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Abstract—Two parties observing correlated data seek to ex-
change their data using interactive communication. How many
bits must they communicate? We derive a lower bound on the
minimum number of bits that is based on relating the data
exchange problem to the secret key agreement problem. Fur-
thermore, we propose an interactive protocol for data exchange
which increases the communication size in steps until the task
is done and matches the performance of our lower bound. Our
single-shot analysis applies to all discrete random variables and
yields upper and lower bound of a similar form. In fact, the
bounds are asymptotically tight and lead to a characterization of
the optimal rate of communication needed for data exchange for
a general sequence such as mixture of IID random variables as
well as the optimal second-order asymptotic term in the length
of communication needed for data exchange for the IID random
variables, when the probability of error is fixed. This gives a
precise characterization of the asymptotic reduction in the length
of optimal communication due to interaction; in particular, two-
sided Slepian-Wolf compression is strictly suboptimal.

I. INTRODUCTION

Random correlated data (X,Y ) is distributed between two
parties with the first observing X and the second Y . What
is the optimal communication protocol for the two parties
to exchange their data? We allow (randomized) interactive
communication protocols and a nonzero probability of error.
This basic problem was introduced by El Gamal and Orlitsky
in [17] where they presented bounds on the average number of
bits of communication needed by deterministic protocols for
data exchange without error1. When interaction is not allowed,
a simple solution is to apply Slepian-Wolf compression [22]
for each of the two one-sided data transfer problems. The
resulting protocol was shown to be of optimal rate, even in
comparison with interactive protocols, when the underlying
observations are independent and identically distributed (IID)
by Csiszár and Narayan in [6]. They considered a multitermi-
nal version of this problem, namely the problem of attaining
omniscience, and established a lower bound on the rate of com-
munication to show that interaction does not help in improving
the asymptotic rate of communication if the probability of
error vanishes to 0. However, interaction is known to be
beneficial in one-sided data transfer (cf. [18], [26], [7]). Can
interaction help to reduce the communication needed for data
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1They also illustrated the advantage of using randomized protocols when
error is allowed
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Fig. 1: The data exchange problem.

exchange, and if so, what is the minimum length of interactive
communication needed for data exchange?

Our contributions. To address this central problem in infor-
mation theory, illustrated in Figure 1, we draw on tools from
cryptography, communication complexity, and the information
spectrum method. Our main contribution is a new approach
for proving converse bounds for problems with interactive
communication that relates efficient communication to secret
key agreement, and uses tools from cryptography such as the
leftover hash lemma (cf. [20]) and the recently established
conditional independence testing bound for the length of
a secret key [24]. Furthermore, we propose an interactive
protocol for data exchange which matches the performance of
our lower bound. In fact, our proposed protocol is a recasting
in an information spectrum framework of similar protocols
that appeared in [7], [26], [4], [11] in different contexts. Our
modified analysis allows us to carefully choose the parameters
of the protocol and in turn shows that it matches performance
of our lower bound. As a consequence of the resulting single-
shot bounds, we obtain a characterization of the optimal rate
of communication needed for data exchange for a general
sequence (Xn, Yn) such as a mixture of IID random variables
as well as the optimal second-order asymptotic term in the
length of communication needed for data exchange for the
IID random variables (Xn, Y n), first instance of such a result
in source coding with interactive communication2. This in turn
leads to a precise characterization of the gain in asymptotic
length of communication due to interaction.

Organization of the paper. A formal description of the
data exchange problem is given in the next section. Section III
gives a summary of all our results. Section IV provides a
formal description of our protocol and the corresponding upper
bound for the communication complexity of data exchange,
and Section V contains a formal statement of our converse
bound. We omit proofs due to lack of space and provide only
an outline of our proof idea.

II. PROBLEM FORMULATION

Let the first and the second party, respectively, observe
discrete random variables X and Y taking values in finite

2In a different context, recently [2] showed that the second-order asymptotic
term in the size of good channel codes can be improved using feedback.



sets X and Y . The two parties wish to know each other’s
observation using interactive communication over a noiseless
(error-free) channel. Specifically, the parties communicate us-
ing a communication protocol Π which consists of a sequence
of random variables Π1,Π2, . . . ,Πr and a bounded stopping
time3 T ≤ r. For each odd i, the first party sends Πi, which
is a (stochastic) function of X and the past communication
Πi−1 = (Π1, . . . ,Πi−1). Similarly for each even i, the second
party sends Πi, which is a function of Y and the past
communication. The protocol stops at round T where the event
{T = i} must be recognizable by both the parties, i.e., T is a
stopping time with respect to the observations of both parties.
Thus, the overall transmission is given by Π1, . . . ,ΠT .

Without loss of generality, we assume that each transmis-
sion Πi takes value in {0, 1}∗, the set of binary strings of
varying length. The length of a protocol Π is the maximum
accumulated number of bits transmitted in any realization of
the protocol.

Definition 1. For 0 ≤ ε < 1, a protocol Π attains ε-data
exchange (ε-DE) if there exist (stochastic) functions Ŷ and X̂
of (X,Π) and (Y,Π), respectively, such that

P(X̂ = X, Ŷ = Y ) ≥ 1− ε.
The minimum communication for ε-DE Lε(X,Y ) is the infi-
mum of lengths of protocols that attain ε-DE, i.e., Lε(X,Y )
is the minimum number of bits that must be communicated by
the two parties in order to exchange their observed data with
probability of error less than ε.

Protocols with 2 rounds of communication Π1 and Π2,
which are functions of only X and Y , respectively, are termed
simple protocols. For a comparison, we denote by Ls

ε(X,Y )
the minimum communication for ε-DE by a simple protocol.

III. SUMMARY OF RESULTS

To describe our results, denote by h(X) = − log PX (X)
and h(X|Y ) = − log PX|Y (X|Y ), respectively, the entropy
density of X and the conditional entropy density of X given
Y . Also, pivotal in our results is a quantity we call the sum
conditional entropy density of X and Y defined as

h(X4Y ) := h(X|Y ) + h(Y |X).

An interactive data exchange protocol. Our data exchange
protocol is based on an interactive version of the Slepian-Wolf
protocol where the length of the communication is increased
in steps until the second party decodes the data of the first.
Similar protocols have been proposed earlier for distributed
data compression in [7], [26], for protocol simulation in [4],
and for secret key agreement in [12], [11].

In order to send X to an observer of Y , a single-shot
version of the Slepian-Wolf protocol was proposed in [16]
(see, also, [8, Lemma 7.2.1]). Roughly speaking, this protocol
simply hashes X to as many bits as the right most point in the

3The bounded assumption is cosmetic and is made only for concreteness.
Our results remain valid even when this assumption is dropped.

spectrum4 of PX|Y . The main shortcoming of this protocol for
our purpose is that it sends the same number of bits for every
realization of (X,Y ). However, we would like to use as few
bits as possible for sending X to party 2 so that the remaining
bits can be used for sending Y to party 1. Note that once X
is recovered by party 2 correctly, it can send Y to Party 1
without error using, say, Shannon-Fano-Elias coding (eg. see
[5, Section 5]); the length of this second communication is
dh(Y |X)e bits. Our protocol accomplishes the first part above
using roughly h(X|Y ) bits of communication.

Specifically, in order to send X to Y we use a spectrum
slicing technique introduced in [8] (see, also, [12], [11]). We
divide the domain [λmin, λmax] of spectrum of PX|Y into N
slices size ∆ each; see Figure 2 for an illustration.
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�

h(X | Y )�i

Bits used
by Protocol 1

Bits used
by Slepian-Wolf

Fig. 2: Spectrum slicing in Protocol 1.
The protocol begins with the left most slice and party 1

sends λmin + ∆ hash bits to party 2. If party 2 can find
a unique x that is compatible with the received hash bits,
it sends back an ACK and the protocol stops. Else, party
2 sends back a NACK and the protocol now moves to the
next round, in which Party 1 sends additional ∆ hash bits.
The parties keep on moving to the next slice until either
party 2 sends an ACK or all slices are covered. It is easy
to show that this protocol is reliable and uses not more than
h(X|Y ) + ∆ +N bits of communication for each realization
of (X,Y ). As mentioned above, once party 2 gets X , it sends
back Y using h(Y |X) + 1 bits, thereby resulting in an overall
communication of h(X4Y ) + 1 bits. In our applications, we
shall choose N and ∆ to be of negligible order in comparison
with the tail bounds on h(X4Y ). Thus, we have the following
upper bound on Lε(X,Y ). (The statement here is rough; see
Theorem 2 below for a precise version.)

Result 1 (Rough statement of the single-shot upper bound).
For every 0 < ε < 1,

Lε(X,Y ) . inf{γ : P (h(X4Y ) > γ) ≤ ε}.
A converse bound. Our next result, which is perhaps the

main contribution of this paper, is a lower bound on Lε(X,Y ).
This bound is derived by connecting the data exchange prob-
lem to the two-party secret key agreement problem. For an
illustration of our approach in the case of IID random variables
Xn and Y n, note that the optimal rate of a secret key that can
be generated is given by I(X ∧ Y ), the mutual information
between X and Y [15], [1]. Also, using a privacy amplification

4Spectrum of a distribution PX refers to the histogram of − log PX .



argument (cf. [3], [20]), it can be shown that a data exchange
protocol using nR bits can yield roughly n(H(XY ) − R)
bits of secret key. Therefore, I(X ∧Y ) exceeds H(XY )−R,
which further gives R ≥ H(X|Y )+H(Y |X). This connection
between secret key agreement and data exchange was noted
first in [6] where it was used for designing an optimal rate
secret key agreement protocol. Our converse proof is, in effect,
a single-shot version of this argument.

Specifically, the “excess” randomness generated when the
parties observing X and Y share a communication Π can
be extracted as a secret key independent of Π using the
leftover hash lemma [14], [21]. Thus, denoting by Sε(X,Y )
the maximum length of secret key and by H the length of the
common randomness (cf. [1]) generated by the two parties
during the protocol, we get H − Lε(X,Y ) ≤ Sε(X,Y ).

Next, we apply the recently established conditional inde-
pendence testing upper bound for Sε(X,Y ) [24], [25], which
follows by reducing a binary hypothesis testing problem to
secret key agreement. However, the resulting lower bound
on Lε(X,Y ) is good only when the spectrum of PXY is
concentrated. Heuristically, this slack in the lower bound arises
since we are lower bounding the worst-case communication
complexity of the protocol for data exchange – the resulting
lower bound need not apply for every (X,Y ) but only for
a few realizations of (X,Y ) with probability greater than ε.
To remedy this shortcoming, we once again take recourse to
spectrum slicing and show that there exists a slice of the
spectrum of PXY where the protocol requires sufficiently large
number of bits; Figure 3 illustrates this approach. The resulting
lower bound on Lε(X,Y ) is stated below roughly, and a
precise statement is given in Theorem 3.
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Fig. 3: Bounds on secret key length leading to the converse.
Here Lε := Lε(X,Y ) and Hε denotes the ε-tail of h(X4Y ).

Result 2 (Rough statement of the single-shot lower bound).
For every 0 < ε < 1,

Lε(X,Y ) & inf{γ : P (h(X4Y ) > γ) ≤ ε}.

Note that the upper and lower bound on Lε(X,Y ) appear
to be same in the two results above only because we have
ignore some error terms. Nevertheless, the form above captures
the spirit of our bounds on Lε(X,Y ). In fact, the displayed
term dominates asymptotically and leads to tight bounds in
the asympotitic regime.

Asymptotic optimality. The single-shot bounds stated
above are asymptotically tight up to the first order term for any

sequence of random variables (Xn, Yn), and up to the second
order term for a sequence of IID random variables (Xn, Y n).

Specifically, consider a general source sequence (X,Y) =
{(Xn, Yn)}∞n=1. We are interested in characterizing the min-
imum asymptotic rate of communication for asymptotically
error-free data exchange, and seek its comparison with the
minimum rate possible using simple protocols.

Definition 2. The minimum rate of communication for data
exchange R∗ is defined as

R∗(X,Y) = inf
εn

lim sup
n→∞

1

n
Lεn(Xn, Yn),

where the infimum is over all εn → 0 as n → ∞. The
corresponding minimum rate for simple protocols is denoted
by R∗s .

Denote by H(X4Y), H(X|Y), and H(Y|X), respec-
tively, the lim sup in probability of random variables
h(Xn4Yn), h(Xn|Yn), and h(Yn|Xn). The quantity H(X|Y)
is standard in information spectrum method [9], [8] and corre-
sponds to the asymptotically minimum rate of communication
needed to send Xn to an observer of Yn [16] (see, also, [8,
Lemma 7.2.1]). Thus, a simple communication protocol of
rate H(X|Y) + H(Y|X) can be used to accomplish data
exchange. In fact, a standard converse argument can be used
to show the optimality of this rate. Therefore, when we restrict
ourselves to simple protocols, the asymptotically minimum
rate of communication needed is

R∗s(X,Y) = H(X|Y) +H(Y|X).

As an illustration, consider the case when (Xn, Yn) are
generated by a mixture of two n-fold IID distributions P

(1)
XnY n

and P
(2)
XnY n . For this case, the right-side above equals

max{H(X(1) | Y (1)), H(X(2) | Y (2))}
+ max{H(Y (1) | X(1)), H(Y (2) | X(2))}.

Can we improve this rate by using interactive communication?
Using our single-shot bounds for Lε(X,Y ), we answer this
question in the affirmative.

Result 3 (Min rate of communication for data exchange).
For a sequence of sources (X,Y) = {(Xn, Yn)}∞n=1,

R∗(X,Y) = H(X4Y).

For the mixture of IID example above,

H(X4Y) = max{H(X(1) | Y (1)) +H(Y (1) | X(1)),

H(X(2) | Y (2)) +H(Y (2) | X(2))},
and therefore, simple protocols are strictly suboptimal in
general. Note that while the standard information spectrum
techniques suffice to prove the converse when we restrict to
simple protocols, their extension to interactive protocols is
unclear and our single-shot converse above is needed.

Turning now to the case of IID random variables, i.e. when
Xn = Xn = (X1, ..., Xn) and Yn = Y n = (Y1, ..., Yn) are



n-IID repetitions of random variables (X,Y ). For brevity,
denote by R∗(X,Y ) the corresponding minimum rate of
communication for data exchange, and by H(X4Y ) and V ,
respectively, the mean and the variance of h(X4Y ). Earlier,
Csiszár and Narayan [6] showed that R∗(X,Y ) = H(X4Y ).
We are interested in a finer asymptotic analysis than this first
order characterization.

In particular, we are interested in characterizing the asymp-
totic behavior of Lε(Xn, Y n) up to to the second-order term,
for every fixed ε in (0,1). We need the following notation:

R∗ε(X,Y ) = lim
n→∞

1

n
Lε(X

n, Y n), 0 < ε < 1.

Note that R∗(X,Y ) = supε∈(0,1)R
∗
ε(X,Y ). Our next result

shows that R∗ε(X,Y ) does not depend on ε and constitutes a
strong converse for the result in [6].

Result 4 (Strong converse). For every 0 < ε < 1,

R∗ε(X,Y ) = H(X4Y ).

In fact, this result follows from a general result character-
izing the second-order asymptotic term5.

Result 5 (Second-order asymptotic behavior). For every
0 < ε < 1,

Lε (Xn, Y n) = nH(X4Y ) +
√
nV Q−1(ε) + o(

√
n),

where Q(a) is the tail probability of the standard Gaussian
distribution.

IV. A GENERAL ACHIEVABILITY SCHEME

We begin with an interactive scheme for sending X to an
observer of Y , which hashes (bins) X into a few values as
in the scheme of [16], but unlike that scheme, increases the
hash-size gradually, starting with λ1 = λmin and increasing the
size ∆-bits at a time until either X is recovered or λmax bits
have been sent. After each transmission, Party 2 sends either
an ACK-NACK feedback signal; the protocol stops when an
ACK symbol is received.

As mentioned in the introduction, we rely on spectrum
slicing. Our protocol focuses on the “essential spectrum” of
h(X|Y ), i.e., those values of (X,Y ) for which h(X|Y ) ∈
(λmin, λmax). For λmin, λmax,∆ > 0 with λmax > λmin, let

N =
λmax − λmin

∆
, (1)

and λi = λmin + (i− 1)∆, 1 ≤ i ≤ N. Further, let

T0 =
{
h(X|Y ) ≥ λmax or h(Y |X) < λmin

}
, (2)

and for 1 ≤ i ≤ N , let Ti denote the ith slice of the spectrum
given by Ti =

{
(x, y) : λi ≤ hPX|Y (x|y) < λi + ∆

}
.

Note that T0 corresponds to the complement of “typical
event.” Finally, let Hl(X ) denote the set of all mappings
h : X → {0, 1}l.

5Following the pioneering work of Strassen [23], study of these second-
order terms in coding theorems has been revived recently by Hayashi [10],
[13] and Polyanskiy, Poor, and Verdú [19].

Our protocol for transmitting X to an observer of Y is de-
scribed in Protocol 1. The lemma below bounds the probability
of error for Protocol 1 when (x, y) ∈ Ti, 1 ≤ i ≤ N .

Protocol 1: Interactive Slepian-Wolf compression
Input: Observations X and Y , uniform public

randomness V , and parameters l,∆
Output: Estimate X̂ of X at party 2
Both parties use V to select h1 uniformly from Hl(X )
Party 1 sends Π1 = h1(X)
if Party 2 finds a unique x ∈ T1 with hash value
h1(x) = Π1 then

set X̂ = x
send back Π2 = ACK

else
send back Π2 = NACK

while 2 ≤ i ≤ N and party 2 did not send an ACK do
Both parties use V to select hi uniformly from
H∆(X ), independent of h1, ..., hi−1

Party 1 sends Π2i−1 = hi(X)
if Party 2 finds a unique x ∈ Ti with hash value
hj(x) = Π2j−1, ∀ 1 ≤ j ≤ i then

set X̂ = x
send back Π2i = ACK

else
if More than one such x found then

protocol declares an error
else

send back Π2i = NACK

Reset i→ i+ 1

if No X̂ found at party 2 then
Protocol declares an error

Theorem 1 (Interactive Slepian-Wolf). Protocol 1 with l =
λmin +∆+η sends at most (h (X|Y )+∆+N+η) bits when
the observations are (X,Y ) /∈ T0 and has probability of error
less than

P
(
X̂ 6= X

)
≤ PXY (T0) +N2−η.

Note that when T0 is chosen to be of small probability,
Protocol 1 sends essentially the same number of bits in the
worst-case as the Slepian-Wolf protocol.

Returning to the data exchange problem, our protocol for
data exchange builds upon Protocol 1 and uses it to first
transmit X to the second party (observing Y ). Once Party 2
has recovered X correctly, it sends Y to Party 1 without error
using, say, Shannon-Fano-Elias coding (eg. see [5, Section
5]); the length of this second communication is dh(Y |X)e
bits. When the accumulated number of bits communicated
in the protocol exceeds a prescribed length lmax, the parties
abort the protocol and declare an error.6 Using Theorem 1,

6Alternatively, we can use the (noninteractive) Slepian-Wolf coding by
setting the size of hash as lmax − (h(X|Y ) + ∆ +N + η).



the probability of error of the combined protocol is bounded
above as follows.

Theorem 2 (Interactive data exchange protocol). Given
λmin, λmax,∆, η > 0 and for N in (1), there exists a protocol
for data exchange of length lmax such that

P
(
X 6= X̂ or Y 6= Ŷ

)
≤ P (h(X4Y ) + ∆ +N + η + 1 > lmax)

+ PXY (T0) +N2−η.

Thus, we attain ε-DE using a protocol of length lmax =
λε + ∆ +N , where λε is the ε-tail of h(X4Y ).

V. CONVERSE BOUND

Our converse bound, while heuristically simple, is techni-
cally involved. Unfortunately, due to lack of space we can only
provide a sketch here.

Our converse proof, too, relies on spectrum slicing to
find the part of the spectrum of PXY where the protocol
communicates large number of bits. As in the achievability
part, we shall focus on the “essential spectrum” of h(XY ).

Given λmax, λmin, and ∆ > 0, let N be as in (1) and the
set T0 be as in (2), with hPX|Y (x|y) replaced by hPXY

(xy)
in those definitions.

Theorem 3. For 0 ≤ ε < 1, 0 < η < 1 − ε, and parameters
∆, N as above, the following lower bound on Lε(X,Y ) holds
for every γ > 0:

Lε(X,Y ) ≥ γ + 3 log

(
Pγ − ε− PXY (T0)− 1

N

)
+

+ log(1− 2η)−∆− 6 logN − 4 log
1

η
− 1,

where Pγ := PXY (h(X4Y ) > γ).

Thus, a protocol attaining ε-DE must communicate roughly
as many bits as ε-tail of h(X4Y ).

We close with an outline of our proof. The main idea is to
relate data exchange to secret key agreement, which is done
in the following two steps:

1) Given a protocol Π for ε-DE of length l, use the leftover
hash lemma to extract an ε-secret key of length roughly
λmin − l.

2) The length of the secret key that has been generated
is bounded above by Sε(X,Y ), the maximum possible
length of an ε-secret key. Use the conditional indepen-
dence testing bound in [24], [25] to further upper bound
Sε(X,Y ), thereby obtaining a lower bound for l.

This approach leads to a loss of λmax − λmin, the length of
the spectrum of PXY . However, since we are lower bounding
the worse-case communication complexity, we can divide the
spectrum into small slices of length ∆, and show that there is a
slice where the communication is high enough by applying the
steps above to the conditional distribution given that (X,Y )

lie in a given slice. This reduces the loss from λmax − λmin

to ∆.
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