
Unit 9: Compression - 1 (Entropic Compression)

A Variable length source codes

We begin with the most basic problem in compression: Given a symbol X ∈ X generated

using a known pmf P , what is the minimum number of bits required to store it?

Earlier we formulated a fundamental quantity Lε(P) which represents this minimum

number of bits for fixed length codes, namely codes that map each symbol to a binary

sequence of the same length. We saw that this quantity is roughly H(P) (a bound which

was asymptotically precise). We used this notion to motivate the definition of security. But

the scheme we formulated was rather naive. The decoder formed a guess list (comprising

symbols x such that − logP (x) < λ for an appropriately chosen λ), the encoder sent

a random hash F (x) and the decoder declared the x̂ element in its guess list for which

F (x̂) = F (x).

The use of hashing as a tool for compression is prevalent in cache memories and

databases (we will visit these topics in Unit 11), but in its basic form, the compression

scheme described above is not very practical. Instead, we seek variable length codes where

symbols are mapped to binary sequences of possibly different lengths. We remark that

variable length codes are not suitable for many protocols, but clever engineering (using

things like bit packing) is often used to convert variable length codes to fixed length codes.

A variable length source code for a source X ∈ X with pmf P consists of an encoder

mapping e : X → {0, 1}∗ and a decoder mapping d : {0, 1}∗ → X . The average length of

the source code (e, d) is given by
∑

x P (x)|e(x)|, where |b| denotes the length of a binary

1

vector b ∈ {0, 1}∗. Finally, the probability of error for the source code (e, d) which estimates

X as X̂ = d(e(X)) is given by P (X 6= X̂).

The fundamental quantity of interest for us is the minimum average length of a source

code with probability of error less than ε, denoted by Lε(P). Namely,

Lε(P) = min

{∑
x

P (x)|e(x)| : source code (e, d) s.t.P (X 6= d(e(X))) ≤ ε

}
.

When ε = 0, we abbreviate L(P) = L0(P). Note that while L(P) = L0(P) = log |X |, the

quantity L(P) is nontrivial.

We saw earlier that a basic benchmark for minimum length Lε(P) for fixed length codes

is roughly H(P). The next result shows that roughly the same benchmark holds for Lε(P).

Theorem 1. For a source X over a discrete alphabet X and ε ∈ [0, 1), we have

Lε(X) ≥ H(X)− log eH(X)− ε log |X | − h(ε).

Proof. For any source code (e, d) with probability of error less than ε, denote X̂ = d(e(X)).

Then, we have

H(P) = H(X) ≤ H(X|X̂) +H(X̂) ≤ ε log |X |+ h(ε) +H(X̂),

where the inequality on the right-side is by Fano’s inequality. Next, denoting by (C1, ..., CN)

the random codeword e(X) of random length N . We have

H(X̂) ≤ H(CN) = H(N) +H(CN |N) ≤ H(N) + E [N] ,

where in the inequality we used H(CN |N = n) ≤ n for every n ∈ N. We now take recourse

a property we saw earlier:

Geometric distribution maximizes entropy among all N-valued random variables with

2

a given expected value. Specifically, for a random variable Y ∈ N such that E [Y] = α, we

have (see Unit 6)

H(Y) ≤ α logα− (α− 1) log(α− 1).

Further, first-order Taylor’s approximation gives x log x−(x−1) log(x−1) ≤ (1+lnx)/ ln 2,

whereby for an N-valued Y with E [Y] = α we must have

H(Y) ≤ logα+ log e.

Combining all the bounds above, we get

H(P) ≤ E [N] + logE [N] + ε log |X |+ h(ε) + log e.

Finally, we note that if y < x + log x + c, then y − log y − c < x. Suppose not and

x ≤ y − log y − c. Then, y < y − log y + log(y − log y − c) which implies y < y − log y − c,

a contradiction. Therefore, we must have

E [N] ≥ H(P)− logH(P)− ε log |X | − h(ε)− log e,

which completes the proof.

B Prefix-free codes and Kraft’s inequality

We saw earlier in the course a code that attains L(P). It simply arranges the symbols in

decreasing order of their probabilities and assigns binary sequences of increasing lengths

as codewords to the symbols. It is easy to show that this scheme has average length less

than H(P). However, this is just a theoretical construction and is not at all relevant for

practical deployment.

A more practical class of codes are prefix-free codes where no codeword is a prefix

3

of another. For a concrete example, consider Table 1 with examples of variable length

codes. Which of these codes is a prefix-free codes? Prefix free codes have the property

that a (x1, ..., xk) of the sequence (x1, ..., xn) coded as (c1, ..., cn) can be recovered from

(c1, ..., ck), even without the knowledge of k. Motivated by this property, prefix-free codes

are sometimes called instantaneous codes (short for instantaneously decodeable codes).

Code 3 in Table 1 is interesting. It is not prefix-free, but it satifies the property above but

when k is known. Such codes are called uniquely decodeable codes.

Alphabet code1 code2 code3 code4

a 00 0 00 0
b 01 01 10 10
c 10 10 11 110
d 11 010 110 111

Table 1: Which of these codes are prefix-free codes?

The minimum over average lengths of prefix-free codes (e, d) (with 0 probability of

error) is denoted by L
p
(X). Note that prefix-free property is relevant in practice when we

are compressing a sequence of symbols and not a single symbol.

The next result gives a simple characterization of the lengths of prefix-free codes.

Theorem 2 (Kraft’s inequality). Given a prefix-free code which assigns a codeword of

length l(x) to symbol x ∈ X , the following bound holds:

∑
x∈X

2−l(x) ≤ 1. (1)

Conversely, for every sequence {l(x) ∈ N ∪ {0}, x ∈ X} satisfying Kraft’s inequality (1)

there exists a prefix-free code which assigns to each symbol x a codeword of length l(x).

Thus, lengths of codewords of a prefix-free code are simply characterized by the rela-

tion (1). Before we proceed and prove Theorem 2, we note an important consequence of

satisfying Kraft’s inequality.

4

Lemma 3. Given a pmf PX on X and a code which assigns a codeword of length l(x)

to the symbol x ∈ X , suppose that l(x), x ∈ X , satisfy Kraft’s inequality (1). Then, the

average length of the code is at least H(X)

Proof. The average length of a code with lengths satisfying Kraft’s inequality satisfies

la(C) =
∑
x∈X

PX (x) l(x)

=
∑
x∈X

PX (x) log
1

2−l(x)

=
∑
x∈X

PX (x) log
PX (x)

2−l(x)
+H(X)

≥ log
1∑

x 2−l(x)
+H(X)

≥ H(X),

where the last bound holds using Kraft’s inequality.

Thus, prefix-free codes can only be worse in average length than the best variable length

codes. But we will soon see that not by much.

We prove Theorem 2 by providing two generic constructions.

Binary-tree representation of prefix-free codes. A binary tree is a convenient picto-

rial representation of binary sequences. We first describe a complete binary tree. Starting

from a fixed node, the so-called root, we obtain nodes at depth 1 by drawing edges to

two nodes below it, one on the left of the root and the second on the right, referred to

respectively as the left- and the right-child of the root. The nodes at depth 2 are obtained

similarly by treating each node of depth 1 as a root and repeating the process described

above. We proceed this way to obtain nodes of depth d. This gives us the complete binary

tree of depth d; the nodes which do not have any children, namely the nodes at depth d,

are called the leaves of the tree. Clearly, there are 2d leaves in a complete binary tree.

5

Note that the nodes below a node of depth l in a complete binary tree of depth d

themselves form the root of the d − l-depth complete binary tree below them; we refer

to this tree as a sub-tree of the original tree. In general, a binary tree is obtained by

starting with a complete binary tree and removing all the nodes below them; this process

will remove 2d−l leaves from the original complete tree when a node at depth l removed.

Also, note that there is a one-to-one map from the set of binary sequences of length less

than or equal to d and the nodes of a complete binary tree of depth d. Specifically, each

node of the tree can be uniquely represented by the path from root to that node, which in

turn can be represented as a binary sequence by labeling each edge to the left-child with

a 0 and that to a right-child with a 1. Our proof relies on representing the codewords of

a prefix-free code on a binary tree using this labeling. The key observation here is that a

binary sequence c of length ≤ d is a prefix of another binary sequence c′ of length ≤ d if

and only if the node corresponding to c′ in the complete tree representation above lies in

the sub-tree with the node corresponding to c as the root.

Proof of Theorem 2. Suppose l1 ≤ l2 ≤ ... ≤ lm denote the sorted lengths of the prefix-

free code (this proof works when lm <∞). We first place this code over a complete binary

tree of depth lm using the labeling described above. Next, we “prune” the tree so formed

by removing all the nodes below each node corresponding to a codeword. Since our code

is prefix-free, none of the codeword nodes is removed in our procedure. We finally end-up

with a binary tree where each codeword is a leaf node. Note that the number of leaf nodes

removed corresponding to a codeword of length li is 2lm−li . Since there were 2lm leaves to

begin with, we must have
m∑
i=1

2lm−li ≤ 2lm ,

which is equivalent to Kraft’s inequality. Thus, the codeword lengths for a prefix-free code

satisfy Kraft’s inequality.

For the converse, we just “invert” the proof above. Given a set of lengths l1 ≤ l2 ≤

... ≤ lm satisfying kraft’s inequality, consider the complete binary tree of depth lm. Our

6

construction proceeds iteratively by identifying the codewords corresponding to l1, ..., lm.

At the ith step, we start with a leaf of the original complete binary tree of depth lm and

identify a node at depth li above it, i.e., we move from this leaf to the root and stop when

we are at depth li. We remove the sub-tree with this node as its root. This results in

the removal of 2lm−li leaves of the original tree. Next, we proceed to the next available

leaf and repeat the process above. Note that the removed sub-tree at each step does not

contain a codeword since otherwise the length of the removed codeword will be greater

than the current codeword; this cannot be the case since we have assumed that the lengths

are sorted in a nondecreasing order. This process can continue as long as the number of

leaves removed till step i is less than the total number of leaves. That is, as long as

i∑
j=1

2lm−lj ≤ 2lm .

Since the lengths satisfy Kraft’s inequality, the condition above continues to hold for

1 ≤ i ≤ m. The desired prefix-free code is given by the binary sequences corresponding to

the leaf nodes of the tree so obtained.

Interval representation of prefix-free code. Our second proof represents codewords of a

prefix-free code by non-intersecting intervals which are subset of [0, 1]. Specifically, given

c = (c1, ..., cl) ∈ {0, 1}l, let Ic = [0.c1c2...cl, 0.c1c2...cl + 2−l) where 0.c1c2...cl denotes the

corresponding binary number. For example, 0.1 is 1/2, 0.11 is 1/2+1/4, and so on. We first

prove that the intervals Ic, c ∈ C, corresponding to a prefix-free code C are non-intersecting.

Therefore, since each interval is in [0, 1], the sum of the lengths of the interval is less than

1, which gives Kraft’s inequality. It only remains to prove the non-intersection claim. To

that end, note that the interval Ic consists of all x ∈ [0, 1] starting with 0.c1...cl since x ∈ Ic

iff

0.c1...cl ≤ x ≤ 0.c1...cl + 2−l = 0.c1...cl1111

Thus, if x ∈ Ic∩ Ic′ then x must start with 0.c as well as 0.c′, which is a contradiction since

7

the code is prefix free.

Conversely, given lengths l1 ≤ ≤ lm satisfying Kraft’s inequality, we identify code-

words c(1), ..., c(m) of lengths l1, ..., lm, respectively, such that the corresponding intervals

Ici are non-intersecting. By the argument above, such codewords must be prefix-free. The

construction is simple. Let c(1) be the all zero sequence of length l1. For 1 < i ≤ m, let

xi =
∑i−1

j=1 2−lj . Since the lengths satisfy Kraft’s inequality, xi ∈ [0, 1] for all 1 < i ≤ m.

The required codewords are given by binary representations of xi truncated to li most

significant bits. In particular, for 1 < i ≤ m, c(i) is sequence of length li with 1’s at

the l1, l2, ..., li − 1th locations and zero everywhere else. For example, let l1 = 1, l2 = 2,

l3 = l4 = 3. Clearly, these lengths satisfy Kraft’s inequality. Then, the required code

is given by {0, 10, 110, 111}. Note that here, too, it is necessary to have the lengths in a

nondecreasing order.

C Shannon codes

We now show that there exist prefix free code of average length less than H(X) + 1. Note

that in view of Theorem 2 we only need to exhibit codeword lengths which satisfy Kraft’s

inequality and the average length is less than H(X) + 1; the code can be constructed using

the tree based construction or the interval based construction in the proof of Theorem 2.

To that end, we introduce Shannon codes, which actually is a class of codes.

Given a source with discrete alphabet X and pmf PX , a prefix-free code is called a

Shannon code for PX if the codeword lengths l(x) satisfy l(x) = d− log PX (x)e, for each x

in X .

These lengths satisfy Kraft’s inequality since

∑
x∈X

2−l(x) =
∑
x∈X

2−d− log PX(x)e ≤
∑
x∈X

2log PX(x) =
∑
x∈X

PX (x) = 1.

Therefore, by Theorem 2 there exists a prefix-free code with these lengths. Furthermore,

8

the average length of such a code is

∑
x∈X

PX (x) l(x) =
∑
x∈X

PX (x) d− log PX (x)e ≤
∑
x∈X

(− log PX (x) + 1) = H(X) + 1.

Thus, we have shown that for every discrete source with pmf PX

H(X) ≤ Lp ≤ H(X) + 1.

For an example of a Shannon code, consider a source which takes 4 possible values a, b, c, d

with probabilities {1/8, 1/4, 1/2, 1/8}, respectively. For this source, required lengths for a

Shannon code are listed in Table 2. We provide two different codes for these lengths: Code

1 is based on the binary tree construction and code 2 on the interval construction.

For code 1, we start with a complete binary tree of depth 3; c is placed on the node 0,

b on the node 10, a on the node 110 and d on the node 111. Note that it is important to

first sort the lengths for this process to work. For instance, if we assign a to 000 first and

then look for b above the leaf node 001, the process fails.

For code 2, once again we proceed in the nondecreasing order of lengths; c is assigned

to the interval [0.0, 0.1), b to the interval [0.10, 0.11), a to the interval [0.110, 0.111) and d

to the interval [0.111, 1).

Note that both the constructions lead to the same code. However, this is due to the

order we followed in selected the next available leaf in the tree construction. We selected

the available leaf with the least value in binary; a different rule for selecting the next

available leaf will lead to different codes.

D Huffman code: Prefix-free codes of optimal length

We have seen that H(P) ≤ L
p
(P) ≤ H(P) + 1. The exact value of L

p
(P) is attained by

the average length of Huffman code, which we describe now. We represent a Huffman code

9

Alphabet PX (x) l(x) code

a 0.125 3 110
b 0.25 2 10
c 0.5 1 0
d 0.125 3 111

Table 2: An example of a Shannon code.

using the binary-tree representation.

Input: Source distribution P = (p1, ..., pm)

Output: Code C = {c1, ..., cm}.

1. Associate with each symbol a leaf node.

2. while m ≥ 2, do

(i) If m = 2, assign the two symbols as the left and the right child of the root.

Update m to 1.

(ii) Sort the probabilities of symbols in a descending order. Let p1 ≥ p2 ≥ ... ≥ pm

be the sorted sequence of probabilities.

(iii) If m > 2, assign the symbols (m − 1)th and the mth symbols as the left and

the right child of a node. Treat this node and its subtree as a new symbol

which occurs with probability (pm−1 + pm) and associate a leaf with it. Update

m→ m− 1 and P→ (p1, ..., pm−2, pm−1 + pm).

3. Generate a binary code from the tree by putting a 0 over each edge to a left child

and 1 over each edge to the right child.

For illustration, consider our foregoing example once more. The algorithm proceeds as

follows1:

((a, 0.125); (b, 0.5); (c, 0.25)); (d, 0.125))

1The reader can easily decode our representation of the evolving tree.

10

((b, 0.5); (c, 0.25)); (ab, 0.25))

((b, 0.5); (c(ab), 0.5))

(b(c(ab)), 1).

In summary, we have the following code: The average length for this example is 7/4 which is

Alphabet PX codeword

a 1/8 110
b 1/2 0
c 1/4 10
d 1/8 111

Table 3: An illustration of Huffman code.

equal to the entropy. Therefore, the average length must be optimal. In fact, the Huffman

code always attains the optimal average length.

Theorem 4. A Huffman code has optimal average length.

We only provide a sketch of the proof.

Proof sketch. The proof relies on the following observation:

There exists a prefix-free code of optimal length which assigns two symbols with the

least probability to the two longest codewords of length lmax such that the first lmax − 1

bits for the two codewords are the same.

Next, we show the optimality of Huffman code by induction on the number of symbols.

Denote by L(P) the minimum average length of a prefix-free code. Suppose Huffman code

attains the optimal length for every probability distribution over an alphabet of size m−1.

For P = (p1, ..., pm), consider the prefix-free code C of average length L(P) guaranteed by

the observation above. Let LH(P) denote the length of the optimal Huffman code. Then,

L((p1, ..., pm)) ≤ LH((p1, ..., pm))

= (pm−1 + pm) + LH((p1, ..., pm−2, pm−1 + pm))

11

= (pm−1 + pm) + L((p1, ..., pm−2, pm−1 + pm)),

where the previous equality is by the induction hypothesis. On the other hand, by property

of the optimal code C, it also yields a prefix-free code for (p1, ..., pm−2, pm−1+pm) of average

length L((p1, ..., pm))− (pm−1 + pm). But then

L((p1, ..., pm)) ≥ (pm−1 + pm) + (pm−1 + pm) + L((p1, ..., pm−2, pm−1 + pm)).

Thus, by combining all the bounds above, all inequalities must hold with equality. In

particular,

L((p1, ..., pm)) = LH((p1, ..., pm)).

In summary, Huffman code is the optimal prefix-free code and cost us at most roughly

logH(P) + ε log |X | in average length than any variable-length code with probability of

error ε.

12

