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Abstract—We present a construction for a universal channel
code with feedback using Polar Codes. Our construction includes
an error detection mechanism that is used to compute the
ACK/NACK feedback directly from the received vector, without
a higher layer CRC. Our scheme, termed the Repeat-Top Polar
Code (RT-Polar), builds on a rate-compatible Polar Code and
retransmits the t message bits sent over the most reliable
polarized good channels over the least reliable good channels. At
the decoder, these two t-bit strings are decoded and compared to
detect an error. Through simulations, we illustrate the universal
performance of our scheme for a binary symmetric channel
with an unknown flipover probability. Our scheme performs
comparably with a genie-aided scheme, where the detection
mechanism is assumed to be error-free, for practically relevant
message lengths of roughly 512 bits; this is the first instance
of such a universal performance reported in literature. The
proposed scheme is suitable for use as a HARQ in low-latency
communication where including a higher-layer CRC will induce
computational delays.

I. INTRODUCTION

In a typical, cross-layer implementation of a Hybrid Au-
tomatic Repeat reQuest (HARQ), a set of codes designed for
different noise parameters are used for forward error correction
at the PHY layer. At each iteration, the decoder uses a CRC
included in the higher layer header to check if the message has
been correctly decoded; if not, the transmitter sends additional
redundancy bits. This allows us to attain, in effect, a reliable
transmission rate that is commensurate with underlying noise
level. In this paper, our goal is to offer a HARQ scheme
that is implementable without any separate CRC bits from
a higher layer and yet offer rate performance comparable with
the CRC aided scheme. In particular, we focus on the universal
performance of the scheme for the class of binary symmetric
channels BSC(p) with unknown channel parameter p.

The theoretical problem underlying our setup is that of
universal channel codes with feedback. Specifically, we seek to
design channel codes with feedback without actually knowing
the underlying channel. While channel codes with feedback
have been analyzed thoroughly in the information theory
literature, their universal counterpart that is relevant for our
HARQ application has not been considered. In particular, we
don’t have a handle on the additional number of channel uses
required, owing to universality, to send a fixed number of bits.
But we do not consider this interesting theoretical problem
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in this work. Rather we propose a scheme which offers this
universal behavior and evaluate its performance numerically.

Specifically, we present a Polar Code based construction
of universal channel codes with feedback. Our scheme builds
on a rate-compatible Polar Code and modifies it as follows:
The sender retransmits the bits sent over the t least reliable
polarized good channels over the top t reliable polarized good
channels; as a mnemonic for this structure, we term our
scheme Repeat-Top Polar Code (RT-Polar). At the receiver,
upon decoding, these two bit-strings are compared and error
is detected when they mismatch. If there is a mismatch, a
NACK is sent and the rate-compatible Polar Code switches to a
lower rate. We illustrate numerically that our proposed scheme
achieves rates comparable with genie-aided ideal variants that
assume perfect error detection or perfect channel knowledge.

HARQ design is a classic topic which has seen renewed
interest in recent years motivated by ultra reliable and low
latency communication requirements in the upcoming 5G stan-
dard (cf. [2]). Motivated by these applications, rate-compatible
Polar Codes for HARQ have been suggested; see [3], [5], [7],
[8], [12]. However, we seek modifications of these schemes
where no external CRC is assumed and the rate loss due
to universality is accounted for in performance evaluations.
We note that a CRC-free HARQ construction based on Turbo
Codes has been proposed in [9]. Our proposed scheme relies
on a universal order of Polarization; such a Polarization was
introduced for general channels recently in [4], [11].

The next section contains preliminaries required to describe
our scheme. Our scheme is given in Section III, and numerical
results for its performance evaluation are given in Section IV.
We conclude with a section on heuristic approximations for
error analysis of our scheme.

II. PRELIMINARIES

We set the stage with a brisk review of the preliminaries.

A. Efficiency of a feedback code

We consider channel codes with feedback where after each
round of communication over the channel, the decoder sends
an ACK/NACK feedback to the encoder. The encoder sends
the next transmission over the channel on receiving a NACK
and terminates once it receives an ACK. Denote by `∗(m, ε)
the least ` such that we can find a feedback code to send m
message bits using no more than ` channel uses on average and
with average (block) probability of error at most ε. A result
of [10] yields `∗(m, ε) = m(1−ε)/C(W )+O(logm), where



C(W ) denotes the capacity of channel W . Motivated by this
result, a benchmark of performance for a feedback code with
random length N is its throughput efficiency η defined by

η =
m(1− ε)
E [N ]

.

In view of the aforementioned result, the maximum (asymp-
totic) efficiency η∗(W ) for any feedback code equals C(W ).

The information theoretic formulation above is related in-
nately to HARQs, but does not capture the universality re-
quired of a HARQ. For such a universal setting, the benchmark
of C(W ) for efficiency is too optimistic, and an information
theoretic characterization of the optimal universally achievable
efficiency is not available. In absence of such theoretical
benchmark, we will compare the performance of our proposed
universal scheme with its natural genie-aided variants.

B. Polar Codes and their rate-compatible versions

We base our construction on Arikan’s Polar Codes, the first
provably capacity achieving practical codes [1]. We refer the
reader to [1], [6] for a description of Polar Code and review
here only the components we need. We restrict our attention
to the channel BSC(p). For this channel, a Polar encoder sends
the message u ∈ {0, 1}m by appending n − m randomly
generated1 bits, termed the frozen bits, to it and passing it
through a linear Polar transform. We apply the successive
cancellation (SC) decoder that decodes the message bit ui
by using as observation the previously decoded message bits
ui−1, the frozen bits, and the received bits yn.

For use in HARQs designed for channels BSC(p) with
different values of p, we seek a rate-compatible family of Polar
Codes comprising codes that operate for different values of p.
Each of these codes will be active in different iterations of the
decoding process, and we can switch between the codes by
transmitting the redundancy bits incrementally.

Note that the Polar transform, in effect, converts n inde-
pendent uses of the channel W to channels from message
bits and frozen bits. At finite blocklength, the set I(p) of
“good” channel inputs is chosen by using a threshold for the
Bhattacharyya parameter Z

(
W

(i)
n

)
of the polarized channels2.

For the family {BSC(p), p ∈ (pmin, pmax)}, for many popular
selection methods for good channels, we have I(p) ⊂ I(p′)
for p > p′. This monotonicity property is often exploited when
designing rate-compatible Polar Codes and is instrumental in
enabling our RT-Polar scheme.

III. RT-POLAR: A UNIVERSAL FEEDBACK SCHEME

In recent years, several rate-compatible Polar Code con-
structions have been proposed (cf. [3], [5], [7], [8], [12]).We
base our construction on the scheme proposed in [7], which is
provably capacity-achieving for a degraded family of chan-
nels. Consequently, our proposed scheme, too, is univer-
sally capacity-achieving for degraded channels. However, our

1In implementation, we have set the frozen bits to 0.
2For ease of implementation, we use the more explicit construction PCC-0

from [13, pg. 4] to select the set of good channels.

scheme can work with the rate-compatible Polar codes for
general channels proposed in [8] as well; the details are left
for future work.

We review the construction from [7] first. In absence of
the knowledge about the true channel statistics, the encoder
initiates optimistically by sending a message at a higher rate,
attained by freezing a small number of bits. If the receiver
detects decoding failure, it sends a NACK to the encoder;
else it sends an ACK and the transmission is complete. On
receiving a NACK in feedback, the sender now moves to a
less optimistic rate by successively freezing more bits and
retransmitting. Starting with an initial rate R1, the rates are
successively decreased to Ri = R1/i, i = 2, 3, ..., r, in the ith
iteration, where r denotes the maximum number of iterations.

In our treatment, we restrict to BSCs with flipover prob-
ability p and apply our scheme to the set G = {p1, ..., pr},
pi < pi+1, of possible values for p. For each channel
BSC(pi) with capacity C(pi) = 1 − h(pi), we associate a
rate Ri < C(pi). In the scheme above, we choose pis so
that Ri = R1/i ≤ C(pi) holds for every 1 ≤ i ≤ r. Note
that while our scheme moves from a code for BSC(pi) to
BSC(pi+1), the actual flipover probability p can be anything
in the interval [pi, pi+1]. Thus, when evaluating the scheme,
we must consider the entire interval [pi, pi+1].

For this setting, the rate-compatible scheme described ear-
lier initiates with a Polar Code of blocklength n for trans-
mitting k = nR1 information bits; in accordance with the
foregoing discussion, we set Ri = k/(n · i). We choose
the set Ii of good channels used in the ith iteration to
satisfy |Ii| = n.Ri = m/i. Since our underlying set of
channels forms a degraded family, we can find Iis such that
Ii+1 ⊂ Ii for 1 ≤ i ≤ r (see [6]). Heuristically, the scheme
above proceeds by making an optimistic guess BSC(pi) for
the channel in iteration i. If there is a decoding error, our
guess is deemed incorrect, and we update it to BSC(pi+1).
The procedure stops when we have either decoded correctly
or have used r iterations.

We build-on the scheme above by introducing an error
detection mechanism in the code. Recall that in a Polar Code,
the information bits are sent over the good channels, namely
those polarized channels W (i)

n for which Z(W
(i)
n ) is below

a threshold δ. In fact, these good channels can be ordered
in the increasing order of Z(W (i)

n ), with the lower Z(W (i)
n )

corresponding to more reliable channels [7]. In our RT-Polar
error detection mechanism, we take the t-bit block of our k-bit
message that is to be transmitted over the good channels with
t smallest values of Z and resend it over the good channels
with t largest values of Z.

At the receiver, upon decoding the message, the top t bits
(most reliable) are treated as the “hash” of the bottom t (least
reliable) message bits. Specifically, denoting by H the decoded
value of the top bits and by Ĥ the decoded value of the bottom
bits, we accept our decoding only if H = Ĥ . On the one
hand, with significant probability, the top bits are received
without an error for all flipover probabilities p in the range
considered. On the other hand, it is unlikely that the bottom



bits are decoded correctly before we have guessed the correct
p. Based on this heuristic, in each iteration of our scheme, we
obtain Hi and Ĥi from the decoded codeword. In view of the
foregoing discussion, we do not expect Hi and Ĥi to coincide
before the iteration i corresponding to the true p.

The complete description3 is given in Algorithm 1 and Al-
gorithm 2; the variables and subroutines involved are explained
in the subsequent text.

Algorithm 1 RT-Polar encoder at the ith iteration.
1: Input: the message vector u and ACKi−1/NACKi−1 from

previous iteration
2: Output: the retransmission information vector vi and the

encoded retransmission vector ci
3: vi ← ∅
4: if i = 1 then
5: H ← extract(u, t,TOP)
6: vi ← append(u,H)
7: else if ACKi−1 or i = r + 1 then terminate
8: else if NACKi−1 then
9: for j=1, 2, . . . , i-1 do

10: αj ← extract(vj , nRi−1,TOP)
11: βj ← extract(αj , n(Ri−1 −Ri),BOTTOM)
12: vi ← append(vi, βj)
13: ci ← encode(vi, nRi)

14: return (vi, ci) . ci is sent over the channel

Algorithm 2 RT-Polar decoder at the ith iteration.
1: Input: the received vector yi
2: Output: ACKi/NACKi and the decoded vector û
3: fi ← zeros(n− nRi)
4: v̂i ← decode(yi, fi, nRi, pi)
5: for j = i− 1, i− 2, . . . ,1 do
6: fj ← zeros(n− nRj)
7: ρj ← ∅
8: for l=i, i− 1, . . ., j + 1 do
9: ρj ← append(ρj ,Beta(j, v̂l))

10: fj ← append(ρj , fj)
11: v̂j ← decode(yj , fj , nRj , pi)

12: û← extract(v̂1, nR1,TOP)
13: Hi ← extract(v̂1, t,TOP)
14: Ĥi ← extract(v̂1, t,BOTTOM)
15: if Hi = Ĥi then
16: return ACK, û
17: else
18: if i < r then
19: return NACK,
20: else return û

The subroutine append(a, b) used in Algorithm 1 appends
the vector b to the vector a, and the extract(a, l,POS) with

3The lines 9-13 in Algorithm 1 and 4-8 in Algorithm 2 are the same as the
scheme of [7].

POS equal to TOP or BOTTOM, respectively, extracts the top
or bottom l bits from the vector a. Here we have followed
the convention that the bits are placed top-to-bottom in the
increasing order of the Bhattacharyya parameters of the cor-
responding channels they will be sent over. The vector βj
in line 11 of Algorithm 1 denotes the set of bits that were
transmitted in jth iteration mistakenly due to optimistically
guessing p and need retransmission in the ith iteration.The
subroutine encode(u, nR) denotes the Polar encoder of rate R
and length n, decode(y, f, nR, p) the SC decoder for rate R
and BSC(p) applied to the received vector y with frozen bits
f , and zeros(`) the length ` zero vector.

After decoding the vector received at the ith iteration, all the
vectors received in previous iterations are decoded recursively
considering the bits transmitted in subsequent iterations as
frozen. The lines 5 to 11 of Algorithm 2 denote the same,
wherein the subroutine Beta(j, v̂l) in line 9 returns the bits
that correspond to βj in line 11 of Algorithm 1 (chosen at the
lth iteration during encoding), decoded under the impression
that the channel is BSC(pi).

IV. NUMERICAL EVALUATIONS

When applying this scheme, we need to select the check-
length t, the blocklength n, and the initial rate R1. We choose
these parameters to “optimize” the throughput η(p), which for
our scheme is given by

η(p) =
m(1− εp)
nEp {I}

,

where p denotes the flipover probability to be used in prob-
ability calculations, m = nR1 − t is the number of message
bits sent, I is the random number of iterations used, and εp
is the average probability of error under BSC(p).

For most of this section, we restrict to the simple case of
r = 3. Specifically, we consider the previous scheme with
p1 = 0.03, p2 = 0.11, p3 = 0.17. These probabilities corre-
spond to BSC(p) with capacities roughly 4/5, 1/2, and 1/3.
These values have been chosen to allow us to accommodate
reasonable rates R1, R2 = R1/2, R3 = R1/3. In our Polar
Code construction, the set of good bit channels In,p is selected
to ensure that max{Z(W (j)

n (p)) : j ∈ In,p} ≤ δ, where
δ = 0.05 corresponds to R1 = 1/2 approximately.

We begin with simulations to illustrate the trade-off of
throughput with check-length t for n = 1024, which can
be used to select a reasonable t. In doing so, we focus only
on the throughput η(p) achieved by our scheme for p = pi,
i = 1, 2, 3 since we switch between Polar Codes designed
only for these values of p. Specifically, in Figure 1, we have
evaluated the throughput η(pi), i = 1, 2, 3, for values of t
in the interval [1, nR3]. Note that along with the simulated
behavior, the figure also includes an analytic approximation
which follows closely the trend of the simulated curve and
will be discussed in Section V. We denote the (numerically)
optimum check-length t for pi as t∗i . As can be seen from
Figure 1, t∗1 = 1, t∗2 = 9, t∗3 = 17. Choosing t = t∗1 will result
in the best η for BSC(p1), but η for BSC(p2) and BSC(p3) will
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Fig. 1. Throughput η(p) for RT-Polar scheme for BSC(p), p ∈
{0.03.0.11, 0.17}, n = 1024, δ = 0.05, t ∈ [1, nR3].

suffer considerably. However, by choosing t = t∗2 we achieve
the best η for BSC(p2) with negligible loss for BSC(p1). This
choice exploits the behavior of η(p) as a function of t, for
a fixed p, where it rises rapidly with t to it’s maximum but
decays slowly thereafter. Furthermore, there is no advantage
in including the η(p3) trend in deciding the best t since it does
not vary much with increasing t.

Next, we illustrate through simulations the trade-off of η
with the parameter δ. A smaller δ allows a smaller R1 which
leads to a conservative design that enhances the performance
for worse channels but penalizing the better channels. On the
other hand, we observe that choosing δ to be large affects
the worse channels adversely. In Figure 2, we compare the
performance of our scheme for δ = 0.5, 0.05, 0.005, where
each value of δ is used with the corresponding optimal value
of t identified in the manner described above. We note from
Figure 2 that δ = 0.05 constitutes the most reasonable choice.
This choice is seen to be reasonable for other blocklengths as
well, although we omit these simulations due to lack of space.
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Fig. 2. Effect of varying δ on the throughput η(p) for RT-Polar for n = 1024
and value of t optimized for each δ.

Finally, we illustrate the trade-off of throughput with code-
length n and then choose optimal n. In Figure 3, we have
shown η(p) for n ∈ {64, 128, 256, 512, 1024, 2048} with
δ = 0.05 and t optimized using the procedure described
earlier. From our simulations, it is evident that given a δ, higher
blocklengths achieve better throughput for better channels, but

for worse channels the performance of smaller blocklengths
takes over.
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Fig. 3. Effect of n on η(p) for RT-Polar scheme with t optimized for BSC(p),
p ∈ {0.03.0.11, 0.17}, δ = 0.05

Based on these simulations, we have selected δ = 0.05,
n = 512, and t = 9 as the best choice of parameters to
obtain a fair throughput for the entire range [p1, p3]. Figure 4
illustrates the performance of RT-Polar scheme with this
choice of parameters. It provides a comparison of the RT-Polar
scheme with the ideal case where the receiver has an oracle to
detect decoding failures without an error (this is essentially the
assumption in prior work). Our scheme compares closely with
this ideal case with an additional throughput-loss of roughly
t/n. In addition, we compare our scheme with the throughput
of fixed rate Polar Codes4 designed with the knowledge of
p ∈ [p1, p3], and SC decoding.
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Fig. 4. Performance comparison of RT-Polar with t = 9, δ = 0.05, n = 512.

Remarkably, the performance of RT-Polar code is compara-
ble with these ideal cases where either perfect error detection
or perfect channel knowledge is assumed, especially near the
values p = pi for which we have optimized the scheme.

Additionally, in Figure 5 we illustrate that our RT-Polar
scheme fares comparable with an extension of Polar Codes
that uses a CRC of length t computed from the entire message.

Both CRC-based implementation and our RT-Polar code
entail a rateloss of t-bits due to inclusion of check-bits for
error detection. Alternatively, one can design an error detection
mechanism based on the log-likelihoods computed at the Polar
decoder. We close this section with description of one such
scheme that we have devised. For brevity, we only give an
informal description of this scheme, termed the loglikelihood-
threshold Polar (LT-Polar) scheme. The LT-Polar scheme,

4For fixed rate Polar Code of rate R, we use η = R(1− ε).
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too, uses a rate-compatible Polar Code except that the error
detection mechanism is now changed. Specifically, we accept
the current guess p = pi if and only if the fraction of good
channels with absolute log-likelihood ratios above a threshold
λ is more than θ. Figure 4 above compares the performance of
this LT-Polar scheme with the RT-Polar scheme by choosing
λ and θ appropriately from simulations. It can be seen that
RT-Polar scheme outperforms the LT-Polar scheme.

V. APPROXIMATE THROUGHPUT ANALYSIS OPTIMIZATION

In this final section, we present an approximate analysis of
the throughput that can be used to select the check-length t.
A mathematically rigorous analysis of the gap-to-capacity at
a finite blocklength that takes into account the loss due to
universality is unavailable. Nevertheless, we present a simple
handle over the performance using heuristic simplifications
which yield a choice of optimal t that matches the choice
based on simulations in the previous section.

Recall that the throughput of our scheme when the underly-
ing channel is BSC(p) is given by η(p) = m(1−ε)/(nEp {I}).
For simplicity we only focus on the case p ≈ pi. To obtain
tractable bounds, we assume first that for p = pi, the
probabilities Pp (I < i− 1) and Pp (I > i+ 1) are negligible.
Under this assumption, the throughput depends only on the
performance of the error detection mechanism for p = pi.
Also, we approximate further the error detection mechanism
by a simple binary hypothesis testing problem5 with null
hypothesis denoting the case p = pi and the alternative
p = pi+1. Denote by PF,i and PM,i, respectively, the prob-
abilities of false alarm Ppi

(
Hi 6= Ĥi

)
and missed detection

Ppi+1

(
Hi = Ĥi

)
. Using these notations and assumptions, we

can approximate the expected number of iterations Epi {I} as

(i− 1)PM,i−1 + (1− PM,i−1)(i(1− PF,i) + (i+ 1)PF,i),

and the average probability of error ε as

PM,i−1εi,i−1 + (1− PM,i−1)((1− PF,i)εi,i + PF,iεi,i+1),

where εi,` denotes the probability of error under BSC(pi) when
we stop at iteration `. It only remains to estimate PF,i, PM,i,
and εi,` for ` = i− 1, i, i+ 1. To that end, we make another
assumption that the top bits are sent error-free for our entire

5This, too, is a simplistic approximation; the actual problem is composite.

range of p. Indeed, if this is not the case, reliable transmission
will not be possible at all in our range. Then, the probabil-
ity PF,i approximately equals Ppi

(
one of Ĥi bits is flipped

)
which is bounded above by

∑nRi

j=nRi−t Zi,j , where Zi,j de-
notes Z

(
W

(j)
n

)
for W = BSC(pi). Moving next to PM,i,

note that this error happens roughly when all the bottom t
bits get correctly decoded, an event very unlikely under pi+1.
Since the probability of each check bit being erroneously
decoded here is close to 1, union bound will not be useful
here. Instead, we proceed with our final approximation: We
assume the errors for the bits of Ĥi are independent of the
other bits and independent of each other. That is, PM,i ≈∏nRi

j=nRi−t Ppi+1
(bit j is sent correctly) where the terms in

the product are no more than 0.5
(
1 +

√
1− Z2

i+1,j

)
each.

Furthermore, using the assumed independence of the error
in bits Ĥi and the remaining message bits, we approximate
εi,i−1 . 1 and εi,` . `

∑nR`

j=1 Zi,j when ` = i, i + 1. Using
these approximations, we can evaluate the efficiency η(pi)
using only the parameters Zi,j . In Figure 1, we have compared
this heuristic analytical approximation for η(pi), i = 1, 2, 3,
with simulated values. The two set of curves match roughly
in their prescription for optimal choice of t.
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