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INTRODUCTION



Physics of Wireless Signal Propagation

- Electromagnetic travel at speed of light
« Spreads out in all directions
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* Friis’ propagation formula:
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Receive power = Transmit power -

A Receive antenna

2
Example: A = (Z) , A =0.1m (3 GHz)

with area A

0.005% received at 1 m (—43dB)
0.00005% received at 10 m  (—63 dB)

H. T. Friis, “A note on a simple transmission
formula,” IRE, vol. 34, no. 5, pp. 254-256, 1946

Only a tiny fraction of transmit power is received!



No Direct Path: Even Larger Propagation Losses

Wall penetration:
— 20 dB or more Extra paths

Diffraction
(Sharp Edge)

Reflection
(Smooth Edge)

Scattering
(Rough Edge)




Shaping the Signal Scattering Towards the Receiver

Reconfigurable
intelligent surface
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Reconfigurable: Properties can be changed

Intelligent: Real-time programmable/controllable
Surface: Two-dimensional array of scatterers !
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Reconfigurable Intelligent Surface (RIS) i

One element User 2

Passive patch

Switch
(e.g., diod)

Means of reconfigurability

1) Tuning impedances

Programmable 2) Tuning length of delay lines
controller 3) Phase-shifters

A single element makes little difference

A
Transmitter Joint effect of many elements is needed User 1



Normalized gain [dB]

How Large are the Elements?

When a signal arrives from —30°:
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Angle [degrees]

Each element should scatter
signals almost isotropically

|ldeal continuous reconfiguration

Discretized reconfiguration



A Reconfigurable World

RIS as a whole can control
Directivity of scattered signal
Signal absorption
Polarization

Improved indoor coverage
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Different People Use Different Terminology
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C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. loannidis, and I. Akyildiz, “A new
wireless communication paradigm through software-controlled metasurfaces,” IEEE
Commun. Mag., vol. 56, no. 9, pp. 162-169, 2018.

C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, C. Yuen, “Reconfigurable
Intelligent Surfaces for Energy Efficiency in Wireless Communication,” IEEE
Transactions on Wireless Communications, vol. 18, no. 8, pp. 4157-4170, 2019.

M. Di Renzo et al., “Smart radio environments empowered by reconfigurable Al meta-
surfaces: an idea whose time has come,” EURASIP Journal on Wireless Commun. and
Networking, vol. 2019:129, 2019.

Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent
reflecting surface aided wireless network,” IEEE Communications Magazine, 2020.

E. Bjornson, L. Sanguinetti, H. Wymeersch, J. Hoydis, and T. L. Marzetta, “Massive
MIMO is a reality—What is next? Five promising research directions for antenna arrays,”
Digital Signal Processing, vol. 94, pp. 3-20, Nov. 2019.



DEVELOPING A SYSTEM MODEL



Introduction to Signals and Systems

Linear-time invariant: —»
Xpp (L) Impulse response Yob(8) = (hyp * 2, ) (£) = f hpp (W), (£ — w)du
hpp () *
Xpb (f)
Yob (f)
I
|
«  Communication channels are systems/filters: 0 fe

A
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Y Ypb(t) = \Prxpp(t = T1) + /022, (t = T2) + /P32, (= 73)

Impulse response: h,,(t) = \[p16(t — 11) + /p26(t — 12) + /P36(t — 73)




Complex Baseband Representation

«  Communication theory is developed for the baseband

Real passband Complex baseband

Xpb (f) X(f)
Fon (1) W \

Y(f)

0 fe 0 fe
+—> +—>
B B/2

X(F=f)+X*(=f—fc) Y,,(f) = Y(f=f)+Y " (=f=fc)
’ 1% -

» Connection: X,,(f) = NG NG

Linear-time invariant: oo Down-shifted channel:
x(t) Impulse response y() = f h(u)x(t —uw)du h(t) = hyp (t)eJ2mfct

h(t) 0

\'\



T (t) =

Analyzing Reconfigurable Intelligent Surface

— Reradiated signal
\ /
RIS with
Transmitter N elements Receiver

End-to-end system with impulse response hp(t)

Direct channel \
hapo(t) )

End-to-end impulse response:
hpb (t) = hd,pb (t)
N

+ Z (bn,pb * O pn;0, * an,pb) (t)
n=1

To receiver

b1,pb(t)

Element 1
V1,pb:0, (£)

To element 1
a1,pb(?)

y(t)  Conventional channel models for
an,pb» bn,pb» hd,pb

To receiver

ba,pb (%)
To element Element N

To receiver RIS control variables 64, ..., 0y in
anpb(t) IN post (1) 1 N

Element 2
192,pb;02 (t)

To element 2
a2,pb(t)

k J 19n,pn;9n
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How Will an RIS Element Filter the Signal?

Unit Reflecting Element

r

Incident —» W i

Zn(Cn,Rn)

1

1

Transmission Line/Air X L R, H
(Zo) ' ' :

27 ——0.79 pF| |
— - 0.88 pF
25" —-=-0.96 pF |-
........ 2.2 pF
3 L L .
2 2.5 3 3.5

Frequency (f) [GHZ].

Example: Metal patch with tunable capacitance C,,

Reflection coefficient:
Zn(Cn; Rn) - ZO
Zn(Cn; Rn) + ZO

Reference: S. Abeywickrama, R. Zhang, Q. Wu, and C. Yuen,
“Intelligent reflecting surface: Practical phase shift model and
beamforming optimization,” IEEE Trans. Commun., 2020.
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How To Transmit Data?

2.5

* Pulse amplitude modulation:

x(t) = z x[m]p (t — %)

m
- Transmit discrete sequence: x[m], m = integer

Use a pulse-form p(t) satisfying the Nyquist criterion:

p (%) = 0 for integer m # 0 and non-zero for m = 0

Normalized time: ¢/B

- Example: p(t) = VBsinc(Bt)
Sampling of received signal y(t) = x(t):

() x) - S (57

m



Reception with Channel and Noise

* Received signal (with Gaussian noise):
y(@) = (h=x)() + w(t)
1. Filter using p(t) = VBsinc(Bt):

m
20) = @ +)© = ) xm] (< h+p) (£=5) + 0+ w)(®)
m
2. Sample received signal:
k k—m k

Z(E) =Zx[m] (p*h*p)< 5 )+(p*W)(§)
\_'_I m \_'_I \_'_I
Call it z[ k] Effective pulse Complex Gaussian

function noise CN (0, Ny)

Narrowband channel: h = constant - §(t — 7) in the band, Nyquist criterion satisfied

z[k] = constant - x[k] + Gaussian noise



Putting the Pieces Together: Narrowband Channels

- Direct channel: happ(t) =P8t —14) - ha(t) = pe 727 5(t — 14)
- Related to element n: Anpp (1) = VE8(t — Ty g) = an(t) = yape 727 5(t — 1,4)

Inpp(0) = VTnb(t —Tg,) = 9n(t) = Tne 2™t 6(t — 14,)
bn,pb (t) = \/E6(t - Tn,b) - bn(t) = \/Ee_jznfctS(t - Tn,b)

End-to-end system with impulse response hpy,(t)

End-to-end discrete-time system model: 2

Direct channel
VA [ k ] ha,pn(t)

. 1y . *(I‘o elemarel)t 1 glement(tl)

— \/ﬁe_JznfCTd + § /anﬁnyne—]anc(tn,a+rgn+rn,b) x[k] + Noise Leb ) ” ( Lpbits
_ To element 2 Element 2
T n=1 T T { az,pv(t) Hﬂzpbu% (t)

To receiver
b1,pb ()
To receiver
b2,pb(t)
L]
L]

L]
To receiver
b pb (t)

Direct path Joint amplitude loss Joint delay l :Toelemem ——
Tunable! anpb(t) ) ' (ﬁN,pb;eN(t)

Ypo(t)
EANE



OPTIMIZING COMMUNICATION
PERFORMANCE



Maximizing Performance Without a Direct Path

Received signal without direct path:

y = z SO Bryne 72 Te(tnatTenttnb) . signal + noise
n=1

Signal processing problem:
Maximize the signal-to-noise ratio

Channel gain:

N N Achieved when:
/ —j2nf(tpatte, +1 ~ N2 Tna T T, T Tnp
2 anﬁn)/ne J fc( natloy n,b) 2 nIBnVn N CZ,B]/ — constant
n=1

Minimum positive delay solution:

Cauchy—Schwarz inequality ton, = mn?x(rm'“ +Tmp) = (Tna + Tnp)



Example: Synthesizing Surface Shapes 3: Signal focusing
(closer than infinity)

Beamforming:
Toward point/direction

i J )

1: Normal reflection 2: Anamolous reflection
(focus at infinity)

\4

Varying phase delay profile
along the surface



Maximizing Performance With a Direct Path

Received signal with direct path:

N
y = ( \/ﬁe—jmtfcrd + Z \/W e—j27ch(Tn,a+Tt9n+Tn.b)> - signal + noise
n=1

Maximize channel gain:

Achieved when:
Tna T Tg, T Tpp = Tg

N
\/’[_)e—jznfc(’fd) + Z /anﬁnyne_jznfc(fn,a+70n+7n,b)
n=1

2

<

N

Vo + Z V@ Bn¥n

n=1

Minimum positive delay solution:

Tg, = Tq — (Tn’a + Tn,b) +

integer

fe

2




Basic Performance Benefit

Case 1: —100 dB

Case 2: —75 dB
Transmitter Q\ ------------------------------ :,. Receiver
_75dB . .~_75dB
RIS
@

Transmit power: 10 mW per 20 MHz

RIS is Particularly Helpful
When direct path is relatively weak

(00)

Spectral efficiency [bit/s/Hz]

o

(o))

AN

)\

—— With RIS

- = Baseline

0 2000 400 600 800

Number of elements



WHAT ARE GOOD USE CASES?



Alternative Technologies

Deploy more base stations
* Require power and backhaul infrastructure

* Inter-cell interference

Utilize conventional relays
« Half-duplex operation, involve higher layers
« Example: Decode-and-forward

Use new building materials
* Thermal insulation is primary goal

+ Passive materials will not beamform in right direction

v



Comparison: SNR Maximization 10|

Object

~ ]
Y

Transmitter

RIS or
DF relay

Large surfaces are needed
to beat an elementary DF relay

Reference:

[R1] O. Ozdogan, E. Bjérnson, E. G. Larsson, “Reconfigurable
Intelligent Surfaces: Three Myths and Two Critical Questions”

26

Receiver

End-to-end SNR

10% ¢ 51 pam
_.--" Same SNR
G
10° Same rate 1
— — DF relay| |
—RIS
10_5 _3‘ “ww_zw wwmw-‘l\ L 10 umx1 ; Hmmz‘ 5
10 10 10 10 10 10 10

Surface area [m?]



Improving Channel Properties

_ 18
Receiver
' 16
E 14
~
<z
Transmitter 312
N elements F-vc;
D‘j 10 [

Two antennas at each device
Line-of-sight channels: Rank 1

Improve propagation conditions
More than just SNR gain!

Reference:

[R2] O. Ozdogan, E. Bjérnson, E. G. Larsson, “Using Intelligent Reflecting
Surfaces For Rank Improvement in MIMO Communications”

27

| |=¢- RIS: Maximize SNR

—— Only direct path

H=0 o=

—e— RIS: Maximize capacity Rank improvemen i

- ¥

‘of?

Comparable with
conventional technology

20 40 60

80

Number of elements (N)

100



Reconfigurability is Complicated But Doable

An RIS is blind!

RIS

RIS controller

3) Feedback
of preferred
configuration

-
- S~

-
44444

2) Switching between .
different configurations 1) Repeated pilot

transmission

2b) Solve optimization problem




Is a Reconfigurable Wireless World Possible?

Easy to say:

« Conventional technology:
Only control transmitter and receiver

* RIS controls the-entire propagation
A

| |
some minor parts of the

RIS characteristics

Maybe a cost and energy efficient alternative
Well suited to improve channel properties:
ERERRESRMESEL  SeESEESE) - Increased MIMO rank

Macro diversity (large surface)
L2

i Particularly useful above 100 GHz?
An active MIMO array can do o _
anything that an RIS can do! - Great research topic in academial



Podcast:

WURELESS

———

Fundamentals of Intelligent Reflecting Surfaces FU U R E

Wireless Future / Communication Systems

YouTube Videos

4 Reconfigurable intelligent surfaces: Myths and realities
2 { [ \ireless Future / Communication Systems
(VT 1220
p PLAYALL
- ‘ -~ 48 A Programmable Wireless World With Reconfigurable Intelligent Surfaces

Intelligent reflecting surfaces for 3
6G

5videos * 1,361 views * Last updated on Jan 4, 2021

Wireless Future / Communication Systems

Communication Using Reconfigurable Intelligent Surfaces: Fundamentals and
Recent Insights

Wireless Future / Communication Systems

Power Scaling Laws and Near-Field Behaviors of Massive MIMO and
Intelligent Reflecting Surfaces

an w IEEEComSoc

\ .
| Wireless Futqre / SUBSCRIBE
\ Communication Systems 5
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