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Abstract—This paper describes CORNET, a co-simulation
middleware for applications involving multi-robot systems like
a network of Unmanned Aerial Vehicle (UAV) systems. Design of
such systems requires knowledge of the flight dynamics of UAVs
and the communication links connecting UAVs with each other
or with the ground control station. Besides, UAV networks are
dynamic and distinctive from other ad-hoc networks and require
protocols that can adapt to high-mobility, dynamic topology and
changing link quality in power constrained resource platforms.
Therefore, it is necessary to co-design the UAV path planning
algorithms and the communication protocols. The proposed co-
simulation framework integrates existing tools to simulate flight
dynamics and network related aspects. Gazebo with robot oper-
ating system (ROS) is used as a physical system UAV simulator
and NS-3 used as a network simulator, to jointly capture the
cyber-physical system (CPS) aspects of the multi-UAV systems.
A particular aspect we address is on synchronizing time and
position across the two simulation environments, and we provide
APIs to allow easy migration of the algorithms to real platforms.

Index Terms—COSIM, UAV, NS-3, Gazebo, 5G, WiFi, Cyber
Physical Systems.

I. INTRODUCTION

Autonomous robots such as self-driving cars and Unmanned
Aerial Vehicle (UAVs)/drones are set to be game-changers in
many fields such as infrastructure maintenance, transportation,
public safety, disaster response, agriculture, mining, health
care and exploration. With advances in cyber physical sys-
tems, cloud-fog computing, and artificial intelligence, autopilot
systems for autonomous vehicle are expected to play a key
role in the future of urban transportation systems. Especially
with advent of 5G and vehicle-to-infrastructure (V2X) frame-
works, use-cases like infrastructure-assisted remote-controlled
autopilot systems [30] [21] and situation awareness [26] based
advance driver assistance systems are enabled. Implementing
such systems requires new algorithms and proper tuning of
the parameters without which systems are prone to hazards,
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making them potentially unsafe. Therefore, it is necessary
simulate the system with appropriate tools to ascertain a
certain level of confidence.

There is a dearth of open-source tools that can enable co-
simulation of both control systems dynamics of UAVs and Un-
manned Ground Vehicle (UGVs) and a detailed network-side
simulation. In this work we will present an integrated frame-
work for the realistic simulation of connected autonomous
vehicles, with a specific example of a multi-UAV system. The
solution proposed should satisfy following criteria,

• should be lightweight and be able to run on multiple
interconnected computers,

• there should be a common notion of simulated time and
position across the two simulation environments and

• must offer APIs allowing developers to write their strat-
egy and control algorithms in a way that enables porting
to a real platform with few or no modifications.

Our proposed framework for networked control systems
mainly focuses on bridging the two domains with existing
open-source tools to capture the closed loop simulation in
near real time. Design of the cyber-physical systems aspects
of multi-UAVs is a complex task and, therefore, there is no
single tool that can capture all the requirements for the design
of such systems. Hence, the need for cooperation between
different tools in a simplistic and synchronized manner.

The main contribution of this work is an integration strategy
and implementation of two different open-source simulation
engines, Gazebo-ROS and NS-3 with common mobility model
and time synchronization. ROS uses the PCś System clock
as wall time, while NS-3 models the operation as a discrete
sequence of events in time. Combining periodic sampling and
event based sampling is a technique we leverage.

II. RELATED WORK

In this section, we provide a summary of existing UAV and
network simulators. There have also been recent efforts in the



direction of joint UAV-network simulation frameworks.
The fundamental scope of UAV simulators is to model

physical dynamics and functional aspects of UAV. Early efforts
described in flight trainers [5] and Microsoft flight simulator
[20] mainly focus on humans operating the flight simulator.
Most of the existing simulation tools focus on first person
view (FPV) and aerial or line of sight (LOS) view, essentially
targeting realistic graphics and technically sound aerodynamic
designs. Our focus is on autopilot features and autonomous
flight simulators. Ardupilot [2] and PX4 [7] are the most
widely used open-source frameworks. Several UAV simulators
are built on top of these two frameworks to extend its
capabilities. Another interesting feature is support for software
in the loop (SITL) simulations, where the target platform
is a software simulation. Both PX4 and Ardupilot supports
this feature. Gazebo robotic simulator [22] has been used
extensively in several UAV-related works but it also extends
these to land-rovers, planes and small robots using ROS [8].
AirSim [1] is another open-source tool used to capture the
dynamics of robots, which is built on the Unreal engine [28].
Its prime focus is to enable experiments with deep learning,
computer vision and reinforcement leaning algorithms for
autonomous vehicles.

Similarly, a variety of network simulators offer a simula-
tion/emulation framework for wired/wireless networks along
with traditional hardware such as NICs, switches, routers,
Access Points (APs) etc. Our primary interest is to support
WiFi and 4G/5G cellular communications for enabling UAV
networks, along with a wide range of protocols and options at
different layers of the network.

Qualnet [14] and OPNET [13] are commercial simulators
enabling detailed simulation of wireless networks. Among
open-source tools OMNET++ [13] and NS-3 [18] are the
most used by research community. On another note, mininet
[15] is network emulation tool, which provide realistic virtual
network, running real kernel, switch and application code, on
a single machine.

Recently, joint UAV-network simulators have been pro-
posed like CUSCUS [31], AVENS [25] and FlyNetSim [11].
CUSCUS has been developed based on FL-AIR and NS-
3. In NS-3 communication links are established using tap
bridges via containers, which acts as network devices for
UAVs in FL-AIR. The use of tap bridges severely limits the
extensibility of the framework for technologies such as D2D,
LTE and 5G. Another framework AVENS is developed based
on OMNET++ and X-Plane. The main limitation of AVENS
is that the UAV and network simulator communicate through
an XML file, which only updates the number and position of
the UAV. This framework does not provide a path for control,
telemetry to and from UAVs. FlyNetSim is developed using
NS-3 and Ardupilot software-in-the-loop (SITL). To achieve
time synchronization they have used real-time schedulers in
NS-3, which aligns the processing of scheduled events with
actual time. In case of dense simulations the scheduler may
actually be late with respect to clock, resulting in either lost
synchronization (best-effort) or late events being discarded

Fig. 1. Generic multi-UAV system framework

(hard-limit). They derive the UAV position from deep packet
inspection of the telemetry data received.

Recent surveys on current drone simulation frameworks
[10] [17] highlight the necessity to co-design the UAV path
planning algorithms and the communication protocols. Along
with application-specific requirements, some of the pressing
aspects highlighted are,

• The UAV simulator should be augmented with commu-
nication aspects of drones, where each drone is treated as
a node, enabling flying ad-hoc networks (FANETS) [12],

• Additional modules to enable research on cyber-security
aspects of UAVNETs [19],

• Support for various scenarios with different mobility
models and

• Ability to support new UAV designs like bio-inspired
drones, MAGMA(using elevators, rudders and ailerons)
[3], Blimp drones [4] etc.

Our choice of Gazebo with ROS and NS-3 in the Linux en-
vironment is primarily driven by the large community support.
Another key aspect is that Gazebo’s software architecture is
modular and can be extended using plug-ins. On the other
hand, AirSim which uses the Unreal engine, is not well
supported on Linux and requires demanding computational
capabilities. Additionally, NS-3 can meticulously interface
with external systems, applications and libraries.

III. MULTI-UAV SYSTEM FRAMEWORK

In this section, we provide an overview of a generic multi-
UAV system. As shown in the Figure 1 the basic components
of multi-UAV systems are the UAV, the Communication inter-
face and the Base station.

The UAV consists of an Flight Control Unit(FCU) with an
autopilot stack. A hardware abstraction layer provides drivers
for motors, inertial and geographical sensors, and optionally,
an on-board companion computer. For example, the PixHawk
control board equipped with PX4 or Ardupilot flight stack
and single board computer (SBC) platforms like Raspberry
Pi, Odroid, TX2, etc., are commonly used platforms for
UAVs. The on-board computer augments the FCU with the
high-level logic of the mission and also provides it with a



Fig. 2. High level framework for closed loop control simulation

wireless communication interface to perform data exchanges
with other UAVs or with the base station. The FCUs are also
connected using VHF modems to interact with ground control
station(GCS) for telemetry and flight control.

The Base Station is a Ground Control Station (GCS),
consisting of one or more computers, and serves as virtual
cockpit for the UAV systems. It provides a user interface to
manage and control the whole mission.

IV. CO-SIMULATION ARCHITECTURE

In this section we discuss the details of the proposed co-
simulation framework, whose architecture is depicted in Figure
2. The key components of the framework are: Gazebo to
simulate UAV components with 3D visualization; NS-3 to
provide an end-to-end network infrastructure; and our COR-
NET (Co-Simulation of Robotic Networks) middleware for
creating an inter-simulator data-path, with time and position
synchronization at both ends. In the following subsections, we
describe each component in detail.

A. Gazebo

Gazebo is an open-source robotic simulator, which provides
physics simulation, rendering, user interface, communication,
and sensors models. It has two executable programs:

• the gzserver runs physics update-loop with sensor data
generation,

• the gzclient provides a graphical interface to visualize and
interact with the simulation environment.

The client and server communicate using the Gazebo
communication library, and use protobuf [27] for message
serialization. A world-description file contains all the elements
in a simulation, including quad-rotor frame, lights, sensors and
static objects. The simulation description file (SDF) defines the
model of the frame and the inertial properties of the UAV. In
our examples, we have used definition file called iris, which is
a quad-rotor frame available in Gazebo’s default model library.

Fig. 3. PX4 SITL environment

An autopilot stack provides proper frame pose and com-
mands to motors. The PX4 SITL framework is used to provide
the software stack enabling interactions with simulated UAV
frame.

As shown in the Figure 3, PX4 SITL uses a specific module
to listen on TCP port 4560, to communicate with Gazebo to
receive sensor data and to send the motor and actuator values
to the simulated world. It also uses the main mavlink module
to connect to GCS (on port 14550) and external developer
APIs like Dronecode SDK or ROS (on port 14540). This port
is also used to connect to the on-board computer.

B. NS-3 Network Simulator

The Network infrastructure is simulated using NS-3 li-
braries. Borrowing the idea from FlyNetSim [11], we have
integrated NS-3 with the zero message queue (ZMQ) publish-
subscribe protocol for configuring one-to-one correspondence
between UAVs in Gazebo and nodes in NS-3. Moreover it
enables the framework to migrate to other interfaces such
as LTE and 5G in future. In NS-3, each node has three
layers. The application layer provides a socket API to interact
with applications, the protocol stack provides a TCP/IP stack,
and the net device provides simulated NICs. It also provides
helper modules to manage mobility and simulation scheduler.
Channel abstraction allows the use of any wireless protocol
supported by NS-3. In our framework, mobility and time
synchronization in NS-3 and Gazebo is handled using ROS
plugins.

C. CORNET Middleware

The primary function of our proposed middleware is to
interconnect Gazebo and NS-3 in a synchronized manner. It
constitutes of two components:

• ZMQ - to provide end-to-end data path, and



• CORNET-ROS Plugin - for mobility and time synchro-
nization.

Fig. 4. Rqt graph of MAVROS control message

The ZMQ component is responsible for creating an end-
to-end data path between UAVs, or from UAV to ground
station. For each UAV/GCS, we use a pair of ZMQ pub-
lisher/subscriber for communication at both ends as illustrated
in Figure 2. We have used the API control port in the PX4
SITL environment integrated with the MAVROS [6] library
for sending commands and to get the telemetry data back
to GCS through ZMQ data-path. MAVROS is a mavlink
extendable communication node for ROS with ground station
control (GCS). It gets the current state of the model and
updates the setpoint position ROS topic with the new state.
The rqt graph [9] of the MAVROS illustrates sequences of
the control commands as shown in Figure 4.

Using this state information obtained from the UAV model,
the position of the UAV nodes in NS-3 are updated periodi-
cally. The overall synchronization of time and position updates
are maintained in our middleware. In the next section, we
elaborate our proposed time synchronization technique.

V. TIME SYNCHRONIZATION

For a cyber-physical systems simulation framework, it is
critical to have a common notion of time across the frame-
work. Both of these simulators are built for different pur-
poses. Gazebo simulates physical systems, that are modeled
as continuous-time dynamic systems involving differential
equations. So periodic sampling is the appropriate choice of
time management. In contrast, NS-3 employs discrete-event
model, where time stops only at discrete events such as packet
transmission and reception. So an event based sampling is
the appropriate choice of time management. As we see, the
natural choice of time management are different for these
two simulation environments. Thus, to realise a cyber-physical
systems co-simulation, it is crucial to design a systematic
mechanism to connect the two simulators. Combination of
periodic and event based sampling is not a trivial problem.

A. Approach

Time-stepped method [29] [23] is one of the simplest
and most popular approach for time synchronization. In this

method, synchronization is achieved by introducing a common
sampling period to be used by both simulators, which is
an integral multiple of the sampling period of the physical
systems simulator i.e., Gazebo. Both simulators achieve time
synchronization by exchanging variables and status at the
common sampling time. Here the major problem is that, if
network simulator runs faster than the physics simulator, the
network events have to be buffered in a cache and wait
to be processed until the next sampling time. Therefore, it
will introduce erroneous exchange of variables that could be
accumulated over the time and hamper the system fidelity. One
simple solution to keep pace with slow ticking simulator is for
the faster ticking simulator to freeze regularly, leading to extra
simulation overheads.

The method we adopted is called the global event-driven
method [24] and it is flexible in selecting the synchronization
times. Our approach for time and position synchronization is
outlined below.

First, each simulator is independently initialized and
Gazebo’s sampling period is denoted as δ

• At start of the cycle, time t1 Gazebo forces NS-3 to
advance its time by updating the position information of
the nodes.

• New positions of the nodes create additional events and
NS-3 advances the time to t1 + δ, if no other network
events occur.

• If there are any network events between t1 and t1 + δ,
the time of the NS-3 advances to time t2 and forwards
the contents of events to Gazebo.

• This communication of network events to Gazebo forces,
to update its states and advance the time to t2.

Typically, NS-3 updates the events, which causes Gazebo
to update the states and advance in time to achieve synchro-
nization.

Fig. 5. Rqt graph of ROS module for time and position

B. Implementation

In our implementation we have used Gazebo simulation time
as the reference clock. Gazebo exposes time and state of the
models using ROS topics listed below:

• /clock - simulation time,
• /gazebo/link states - states of all the links,
• /gazebo/model states - pose of all the models
Setting /use sim time parameter to true, notifies ROS mod-

ules to use the published /clock topic. So the entire simulation



is synchronized to Gazebo’s simulation time. As described in
Figure 5 we have used ROS topics to get the pose of the
Gazebo models by subscribing to the model states topic and
update the appropriate node’s mobility in NS-3 environment.
Since the ROS modules are synchronized with Gazebo, the
mobility updates by ROS creates new events in NS-3 nodes.
This provide time synchronization in NS-3 by advancing in
time.

The middleware checks for the packet leaving NS-3 and
releases to Gazebo in the next synchronization cycle. If the
packets are delivered by NS-3 after the synchronization cycle
we discard these packets and flag them. Therefore, for proper
functioning of the co-simulation, we have to ensure that the
NS-3 event processing is faster than Gazebo, which is the case
in normal execution scenarios.

In summary, our method for synchronization is based on
the physical interpretation of the Gazebo sampling clock and
the NS-3 communication event generation rates. The former
represents the rate at which sensor observations are recorded
and actuation is completed, while the latter represents the
communication delay time-scale. In our method, we use the
Gazebo sampling clock to generate mobility events at NS-
3. In case such a mobility event occurs before a reception
event in NS-3, this can only happen because the simulated
communication time delay by NS-3 is larger than the sen-
sor/actuation sampling period of Gazebo. Indeed, this situation
arises in practice when the packet delay is long. In such
cases, the packet is discarded even when it is received. Our
simulation framework follows exactly this policy: reception
event occurring after a mobility event (when transmission was
started before the previous mobility event) is treated as a
packet-lost event. This not only solves our synchronization
problem, but also allows us to model packet-losses due to
communication-actuation clock mismatch in our simulation
framework.

VI. EVALUATION

TABLE I
COMPARISON TABLE

FlyNetSim CUSCUS AVENS CORNET
Network
Simulator

NS-3 NS-3 OMNET++ NS-3

Physics
Simulator

Ardupilot
SITL

FL-AIR X-Plane Gazebo

Mobility deep packet
inspection

shared
memory

XML based ROS topic

data-path zmq ns-3 bridge - zmq
Time Sync Yes No No Yes
Open-source Yes - Yes Yes

A brief comparison between the existing simulators against
our work is provided in Table I. Only FlyNetSim provides
time synchronization, by timestamping each packet flowing
through NS-3. In case of NS-3 lags behind the real-time
simulator, they propose to freeze the UAV simulator. In our
implementation the clock source is generated by the physics

simulator i.e., Gazebo. So if the network simulator falls behind
the physics simulator then that event is discarded and flagged
by the middleware, and the physics simulator proceeds to the
next sampling time . This is important as this case cannot
be distinguished from the ”no packet available” case in the
network. This is the true for real networks as well, where one
cannot wait indefinitely for network events.

Each simulator in the Table I manages mobility in its own
way. In our implementation, we have used a generic approach
to get the pose information of the model using ROS topics. The
main advantage with our approach is that it can be extended
to any robot platform supporting ROS.

A. Case Study I: Offboard control of Single UAV

In this scenario, we control a single UAV from GCS over
the WiFi. This is a simple scenario to evaluate the effects of
communication on both ends.

In this experiment, the GCS is connected directly (using
Ethernet) to the access point (AP) and the UAV is connected
over the WiFi. We measure end-to-end network latency for
both the real world and the simulation, with the UAV moving
away from the AP.

Fig. 6. Latency vs Distance Real and Simulated Drone

The results for network latency as a function of distance
between UAV and GCS is illustrated in Figure 6. One can
observe that the network latency is increasing with the distance
between GCS and UAV. The simulated results also shows an
increasing trend of the latency with the distance to the AP.
However the errors in simulated versus measured delays for
larger distances are large due to a simplistic channel model
used in NS-3 for this experiment. This use-case is a simple
evaluation of the framework’s ability to develop and test new
network functions for UAVNETs.

B. Case Study II: Fixed Trajectory Control

In this scenario, the GCS sends commands to the UAV to
follow a pre-determined trajectory. This is a way-point based
navigation with the controller present in the GCS. Figure 7



Fig. 7. Simple waypoint navigation

shows the flowchart for the simple controller algorithm that
we have used for navigation.

As shown in the Figure 8, A,B,C,D (D is hidden under
the drone symbol) are the way-points defined in the GCS
controller. A black line represents the pre-determined trajec-
tory that should be followed. The location of the UAV is
represented by an arrow labeled with H (Home) and red line
indicates the actual trajectory followed by the UAV in the
simulation framework. A clear drift is observed between the
predetermined and the actual trajectories, and this is due to
latency over the network. This highlights the need for co-
simulation of the UAV and the network. Using such a joint
simulation the perturbations caused by the network functions
will help to accurately model and test mission-level algorithms
for the UAV that then can be reliably applied to navigate real
UAVs. This case-study demonstrates the potential algorithms
and mission-level applications that can be developed over this
framework.

C. Case Study III: Multi-UAV

In this scenario we test the scalability of the framework by
instantiating multiple UAVs on single computer. We run the
simulator on a laptop with 8 GB of RAM and an Intel Core-i7
7th generation processor. We instantiate 30 UAVs and establish
communication to GCS using a single AP with basic functions
such as telemetry and control paths. Our framework does not
impose any restrictions on number of UAVs, but is only limited

Fig. 8. Fixed Trajectory Control

by the availability of underlying compute resources. We can
extend the framework to multiple machines using ROTORS
[16] plugin in Gazebo.

VII. CONCLUSION

In this work, we have presented CORNET, a middleware
for simulating networked robots with example applications
from a network of UAVs. CORNET connects NS-3, an event
driven network simulator to Gazebo which is a physics engine
based UAV simulator. CORNET can be extended to any other
physics engine simulator that supports ROS objects. A key
feature of CORNET is its support for time synchronization be-
tween the two simulation environments. In particular, delayed
events from NS-3 are dropped (and flagged as errors) by COR-
NET. This allows them to be treated as communication errors
by the application code. Since we have used MAVROS for
controlling the UAVs, the same application code can be used
to run on real UAV. This approach of co-simulation framework
with tightly coupled integration with time synchronization
enables research on real-world UAVs in context of urban IoT.
We have demonstrated the capabilities of the framework and
plan to apply it to LTE and 5G to enable multi-technology
networking. This will allow us to evaluate new Flying Ad-
hoc Networks (FANETs) algorithms for routing and handover
problems in UAVNETs.
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