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1 Fano’s inequality for M-ary hypothesis testing

We have already seen a lower bound for the probability of error for binary hypothesis testing problems
(assuming a uniform prior on the two hypotheses):
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This bound allows us to quantify the di�culty of binary hypothesis tests in terms of the “distance” D()
between the distributions P and Q. Fano’s inequality extends this to the case with M(� 2) hypotheses.

Problem: Consider a collection of M hypotheses, H
i

: X ⇠ P
i

, 81  i  M, where P
i

is a measure on
the space (X ,F). Let d : X ! [M ] be a (potentially randomized) map aka the hypothesis test, and assume
as before, a uniform prior on [M ], i.e., each of the M hypotheses is chosen w.p. 1

M

. Let P(M) be the set of
all probability measures on [M ], i.e., the M � 1-dimensional simplex. Define the probability of error by
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Theorem 1.1 (Fano). With the probability of error defined as in (2), we have
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Remark 1.1. 1. In case the (moderately awake) reader is wondering why the RHS of (3) is a valid

probability, that is, why is
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2 [0, 1]: hold that thought - we’ll explain this
after the proof of the theorem.
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2. The quantity 1

M

P
M

m=1

P
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on the RHS of (3) behaves like a “centroid” for the given set of probability
distributions, and the numerator therefore, is a measure of the average distance of the set from its
centroid.

3. Invoking the convexity of KL-divergence and Jensen’s inequality, inequality (†), the RHS of (4) is
derived from the RHS of (3) as follows:
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Finally, one uses the fact that
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to get (4).

Before we proceed to the proof, we will require a new way to interpret the numerator on the RHS of (3).

1.1 A mutual information viewpoint

The mutual information between two random variables U and X with joint distribution P
UX

and marginals
P
U

and P
X

is defined as
I(U ;X) := D(P
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It is easy to show that I(U ;X) = H(U) �H(U |X), and quantifies the amount of information observing X
gives about U. Obviously, I(U ;X) = 0 if U and X are independent, which is in line with our intuition that
now, X cannot tell us anything about U. Suppose U ⇠ Unif([M ]), i.e., P (U = i) = 1

M

, i 2 [M ], and this
random variable is transmitted through a channel W such that the output X has a distribution P
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Substituting this in (3), we get
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where C(W ) is called the Capacity of the channel W and is defined as

C(W ) := max
U⇠P2P([M ])

I(U ;X). (11)

Recall that the channel was defined using a conditional distribution P
U

, defined on the space X in which
the output X of the channel takes values. In (11), the channel, i.e., this conditional is fixed and only the



Lecture 3 3

distribution of the input to the channel is varied. Since U takes values in [M ], its distributions come from
the (M � 1)-dimensional simplex of pmf’s denoted by P([M ]).

Proof. Denote by d : X ! [M ] the (possibly randomized) decision rule that outputs our guess of U upon
observing X. Let Q

UX

⌘ P
U

P
X

be the product measure on 2M ⇥F . Note that under this measure, U and X
are independent. Since this rule need not be optimal, its error P
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over which d takes correct decisions, i.e., B = {(u, x) : d(x) = u} . Clearly,
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In inequality (⇤1), we have used the fact that since U is uniformly distributed on [M ], and independent
of X. Now, let p = 1 � P

e

and q = Q
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(d(X) = U) and a channel W
B

: [M ] ⇥ X ! {0, 1} such that
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where in (⇤2), h : [0, 1] ! [0, 1], h(p) := �p log p� (1� p) log 1� p, is the binary entropy function. We have
used (12).

Remark 1.2. 1. Strictly speaking, Fano’s inequality should be
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where D := I{d(X)=U} indicates when the decision rule is correct. Now recall observation 1 in Rem. 1.1.

I(U ;X) +H(D)  logM = H(U)

() H(U)�H(U |X) +H(D)  H(U)

() H(I{d(X)=U})  H(U |X).

But since this needs to be true regardless of the classifier d, it is easy to violate. For example, consider
a binary hypothesis testing problem (M = 2 ) logM = 1) wherein X 2 X = {0, 1} and U is
distributed uniformly over {0, 1}. Also suppose that P

0

⌘ Ber(0), P
1

⌘ Ber(1), and a dumb detector
with d(X) = 0, w.p. 1/2. Then H(D) = 1 while H(U |X) = 0, whereby,

H(U)�H(U |X) +H(D)

logM
= 2.

This means that Fano’s inequality can, in fact, be vacuously true (sorry for the anti-climax).
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2. Going back to 11, we see that
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where, (⇤3) is true under certain regularity conditions that are satisfied here, and (⇤4) follows from the
fact that the maximum of a convex combination is attained by the distribution that puts all mass on
the largest value. In the literature, the quantity min

QX max
u2[M ]

D(P
X|u k Q

X

) is sometimes called
information radius [1].

3. We will frequently see that the di�culty of hypothesis testing and estimation problems can be stated
in terms of the information radius and the number of hypotheses to be tested.

2 Example: Learning k-ary distributions

Let P 2 P([k]), the (k � 1)-dimensional simplex and X
1

, · · · , X
n

be IID samples distributed P. We seek to
estimate P from these samples, assuming k is known. Let Xn := [X

1

, , · · · , X
n

]. A natural choice for an
estimator for P is the empirical distribution P̂ defined for every x 2 X as
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, 8x 2 [k] and so, we have an unbiased estimator which, by the SLLN, is also strongly
consistent. How well does it behave in the non-asymptotic regime?
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In (⇤5), we have used the fact that the variance of a Bin(n, p) random variable is np(1�p). This, once again,
shows that sample complexity is proportional to ✏�2. Note, however, that this derivation heavily depends on
the IID nature of the samples. In the next lecture, we will see a more powerful method that, to a certain
extent, does not require IID sampling.
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3 Minimax and Probably Approximately Correct (PAC) formu-

lations

We will focus on two di↵erent (but related) formulations to establish the e�cacy of estimators/classifiers.

1. Minimax formulation: Given IID samples from some distribution P 2 P(X ) on (X ,F), and an
estimator P̂ : Xn ! P(Xn), i.e., xn 7! P̂ (xn), the minimax risk is defined as

R(n, k) := min
ˆ

P

max
P2P(X )

E
P

d(P, P̂
X

n)

= min
ˆ

P

max
⇡2P(P(X ))

E
P⇠⇡

h
E
P

d(P, P̂
X

n)
i

(⇤6)
= max

⇡2P(P(X ))

min
ˆ

P

E
P⇠⇡

h
E
P

d(P, P̂
X

n)
i
,

where equality (⇤6) is true under certain regularity conditions and helps with analysis.

2. (✏, �)-PAC formulation: Given the space of k-ary distributions,

n(✏, �, k) := min
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We will freeze � = 1

3

. One can use either Markov’s inequality or a Cherno↵-Hoe↵ding bound to
transition between the two formulations.

Preview of Lecture 4:

? Having studied Fano’s inequality and the two risk formulations, we will first look at Fano’s bound for
minimax risk.

? This will give a clearer picture of how information radius a↵ects the performance of classifiers and
estimators.
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