
RATQ: An Efficient Quantizer for Stochastic Optimization

Abstract

We present Rotated Adaptive Tetra-iterated
Quantizer (RATQ), a fixed-length quantizer
for gradients in first order stochastic opti-
mization. For gradient oracles with almost
surely bounded Euclidean norm of the ora-
cle output, we establish an information theo-
retic lower bound for optimization accuracy
using finite precision gradients and show that
RATQ, when used along with SGD, is merely
a factor O(log log log∗ d) far from this lower
bound. We remark that RATQ offers an al-
most optimal-size covering of the unit ball in
Euclidean space, an object of long-standing
interest and many applications.

For oracles with mean square bounded or-
acles, we use a gain-shape quantizer which
separately quantizes the Euclidean norm and
uses RATQ to quantize the normalized unit
norm vector. We establish lower bounds for
performance of any optimization procedure
and shape quantizer, when used with a uni-
form gain quantizer. Finally, we propose an
adaptive quantizer for gain which when used
with RATQ for shape quantizer outperforms
uniform gain quantization.

1 Introduction

Stochastic gradient descent (SGD) and its variants are
popular optimization methods for machine learning. In
its basic form, SGD performs iterations xt+1 = xt −
ηĝ(xt), where ĝ(x) is a noisy estimate of the subgradient
of the function being optimized at x. Our focus in
this work is on a distributed implementation of this
algorithm where the output ĝ(x) of the first order
oracle must be quantized to a precision of r bits. This

Preliminary work. Under review by AISTATS 2020. Do not
distribute.

abstraction models important scenarios ranging from
distributed optimization to federated learning, and is
of independent theoretical interest.

We study the tradeoff between the convergence rate
of first order optimization algorithms and the preci-
sion r available per subgradient update. We consider
two oracle models: the first where the subgradient es-
timate’s Euclidean norm is almost surely bounded and
the second where it is mean square bounded. Our main
contributions include new quantizers for the two ora-
cle models and theoretical insights into the limitations
imposed by heavy-tailed gradient distributions admit-
ted under the mean square bounded oracles. A more
specific description is provided below.

1.1 Prior work and our contributions

SGD and the oracle model abstraction for it appeared
in classic works [21] and [19], respectively. Recently,
variants of this problem with quantization or commu-
nication constraints on oracle output have received a
lot of attention [1, 4–6, 9, 12, 16, 20, 22–25]. Our work is
motivated by results in [5,23], and we elaborate on the
connection.

Specifically, [5] considers a problem very similar to
ours. The paper [23] considers the related problem of
distributed mean estimation, but the quantizer and
its analysis is directly applicable to distributed opti-
mization. The two papers present slightly different
quantizers that encode each input using a variable
number of bits. Both these quantizers are of optimal
expected precision for almost surely bounded oracles.
However, their worst-case (fixed-length) performance
is suboptimal. In fact, the problem of designing fixed-
length quantizers for almost surely bounded oracles
is closely related to designing small-size covering for
the Euclidean unit ball. There has been a longstand-
ing interest in this problem in the vector quantization
and information theory literature (cf. [8,11,15,17,26]).
We propose a new quantizer that is merely a factor
O(log log log∗ d) far from an optimal information theo-
retic benchmark which we establish.

In a different direction, for mean square bounded ora-



Manuscript under review by AISTATS 2020

cles, prior works including [5] remains vague about the
quantizer. Most of the works use gain-shape quantizers
that separately quantize the Euclidean norm and the
normalized vector. But they operate under an engineer-
ing assumption: “the standard 32 bit precision suffices
for describing the gain.” We suppose that this folklore
wisdom is prescribing the use of the standard uniform
quantizer for gain quantization. We carefully examine
the validity of this assumption and the design of the
gain quantizers for mean square bounded oracles.

We establish an information theoretic lower bound
which shows (using a heavy-tailed oracle) that the pre-
cision used for gain quantizer must exceed log T when
the gain is quantized uniformly for T iterations and we
seek O(1/

√
T ) optimization accuracy. Thus, 32 bits

are good for roughly a billion iterations with uniform
gain quantizers, but not beyond that. Interestingly,
we present a new, adaptive gain quantizer which can
attain the same performance using only log log T bits
for quantizing gain. Thus, if one has 32 bits to spare for
gain, then by using our quantizer we can handle algo-
rithms with 2232

iterations, sufficient for any practical
application.

1.2 Organization

We formalize our problem in the next section, describe
our results for almost surely bounded oracles in Sec-
tion 3 and for mean square bounded oracles in Section 4.
We present application to distributed mean estimation
in Section 5 and a high-level overview of our proof
techniques in Section 6.

2 The setup and preliminaries

2.1 Problem setup

We fix the number of iterations T of the optimization
algorithm (the number of times the first order oracle is
accessed) and the precision r allowed to describe each
subgradient. Our fundamental metric of performance
is the minimum error (as a function of T and r) with
which such an algorithm can find the optimum value.

Formally, we want to find the minimum value of an un-
known convex function f : X → R using oracle access
to noisy subgradients of the function (cf. [7, 19]). We
assume that the function f is convex over the compact,
convex domain X such that supx,y∈X ′ ‖x − y‖2 ≤ D;
we denote the set of all such X by X. For a query
point x ∈ X , the oracle outputs random estimates of
the subgradient ĝ(x) which for all x ∈ X satisfy

E [ĝ(x)|x] ∈ ∂f(x), (1)

E
[
‖ĝ(x)‖22|x

]
≤ B2, (2)

where ∂f(x) denotes the set of subgradients of f at x.

Definition 2.1 (Mean square bounded oracle). A first
order oracle which upon a query x outputs the subgra-
dient estimate ĝ(x) satisfying the assumptions (1) and
(2) is termed a mean square bounded oracle. We denote
by O the set of pairs (f,O) with a convex function f
and a mean square bounded oracle O.

The variant with almost surely bounded oracles has
also been considered (cf. [2, 19]), where we assume for
all x ∈ X

P (‖ĝ(x)‖22 ≤ B2|x) = 1. (3)

Definition 2.2 (Almost surely bounded oracle). A
first order oracle which upon a query x outputs only the
subgradient estimate ĝ(x) satisfying the assumptions
(1) and (3) is termed an almost surely bounded oracle.
We denote the class of convex functions and oracle’s
satisfying assumptions (1) and (3) by O0.

In our setting, the outputs of the oracle are passed
through a quantizer. An r-bit quantizer consists of
randomized mappings (Qe, Qd) with the encoder map-
ping Qe : Rd → {0, 1}r and the decoder mapping
Qd : {0, 1}r → Rd. The overall quantizer is given by
the composition mapping Q = Qd ◦Qe. Denote by Qr
the set of all such r-bit quantizers.

For an oracle (f,O) ∈ O and an r-bit quantizer Q, let
QO = Q◦O denote the composition oracle that outputs
Q(ĝ(x)) for each query x. Let π be an algorithm with
at most T iterations with oracle access to QO. We will
call such an algorithm an optimization protocol. Denote
by ΠT the set of all such optimization protocols with
T iterations.

Denoting the combined optimization protocol with
its oracle QO by πQO and the associated out-
put as x∗(πQO), we measure the performance of
such an optimization protocol for a given (f,O) us-
ing the metric E(f, πQO) defined as E(f, πQO) :=
E
[
f(x∗(πQO))−minx∈X f(x)

]
. The fundamental

quantity of interest in this work are minmax errors

E∗0 (T, r) := sup
X∈X

inf
π∈ΠT

inf
Q∈Qr

sup
(f,O)∈O0

E(f, πQO),

E∗(T, r) := sup
X∈X

inf
π∈ΠT

inf
Q∈Qr

sup
(f,O)∈O

E(f, πQO).

Clearly, E∗(T, r) ≥ E∗0 (T, r).

2.2 A benchmark from prior results

We recall results for the classic setting with r = ∞.
Prior work gives a complete characterization of the
minmax errors E∗0 (T,∞) and E∗(T,∞) for this setting;
see, for instance, [3, 18,19]. We summarize these well-
known results below (cf. [19], [2, Theorem 1a]).
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Theorem 2.3. For an absolute constant c0, we have
c0DB/

√
T ≤ E∗0 (T,∞) ≤ E∗(T,∞) ≤ DB/

√
T .

2.3 Quantizer performance for finite
precision optimization

Our overall optimization protocol throughout is the
projected SGD (PSGD) (see [7]). In fact, we establish
lower bound showing roughly the optimality of PSGD
with our quantizers.

In PSGD the standard SGD updates are projected
back to the domain using the projection map ΓX given
by ΓX (y) := minx∈X ‖x − y‖2. We use the quantized
PSGD algorithm described in Algorithm 1.

Require: x0 ∈ X , η ∈ R+, T and access to
composed oracle QO

1: for t = 0 to T − 1 do
xt+1 = ΓX (xt − ηQ(ĝ(xt)))

2: Output: 1
T ·
∑T
t=1 xt

Algorithm 1: Quantized PSGD with quantizer Q

The quantized output Q(ĝ(xt)), too, constitutes a noisy
oracle, but it can be biased for mean square bounded
oracles. Though biased first-order oracles were consid-
ered in [14], the effect of quantizer-bias has not been
studied in the past. The performance of a quantizer Q,
when it is used with PSGD for mean square bounded
oracles, is controlled by the worst-case L2 norm α(Q)
of its output and the worst-case bias β(Q) defined as1

α(Q) := sup
Y ∈Rd:E[‖Y ‖22]≤B2

√
E [‖Q(Y )‖22],

β(Q) := sup
Y ∈Rd:E[‖Y ‖22]≤B2

‖E [Y −Q(Y )] ‖2. (4)

The corresponding quantities for almost surely bounded
oracles are

α0(Q) := sup
Y ∈Rd:‖Y ‖2≤B a.s.

√
E [‖Q(Y )‖22],

β0(Q) := sup
Y ∈Rd:‖Y ‖2≤B a.s.

‖E [Y −Q(Y )] ‖2. (5)

Using a slight modification of the standard proof of
convergence for PSGD, we get the following result.
Theorem 2.4. For any quantizer Q, the output xT of
optimization protocol π given in Algorithm 1 satisfies

sup
(f,O)∈O0

E(f, πQO) ≤ D
(
α0(Q)√

T
+ β0(Q)

)
,

sup
(f,O)∈O

E(f, πQO) ≤ D
(
α(Q)√
T

+ β(Q)

)
,

1We omit the dependence on B and d from our notation.

when the parameter η is set to D/(α0(Q)
√
T ) and

D/(α(Q)
√
T ), respectively.

Remark 1 (Choice of learning rate). We fix the
parameter η of Algorithm 1 to D/(α0(Q)

√
T ) and

D/(α(Q)
√
T ) for all the results in Section 3 and Section

4, respectively.

3 Main results for almost surely
bounded oracles

Our main results will be organized along two regimes:
the high-precision and the low-precision regime. For
the high-precision regime, we seek to attain the optimal
convergence rate of 1/

√
T using the minimum precision

possible. For the low-precision regime, we seek to attain
the fastest convergence rate possible for a given, fixed
precision r.

3.1 A precision-dependent lower bound

We begin with a simple refinement of the lower bound
implied by Theorem 2.3 The proof of this result is
obtained by appropriately modifying the proof in [2],
along with the strong data processing inequality in [10].

Theorem 3.1. There exists an absolute constant c,
independent of d, T , and r such that

E∗(T, r) ≥ E∗0 (T, r) ≥ cDB√
T
·

√
d

min{d, r}
.

As a corollary, we get that there is no hope of getting the
desired convergence rate of 1/

√
T by using a precision

of less than d.

Corollary 3.2. For E∗0 (T, r) or E∗(T, r) to be less than
DB/

√
T , the precision r must be at least Ω(d).

3.2 RATQ: Our quantizer for the `2 ball

We propose Rotated Adaptive Tetra-iterated Quan-
tizer (RATQ) to quantize any random vector Y with
‖Y ‖22 ≤ B2, which is what we need for almost surely
bounded oracles. RATQ first rotates the input vector,
then divides the coordinates of the rotated vectors into
smaller groups, and finally quantizes each subgroup-
vector using a Coordinate-wise Uniform Quantizer
(CUQ). However, the dynamic-range used for each sub-
vector is chosen adaptively from a set of tetra-iterated
levels. We call this adaptive quantizer Adaptive Tetra-
iterated Uniform Quantizer (ATUQ), and it is the main
workhorse of our construction. The encoder and de-
coder for RATQ are given in Algorithm 2 and Algo-
rithm 3, respectively. The details of all the components
involved are described below.
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Require: Input Y ∈ Rd, rotation matrix R
1: Compute Ỹ = RY
2: for i ∈ [d/s] do

Ỹ Ti = [Ỹ ((i− 1)s+ 1), · · · Ỹ (min{is, d})]T

3: Output: Qe
at,R(Y ) = {Qe

at(Ỹ1) · · ·Qe
at(Ỹdd/se)}

Algorithm 2: Encoder Qe
at,R(Y ) for RATQ

Require: Input {Zi, ji} for i ∈ [dd/se], rotation
matrix R

1: Y T = [Qd
at(Z1, j1), · · · , Qd

at,R(Zdd/se, jdd/se)]
T

2: Output: Qd
at({Zi, ji}

dd/se
i=1 ) = R−1Y

Algorithm 3: Decoder Qd
at,R(Z, j) for RATQ

Rotation and division into subvectors. RATQ
first rotates the input vector by multiplying it with a
random Hadamard matrix. Specifically, denoting by H
the d× d Walsh-Hadamard Matrix (see [13])2, define
R := 1√

d
·HD, where D is a diagonal matrix with each

diagonal enetry generated uniformly from {−1,+1}.
The input vector y is multiplied by R in the rotation
step. The matrix D can either be generated using
shared randomness between the encoder and decoder.

Next, the rotated vector of dimension d is partitioned
into dd/se smaller subvectors. The ith subvector com-
prises the coordinates {(i − 1)s + 1, · · · ,min{is, d}},
for all i ∈ [d/s]. Note that the dimension of all the
sub vectors except the last one is s, with the last one
having a dimension of d− sbd/sc.

CUQ. RATQ uses CUQ as a subroutine; we describe
the latter for d dimensional inputs, but it will only
be applied to subvectors of lower dimension in RATQ.
CUQ has a dynamic range [−M,M ] associated with
it, and it uniformly quantizes each coordinate of the
input to k-levels as long as the component is within the
dynamic-range [−M,M ]. Specifically, it partitions the
interval [−M,M ] into parts I` := (BM,k(`), BM,k(` +
1)], ` ∈ {0, . . . , k − 1}, where BM,k(`) are given by

BM,k(`) := −M + ` · 2M

k − 1
, ∀ ` ∈ {0, . . . , k − 1}.

Note that we need to communicate k + 1 symbols per
coordinate – k of these symbols correspond to the k
uniform levels and the additional symbol corresponds to
the overflow symbol ∅. Thus we need a total precision
of d dlog(k + 1)e bits to represent the output of the
CUQ encoder. The encoder and decoders used in CUQ
are given in Algorithms 4 and 5, respectively. In the
decoder, we have set BM,k(∅) to 0.

2We assume that d is a power of 2.

Require: Parameters M ∈ R+ and input Y ∈ Rd
1: for i ∈ [d] do
2: if |Y (i)| > M then

Z(i) = ∅
3: else
4: for ` ∈ {0, . . . , k − 1} do
5: if Y (i) ∈ (BM,k(`), BM,k+1(`+ 1)] then

Z(i) =

{
`+ 1, w.p.

Y (i)−BM,k(`)
BM,k(`+1)−BM,k(`)

`, w.p.
BM,k(`+1)−Y (i)

BM,k(`+1)−BM,k(`)

6: Output: Qe
u(Y ;M) = Z

Algorithm 4: Encoder Qe
u(Y ;M) of CUQ

Require: Parameters M ∈ R+and input Z ∈
{0, . . . , k − 1, ∅}d

1: Set Ŷ (i) = BM,k(Z(i)), for all i ∈ [d]

2: Output: Qd
u(Z;M) = Ŷ

Algorithm 5: Decoder Qd
u(Z;M) of CUQ

ATUQ. The quantizer ATUQ is CUQ with its
dynamic-range chosen in an adaptive manner. In order
to a quantize a particular input vector, it first chooses a
dynamic range from [−Mi,Mi], 1 ≤ i ≤ h. To describe
these Mis, we first define the ith tetra-iteration for e,
denoted by e∗i, recursively as follows:

e∗1 := e, e∗i := ee
∗(i−1)

, i ∈ N.

Also, for any non negative number b, we define ln∗ b :=
inf{i ∈ N : e∗i ≥ b}. With this notation, the values
Mis are defined in terms of the starting point m as
follows:

M2
0 = m, M2

i = m · e∗i, ∀ i ∈ [h− 1].

ATUQ finds the smallest level Mi which bounds the
infinity norm of the input vector; if no such Mi ex-
ists, it simply uses Mh−1. It then uses CUQ with
dynamic range [−Mi,Mi] to quantize the input vector.
In RATQ, we apply ATUQ to each subvector. The
decoder of ATUQ is simply the decoder of CUQ using
the dynamic range outputted by the ATUQ encoder.

Note that in order to represent the output of ATUQ for
d dimensional inputs, we need a precision of at the most
dlog he + d dlog(k + 1)e bits: dlog he bits to represent
the dynamic range and at the most d dlog(k + 1)e bits
to represent the output of CUQ. The encoder and
decoder for AUTQ are given in Algorithms 6 and 7,
respectively.

When ATUQ is applied to each subvector in RATQ,
each of the dd/se subvectors are represented using
less than dlog he+ s dlog(k + 1)e bits. Thus, the over-
all precision for RATQ is less than3 dd/se · dlog he +

3log denotes the logarithm to the base 2.
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Require: Input Y ∈ Rd
1: if ‖Y ‖∞ > Mh−1 then

Set M∗ = Mh−1

2: else
Set j∗ = min{j : ‖Y ‖∞ ≤Mj}, M∗ = Mj∗

3: Set Z = Qe
u(Y ;M∗, k)

4: Output: Qe
at(Y ) = {Z, j∗}

Algorithm 6: Encoder Qe
at(Y ) for ATUQ

Require: Input {Z, j} with Z ∈ {0, . . . , k − 1, ∅}d
and j ∈ {0, . . . h− 1}

1: Output: Qd
at(Z, j) = Qd

u(Z;Mj)

Algorithm 7: Decoder Qd
at(Z, j) for ATUQ

d dlog(k + 1)e bits. The decoder of RATQ is simply
formed by collecting the output of the ATUQ decoders
for all the subvectors to form a d-dimensional vector,
and rotating it back using the matrix R−1 (the inverse
of the rotation matrix used at the encoder).

Choice of parameters. Throughout the remainder
of this section, we set our parametersm and h as follows

m = 3B2/d, log h = dlog(1 + ln∗(d/3))e . (6)

In particular, this results in Mh−1 ≥ B whereby, for an
input Y with ‖Y ‖22 ≤ B2, RATQ outputs an unbiased
estimate of Y .

3.3 RATQ in the high-precision regime

Theorem 3.3. Let Qat,R be the quantizer RATQ with
Mjs set by (6). Then, for all s, k ∈ N,

α0(Qat,R) ≤ B

√
3 + 6s

(k − 1)2
+ 1, β0(Qat,R) = 0. (7)

Thus, α0 is lower when s is small, but the overall
precision needed grows since the number of subvectors
increases. The following choice of parameters yields
almost optimal performance:

s = log h, log(k + 1) =
⌈
log(2 +

√
3 + 6s)

⌉
. (8)

For these choices, we obtain the following.
Corollary 3.4. The overall precision r used by the
quantizer Q = Qat,R with parameters set as in (6), (8)
satisfies

r ≤ d(1 + ∆1) + ∆2,

where ∆1 =
⌈
log
(

2 +
√

3 + 6 dlog(1 + ln∗(d/3))e
)⌉

and ∆2 = dlog(1 + ln∗(d/3))e.
Furthermore, the optimization protocol π given in Algo-
rithm 1 satisfies sup(f,O)∈O0

E(f, πQO) ≤
√

2DB/
√
T .

Remark 2. The precision requirement in Corollary 3.4
matches the d bit lower bound of Corollary 3.2 upto a
multiplicative factor of O(log log ln∗(d/3).

3.4 RATQ in the low-precision regime

Consider the low-precision regime where r is much
smaller than d. Our quantizer in this regime adds
another layer called Random Coordinate Sampler (RCS)
to RATQ. RCS requires the encoder and the decoder
to share a random set S ⊂ [d] distributed uniformly
over all subsets of [d] of cardinality µd. We use RATQ
with s = 1, namely the subvectors now consist of
one-coordinate each, and obtain the encoded vector Y .
The encoder Qe

S of RCS only retains the coordinates
in S and outputs the vector Qe

S(Y ) := {Y (i), i ∈ S}.
The Qd

S(Ỹ ) of RCS, when applied to a vector Ỹ ∈
Rµd, outputs Qd

S(Ỹ ) := µ−1
∑
i∈S Ỹ (i)ei, where ei

denotes the ith element of standard basis for Rd. This
decoded vector of RCS is then passed through the
decoder of RATQ to obtain the final quantized vector.
In effect, the decoder of RCS substitutes the value
0 for coordinates not included in S. Note that since
we need to retain RATQ encoder output for only µd
coordinates, the overall precision of the quantizer is
reduced by a factor of µ. Specifically, the composed
quantizer satisfies

α0(Q̃) ≤ α0(Qat,R)
√
µ

and β0(Q̃) = β0(Qat,R).

We now set parameter s and k to constants and sample
roughly r coordinates. Specifically, we set

s = 1, log(k + 1) = 3,

µd = min{d, br/(3 + dlog(1 + ln∗(d/3))e)c}. (9)

For these choices, we have the following corollary.

Corollary 3.5. For r ≥ 3 + dlog(1 + ln∗(d/3))e, let
Q be the composition of RCS and RATQ with parame-
ters set as in (6), (9). Then, the optimization proto-
col π in Algorithm 1 satisfies sup(f,O)∈O0

E(f, πQO) ≤√
2DB/

√
µT .

Remark 3. Note that the convergence rate slows down
by a µ specified in (9), which matches the lower
bound in Theorem 3.1 upto a multiplicative factor
of O(log ln∗(d/3))

4 Main results for mean square
bounded oracles

Moving to oracles satisfying the mean square bounded
assumption, we now need to quantize random vectors
Y such that E

[
‖Y ‖22

]
≤ B2. We take recourse to the
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standard gain-shape quantization paradigm in vector
quantization (cf.[11]). Specifically, we separately quan-
tize the gain ‖Y ‖2 and the shape4 Y/‖Y ‖2 of Y , and
form the estimate of Y by simply multiplying the esti-
mates for the gain and the shape. Note that we already
have a good shape quantizer: RATQ. We only need to
modify the parameters in (6) to make it work for the
unit sphere; we set

m = 3/d, log h = dlog(1 + ln∗(d/3))e . (10)

We remark that quantizers proposed in most of the
prior work can be cast in this gain-shape framework.
However, most works simply state that gain is a single
parameter which can be quantized using a fixed number
of bits; for instance, a single double precision number is
prescribed for storing the gain. However, the quantizer
is not specified. We carefully analyze this problem
and establish lower bounds when a uniform quantizer
with a fixed dynamic range is used for quantizing the
gain. Further, we present our own quantizer which
significantly outperforms the uniform quantization.

4.1 Limitation of uniform gain quantization

We establish lower bounds for a general class of gain-
shape quantizers Q(y) = Qg(‖y‖2)Qs(y/‖y‖2) of preci-
sion r that satisfy the following structural assumptions:

1. (Independent gain-shape quantization) For
any given y ∈ Rd, the output of the gain and the
shape quantizers are independent.

2. (Bounded dynamic-range) There existsM > 0
such that y ∈ Rd such that whenever ‖y‖2 > M ,
Q(y) has a fixed distribution P∅.

3. (Uniformity) There exists m ∈ [M/2r,M ] such
that for every t in [0,m],

(a) supp(Qg(t)) ⊆ {0,m};
(b) If P (Qg(t) = m) > 0, then

P (Qg(t2) = m)

P (Qg(t1) = m)
≤ t2

t1
, ∀ 0 ≤ t1 ≤ t2 ≤ m.

The first two assumptions are perhaps clear and hold
for a large class of quantizers. The third one is the true
limitation and is satisfied by different forms of uniform
gain quantizers. For instance, for the one-dimensional
version of CUQ with dynamic range [0,M ], which is an
unbiased, uniform gain quantizer with kg levels, it holds
with m = M/(kg − 1) (corresponding to the innermost
level [0,M/(kg−1)]). It can also be shown to include a

4For the event ‖Y ‖2 = 0, we follow the convention that
Y/‖Y ‖2 = e1.

deterministic uniform quantizer that rounds-off at the
mid-point. The third condition, in essence, captures
the unbiasedness requirement that the probability of
declaring higher level is proportional to the value. Note
that (t2/t1) on the right-side can be replaced with any
constant multiple of (t2/t1).

Below we present lower bounds for performance of any
optimization protocol using a gain-shape quantizer that
satisfies the assumptions above. We present separate
results for high-precision and low-precision regimes, but
both are obtained using a general construction that
exploits the admissibility of heavy-tail distributions for
mean square bounded oracles. This construction is new
and may be of independent interest.
Theorem 4.1. Consider a gain-shape quantizer Q
satisfying the assumptions above. Suppose that for
X = {x : ‖x‖2 ≤ D/2} we can find an optimization
protocol π which, using at most T iterations, achieves
supf,O∈O E(f, πQO) ≤ 3DB√

T
. Then, we can find a uni-

versal constant c such that the overall precision r of
the quantizer must satisfy

r ≥ c(d+ log T ).

Theorem 4.2. Consider a gain-shape quantizer Q sat-
isfying the assumptions above . Suppose that the number
of bits used by the gain quantizer are fixed independently
of T . Then, for X = {x : ‖x‖2 ≤ D/2}, there exists
(f,O) ∈ O such that for any optimization protocol π
using at most T iterations, we must have

E(f, πQO) ≥ min
cDB

T 1/3
,

where c is a constant depending only on the number of
bits used by the gain quantizer (but not on T ).

4.2 A-RATQ in the high precision regime

Instead of quantizing the gain uniformly, we propose to
use an adaptive quantizer termed Adaptive Geometric
Uniform Quantizer (AGUQ) for gain. AGUQ operates
similar to the one-dimensional ATUQ, except the possi-
ble dynamic-ranges Mg,0, . . . ,Mg,h grow geometrically
(and not using tetra-iterations) as follows:

M2
g,j = B2 · ajg, 0 ≤ j ≤ hg − 1. (11)

Specifically, for a given gain G ≥ 0, AGUQ first iden-
tifies the smallest j such that G ≤ Mg,j and then
represents G using the one-dimensional version of CUQ
with a dynamic range [0,Mg,j ] and kg uniform levels

BMg,j ,k(`) := ` · Mg,j

kg − 1
, ∀ ` ∈ {0, . . . , k − 1}.

As in ATUQ, if G > Mhg−1, the overflow ∅ symbol is
used and the decoder simply outputs 0. The overall
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procedure is the similar to Algorithms (6) and (7) for
s = 1, h = hg, andMj = Mg,j , 0 ≤ j ≤ hg−1; the only
changes is that now we restrict to nonnegative interval
[0,Mg,j ] for the one-dimensional version of CUQ with
uniform levels kg.

Our overall quantizer, termed the adaptive-RATQ (A-
RATQ) is given by Q(Y ) := Qa(‖Y ‖2)·Qat,R(Y/‖Y ‖2),
where Qa denotes the one dimensional AGUQ and
Qat,R denotes the d-dimensional RATQ. Note that
we use independent randomness for Qa(‖Y ‖2) and
Qat,R(Y/‖Y ‖2), rendering them conditionally indepen-
dent given Y .

The parameters s, k for RATQ and ag, kg for AGUQ
are yet to be set. We first present a result which holds
for all choices of these parameters.

Theorem 4.3. For Q set to A-RATQ with parameters
set as in (10), (11), we have

α(Q) ≤ αs,k ·B

√
1

4(kg − 1)2
+
ag(hg − 1)

4(kg − 1)2
+ 1,

β(Q) ≤ B2

Mg,hg−1
,

where αs,k =
√

3+6s
(k−1)2 + 1 is the bound in (7).

Note that RATQ yields an unbiased estimator; the bias
in A-RATQ arises from AGUQ since the gain is not
bounded. Further, AGUQ uses a precision of dlog hge+
dlog(kg + 1)e bits, and therefore, the overall precision
of A-RATQ is dlog hge+dlog(kg + 1)e+dd/se dlog he+
d dlog(k + 1)e bits.

In the high-precision regime, we set

ag = 2, log hg =

⌈
log(1 +

1

2
log T )

⌉
,

log(kg + 1) =

⌈
log

(
2 +

1

2

√
log T + 1

)⌉
. (12)

Corollary 4.4. Denote by Q the quantizer A-RATQ
with parameters set as in (10), (8), and (12). Then,
the overall precision r used by Q is less than

d(1 + ∆1) + ∆2 +

⌈
log

(
2 +

√
log T + 1

)⌉
,

where ∆1 and ∆2 are as in Corollary 3.4. Furthermore,
the optimization protocol π given in algorithm 1 satisfies
sup(f,O)∈O E(f, πQO) ≤ 3DB/

√
T .

4.3 A-RATQ in the low precision regime

In order to operate with a fixed precision r, we combine
A-RATQ with RCS. We simply combine RCS with
RATQ as in Section 3.4 to limit the precision. We

divide the total precision r in to rg and rs bits: rg
to quantize the gain, rs to quantize the sub-sampled
shape vector. We set

s, k, and µd as in (9), with rs replacing r,

log hg = log(kg + 1) =
rg
2
, ag = (µT )

1
hg+1 (13)

That is, our shape quantizer simply quantizes µd ran-
domly chosen coordinates of the rotated vector using
ATUQ with rs bits, and the remaining bits are used
by the gain quantizer AGUQ. The result below shows
the performance of this quantizer.
Corollary 4.5. For any r with gain quantizer being
assigned rg ≥ 4 bits and shape quantizer being as-
signed rs ≥ 3 + dlog(1 + ln∗(d/3))e, let Q be the com-
bination of RCS and A-RATQ with parameters set as
in (10), (11), (13). Then for µT ≥ 1 and c =

√
2,

the optimization protocol π in Algorithm 1 can obtain
sup(f,O)∈O E(f, πQO)

≤ O

DB( d

T min{d, rs
log ln∗(d/3)}

) 1
2 ·

c
rg−1

c
rg+1

 .

Remark 4. The precision used in Corollary 4.4 matches
the lower bound in Corollary 3.2 upto an additive factor
of log log T (ignoring the mild factor of log log ln∗(d/3)),
which is much lower than the log T lower bound we
established for uniform gain quantizers. Our fixed
precision quantizer in Corollary 4.5 establishes the
tradeoff between a faster convergence rate and reducing
the dimension dependence. Specifically, for d > r,
increasing rg takes the convergence rate closer to 1/2,
but increases the dimension dependence to d/(r − rg).
Remark 5. We remark that A-RATQ satisfies assump-
tions (1) and (2) in Section 4.1 but not (3), and breaches
the lower bound in Section 4.1.

5 Distributed mean estimation

Our final set of results discuss the performance of
RATQ for distributed mean estimation with limited
communication, considered in [23]. Formally, consider
n vectors {xi}ni=1 with each xi in Rd and vector xi
available to client i. Each client communicates to a fu-
sion center using r bits to enable the center to compute
the sample mean x̄ = 1

n

∑n
i=1 xi.

We measure the performance of a scheme π by the
mean square error (MSE) between x̄ and the value de-
coded by the center ˆ̄x, for the fixed set of input vectors
x = {xi}ni=1, given by E(π, x) = E

[
‖ˆ̄x− x̄‖22

]
. We con-

sider the minmax MSE over the unit Euclidean ball Bd
given by E(π,Bd) = maxxi∈Sd,∀i∈[n] E(π, x). The mini-
mum error attained by variable-length codes is given
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by E(Π∗(r), B
d) = minπ∈Π∗(r) maxxi∈Bd,∀i∈[n] E(π, x),

where Π∗(r) denote a class of communication proto-
cols, with access to public randomness, in which all the
clients can encode its input vector upto an expected
length of r bits.

The following lower bound is obtained easily from [23,
Theorem 5].
Corollary 5.1. For E(Π∗(r), B

d) = O(1/n), we must
have r to be Ω(nd).

The protocol πsrk proposed in [23] for this prob-
lem achieves E(πsrk, B

d) = O(1/n) with r =
Ω(nd log log(d)). This scheme is uses a quantizer which
randomly rotates a input vector, similar to RATQ, be-
fore quantizing it uniformly. A simpler quantizer simi-
lar to CUQ with a variable-length entropic compression
code, denoted by πsvk, achieves E(πsvk, B

d) = O(1/n)
with r = Ω(nd). This establishes the orderwise opti-
mality of πsvk. Thus, prior to our work, the best known
fixed-length scheme for distributed mean estimation
was πsrk which was off from the optimal performance at-
tained by a variable-length code by a factor of log log d.

We now consider performance of a protocol πRATQ in
which RATQ with parameters m, h as in (10) and k, s
as in (8) is employed by all the clients, and the center
declares the average of the quantized values as its mean
estimate.
Theorem 5.2. E(πRATQ, B

d) = O(1/n) when r =
n (d(1 + ∆1) + ∆2) , where ∆1 and ∆2 are as in Corol-
lary 3.4.

Thus, RATQ enjoys the fixed length structure of πsrk,
while being only O(log log ln∗(d/3)) away from the ex-
pected length of πsvk.

6 Comments on proof techniques

Choice of adaptive dynamic-ranges. The two
distinguishing features of RATQ are the grouping of
coordinates of the rotated vector and the choice of
adaptive dynamic-range parameters Mjs. The latter
appears in AGUQ as well, but with a different choice
of Mjs. The first feature of grouping exposes another
parameter s, the number of elements in a group. As
seen in (7), a small s results in a small α0, but a larger
cost in precision. For the second feature, we provide a
high-level justification for our particular choice of Mjs
for both RATQ and AGUQ below.

Specifically, for the rotated vector RY , denote
by RY1,s the first subvector given by RY1,s :=
[RY (1), · · · , RY (s)]T . We define the worst-case
tail probabilities for the infinity norm of this sub-
vector in the almost sure setting as p0(x) :=
supY :‖Y ‖2≤B a.s. P (‖RY1,s‖∞ ≥ x), and similarly,

for AGUQ, we define the worst-case tail prob-
ability for the mean-square setting as p(x) :=
supY ∈R+:E[Y 2]≤B2 P (Y ≥ x). We show that for RATQ
the worst-case second moment is bounded above by

d

(k − 1)2

m+

h−1∑
j=1

p0(Mj−1) ·M2
j

+B2,

and for AGUQ by

1

4(kg − 1)2

m+

hg−1∑
j=1

p(Mg,j−1) ·M2
g,j

+B2.

These bounds have guided our choice of Mjs and
Mg,js. Specifically, we have selected the parameters
Mg,js so that the terms

∑h−1
j=1 p0(Mg,j−1) ·M2

g,j and∑hg−1
j=1 p(Mg,j−1) ·M2

g,j can be bounded appropriately.
In particular, when the tail-bounds involved in these
terms are sub-gaussian, which is the case for almost
surely bounded oracles, we choose Mjs as in RATQ,
and when they are just quadratically decaying, as are
norms of mean square bounded oracles, we choose
Mg,js as in AGUQ. The same bound can be used also
to handle other assumptions for the oracles as well.

Proof sketch for the lower bound in Section 4.1.
We consider functions fα : Rd → R, α ∈ {−1, 1}, given
by fα(x) := δ B√

2
|x(1)−αD/2|, α ∈ {−1, 1}. For x ∈

Rd with ‖x‖2 ≤ D/2, the gradient of fα is δαBe1/
√

2,
where e1 is the vector [1, 0, 0, . . . , 0]T . We consider the
oracles Oα, α ∈ {−1, 1}, which generate output with
distribution Pα(L) = Pα(−L) = 1−δ2

2 , Pα(αH) = δ2,
where the “light element” L equals B√

2
e1 and the “heavy

element” H equals B√
2δ2
e1.

Note that when H ≥ M , the quantizer cannot dis-
tinguish between the distributions corresponding to
either function, as a consequence of assumption (2).
By choosing the largest δ possible under this con-
dition, a standard reduction of convex optimization
to hypothesis testing yields maxα∈{−1,1} E(f, πQO) ≥
DB

4 min{ BM , 1}.

Next, we consider the case when L ≤ m. In this case,
we consider a slightly different family of oracles, pa-
rameterized by y ∈ [0, 1], given by Pα(L) = Pα(−L) =
1−δ1+y

2 , Pα(αHδ,y) = δ1+y, where the heavy elements
are given by Hδ,y = B√

2δy
e1. If the heavy elements, too,

are less than m, then we can use assumption (3) to
control the “information” revealed by the gain quantizer
output. Thus, the only information possible is by the
shape quantizer. The reported bound is obtained by
choosing the best y ∈ [0, 1] satisfying Hδ,y ≤ m, and
combining the obtained bound with the previous one.



Manuscript under review by AISTATS 2020

References

[1] J. Acharya, C. De Sa, D. J. Foster, and K. Srid-
haran, “Distributed Learning with Sublinear Com-
munication,” arXiv:1902.11259, 2019.

[2] A. Agarwal, P. L. Bartlett, P. Ravikumar, and
M. J. Wainwright, “Information-Theoretic Lower
Bounds on the Oracle Complexity of Stochastic
Convex Optimization,” IEEE Transactions on In-
formation Theory, vol. 5, no. 58, pp. 3235–3249,
2012.

[3] A. Agarwal, M. J. Wainwright, P. L. Bartlett,
and P. K. Ravikumar, “Information-theoretic lower
bounds on the oracle complexity of convex opti-
mization,” Advances in Neural Information Pro-
cessing Systems, pp. 1–9, 2009.

[4] N. Agarwal, A. T. Suresh, F. X. X. Yu, S. Ku-
mar, and B. McMahan, “cpSGD: Communication-
efficient and differentially-private distributed
SGD,” Advances in Neural Information Processing
Systems, pp. 7564–7575, 2018.

[5] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and
M. Vojnovic, “QSGD: Communication-efficient
SGD via gradient quantization and encoding,” Ad-
vances in Neural Information Processing Systems,
pp. 1709–1720, 2017.

[6] D. Basu, D. Data, C. Karakus, and S. Diggavi,
“Qsparse-local-SGD: Distributed SGD with Quan-
tization, Sparsification, and Local Computations,”
arXiv:1906.02367, 2019.

[7] S. Bubeck, “Convex optimization: Algorithms and
complexity,” Foundations and Trends R© in Ma-
chine Learning, vol. 8, no. 3-4, pp. 231–357, 2015.

[8] I. Csiszár and P. Narayan, “Capacity of the gaus-
sian arbitrarily varying channel,” IEEE Transac-
tions on Information Theory, vol. 37, no. 1, pp.
18–26, 1991.

[9] C. M. De Sa, C. Zhang, K. Olukotun, and C. Ré,
“Taming the wild: A unified analysis of Hogwild-
style algorithms,” Advances in Neural Information
Processing Systems, pp. 2674–2682, 2015.

[10] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and
Y. Zhang, “Optimality guarantees for distributed
statistical estimation,” arXiv:1405.0782, 2014.

[11] A. Gersho and R. M. Gray, Vector quantization
and signal compression. Springer Science & Busi-
ness Media, 2012, vol. 159.

[12] S. Gupta, A. Agrawal, K. Gopalakrishnan, and
P. Narayanan, “Deep learning with limited numer-
ical precision,” Proceedings of the International
Conference on Machine Learning (ICML’ 15), pp.
1737–1746, 2015.

[13] K. J. Horadam, Hadamard matrices and their ap-
plications. Princeton university press, 2012.

[14] X. Hu, L. Prashanth, A. György, and
C. Szepesvári, “(Bandit) Convex Optimization
with Biased Noisy Gradient Oracles,” Proceedings
of the International Conference on Artificial Intel-
ligence and Statistics (AISTATS’ 16), pp. 819–828,
2016.

[15] B. Hughes and P. Narayan, “Gaussian arbitrarily
varying channels,” IEEE Transactions on Infor-
mation Theory, vol. 33, no. 2, pp. 267–284, 1987.

[16] S. P. Karimireddy, Q. Rebjock, S. U. Stich, and
M. Jaggi, “Error feedback fixes signsgd and other
gradient compression schemes,” arXiv:1901.09847,
2019.

[17] A. Lapidoth, “On the role of mismatch in rate
distortion theory,” IEEE Transactions on Infor-
mation Theory, vol. 43, no. 1, pp. 38–47, 1997.

[18] A. Nemirovski, “Information-based complexity
of convex programming,” 1995, Available On-
line http://www2.isye.gatech.edu/ne-mirovs/
Lec_EMCO.pdf.

[19] A. S. Nemirovsky and D. B. Yudin, “Problem com-
plexity and method efficiency in optimization.”
Wiley series in Discrete Mathematics and Opti-
mization, 1983.

[20] A. Ramezani-Kebrya, F. Faghri, and D. M. Roy,
“Nuqsgd: Improved communication efficiency for
data-parallel sgd via nonuniform quantization,”
arXiv preprint arXiv:1908.06077, 2019.

[21] H. Robbins and S. Monro, “A stochastic approx-
imation method,” The Annals of Mathematical
Statistics, vol. 22, pp. 400–407, 1951.

[22] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Spar-
sified SGD with memory,” Advances in Neural
Information Processing Systems, pp. 4447–4458,
2018.

[23] A. T. Suresh, F. X. Yu, S. Kumar, and H. B.
McMahan, “Distributed mean estimation with lim-
ited communication,” Proceedings of the Interna-
tional Conference on Machine Learning (ICML’
17), vol. 70, pp. 3329–3337, 2017.

http://www2.isye.gatech.edu/ ne-mirovs/Lec_EMCO.pdf
http://www2.isye.gatech.edu/ ne-mirovs/Lec_EMCO.pdf


Manuscript under review by AISTATS 2020

[24] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papail-
iopoulos, and S. Wright, “Atomo: Communication-
efficient learning via atomic sparsification,” Ad-
vances in Neural Information Processing Systems,
pp. 9850–9861, 2018.

[25] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen,
and H. Li, “TernGrad: Ternary gradients to reduce
communication in distributed deep learning,” Ad-
vances in Neural Information Processing Systems,
pp. 1509–1519, 2017.

[26] A. D. Wyner, “Random packings and coverings
of the unit n-sphere,” The Bell System Technical
Journal, vol. 46, no. 9, pp. 2111–2118, 1967.


	Introduction
	Prior work and our contributions
	Organization

	The setup and preliminaries
	Problem setup
	A benchmark from prior results
	Quantizer performance for finite precision optimization

	Main results for almost surely bounded oracles
	A precision-dependent lower bound
	RATQ: Our quantizer for the 2 ball
	RATQ in the high-precision regime
	RATQ in the low-precision regime

	Main results for mean square bounded oracles
	Limitation of uniform gain quantization
	A-RATQ in the high precision regime
	A-RATQ in the low precision regime

	 Distributed mean estimation
	Comments on proof techniques

