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Part 1 of the course, as discussed during the lecture, will be concerned with distribution learning and testing.
We will begin by describing some of the problems that will be addressed in this part of the course.

1 Motivating Examples

Example 1 (learning the bias of a coin). Given a coin that may or may not be fair, how many tosses are
required to

• test if the coin has bias 0.5 (fair) or 0.5 + ✏?

• estimate the bias of the coin to within an accuracy of ✏?

The two questions above are fundamentally di↵erent, with the former being a hypothesis testing problem
and the latter a problem of estimation. However, it turns out that the number of tosses is of the order of 1

✏2

in both cases.

Example 2 (uniformity testing). Given IID1 samples from some probability mass function (pmf) P on the
set [k] := {1, 2, . . . , k}, how many samples are required to test if P is uniform over [k], i.e., P (i) = 1

k , 8i 2 [k],
or ✏-away from the uniform distribution (with respect to some measure of distance between probability

distributions)? We will see that the number of samples here is of the order of
p
k

✏2 . A point of note here is
that the value of k itself is assumed to be known to us.

Example 3 (independence testing). Given samples of a pair of random variables, how many samples does it
take to determine if they are statistically independent? More formally, what is the smallest value of n 2 N,
such that, given IID samples (X1, Y1), (X2, Y2), . . . , (Xn, Yn) with (Xi, Yi) ⇠ PXY , one can determine of
PXY = PX ⇥ PY or if PXY is ✏-away from all product measures?

Example 4 (Gaussian mixture learning). We are given samples from a Gaussian mixture model, i.e.,
Xj ⇠

Pm
i=1 wiN (µi,Ki), 1  j  n, where wi � 0 8i 2 [m], and

Pm
i=1 wi = 1. What is the smallest value of

n such that ((wi,µi,Ki) , i 2 [m]) can be estimated to within some desired accuracy?

2 Formulating the problem: a decision-theoretic framework

• Goal: By observing a sample X ⇠ P✓, ✓ 2 ⇥, (or multiple IID samples) output an estimate ✓̂. The
family of distributions (P✓)✓2⇥ is assumed to be defined over some measure space (X ,F) and the

estimator is some measurable function ✓̂ : X ! ⇥, with2 x 7! ✓̂(x). Let the set of all such estimators
be denoted by E (X ,⇥) . Note that while this only seems to cover the set of deterministic estimators,
but it can be expanded using conditional expectation to include randomized estimators as well.

• Performance evaluation: How does one choose one estimator over another?

– To quantify the performance of estimators, we associate with each a (measurable) Risk or Loss
function r : ⇥⇥⇥ ! R+, with (✓, ✓̂) 7! r(✓, ✓̂).

1
IID stands for “independent and identically distributed.”

2
In more general formulations, it is, in fact, not necessary that the estimate lie within ⇥ itself.
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2 Lecture 1

– Since the observation X is assumed to be drawn from a distribution, r is clearly a random variable
and we define another quantity that we call Average Risk of a given estimator as r✓(✓̂) := E✓r(✓, ✓̂),

and r(✓̂) =
⇣

r✓(✓̂)
⌘

✓2⇥
.

– The Risk region of a given family of distributions is defined asR (P⇥) = c̄o

⇣n

r(✓̂), ✓̂ 2 E (X ,⇥)
o⌘

,

where, given a set A ⇢ Rd
, c̄o(A) is its convex closure.

• An estimator ✓ (also sometimes called a “policy”) is said to be Inadmissible if there exists another
estimator, say, ↵̂ 2 E that is uniformly better than ✓̂, i.e., r✓(↵̂)  r✓(✓̂), 8✓ 2 ⇥. An estimator that is
not inadmissible is called (shockingly) Admissible.

– Heuristically speaking, admissible policies are those that are the best for at least one ✓.

– However, inadmissible policies are not entirely useless. If finding an admissible policy becomes
intractable, one might have to be content with an “approximately optimal” inadmissible policy
(obtained through some iterative optimization, for example).

Since di↵erent estimators might be optimal for di↵erent values of the parameter ✓, it is helpful to have
a single cost against which estimators can be compared. Towards this end, one can define two di↵erent
metrics called the Bayes cost and the Minimax cost as follows.

• Bayesian cost: Define a prior measure ⇡ on ⇥ and let P(⇥) be the set of all such measures. The Bayes
Risk associated with this prior for a fixed policy ✓̂ is defined as R⇡(✓̂) := E✓⇠⇡r✓(✓̂), and

R

⇤
⇡ := inf

✓̂2⇥
R⇡(✓̂) (1)

is the smallest risk for the given prior. A policy/estimator ✓̂ that attains R⇤
⇡, i.e., R⇡(✓̂) = R

⇤
⇡ is said

to be Bayes Optimal for that prior.

Theorem 2.1 (Lucien le Cam). Under some regularity conditions on r, E(X ,⇥) and ⇥, an estimator
is admissible i↵ it is Bayes.

Remark 2.1. The above theorem shows that Bayes optimal policies completely characterize the bound-
ary of R (P⇥) . In practice, for a given problem, prior belief about the parameter and where within ⇥
it might lie can be encoded using ⇡.

• The Minimax cost R⇤ is defined as

R

⇤ := inf
✓̂2E

sup
✓2⇥

r✓(✓̂) (2)

= inf
✓̂2E

sup
⇡2P⇥

R⇡(✓̂) (3)

� sup
⇡2P⇥

inf
✓̂2E

R⇡(✓̂) (4)

Remark 2.2. Often (under the regularity conditions assumed in Thm. 2.1, for instance), the inequality
in (4) becomes an equality, i.e., R⇤ = sup⇡2P⇥

inf ✓̂2E R⇡(✓̂)

Remark 2.3. Suppose R⇤ = min✓̂ max⇡ R⇡(✓̂). Then, denoting by ⇡

⇤ the least favorable prior, a good
strategy for attaining R

⇤ is to use a policy for this least favorable prior.

3 Distances between distributions

The di�culty of estimating ✓ is related to how “close” the distributions in the family (P✓)⇥ are to each
other. This closeness between distributions will be characterized using various measures of distance, such as
the following.
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Total variation distance: Given two distributions P and Q over (X ,F), the total variation (TV) distance
between them is defined as

d(P,Q) := sup
A2F

P (A)�Q(A) (5)

⇤a
= sup

A2F
1� P (AC)� (1�Q(AC)) = sup

A2F
Q(AC)� P (AC)

= sup
A2F

Q(A)� P (A),

where in ⇤a A

C = X \A the complement of set A.

Remark 3.1. If P and Q have densities f and g with respect to some measure µ, we have

d(P,Q) =
1

2

Z

X

�

�

�

�

f(x)� g(x)

�

�

�

�

dµ(x) (6)

Remark 3.2. In fact, d(·, ·) is provably a true distance which means that d(P,Q) = 0 i↵ they agree on every
measurable set. Furthermore, from (6), it is clear that TV distance always lies in [0, 1], since

d(P,Q) =
1

2

Z

X

�

�

�

�

f(x)� g(x)

�

�

�

�

dµ(x) (7)

 1

2

Z

X
| f(x)|+ | g(x) | dµ(x) = 1

2

✓

Z

X
f(x)dµ(x) +

Z

X
g(x)dµ(x)

◆

= 1. (8)

d(P,Q) = 1 if P and Q have disjoint supports.

3.1 Probability of error

As a quick application of TV distance, consider the problem of distinguishing between two measures P1 and
P2 over (X ,F) using a single sample X, and consider all tests of the form

✓̂A(X) = 1I{X2A} + 2I{X2Ac}, (9)

for some A 2 F . Assume a uniform prior over {P1, P2} . The probability of error (Bayes risk) in this case is
given by

P

⇤
e = inf

A2F

1

2
(P1 (A

c) + P2 (A)) (10)

= inf
A2F

1

2
(1� P1 (A) + P2 (A))

=
1

2

✓

1� sup
A2F

P1 (A)� P2 (A)

◆

(11)

=
1

2
(1� d(P1, P2)) . (12)

As can be seen from the above equation, smaller the distance between P1 and P2, larger the probability of
error. We had mentioned that the di�culty of estimating ✓ is related to how close the measures are within
⇥ and this example illustrated this in a rather concrete manner.

Preview of Lecture 2: In the next lecture, we will continue our study of the TV distance and also study
other notions of distance between probability measures. Returning to Sec. 3.1, we saw how TV distance
influenced error probability in (12). But that was with a single sample. Suppose n � 2 samples are available
to us. Can we make use of them in some way as to reduce P

⇤
e ? Specifically, denoting by P

n
1 and P

n
2 the

n-fold product measures of P1 and P2 (since samples are IID), a natural question to ask is how d(P1, P2)
and d(Pn

1 , P
n
2 ) are related. If TV distance increases with n, that’s good news because it means that there

might be exist means to reduce P

⇤
e in (12).
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