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1 Fano’s inequality for M-ary hypothesis testing

We have already seen a lower bound for the probability of error for binary hypothesis testing problems
(assuming a uniform prior on the two hypotheses):
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This bound allows us to quantify the difficulty of binary hypothesis tests in terms of the “distance” D()
between the distributions P and (. Fano’s inequality extends this to the case with M (> 2) hypotheses.
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Problem: Consider a collection of M hypotheses, 77, : X ~ P;, V1 <i < M, where P; is a measure on
the space (X, F). Let d : X — [M] be a (potentially randomized) map aka the hypothesis test, and assume
as before, a uniform prior on [M], i.e., each of the M hypotheses is chosen w.p. ﬁ Let £2(M) be the set of
all probability measures on [M], i.e., the M — 1-dimensional simplex. Define the probability of error by

P! (unif) = . Z m) (2)
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Theorem 1.1 (Fano). With the probability of error defined as in (2), we have
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Remark 1.1. 1. In case the (moderately awake) reader is wondering why the RHS of (3) is a valid

- . . M D(Prll XM, P+ , . .
probability, that is, why is Tog 3 € [0,1]: hold that thought - we’ll explain this
after the proof of the theorem.
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2. The quantity 17 E%zl P,, on the RHS of (3) behaves like a “centroid” for the given set of probability
distributions, and the numerator therefore, is a measure of the average distance of the set from its
centroid.

3. Invoking the convexity of KL-divergence and Jensen’s inequality, inequality (1), the RHS of (4) is
derived from the RHS of (3) as follows:
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D<Pm | M;PZ> < M;D(Pm | P)
< max D(Pn || P2) (5)
Finally, one uses the fact that
M
3 e D (P | ) < s D(Po | o) (6)

to get (4).

Before we proceed to the proof, we will require a new way to interpret the numerator on the RHS of (3).

1.1 A mutual information viewpoint

The mutual information between two random variables U and X with joint distribution Pyx and marginals
Py and Px is defined as
I(U; X) :== D(Pyx || PuPx). (7)

It is easy to show that I[(U; X) = H(U) — H(U|X), and quantifies the amount of information observing X
gives about U. Obviously, [(U; X) = 0 if U and X are independent, which is in line with our intuition that
now, X cannot tell us anything about U. Suppose U ~ Unif([M]), i.e., P(U = i) = 3, i € [M], and this
random variable is transmitted through a channel W such that the output X has a distribution Py. Then
clearly, Py = +; Zf\il P; and
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Substituting this in (3), we get

. IU; X)+1

* > | A=) -
Punif) > 1= [T )

cCWwW)+1
> 11— | — 1

- [ log M ]’ (10)

where C'(W) is called the Capacity of the channel W and is defined as
CW):= max I(U;X). (11)

U~Pe2([M])

Recall that the channel was defined using a conditional distribution Py, defined on the space X in which
the output X of the channel takes values. In (11), the channel, i.e., this conditional is fized and only the
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distribution of the input to the channel is varied. Since U takes values in [M], its distributions come from
the (M — 1)-dimensional simplex of pmf’s denoted by Z2([M]).

PROOF. Denote by d : X — [M] the (possibly randomized) decision rule that outputs our guess of U upon
observing X. Let Qux = Py Px be the product measure on 2V x F. Note that under this measure, U and X
are independent. Since this rule need not be optimal, its error P. > P;. Now, consider the set B C [M] x X
over which d takes correct decisions, i.e., B = {(u, z) : d(z) = u} . Clearly,

PU)((B) = ]_7Pe§]_—Pe*’ and

Qux(B) = Qux(d(X)=7U)
(*<1) 1 19
< 3 (12)

In inequality (x1), we have used the fact that since U is uniformly distributed on [M], and independent
of X. Now, let p = 1— P, and ¢ = Qux(d(X) = U) and a channel Wg : [M] x X — {0,1} such that
Wg(u,z) = ]I{d(:c):u} = H{(u,z)eB}- Observe that

I0:X)=D(Pux |Qux) = D(Pf1QU%) (13)

data processing

However,
I-p
D (Pl = plogZ4+(1-p]l
( I QY ) pogq+( p)ogl_q
(2)
> —h(p)+(1—P,)logM (14)
> —1+(1—P)logM (15)
= 1(U;X) = D(P2QUR)=~1+(1-P)logM,
v U; X)+1
> 1- |2l
= PX(unif) > [ Tog M

where in (x2), h: [0,1] — [0,1], h(p) := —plogp — (1 —p)log 1 — p, is the binary entropy function. We have
used (12). O

Remark 1.2. 1. Strictly speaking, Fano’s inequality should be

1U; X) + H(D)
log M ’

P? (unif) > 1 - (16)

where D := I4(x)=y} indicates when the decision rule is correct. Now recall observation 1 in Rem. 1.1.

IU;X)+H(D) < logM=H(U)
s HU)-HU|X)+HD) < HU)
= H(ltyx)=vy) < HUIX).

But since this needs to be true regardless of the classifier d, it is easy to violate. For example, consider
a binary hypothesis testing problem (M = 2 = logM = 1) wherein X € X = {0,1} and U is
distributed uniformly over {0,1}. Also suppose that Py = Ber(0), P; = Ber(1), and a dumb detector
with d(X) =0, w.p. 1/2. Then H(D) = 1 while H(U|X) = 0, whereby,

H(U) - HU|X) + H(D)

=2.
log M

This means that Fano’s inequality can, in fact, be vacuously true (sorry for the anti-climax).
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2. Going back to 11, we see that

cw) = max  I(U; X)
U~PeZ([M])
= max min  D(Px || Qx|Py)

U~PeP([M]) Qx P (X)

i D(P P
B0 A2y PP 1| Qxl o)

fain max (Pxju || @x) (17)

where, (x3) is true under certain regularity conditions that are satisfied here, and (x4) follows from the
fact that the maximum of a convex combination is attained by the distribution that puts all mass on
the largest value. In the literature, the quantity ming, max,cn) D(Px|y || @x) is sometimes called

information radius [1].

3. We will frequently see that the difficulty of hypothesis testing and estimation problems can be stated
in terms of the information radius and the number of hypotheses to be tested.

2 Example: Learning k-ary distributions

Let P € Z([k]), the (k — 1)-dimensional simplex and X7, -- , X,, be IID samples distributed P. We seek to
estimate P from these samples, assuming & is known. Let X" := [X1,, -, Xn]- A natural choice for an
estimator for P is the empirical distribution P defined for every z € X" as

. 1Y

Clearly, EP, = P,, Vz € [k] and so, we have an unbiased estimator which, by the SLLN, is also strongly
consistent. How well does it behave in the non-asymptotic regime?

. 1 .
Epd(P,Px») = E 5Z|ch—ch\

Jensen ] A\ 2
= 35 b))
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< €, Vn > i (19)
- T 4e?

In (x5), we have used the fact that the variance of a Bin(n, p) random variable is np(1 —p). This, once again,
shows that sample complexity is proportional to e~2. Note, however, that this derivation heavily depends on
the IID nature of the samples. In the next lecture, we will see a more powerful method that, to a certain
extent, does not require IID sampling.
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3 Minimax and Probably Approximately Correct (PAC) formu-
lations

We will focus on two different (but related) formulations to establish the efficacy of estimators/classifiers.

1. Minimax formulation: Given IID samples from some distribution P € £(X) on (&, F), and an
estimator P : X™ — Z(X™), i.e., ™ — P(2™), the minimax risk is defined as

R(n,k) := min max Epd(P, Pxn»)
P PeZ(Xx)

= min max Epor {EPd(P,PXn):l
p meP(P(X))

max  minEp.r [Epd(P, PX”)] ,
reP (P(X)) P

where equality (x6) is true under certain regularity conditions and helps with analysis.

2. (¢,6)-PAC formulation: Given the space of k-ary distributions,

= i > . 2 L. 2 n < .
n(e, 8, k) mln{n >1:3 P st Péng%z(x)P (d(P, Pxn) > e) < 5} (20)

We will freeze § = % One can use either Markov’s inequality or a Chernoff-Hoeffding bound to
transition between the two formulations.

Preview of Lecture 4:

* Having studied Fano’s inequality and the two risk formulations, we will first look at Fano’s bound for
minimax risk.

* This will give a clearer picture of how information radius affects the performance of classifiers and
estimators.
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