
Practical Universal Data Exchange using Polar
Codes

Soumya Subhra Banerjee∗ Himanshu Tyagi∗

Abstract—In the multiparty data exchange problem, parties
with correlated data seek to recover each-other’s data. We study
practical, universal schemes for this problem that accomplish
data exchange using optimal rate communication for any dis-
tribution of observations. Our focus in this work is on binary
symmetric distributions where each user observes bit sequences
with uniform marginals. We consider binary symmetric Markov
trees as a natural multiparty extension of the binary symmetric
source and seek universally rate optimal algorithms for this
family. Our main theoretical result is a completeness theorem
which shows that any universal Slepian-Wolf scheme can be
converted efficiently to a universal data exchange scheme for
a subfamily of binary symmetric Markov trees. We instantiate
this result using Polar codes. In particular, we provide a universal
Slepian-Wolf code using Polar codes and use our reduction
algorithm to convert it to a multiparty data exchange protocol.
The resulting scheme provides the first practical construction of
codes for universal data exchange, which we evaluate numerically.

I. INTRODUCTION

Multiparty data exchange is a multiterminal source cod-
ing problem where parties observing correlated data seek
to recover each-other’s data. A solution for this problem
will have many applications, including extending two-party
functionalities such as rsync to multiple parties. A Shannon
theoretic variant of this problem was introduced in [5], where
it was termed the “omniscience” problem and the minimum
rate of communication for omniscience was characterized. It
was also shown in [5] that a data exchange protocol can be
used to generate a multiparty secret key of maximum possible
rate, which constitutes another application of such a primitive.
Motivated by these applications, we seek practical algorithms
for multiparty data exchange.

An important step towards this goal was taken in [11] (see,
also, [10]) where a universal data exchange (UDE) protocol
called Recursive Data Exchange (RDE) was given, namely an
interactive protocol that achieves data exchange using mini-
mum rate of communication without knowing the underlying
generating distribution. While theoretically pleasing, decoding
in RDE involves search over a list of exponential size (in file
length). Therefore, the solution provided in [11] falls short of
practical feasibility.

In this work, we take the first step towards a practical data
exchange protocol. We restrict to the class of binary sources
where marginals of each sequence is uniform Bernoulli, and

∗Department of Electrical Communication Engineering, Indian Institute of
Science, Bangalore 560012, India. Email: {bsoumya, htyagi}@iisc.ac.in

consider a Markov chain over tree model as its multiparty
extension. An important structural property of RDE is that it
recursively applies a two-party primitive to obtain a multiparty
solution. Such results where a subclass of problems capture the
most general version of the problem are called completeness
results. However, even this two-party primitive used in RDE
is not practically feasible. Our proposed solution has a similar
structural form. We show that a two-party, universal Slepian-
Wolf (USW) code can be extended to a UDE protocol for an
interesting subclass of Markov chain over trees – we call this
subclass progressively degraded Markov trees (DMT). This
completeness result is the main theoretical contribution of our
work.

As a consequence of this result, we design a UDE protocol
for DMTs using Polar codes. We first present a new USW code
using Polar codes and use the general reduction mentioned
above to convert it to a UDE. The proposed USW is based
on our recent Polar code based scheme for implementing
universal HARQs [3]. We have implemented our scheme in
Python and have numerically validated the practical feasibility
of our scheme.

We remark at the outset that our completeness result is
grounded in theory, and allows us to limit the design problem
to that of USW design. However, the Polar code construction
for USW we present is based on heuristics and is only val-
idated through numerical experiments. An approximate error
analysis under a decoupling assumption for polarized channels
can be provided along the lines of [3], but the exact analysis
evades us. Finally, even the theoretical benchmark used to
compare our numerical performance is not satisfactory, since
it ignores the finite blocklength effects and the role of limited
rounds of interaction.

We set the stage in the next section with preliminaries.
Section III contains our general procedure for extending a
USW to a UDE for DMTs, along with the proof of complete-
ness theorem. Our scheme based on Polar codes is described
in Section IV, along with numerical evaluations in the final
subsection.

II. PRELIMINARIES

In this section, we review briefly some basic notions that
will be used throughout this paper.

A. Interactive protocols and oracle access

We present only a “semi-formal” definition of multiparty
interactive communication protocol in the interest of space. (A

formal definition can be given using tree-protocols; see [7].)
A multiparty interactive communication protocol proceeds in
rounds, with one party communicating in each round. The
communication sent in each round depends on the previously
received communication and the local observations of the
party. We allow randomized protocols where the input of the
parties includes their local input and a random variable U
shared with all the parties. The communication sent in each
round is either a binary string of arbitrary length, namely an
element in {0, 1}∗, or a special symbol indicating termination,
upon receiving which the protocol stops. Also, communication
in each round determines which party will communicate next.
We use the notation π for a protocol and Π for its terminated
transcript, namely all the bits sent in the protocol.

An output of a protocol is a random variable that can be
computed by parties using its transcript Π and their respective
observations. The length of the protocol is the (random) length
|Π| of its transcript Π, namely the number of bits in Π
(excluding the termination symbol). Finally, the rate of a
protocol working with inputs of length n bits (for each party)
is given by |Π|/n.

We conclude this part with a brief description of oracle
access to a protocol. In computational complexity theory,
oracle access is a standard notion where an algorithm A has
oracle access to an algorithm B if A in its execution is allowed
to send inputs to B and use the resulting outputs. In this work,
we allow a slight variant of this basic oracle access, which we
call oracle access with pause, where A in its oracle access
to B is allowed to “pause” the execution of B midway and
“resume” later as needed.

B. The SW problem and multiparty data exchange

The two-party data exchange problem is closely related
to the classic Slepian-Wolf (SW) problem [9]. In this prob-
lem, party 1 observes Xn and party 2 observes Y n, where
(Xt, Yt)

n
t=1 is an iid sequence generated from PXY . Party 1

uses a mapping e : Xn → {0, 1}` to compute the message
c = e(Xn), which it sends to party 2. Party 2 uses a mapping
d : {0, 1}` × Yn → Xn forms an estimate X̂ = d(c, Y n)
of Xn. The rate of the SW code (e, d) is R = `/n and its
probability of error is given by P

(
X̂ 6= Xn

)
. The main result

of [9] is that the minimum rate of a SW code for achieving a
vanishing probability of error is R∗ = H(X|Y).

The two-party data exchange problem extends the SW
problem and requires both parties to recover each-other’s
observations. Further, instead of the one-way communication
protocol above, we allow interactive communication proto-
cols. The multiparty data exchange problem has m parties
observing n-length iid sequences, with party i observing
X(i) = Xi1, ..., Xin and (X1t, ..., Xmt)

n
t=1 generated iid

from PX1...Xm
. Parties execute an interactive communication

protocol and use its transcript Π and their local observations
X(i) to form estimates of observations of all the other parties
observations. Such a protocol constitutes an ε-DE protocol if
the estimates of all the parties are correct with probability of
error less ε. This problem was formulated first in [5] where

the minimum asymptotic rate of communication required for
enabling εn-DE with asymptotically vanishing εn was charac-
terized. This optimal rate, termed the minimum communication
of omniscience in [5] is given by1

R∗(PX1...Xm
) = max

σ1,...,σk

1

k − 1

k∑
i=1

H(X[m]|Xσi
),

where the maximum is over all partitions σ1, ..., σk of [m] and
all k. An important consequence of this form, that we exploit
in our analysis, is that if a protocol completes data exchange
using communication (1/(k−1))

∑k
i=1H(X[m]|Xσi

) for any
partition σ1, ..., σk, then it must be of optimal rate.

For convenience, we distinguish the communication proto-
col, which we denote by the encoder mapping e, from the
function used to compute the output, which we denote by
decoder mapping d. Furthermore, we include the termination
decision as a part of d. For brevity, we will abbreviate a data
exchange protocol π as (e, d).

C. Universal data exchange

Given a family of distributions P for iid data of the
parties, a universal data exchange (UDE) for P protocol is an
interactive protocol that accomplishes data exchange for any
source distribution PX1...Xm

∈ P using communication of rate
R∗(PX1...Xm

) (or arbitrarily close to it asymptotically). Such
a protocol was given in [11] for the family of all distributions.
In fact, the protocol proposed in [11] satisfied universality in
a stronger, individual sequence sense. Formally, we work with
the following definition of UDE protocols.

Definition 1. For ε ∈ (0, 1) and η > 0, an interactive
protocol π = (e, d) is (ε, η)-UDE for n-length P if when the
observations (X1t, ..., Xmt)

n
t=1 are generated iid from P ∈ P ,

the estimates X̂(j, i) of X(i) formed by party i, j 6= i,
and the (random) transcript Π of the protocol satisfy for all
j ∈ [m] \ {i}, i ∈ [m] that P (|Π| > n(R∗(P) + η)) ≤ ε and
P
(
X(j) 6= X̂(j, i)

)
≤ ε, where X(j) = (Xj1, ..., Xjn) is the

observation of party j.

A related notion which we will need is that of a universal
SW (USW) protocol. We enforce a little more structure on this
notion to enable our completeness theorem. We assume the
following: (i) The protocol proceeds interactively in rounds
and in each round nη bits are sent; (ii) when the protocol
terminates, the decoder mapping d is applied to Y n and
transcript Π to obtain the estimate X̂ = d(Π, Y n).

Definition 2. For ε ∈ (0, 1) and η > 0, a two-party
interactive protocol π = (e, d) is (ε, η)-USW for n-length
P if when the observations of parties (Xn, Y n) are generated
iid from P ∈ P , the estimates X̂ of Xn formed by party
2, and the (random) transcript Π of the protocol satisfy
P (|Π| > n(HP (X|Y) + η)) ≤ ε and P

(
Xn 6= X̂

)
≤ ε.

1The expression derived in [5] was different and the tightness of alternative
expression we present was shown in [4].

D. Progressively degraded Markov tree model

Finally, we lay down the family P of sources we will be
handling in this work. We consider binary sources of length
n, namely sources where the observations of each party takes
values in {0, 1}n. Furthermore, we only consider symmetric
models where marginal distribution of each party’s observation
is Ber(1/2).

For two-parties, such a family of distribution corresponds
to binary symmetric sources (BSSs) PX1X2

where X1 is a
random bit, U is Ber(δ), and X2 = X1⊕U , for some flipover
probability δ ∈ [0, 1]. We denote the channel with X1 as input
and X2 as output by BSC(δ).

A natural multiparty extension of this family is the family
of binary symmetric Markov tree (BMT) sources where binary
random variables X1, ..., Xm form a Markov tree with the joint
distribution of any parent-child pair given by a BSS. Note that
such a distribution can be represented by a weighted tree with
edge weights pi ∈ [0, 1], 1 ≤ i ≤ m − 1, representing the
flipover probability for the corresponding parent-child edge.
We will work with this representation throughout.

The source family we shall work with in this paper is a
special case of BMTs – we term it a progressively degraded
BMT (DMT). This comprises BMT distributions such that for
ordered edge weights such that h(p1) ≤ h(p2) ≤ · · · ≤
h(pm−1), the restriction of the tree to edges corresponding
to weights p1, ..., pk is also a tree, for every 2 ≤ k ≤ m− 1.
Alternatively, we can view the weighted tree being generated
by adding one edge at a time in such a way that every new
edge has weight more than all the previously existing edges.

III. MAIN RESULT: A COMPLETENESS THEOREM

We now present our main result which states that a universal
SW protocol for BSSs can be used to construct a universal
DE protocol for DMTs. Namely, the universal SW problem
for BSSs is complete for universal DE for DMTs.

Formally, assume the existence of an (ε, η)-USW protocol
π = (e, d). Our UDE protocol, described below in Alg. 1, uses
π in an oracle access with pause. In particular, it initiates m2

copies of π and pauses and resumes a subset of them at various
points. All running copies are in sync and proceed at one round
at a time. Recall that by definition π sends nη bits per round.
When we pause a copy, it halts at its current round, and when
it is resumed, it proceeds by incrementing rounds. Therefore,
the number of bits sent by each copy is simply determined by
the time (or rounds) for which it is executed. When Alg. 1
terminates party i, i ∈ [m], has estimates X̂(j, i) ∈ {0, 1}n,
j ∈ [m] \ {i}, for observation x(j) ∈ {0, 1}n of party j.

The result below characterizes the performance of UDE
proposed in Alg. 1.

Theorem 1 (Completeness of USW for UDE). For ε ∈ (0, 1)
and η > 0, let π be an (ε, η)-USW for n-length BSS. Then,
Alg. 1 constitutes an (m2ε,m2η)-UDE for n-length DMTs.

2All bits are broadcasted to all the parties, with nodes communicating at
equal rate.

Algorithm 1 UDE from USW
1: Initial step. All pairs of parties i, j ∈ [m] execute copies

of the USW protocol π with party i communicating2

by running the encoder e with its data x(i) and party j
executing decoder d with its data x(j) and communication
sent by i. We denote the copy with i as transmitter and j
as receiver by πij .

2: Root-pair discovery. Let (i0, j0) denote the pair for which
πi0j0 terminate first; if there are multiple, choose one
arbitrarily. Pause all the other copies of π except πj0i0 ,
which is continued till termination.
. Parties i0 and j0 have exchanged x(i0) and x(j0).

3: A ← {i0, j0}.
. A is the set of parties for which DE is complete.

4: Branch-growth iteration. while A 6= [m] do

1: New branch discovery. For each j ∈ A and i ∈ Ac,
the pair (i, j) resumes πij until the protocol for any
one pair, say (i1, j1), terminates. Pause all the other
copies of π.
. At this point, party j1 ∈ A has an estimate of x(i1).

2: Assimilation. First πj1i1 resumes till termination to
make x(j1) available to party i1. Next, party i1 uses
its estimate of x(j1) and transcripts of πij1 , i ∈ A, to
obtain estimates of x(i) for every i ∈ A. Finally, each
party in A uses the transcript πi1j1 and its respective
estimate of x(j1) to construct an estimate of x(i1).
. Now parties in A ∪ {i1} have exchanged data.

3: A ← A∪ {i1}.

Proof. Consider a DMT representation by a tree T with edge
weights p1, .., pm−1. We assume that h(p1) ≤ ... ≤ h(pm−1).
We present the proof for the simple (infeasible) case when π
is an ideal USW, i.e., ε = η = 0. In this case, each copy of π
terminates precisely when it reaches the required rate for the
SW problem. Therefore, the root-pair discovery step concludes
with data exchange for the pair with the least weight, namely
that corresponding to the edge e1 with weight p1. At this
point, the communication rate of each node is h(p1). Next, in
the new branch discovery step, the node in the edge e2 with
weight p2 that is not included in e1 concludes first. At this
point, the overall communication rate of nodes in A is h(p1)
and those of outside A is h(p2). Then, a node in A (that on
which e2 is incident) continues to rate h(p2) to complete data
exchange for the edge e2 in the assimilation step. This process
continues iteratively. When the ith edge has completed data
exchange, the overall rate of communication for all the nodes
is
∑i−1
j=1 h(pj)+(m− i+1)h(pi), where the sum corresponds

to the rate of nodes in A except the newly assimilated
pair. Therefore, when the protocol terminates, the overall
rate of communication is

∑m−2
j=1 h(pj) + 2h(pm−1). This rate

equals the minimum communication needed for omniscience.
Indeed, denoting by X1, ..., Xm random variables such that
(Xi, Xi+1) correspond to the edge ei with weight pi, it can

be seen that H(X1, ..., Xm|Xm) +H(Xm|X1, ..., Xm−1) =∑m−2
j=1 h(pj) + 2h(pm−1) ≤ R∗(PX1...Xm

), where the final
bound uses the expression for minimum communication for
omniscience. But since this rate can be achieved by our
protocol, it must equal R∗(PX1...Xm), establishing universal
optimality of our protocol in the ideal case.

Moving now to the proof in the real world, the main
challenge is handling the slack of η in rate that can change
the order in which the pairs complete data exchange. In
fact, even the pairs that do not have an edge between them
in T can complete data exchange before a pair with edge.
Nonetheless, we show that this change in order will not
change the overall rate by much (depending on η). Denote
by 1 < i1, ..., ik the increasing sequence of indices in [m− 1]
such that h(pi`) +η < h(pi`+1), for 1 ≤ ` ≤ k. We show that
with high probability our protocol must “sync” with the ideal
protocol when edges ei`s complete data exchange. Specifically,
let A1, ...,Ak,Ak+1 be the partition of nodes [m] such that A`
comprises the nodes incident on edges ej for i`−1 < j < i`,
the right-node of ei`−1

and the left-node of ei` (where the
direction is left to right from e1 to em−1). Also, the rate of
communication required for decoding a node in A`+1 is no
more than h(pi`) + (|A`+1| + 1)η. Due to lack of space, we
delegate the proof details to a longer version, to be uploaded
on arXiv.

IV. A CONSTRUCTION USING POLAR CODES

In this section, we present a construction of USW using
Polar codes which can be extended to a UDE using our general
scheme in Alg. 1. We refer the reader to [1], [2], [6] for
background on Polar codes and SW compression using Polar
codes.

A. USW using Polar Codes

A Polar encoder applies a linear transform T to an n-bit
input vector and converts n independent copies of a given
binary input channel W to a set of q “good” binary input
channels on which the message u ∈ {0, 1}q is transmitted
almost error free, and n − q “bad” channels on which the
(n−q)-length sequence of frozen bits is transmitted. We apply
the successive cancellation (SC) decoder that decodes the
message bit ui by using as observation the previously decoded
message bits ui−1, the frozen bits, and the received bits yn.
At finite blocklength, the polarized channels can be arranged
in increasing order of the Bhattacharyya parameter Z

(
W

(i)
n

)
,

the “good channels” may be chosen by putting a threshold on
the same. We adhere to this ordering.

For SW compression of a BSS (X1, X2) with flipover
probability p, we may implement the asymptotically optimal
encoder described earlier by extracting the frozen bits from
T−1(X1), whereas a simple SC decoder which has access
to X2 and these frozen bits can obtain an estimate X̂1 of
X1 [6]. Recall, that the number of good channels tends to
the symmetric capacity I(Wn) of vector channel Wn [1].
Thus, the asymptotic rate of communication needed for this

SW scheme is H(X1) − I(Wn) = H(X1|X2) = h(p). This
construction, however, relies on an exact value of p.

A similar problem of universality in channel coding regime
can be solved using a HARQ code. We base our construc-
tion of USW on such a HARQ code, called the RT-Polar
HARQ [3], and name it the RT-Polar Data Exchange code.
Our construction tries to get the closest estimate of p from
a set G = {p1, ..., pr}, pi < pi+1, of possible values of p.
For each channel BSC(pi) with capacity C(pi) = 1 − h(pi),
we associate a rate Ri < C(pi). In the scheme above, we
choose pis so that Ri ≤ C(pi) holds for every 1 ≤ i ≤ r.
Initially, the encoder assumes that the BSS can be described
by a BSC(p1), thus, sends n− nR1 frozen bits to the decoder
over an error free channel. Under the same assumption, the
decoder tries to estimate X̂1. If the receiver detects a decoding
error, it sends a NACK to the encoder; else it sends an ACK
and the transmission is complete. On receiving a NACK in
feedback, the sender now moves to a less optimistic value of
p, so does the receiver. Accordingly, number of frozen bits are
successively increased to n− nRi, Ri = R1/i, i = 2, 3, ..., r,
in the ith iteration, where r denotes the maximum number of
iterations. Note, the choice of Ri = R1/i is to facilitate ease
of implementation, Ri = R1− (i− 1)∆ as discussed in [8] is
another valid choice. Though, p can be anything in the interval
[pi, pi+1], the restrictions on pi helps to limit the number of
rounds allowed. After the i-th iteration the total number of
bits transmitted by the source to the destination is n − nRi.
If p = pi, for n → ∞ the allowable rate Ri approaches
1 − h(pi). Hence, with ideal decoding error detection, the
number of bits required at destination to recover X1 tends
to nh(pi) asymptotically, with no extra bits being sent.

Including a similar communication for USW of sending X2

to X1, the total rate is 2nh(pi) asymptotically. We use an
error detection mechanism similar to that of RT-Polar HARQ
scheme of [3]. Specifically, the bottom t bits of the vector
T−1(X1) are sent on the error free channel along with the
frozen bits, as a reference for error detection. The decoder
compares these bits with their decoded value to detect an error.
We present a detailed description of the destination side of
the scheme, namely the RT-Polar DE scheme, in Alg. 2. Note
that unlike its channel coding counterpart, for source coding
recursive decoding of previous transmission at each step is not
necessary.

The subroutine polar(x) performs the Polar encoding trans-
form, append(a, b) appends the vector b to the vector a, and
extract(a, l,POS) extracts l bits from specified POS of vector
a. The subroutine decode(y, f, nR, p) is a SC decoder for rate
R and BSC(p) applied to the received vector y with frozen bits
f , and zeros(`) the length ` zero vector. The error detection
takes place in step 10, where if the transmitted and decoded
values of the bottom vector match, we accept the estimate of
x and conclude the algorithm.

B. Extending to UDE and assimilation step improvements

We extend USW to a UDE using Alg. 1 where each copy
of USW is executed until the decoder returns an ACK. While

Algorithm 2 RT-Polar DE decoder at the ith iteration.
1: Input: the destination vector x2, error-free transmission

in ith iteration wi.
2: Output: ACKi/NACKi and the decoded source vector x̂1
3: fi ← ∅
4: for j = 1, 2,. . .,i do
5: fi ← append(wj , fi)

6: vi ← decode(x2, fi, nRi, pi)
7: û← append(vi, fi)
8: Hi ← extract(wi, t,TOP)
9: Ĥi ← extract(vi, t,BOTTOM)

10: if Hi = Ĥi then
11: x̂← polar(û)
12: return ACK, x̂
13: else
14: if i < r then
15: return NACK,
16: else
17: x̂← polar(û)
18: return x̂

the USW estimates the relation between any two nodes, the
UDE uses the order of discoveries made by it’s constituent
USWs to figure out the possible construction of the DMT.
In our implementation we relegate the assimilation stages
of all branch-growth iteration steps to a final decoding step
which involves no communication. Here every node uses the
previously received bits and their decoded estimates to decode
the vectors they are missing when the algorithm concludes.
At this step, it is critical to carefully follow the history
of the communication and complete final decoding in the
order of discovery of nodes, by backtracking the received
communication.

A shortcoming of our theoretical construct in Alg. 1 is the
assimilation step. Here, errors add-up significantly when we
use an estimate of a vector to decode another vector, causing
performance degradation with increase in number of nodes. In
practice, we circumvent this difficulty by communicating an
additional CRC hash for each vector.

C. Numerical evaluation of performance

We present the performance of RTPolar DE for r = 3,
p1 = 0.03, p2 = 0.11, p3 = 0.17. These probabilities corre-
spond to BSC(p) with capacities roughly 4/5, 1/2, and 1/3. In
our Polar Code construction, the set of good bit channels In,p
is selected to ensure that max{Z(W

(j)
n (p)) : j ∈ In,p} ≤ δ,

where δ = 0.05 corresponds to R1 = 1/2 approximately.
Our choice of parameters corresponds to the analysis in [3].
Figure 1 illustrates the performance of RT-Polar DE scheme as
a USW and compares it to a genie-aided variant which detects
decoding error without an error. Here, l(P) denotes the com-
munication rate considering correct exchanges only, where P
is the set of flipover probabilities associated with the edges of
the DMT. In figure 2, we present the performance of extension
of the scheme to three parties with genie-aided as well as CRC-

0.04 0.06 0.08 0.10 0.12 0.14 0.16

flipover probability p

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

l(
p)

RT-Polar DE, t=9
Ideal Detection
H(X1|X2)

Fig. 1. Performance comparison of RT-Polar DE for 2 parties, with t = 9,
δ = 0.05, n = 512.

0.04 0.06 0.08 0.10 0.12 0.14 0.16

flipover probability p′′

1.0

1.5

2.0

2.5

l(
p′
,p

′′)

RT-PDE
RT-PDE with CRC
Theoretical

Fig. 2. Performance comparison of RT-Polar DE for 3 party DMT, with
t = 9, δ = 0.05, n = 512, p′ = 0.11.

aided final error detection. Figure 3 illustrates the performance
of the algorithm for a 4 party path with p′′ ≤ p′, p′′ ≤ p′′′,
which constitutes a DMT. We have considered, p1 = 0.03,
p2 = 0.15, p3 = 0.3. Our simulations suggest that the RT-Polar

0.15 0.20 0.25 0.30 0.35

flipover probability p′′′

1.0
1.5
2.0
2.5
3.0
3.5
4.0

l(
p′
,p

′′ ,
p′
′′)

RT-PDE
Theoretical

Fig. 3. Performance comparison of RT-Polar DE for 4 party, with t = 50,
δ = 0.05, n = 512, p′ = 0.07, p′′ = 0.03.

DE scheme and its extensions successfully capture the trend of
optimal communication required to perform a universal data
exchange. We expect better performance of RT-Polar DE if
more efficient coding schemes are used.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. on Inform. Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[2] ——, “Source polarization,” in Inform. Theory Proceedings (ISIT), 2010
IEEE International Symposium on. IEEE, 2010, pp. 899–903.

[3] S. S. Banerjee and H. Tyagi, “RT-Polar: An harq scheme with univer-
sally competitive rates,” in IEEE Inform. Theory Workshop (ITW), 2018.

[4] C. Chan and L. Zheng, “Mutual dependence for secret key agreement,”
Proc. Annual Conference on Inform. Sciences and Systems (CISS), 2010.

[5] I. Csiszár and P. Narayan, “Secrecy capacities for multiple terminals,”
IEEE Trans. Inf. Theory, vol. 50, no. 12.

[6] S. B. Korada, “Polar codes for channel and source coding,” Ph.D. thesis,
Swiss Federal Inst. Technology (EPFL), 2009.

[7] E. Kushilevitz and N. Nisan, Communication Complexity. New York,
NY, USA: Cambridge University Press, 1997.

[8] B. Li, D. Tse, K. Chen, and H. Shen, “Capacity-achieving rateless polar
codes,” in Inform. Theory (ISIT), 2016 IEEE International Symposium
on. IEEE, 2016, pp. 46–50.

[9] D. Slepian and J. Wolf, “Noiseless coding of correlated inform. source,”
IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 471–480, July 1973.

[10] H. Tyagi and S. Watanabe, “Optimality of the recursive data exchange
protocol,” Proc. IEEE Int. Symp. Inf. Theory, 2017.

[11] ——, “Universal multiparty data exchange and secret key agreement,”
IEEE Trans. on Inform. Theory, vol. 63, no. 7, pp. 4057–4074, 2017.

