christensen, Jacobsson and Jensen, 2006+
More accurate than MUSIC; but complex, time consuming

iMUSIC
 [Tenneti and PPV, 2017, 2019]

Integer MUSIC (i.e., when period = integer)

$\mathbf{a}\left(e^{j \omega}\right)=\left[\begin{array}{lll}1 & e^{j \omega} & e^{2 j \omega}\end{array} \cdots\right]^{T}$

$$
S_{M U}\left(e^{j \omega}\right)=\frac{1}{\mathbf{a}^{H}\left(e^{j \omega}\right) \mathbf{U}_{e} \mathbf{U}_{e}^{H} \mathbf{a}\left(e^{j \omega}\right)}
$$

Instead of this, uses vectors from:

- Ramanujan dictionary or
- Farey dictionary or
- Natural basis dictionary

$$
\frac{1}{\phi(P)} \sum_{m=1}^{\phi(P)} \frac{1}{\left\|\mathbf{U}_{\mathbf{e}}^{\dagger} \mathbf{a}_{P}^{(m)}\right\|_{2}^{2}}
$$

More accurate, much faster ...

Ongoing and future

- Denoising periodic signals
- Non-integer periods
- CNN and Ramanujan
- 2D case

Our Website on this ...

Home	Papers	People	Software

Period vs Time Plane for a chirp signal using Ramanujan Filter Banks. [View Larger]

Going Beyond Parallelograms! Bringing more general lattices into DSP. [View Larger]

Detecting repeats in bio-molecules such as Proteins using Nested Periodic D

What's it all about?

The Ramanujan Periodicity Project is a new framework for periodicity analysis. Starting from a novel uni for periodic signals, we have developed several techniques to estimate and track periodicities in data. Tl methods, projection techniques and filter banks.

References for this talk

1) P. P. Vaidyanathan, "Ramanujan sums in the context of signal processing: Part I: fundamentals," IEEE Trans. on Signal Proc., Aug., 2014.
2) P. P. Vaidyanathan, "Ramanujan sums in the context of signal processing: Part II: FIR representations and applications," IEEE Trans. on Signal Proc., Aug., 2014.
3) P. P. Vaidyanathan and Piya Pal, "The Farey dictionary for sparse representation of periodic signals," Proc. ICASSP, May 2014.
4) S. Tenneti and P. P. Vaidyanathan, "Ramanujan filter banks for estimation and tracking of periodicity properties," Proc. IEEE ICASSP, April 2015.
5) S. Tenneti and P. P. Vaidyanathan, "Nested Periodic Matrices and Dictionaries: New Signal Representations for Period Estimation," IEEE Trans. on Signal Proc., July 2015.
http://systems.caltech.edu/dsp/students/srilkanth/Ramanujan/
6) P. P. Vaidyanathan and S. Tenneti, "Properties of Ramanujan filter banks," Proc. EUSIPCO, Sept. 2015.
7) S. Tenneti and P. P. Vaidyanathan, "Detecting Tandem Repeats in DNA Using Ramanujan Filter Bank," Proc. IEEE ISCAS, May 2016.
8) S. Tenneti and P. P. Vaidyanathan, "A Unified Theory of Union of Subspaces Representations for Period Estimation," IEEE Trans. on Signal Proc., Oct. 2016.
9) S. Tenneti and P. P. Vaidyanathan, "Detection of Protein Repeats Using The Ramanujan Filter Bank," Proc. Asil. Conf. Sig., Sys., and Comp., Monterey, CA, Nov. 2016.
10) P. P. Vaidyanathan and S. Tenneti, "Efficient multiplierless structures for Ramanujan filter banks," Proc. IEEE ICASSP, March 2017.
11) S. Tenneti and P. P. Vaidyanathan, "Minimum Data Length for Integer Period Estimation," IEEE Trans. on Signal Proc., May 2018.
12) S. Tenneti and P. P. Vaidyanathan, "iMUSIC: A family of MUSIC-like algorithms for integer period estimation," IEEE Trans. on Signal Proc., Jan. 2019.
13) S. Tenneti and P. P. Vaidyanathan, "DSP-inspired deep learning: a case study using Ramanujan subspaces," Proc. Asil. Conf. Sig., Sys., and Comp., Monterey, CA, Nov. 2019.
14) P. P. Vaidyanathan and S. Tenneti, "Srinivasa Ramanujan and Signal-Processing Problems," Philosophical Transactions of the Royal Society, A, Volume 378, Issue 2163, 9 December 2019.
15) P. Kulkarni and P. P. Vaidyanathan, "On the Zeros of Ramanujan Filters," IEEE Signal Processing Letters, April, 2020.

From A mathematician's apology, 1940

G. H. Hardy
1877-1947

The 'real' mathematics of the 'real' mathematicians is almost wholly 'useless'.
(So) the 'real mathematician' has a clear conscience.
Applied mathematics is 'useful', yes. But it is trivial.
Perhaps, Hardy was wrong?

Thank you!

