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Wireless Sensor Networks Design Challenge

• Minimize energy consumption  Maximize lifetime

– Example: Make nodes sleep as much as possible, censor node 

transmissions 

• But: More energy efficiency  Worse performance

– Example: Increase in mean square error, latency

P
e
rf

o
rm

a
n
c
e

Energy efficiency or lifetime



Outline

• Ordered transmission scheme (OTS)

• Two twists

– Correlated observations

– Energy harvesting WSNs

• Key takeaways



Binary Hypotheses Testing

• Two hypotheses

– H1: Intruder present, pollution present, primary on, cancer present

– H0: Intruder absent, pollution absent, primary off, cancer absent 
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Diverse applications

• Spectrum sensing

• Environmental monitoring

• Military surveillance

• Healthcare



Background: Optimal Detection Rule

• Error-optimal decision rule

• Log-likelihood ratio (LLR)
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Example 

} Gaussian signals 

with different variances

→ LLR is just the measured energy 



To Make Distributed Detection Work

• Every node sends its LLR to fusion node

• Fusion node sums up all LLRs and decides 

– Needs N transmissions with N sensors
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Decide H0 Decide H1

Sum LLRs



Ordered Transmission Scheme



Ordered Transmissions [Blum & Sadler 2008]

• Note: Decision statistic is separable in local LLRs

• Idea: Nodes transmit in descending order of |LLR|

• Node conveys its LLR in its packet when it transmits

• After each transmission, fusion node can terminate round

L[1]Best [1] time

Second best [2]
L[2]

Third best [3] L[3]

[i]: Index of ith best node (Very useful, compact notation)



OTS is Energy-Efficient and Error Rate Optimal  

Provably reduces average number of transmissions by at 

least 50% with same error rate as optimal scheme

• Intuition: Two reasons why OTS succeeds 

– Most informative measurements come earlier

– Ordering provides information about measurements that are yet to 

be received

Yet to be 

received LLR
Last received 

LLR



Decision Rules: Illustration 

1. After receiving node [1] LLR: 

Decide H0 Decide H1Wait Sum received 

LLR

Decide H0 Decide H1Wait Sum received 

LLRs

2. After receiving nodes [1] and [2] LLRs: 

Decide H0 Decide H1Wait Sum received 

LLRs

3. After receiving nodes [1], [2], and [3] LLRs: 



Decision Rules Derivation: Basic Idea 

• Given: k best nodes transmitted. 

• Idea: Bound yet-to-be-received LLRs

• Implies bound on sum LLR 

(Upper bound)

• If upper bound < , decide H0

• If lower bound > , decide H1

(Lower bound)

Decide H0 Decide H1

Sum LLRs



OTS is Practically Implementable

1. Each node sets a timer depending on its |LLR|

2. Node transmits a packet when its timer expires

[Bletsas et. al., TWC 2006][Shah, Mehta, Yim, TCom 2010]

Timer

|LLR|

|||

x

x
x

[1][2][3]

Key idea: Mapping is monotonically non-increasing

 First timer to expire will be of the best node 



Twist 1: Spatially Correlated 

Measurements



A More General Setting

Independent observations

• Node measurements are 

independent conditioned 

on hypothesis

Correlated observations

• Node observations are 

correlated conditioned on 

hypothesis

– Ex.: Dense deployments of 

sensor nodes 



Example: Optimal Decision Rule

• Optimal decision rule 

• For Gaussian statistics, decision rule reduces to

• Separability exploited by OTS is lost due to cross terms



Limited Literature on Correlated Case

• Work by Blum’s group

– Decomposable Gaussian graphical models

– Can be decomposed into maximal cliques with common nodes

– Maximal clique → Cluster, Any node in clique → Cluster head

– Decision statistic is separable across cluster heads 

[Figure source: Zhang et al. TSP 2019]



Issues

• Applies only to decomposable graphical models

• Graph should consist of several smaller maximal cliques 

– Requires a sparse inverse correlation matrix to be effective

– Not true in general

• Handles shift-in-mean or shift-in-covariance, not both

• Savings are only in the cluster head transmissions

– Other nodes always transmit to their cluster heads 



Problem Development

General case Special cases

• Shift-in-covariance

• Shift-in-mean 



OTS: Three Pillars and Mathematical Principle

OTS

Metric

Payload
Decision 

rule

Mathematical principle

• Previously: Decision statistic is separable

• Now: Use decision statistic bounds that are separable



Shift-in-Covariance Detection 

• Optimal decision rule: 

CovShift
-OTS

Metric 
|zi|

Payload

zi

Decision 
rule

CovShift-OTS

• Metric: |zi|

• Payload: zi

(Mean-shifted measurement)



Decision Rules: Eigenvalue Based Approach

• Lower and upper bounds on decision statistic

• In terms of received and yet-to-be-received measurements

• Ordering gives information about yet-to-be-received 

measurements

• Can derive lower and upper bounds on decision statistic in 

terms of received payloads



Refined Approach: Bound Sub-Matrices 

• Write the decision statistic in terms of received and yet-to-

be-received measurements and their cross-terms

• Bound only unknown terms

Received measurements 

Yet-to-be-received measurements [Unknown] 



Shift-in-Mean Detection 

• Optimal decision rule: 

MeanShift
-OTS

Metric  
|si yi|

Payload

yi

Decision 
rule

MeanShift-OTS

• Metric: wi = |si yi |

• Payload: yi



General Case: Correlation-Aware OTS

CA-OTS

• Metric: |yi |

• Payload: yi

• Bounds are more involved, but 

can be worked out

CA-OTS

Metric 
|yi|

Payload

yi

Decision 
rule



Product Correlation Model [Beaulieu]

• Subsumes uniform correlation model [Mallik]

• Different pairs of nodes have different correlation 

coefficients



Upper Bound: Ave. Number of Transmissions

• Shift-in-covariance: CovShift-OTS with 

– Average number of transmissions → 1 as SNR (1/0) → 

• Shift-in-mean: MeanShift-OTS with

– Average number of transmissions → N/2 as  → 

(Product correlation model)

Uniform correlation model with equal priors



Performance Benchmarking: General Case 

• Markedly fewer transmissions than OTS

[Setting: H1: Product correlation model with non-identical sensors with 

mean [1 1 … 1], H0: Uniform correlation model with mean 0]

Number of sensors 

A
ve

ra
g

e
 n

u
m

b
e
r 
o
f 
tr

a
n

s
m

is
s
io

n
s



Shift-in-Covariance: Role of Metric

• Using refined metric reduces average number of 

transmissions even further

[Setting: H1: Product correlation model, H0: noise]

Signal-to-noise ratio (dB)  
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OTS is Not …

• Reduced complexity detection

– No projection of observed vector y onto a basis possible since no 

node knows the entire y

• Sequential detection 

– Similarity: Compare accumulated decision statistic with two 

thresholds

– But, nodes transmit in a random order

– Often thresholds are designed assuming there are enough nodes

• Wald’s rules



Twist 2: In Energy Harvesting Wireless 

Sensor Networks



Energy Harvesting Wireless Sensor Networks

• Nodes harvest energy from the 

environment 

– Use renewable energy sources

• Can store harvested energy

• Use harvested energy for sensing, 

processing, and communication
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RF energy harvester 

(ZEN lab @ IISc)Piezoelectric effect harvester
Mechanical energy harvester 

(Enocean)



• Energy harvesting nodes occasionally run out of energy

– Energy harvested is random 

• Missing transmissions can mess up the sequence of 

ordered transmissions!

OTS Breaks Down in EH WSNs!

L[1]

L[3]

[1]

[2]

[3]

Energy sufficient

Energy deficient

Energy sufficient

time

?
Fusion node does 

not know if this is 

the second best 

or third best node

Missed transmission



New Scheme for EH WSNs

• Fix: If low on energy, transmit a low-energy pilot/tone

– Needs much less transmit energy than a data packet

– Have a small, separate energy reserve for transmitting pilots

• Fusion node detects pilot and waits for next measurement

L[1] 

L[3]

[1]

[2]

[3]

time
Energy sufficient

Energy deficient

Energy sufficient

Low-energy pilot



General System Model

• Measurement at sensor node i Fusion 

node
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• Assumption: LLRs are bounded 

– Easily holds in practice

• Measurements conditioned on the hypotheses are 

mutually independent 

– Future work: Extension to spatially correlated model



Specialization: Gaussian Statistics 

• Measurement at sensor node i Fusion 

node
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• Measurements are truncated

– Reason: Readings of a sensor fall within a range  

• Log-likelihood ratio at EH sensor node i



Gaussian Model: Equivalent Hypothesis Test

where 

• Bayesian hypothesis test                    is equivalent to

• New metric:              

– No need for taking absolute value of LLR

– Advantage: Removes sign ambiguity 

– Bounded between 0 and 2



New Decision Rules for EH WSNs

Missed 

LLR(s)

Next LLR 

received
Last LLR 

received



Average Number of Transmissions Comparison

• NN-EH-OTS: Requires far fewer transmissions than LL-

EH-OTS and unordered transmissions scheme (UTS)

– Removing sign ambiguity in metric helps!

SNR = 10 dB

Pr(H1) = 0.1
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Error Probability Comparison 

• NN-EH-OTS even reduces the error probability compared 

to unordered transmissions (UTS)

• Surprising double benefit of ordering for EH WSNs

SNR = 10 dB

Pr(H1) = 0.1
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Capturing Time Dynamics

No longer pre-specify transmission miss probability

Physically realistic simulation that tracks battery evolution of 

each EH node and the coupling between their transmissions 

• Energy harvesting model: Energy harvested in a round 

with probability p

• Energy storage model: Battery with a finite capacity 

• Transmission model: E Joules required to transmit packet, 

qE required to transmit a pilot (q << 1)



NN-EH-OTS vs. Sequential Detection & UTS

• Error probability is now the key performance 

– Average number of transmissions and transmission miss probability 

are both scheme-dependent

• Much lower error probability than UTS, sequential detection

Number of sensors 
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Conclusions

• OTS saves energy without compromising on error rate

– Key ideas: Separability of decision statistic, and timer scheme

– Three pillars: Metric, payload, and decision rule

• OTS needs to be redesigned in energy harvesting 

sensor networks due to missing transmissions 

– Reduces average number of transmissions and also error rate!

• OTS needs to be redesigned for correlated 

measurements

– Key idea: Separability of bounds on the decision statistic

– Reduces average number of transmissions substantially

Ordering is a powerful MAC layer technique to improve 

performance of the physical layer 



For More Details: ece.iisc.ac.in/~nextgenwrl
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But, There is a Catch!

• Timer packets can collide in a wireless channel

– Scheme can fail to select the best node or reveal proper order

time
x x x

0

Favourable outcome

[1] [2] [3]

time
x x x

0

Unfavourable outcome: Scheme fails!

Collision

[1][2] [3]Metric

Timer

Metric-to-timer mapping

Timer = 1/Metric

[1][2][3]

xxx

• Success probability depends on metric-to-timer mapping



Research Question: Optimal Timer Mapping?

Timers can expire only at 0, Δ, 2Δ,…, NΔ

(Mapping looks like a stair case with uneven lengths)
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Question: Which timer mapping maximizes the 

probability of selecting the best node?



How Much Energy Can Be Harvested?

[Source: EE Times, Boisseau and Despesse, 2012]

• Ballpark range of energy harvesting: 10-100 µW/cm3



New Decision Rules: Formal Statement

• When LLRs from best k nodes [1],…,[k] received:

Decide H0 Decide H1Wait for next LLR
Sum received 

LLRs



Order Statistics: Track Missed Transmissions

• Missing transmissions: [m1], [m2],…,[mj]

– i.e., m1th best node, m2th best node,…, mjth best node lack energy 

• For lth missing transmission [ml] 

– pl: Last LLR received

– nl: Next LLR received

Boundary cases:

Missed 

LLR(s)

Next LLR 

received
Last LLR 

received



Result: New EH-OTS Decision Rules

• If EH node [k] last transmitted and j transmissions missed:

Achieve same error probability as having all nodes transmit 

(including the missing ones)!

Boundary cases:

• No more energy-sufficient nodes remain: Decide based on received 

metrics from energy-sufficient nodes (similar to UTS)

• No nodes transmit: Declare hypothesis with higher prior probability


