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Introduction
• Reconfigurable intelligent surface (RIS), vision of a reconfigurable world

Developing a system model 
• Basic signals and systems theory

• Application to model RIS systems
• Optimization of RIS for communication

What are good use cases?
• Compared to alternative technologies

Summary
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INTRODUCTION
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Physics of Wireless Signal Propagation

• Electromagnetic travel at speed of light
• Spreads out in all directions

• Friis’ propagation formula:

Receive power = Transmit power 1
𝐴

4𝜋𝑑!
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Example:  𝐴 = "
#

!
, 𝜆 = 0.1 m (3 GHz)

0.005% received at 1 m   (−43 dB)
0.00005% received at 10 m (−63 dB)

Only a tiny fraction of transmit power is received! H. T. Friis, “A note on a simple transmission 
formula,” IRE, vol. 34, no. 5, pp. 254–256, 1946 



No Direct Path: Even Larger Propagation Losses

5

Wall penetration: 
− 20 dB or more Extra paths



Shaping the Signal Scattering Towards the Receiver
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Reconfigurable 
intelligent surface 

(RIS)

Reconfigurable: Properties can be changed
Intelligent: Real-time programmable/controllable
Surface: Two-dimensional array of scatterers



Reconfigurable Intelligent Surface (RIS)

7 Transmitter User 1

User 2

Means of reconfigurability
1) Tuning impedances
2) Tuning length of delay lines
3) Phase-shifters

One element

Passive patch

Switch
(e.g., diod)

Programmable
controller

A single element makes little difference
Joint effect of many elements is needed



How Large are the Elements?
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Ideal continuous reconfiguration

Discretized reconfiguration
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A Reconfigurable World
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Improved indoor coverage

Mitigate shadow fading

Protect against eavesdropping

RIS as a whole can control
• Directivity of scattered signal
• Signal absorption
• Polarization



Different People Use Different Terminology
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DEVELOPING A SYSTEM MODEL
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Introduction to Signals and Systems

• Communication channels are systems/filters:
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𝑥!"(𝑡) 𝑦!"(𝑡)

𝑓,0 𝑓

𝑋!" 𝑓
𝑌!"(𝑓)

𝐵

Linear-time invariant:
Impulse response

ℎ"!(𝑡)
= ℎ!" ∗ 𝑥!" 𝑡 = 3

#

$#
ℎ!" 𝑢 𝑥!" 𝑡 − 𝑢 𝑑𝑢

𝑥!"(𝑡)

𝑦!" 𝑡 = 𝜌%𝑥!" 𝑡 − 𝜏% + 𝜌&𝑥!" 𝑡 − 𝜏& + 𝜌'𝑥!" 𝑡 − 𝜏'

Impulse response: ℎ"! 𝑡 = 𝜌%𝛿 𝑡 − 𝜏% + 𝜌&𝛿 𝑡 − 𝜏& + 𝜌'𝛿 𝑡 − 𝜏'



Complex Baseband Representation

• Communication theory is developed for the baseband

• Connection:  𝑋!" 𝑓 = # $%$( &#∗ %$%$(
'

,  𝑌!" 𝑓 = ( $%$( &(∗ %$%$(
'
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𝑓,0 𝑓

𝑋!" 𝑓
𝑌!"(𝑓)

𝐵

0 𝑓,

𝑋 𝑓
𝑌(𝑓)

𝐵/2

𝑓

Downshifting

Real passband Complex baseband

𝑥(𝑡) 𝑦(𝑡) = 3
#

$#
ℎ 𝑢 𝑥 𝑡 − 𝑢 𝑑𝑢

Linear-time invariant:
Impulse response

ℎ(𝑡)

Down-shifted channel:
ℎ 𝑡 = ℎ;< 𝑡 𝑒=>!?@!A



Analyzing Reconfigurable Intelligent Surface
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End-to-end impulse response:
ℎ;< 𝑡 = ℎB,;< 𝑡

+G
DEF

G

𝑏D,;< ∗ 𝜗D,;D;I" ∗ 𝑎D,;< (𝑡)

Conventional channel models for 
𝑎D,;<, 𝑏D,;<, ℎB,;<

RIS control variables 𝜃F, … , 𝜃G in 
𝜗D,;D;I"



How Will an RIS Element Filter the Signal?
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Example: Metal patch with tunable capacitance 𝐶*
Reflection coefficient:

𝑍* 𝐶*, 𝑅* − 𝑍+
𝑍* 𝐶*, 𝑅* + 𝑍+

Reference: S. Abeywickrama, R. Zhang, Q. Wu, and C. Yuen, 
“Intelligent reflecting surface: Practical phase shift model and 
beamforming optimization,” IEEE Trans. Commun., 2020.



How To Transmit Data?

• Pulse amplitude modulation:

𝑥 𝑡 =$
)

𝑥 𝑚 𝑝 𝑡 −
𝑚
𝐵

• Transmit discrete sequence: 𝑥 𝑚 , 𝑚 = integer

• Example: 𝑝 𝑡 = 𝐵sinc 𝐵𝑡
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𝑥 0 = 1

𝑥 1 = 2

𝑥 2 = −1

Sampling of received signal 𝑦 𝑡 = 𝑥(𝑡):

𝑦
𝑘
𝐵

= 𝑥
𝑘
𝐵

=G
O

𝑥 𝑚 𝑝
𝑘 −𝑚
𝐵

= 𝑥[𝑘]

Use a pulse-form 𝑝(𝑡) satisfying the Nyquist criterion:

𝑝 )
*

= 0 for integer 𝑚 ≠ 0 and non-zero for 𝑚 = 0



Reception with Channel and Noise

• Received signal (with Gaussian noise):
𝑦 𝑡 = ℎ ∗ 𝑥 𝑡 + 𝑤(𝑡)

1. Filter using 𝑝 𝑡 = 𝐵sinc 𝐵𝑡 :

𝑧 𝑡 = 𝑝 ∗ 𝑦 𝑡 =G
O

𝑥 𝑚 𝑝 ∗ ℎ ∗ 𝑝 𝑡 −
𝑚
𝐵

+ 𝑝 ∗ 𝑤 (𝑡)

2. Sample received signal:

𝑧
𝑘
𝐵

=$
#

𝑥 𝑚 𝑝 ∗ ℎ ∗ 𝑝
𝑘 − 𝑚
𝐵

+ 𝑝 ∗ 𝑤
𝑘
𝐵
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Complex Gaussian
noise 𝐶𝑁(0, 𝑁+)

Effective pulse
function

Narrowband channel: ℎ ≈ constant @ δ(𝑡 − 𝜏) in the band, Nyquist criterion satisfied
𝑧[𝑘] = constant @ 𝑥 𝑘 + Gaussian noise

Call it 𝑧[𝑘]



Putting the Pieces Together: Narrowband Channels

• Direct channel: ℎ+,!" 𝑡 = 𝜌𝛿 𝑡 − 𝜏+ → ℎ+ 𝑡 = 𝜌𝑒%-'.$(/𝛿 𝑡 − 𝜏+

• Related to element 𝑛: 𝑎0,!" 𝑡 = 𝛼0𝛿 𝑡 − 𝜏0,1 → 𝑎0 𝑡 = 𝛼0𝑒%-'.$(/𝛿 𝑡 − 𝜏0,1

𝜗0,!" 𝑡 = 𝛾0𝛿 𝑡 − 𝜏2, → 𝜗0 𝑡 = 𝛾0𝑒%-'.$(/𝛿 𝑡 − 𝜏2,

𝑏0,!" 𝑡 = 𝛽0𝛿 𝑡 − 𝜏0," → 𝑏0 𝑡 = 𝛽0𝑒%-'.$(/𝛿 𝑡 − 𝜏0,"
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End-to-end discrete-time system model:
𝑧 𝑘

= 𝜌𝑒=>!?@!U$ +G
DEF

G

𝛼D𝛽D𝛾D𝑒=>!?@! U",&VU'"VU",( 𝑥[𝑘] + Noise

Direct path Joint amplitude loss Joint delay
Tunable!



OPTIMIZING COMMUNICATION 
PERFORMANCE
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Maximizing Performance Without a Direct Path
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Received signal without direct path:

𝑦 = G
DEF

G

𝛼D𝛽D𝛾D𝑒=>!?@! U",&VU'"VU",( ⋅ signal + noise

Signal processing problem:
Maximize the signal-to-noise ratio

Channel gain:

!
!"#

$

𝛼!𝛽!𝛾!𝑒%&'()3 *4,5+*64+*4,7
'

≤ !
!"#

$

𝛼!𝛽!𝛾!

'

Cauchy–Schwarz inequality

Achieved when:
𝜏D,W + 𝜏I" + 𝜏D,<
= constant

≈ 𝑁'𝛼𝛽𝛾

𝜏)! = max
#

𝜏#,* + 𝜏#,+ − 𝜏,,* + 𝜏,,+
Minimum positive delay solution:



Example: Synthesizing Surface Shapes
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1: Normal reflection 2: Anamolous reflection
(focus at infinity)

3: Signal focusing
(closer than infinity)

Varying phase delay profile
along the surface

Beamforming:
Toward point/direction



Maximizing Performance With a Direct Path

22

Received signal with direct path:

𝑦 = 𝜌𝑒=>!?@!U$ +G
DEF

G

𝛼D𝛽D𝛾D𝑒=>!?@! U",&VU'"VU",( ⋅ signal + noise

Maximize channel gain:

𝜌𝑒%&'()3 *8 +!
!"#

$

𝛼!𝛽!𝛾!𝑒%&'()3 *4,5+*64+*4,7
'

≤ 𝜌 +!
!"#

$

𝛼!𝛽!𝛾!

'

Achieved when:
𝜏D,W + 𝜏I" + 𝜏D,< = 𝜏B 𝜏)! = 𝜏- − 𝜏,,* + 𝜏,,+ +

integer
𝑓.

Minimum positive delay solution:



Basic Performance Benefit
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Transmitter

−75 dB

Receiver

RIS

Transmit power: 10 mW per 20 MHz

RIS is Particularly Helpful
When direct path is relatively weak

−75 dB

Case 1: −100 dB
Case 2: −75 dB

0 200 400 600 800 1000
0

2

4

6

8



WHAT ARE GOOD USE CASES?
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Alternative Technologies

Deploy more base stations
• Require power and backhaul infrastructure
• Inter-cell interference

Utilize conventional relays
• Half-duplex operation, involve higher layers
• Example: Decode-and-forward

Use new building materials
• Thermal insulation is primary goal
• Passive materials will not beamform in right direction
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(a) Energy focusing. (b) Energy nulling.

User 1

Destructive reflection

Constructive reflection

Information signalInformation signal

User 2

(a) Energy focusing. (b) Energy nulling.

User 1

User 1

Information signal

IRS controllerIRS controllerIRS controller IRS controllerIRS controllerIRS controller

Transmitter
Transmitter

Destructive reflection

Constructive reflection
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Reference:
[R1] Ö. Özdogan, E. Björnson, E. G. Larsson, “Reconfigurable 
Intelligent Surfaces: Three Myths and Two Critical Questions”

RIS or 
DF relay

Transmitter

ReceiverObject

Same SNR

Same rate

Large surfaces are needed
to beat an elementary DF relay

Comparison: SNR Maximization



Improving Channel Properties
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Reference:
[R2] Ö. Özdogan, E. Björnson, E. G. Larsson, “Using Intelligent Reflecting 
Surfaces For Rank Improvement in MIMO Communications”

RIS
𝑁 elements

Transmitter

Receiver

Two antennas at each device
Line-of-sight channels: Rank 1 Comparable with 

conventional technology

Rank improvement

Improve propagation conditions
More than just SNR gain!



Reconfigurability is Complicated But Doable
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YouTube video from University of Surrey

An RIS is blind!

2b) Solve optimization problem



Is a Reconfigurable Wireless World Possible?

Easy to say: 

• Conventional technology:
Only control transmitter and receiver 

• RIS controls the entire propagation 
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some minor parts of the 

An active MIMO array can do 
anything that an RIS can do! 

RIS characteristics
• Maybe a cost and energy efficient alternative
• Well suited to improve channel properties:

• Increased MIMO rank
• Macro diversity (large surface)
• …?

• Particularly useful above 100 GHz?
• Great research topic in academia!



YouTube Videos
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Podcast:
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Questions?


