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Abstract—Multiple parties observe correlated data generated
independent and identically (in time) from a known joint distribu-
tion. Parties communicate with each other interactively to enable
each party to recover the data observed by all the other parties
and attain omniscience. We characterize the asymptotic growth
of the number of bits of interactive communication required
by the parties to attain omniscience up to the second-order
term. For the converse, we provide a single-shot lower bound
for the required number of bits of communication, which yields
the asymptotic result as a special case. It is shown that the
knowledge of the distribution can be used to modify the recently
proposed recursive universal data exchange protocol to render it
optimal up to the second-order term. As a corollary, we provide
a precise characterization of the reduction in communication for
omniscience due to interaction.

I. INTRODUCTION

In the multiparty data exchange or omniscience problem
proposed in [4], parties observing correlated data seek to
recover each other’s data by communicating interactively.
Each bit of communication is sent over a noiseless broadcast
channel and is received by all the parties. For the specific
case when the data of the parties is generated as an indepen-
dent and identically distributed (IID) sequence (in time), [4]
characterized the optimal rate of overall communication for
omniscience and showed that it equals the value RCO(PM) of
a particular linear program (LP). The communication scheme
proposed in [4], which attains the optimal rate, is based on the
general scheme proposed in [3] and entails sending random
hashes of appropriate rate by each party. The communication
is simple, namely there is no interaction between the parties.

Recently, in [8], we considered the individual sequence
version of the omniscience problem where the parties seek
omniscience for every given sequence of observed data with
large probability (and not only for the randomly generated
IID sequence). We proposed an interactive communication
protocol, termed the recursive data exchange protocol (RDE),
which increases the number of bits communicated by each
party in steps; a more detailed description of the protocol is
provided in Section III-A below. An individual sequence per-
formance bound for RDE was established in [8]. Specifically,
it was shown that when the data sequence observed has a joint
type Q, RDE attains omniscience with large probability and
communicates no more than nRCO(Q) + O(

√
n) bits. As a

corollary, it was shown for IID data that the protocol achieves
the optimal rate without the knowledge of the distribution, with
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an excess rate of O(n−
1
2

√
log n) at a fixed n. In this paper,

we show that a slight variant of RDE is, in fact, optimal up to
the second-order asymptotic term when the IID distribution is
known.

The utility of a protocol with type based individual sequence
performance guarantees, such as the one summarized above,
in attaining good second-order performance is clear: Once
the joint type of the unknown data is known, we can easily
communicate at appropriate rate to identify the exact sequence
in that type set. Thus, heuristically, one purpose of interaction
in the universal protocol is to reduce the uncertainty about the
joint type of the data sequence. When the IID distribution
generating the data is known, the joint type is specified
to within a total variation distance of O(n−

1
2 ) with large

probability. But to get an optimal second-order performance,
the uncertainty about the joint type must be reduced even
further. If we directly use RDE, the O(n−

1
2 ) excess rate

resulting from the rounds of interaction will dominate the
second-order term. To circumvent this bottleneck, we modify
RDE by using the knowledge of the distribution to skip several
rounds of interaction and reduce the overall communication.

To prove the second-order optimality of the protocol, we
provide a single-shot lower bound for the number of bits that
must be communicated to attain omniscience, which maybe
of independent interest. The evaluation of this bound for the
IID case yields the same tail-bound which appears in the
performance of RDE, thereby establishing the optimality of
the latter.

Note that RDE entails several rounds of interaction. We
explicitly characterize the second order asymptotic perfor-
mance of simple protocols such as the one used in [4]
where the parties do not interact. As a corollary, we obtain
a precise characterization of the reduction in communication
for omniscience due to interaction.

The results of this paper extend those reported in [7], where
the case of two parties was handled. But the multiparty proto-
col substantially generalizes the one used in [7]. Furthermore,
the converse proof in [7] was based on a reduction argument
relating data exchange to secret agreement. The converse
proof here is new and is based on leveraging the structure
of interactive protocols for data exchange.

The remainder of the paper is organized as follows. A
formal description of the problem and a statement of our
results is provided in the next section. Section III contains
the proof of achievability including a brief description of the
protocol and a sketch of its analysis. Section IV contains the
aforementioned single-shot converse which yields the converse
for the IID case as a corollary. The final section contains a



discussion on another notion of optimality for RDE.

II. SECOND ORDER ASYMPTOTICS OF DATA EXCHANGE

We begin by giving a description of the data exchange or
the omniscience problem in a generative single-shot model (in
contrast to the individual sequence setup of [8]). The parties in
the set M = {1, ...,m} observe correlated data, with the ith
party observing a discrete random variable Xi taking values
in the finite set Xi. The observations are generated from a
known distribution PXM = PX1,...,Xm . The m parties wish
to know each other’s data using interactive communication
over a noiseless (error-free) channel. We restrict to tree-
protocols with shared randomness1. In fact, it is easy to
see that deterministic protocols suffice when the distribution
is known. Nevertheless, the scheme that we present uses a
randomized protocol, which may later be derandomized to
obtain a deterministic protocol. During the protocol, the parties
exchange transcript Π = π(XM). At the end of the protocol,
party j outputs an estimate X̂(j)

M = X̂
(j)
M (Xj ,Π) of XM. The

length |π| of the protocol π corresponds to the maximum
number of bits communicated during an execution of the
protocol.

Definition 1. For 0 ≤ ε < 1, a protocol π constitutes an ε-data
exchange (ε-DE) protocol if there exists, for each j ∈M, an
estimate function X̂(j)

M = X̂
(j)
M (Xj ,Π) of XM such that

P
(
X̂

(j)
M = XM, ∀j ∈M

)
≥ 1− ε.

The minimum over lengths |π| of ε-DE protocols |π| is the
minimum communication for ε-DE, denoted Lε(XM).

For IID observations Xn
M distributed according to PXM , the

minimum rate of communication for omniscience, R(PXM),
is defined as

R(PXM) := lim
ε→0

lim sup
n→∞

1

n
Lε(X

n
M).

The quantity R(PXM) was characterized in [4] as

R(PXM)

= min

{
m∑
i=1

Ri :
∑
i∈B

Ri ≥ H(XB |XBc), ∀B (M

}
.

(1)

The value of the LP on the right-side of (1) is denoted by
RCO(PXM). An alternative expression for RCO(PXM) was
obtained in [4] by looking at its dual form. In fact, [1], [2]
showed that the optimization in the dual form can be restricted
to the partitions of M and showed that2

RCO(PXM) = max
σ∈Σ(M)

Hσ(M|PXM), (2)

1For a formal description of multiparty tree protocol for data exchange, see
[8].

2The fact that RCO(PXM ) is lower bounded by the right-side of (2) was
already shown in [4].

where Σ(M) denotes the set of partitions ofM, and, for each
σ ∈ Σ(M),

Hσ(M|PXM) :=
1

|σ| − 1

|σ|∑
i=1

H (XM|Xσi) . (3)

In this paper, we shall derive a more precise asymptotic
characterization of Lε(X

n
M) which is accurate up to the

second-order asymptotic term. The densities of information
quantities in (3) play an important role in our characterization.
In particular, for every σ ∈ Σ(M), denote

hσ (xM) :=
1

|σ| − 1

|σ|∑
i=1

h(xM|xσi), (4)

where for every subset B of M,

h(xM|xB) = log
1

PXM|XB (xM|xB)
.

Our main result in this paper is the following.

Theorem 1. Given a distribution PXM , let Σ∗(M) ⊆ Σ(M)
be the set of partitions σ ofM which maximize Hσ(M|PXM).
Further, let Z be a d = |Σ∗(M)|-dimensional Gaussian vector
with mean 0 and covariance matrix given by

V = Cov
[(
hσ (XM) : σ ∈ Σ∗(M)

)]
.

Then, we have

Lε(X
n
M) = nR(PXM) +

√
nr∗(ε) + o(

√
n),

where

r∗(ε) := inf

{
r : P

(
d⋃
i=1

{Zi ≥ r}

)
≤ ε

}
.

Our proof of Theorem 1 relies on analysis of a modification
of the universal protocol of [8] and a new single-shot converse
bound. In particular, we show that the leading term in bounds
for probability of error, in both achievability part given in
Section III and converse part given in Section IV, is roughly

P

 ⋃
σ∈Σ(M)

{
1

n

n∑
t=1

hσ (XM,t) ≥ Rn

} (5)

for a fixed communication rate Rn. Note that, for each t,
the expected value of the random variable hσ (XM,t) equals
RCO(PXM) if σ ∈ Σ∗(M) and is strictly less than RCO(PXM)
if σ /∈ Σ∗(M). Thus, for Rn = RCO(PXM) + O(n−

1
2 ), the

probability of the each event
{

1
n

∑n
t=1 hσ (XM,t) ≥ Rn

}
for

σ /∈ Σ∗(M) goes to 0 in the limit as n goes to infinity. Thus,
by the union bound and the law of large numbers, we can omit
the events corresponding to σ /∈ Σ∗(M) in bound (5). Finally,
we complete the proof of Theorem 1 by using the multivariate
Berry-Esséen theorem along the lines of [6].

The performance reported above is achieved by an inter-
active protocol. If we restrict to simple protocols with no
interaction between the parties, using an information-spectrum
analysis (cf. [5, Sec. 7]) we can establish the following



characterization of the minimum length Ls
ε(X

n
M) of a simple

ε-DE protocol.

Theorem 2. Given a distribution PXM , let (Z̃[B] : ∅ 6= B (
M) be a (2|M| − 2)-dimensional Gaussian vector with mean
0 and the covariance matrix given by

Ṽ = Cov
[(
h (XM|XBc) : B (M

)]
.

Then, we have

Ls
ε(X

n
M) = nR(PXM) +

√
nr̃∗(ε) + o(

√
n),

where

r̃∗(ε) := inf


m∑
j=1

rj : P

 ⋃
B(M

{
Z̃[B] ≥

∑
j∈B

rj

} ≤ ε
 .

It can be shown that when Ṽ is a non-singular covariance
matrix, r∗(ε) < r̃∗(ε) holds. Therefore, interactive protocols
are strictly better than simple protocols in this case. Further-
more, Theorems 1 and 2 together establish that the precise
gain due to interaction is given by

√
n (r̃∗(ε)− r∗(ε)) + o(

√
n).

III. ACHIEVABILITY

A. A modified recursive data exchange protocol

We use a slight modification of RDE to attain the optimal
performance. RDE, as described in [8] has three components:

1) A subroutine termed OMN which iteratively increments
the rate of communication of each party until a subset of
parties recover each other, i.e., attain local omniscience;

2) a decoder subroutine which is a variant of the minimum
entropy decoder and returns the data of a subset of parties
whenever possible; else it outputs a NACK and requests for
transmission of more hash bits;

3) an outer routine which repeatedly calls OMN with up-
dated input parameters.

The subroutine OMN increments the rates of each party in
steps of size ∆. Parties start communicating in order of the
entropies of the marginal types of their local data, with the
ith party starting communication when the rate R1 of the
highest entropy party crosses, roughly, H(Px1

) − H(Pxi)
where Pxi denotes the type of the sequence xi. The following
property ensues: The rates of communicating parties differ by
as much as the difference of the entropies of their marginal
types. If the rates are incremented in this fashion, we showed
in [8] that when the decoder of party i recovers the data
of party j, then the decoder of party j must also recover
the data of party i. Thus, when OMN terminates, a subset
of parties must have attained local omniscience (if an error
has not occurred). The key observation in [8], which also
motivates the name of the protocol, is that when OMN
terminates, the parties in the subsets that have attained local
omniscience have rates which appear as if the parties in the
subset are collocated and have been executing the protocol
as a single party. Therefore, the outer routine continues by

making another call to OMN, but for a modified model where
the parties in the omniscience attaining subsets are collocated.
Finally, if no error occurs, the outer routine terminates when all
parties attain local omniscience. The main result in [8] showed
that for each sequence xM, the parties attain omniscience
after communicating roughly nRCO(PxM) bits. Formally, for
a given sequence xM, the probability of error of the protocol
is bounded above by

C1

(
log |XM|

∆n
+m

)
p(n)2−n∆,

where C1 is a constant depending only on m and p(n) is a
polynomial in n. Furthermore, if an error does not occur, the
number of bits communicated by the protocol for input xM
is bounded above by

nRCO(PxM) + nC2∆ + C3
log |XM|

∆
+ C4 log n,

where C2, C3, C4 are constants depending only on m. The
term log |XM|

∆ in the expression above corresponds to 1 bit of
communication required for each ACK-NACK, namely 1 bit for
each round of interactive communication. The choice of ∆
which optimizes the expression above is roughly ∆ = 1/

√
n.

However, this results in an excess rate of O(1/
√
n), which

may asymptotically lead to second-order suboptimality of the
protocol. To circumvent this, we modify the protocol above
by skipping some rounds of interaction using the knowledge
of the joint distribution PXM .

To wit, it follows from the description of the decoder that
for a sequence xM, when the parties in a subset A attain local
omniscience, the parties in A must be communicating and the
rates (Ri, i ∈ A) must belong to the region R∆

CO (A|PxA),
which is the set of all vectors (Ri, i ∈ A) such that∑

i∈B
Ri ≥ H(XB |XA\B) + |B|∆, ∀B ( A.

At this point OMN terminates and the outer protocol calls
another instance of OMN with modified parameters. The rates
are incremented in steps of size ∆ so that such transition
points are not missed. If we were assured that for a certain
number of rounds the rate vector (Ri, i ∈ A) will remain
outside R∆

CO (A|PxA), where PxA denotes the joint type of
the sequence xA = (xi, i ∈ A), for every subset A that has
not yet attained local omniscience, we need not wait for a
NACK message from the decoders to increment the rates and
can directly increase the rate to the final rate at the end of these
rounds. The next observation allows us to use the knowledge
of PXM to identify such regions.

Lemma 3 (Continuity). For every ∆ > 0, n ∈ N, and the type
P̂XnM of Xn

M, with probability greater than 1− 2|XM|/n2 it
holds for every A ⊆M that

R∆
CO

(
A|P̂XnA

)
⊆ R∆−νn

CO (A|PXA) ⊆ R∆−2νn
CO

(
A|P̂XnA

)
,

where

νn = |XM| ·
√

log n

n
· log

(
n

log n

)
.



The proof is omitted due to lack of space.
Therefore, if we are executing the protocol for data gener-

ated by PXM , with large probability we will not encounter
a transition point as long as for every subset A that has not
attained local omniscience, the rate vector (Ri, i ∈ A) remains
outside R∆−νn

CO (A|PXA). Based on this observation, we can
simply modify RDE as follows to reduce the number of rounds
of interaction and thereby the number of bits communicated:

1) In the outer routine, instead of calling OMN with the
current rates, the parties keep on incrementing their rates
until for one of the subsets A of communicating parties
that has not attained local omniscience, (Ri, i ∈ A) enters
R∆−νn

CO (A|PXA). At this point, the outer routine calls
OMN with the current rates.

2) The OMN subroutine proceeds as before, but terminates
if the overall number of bits communicated exceeds a
fixed number nRmax. At this point the outer routine
terminates as well and the protocol concludes.

B. Analysis of the protocol

We now provide a bound for the probability of error of
the proposed protocol and show that it achieves the second-
order performance claimed in Theorem 1. Suppose that for
a subset A of communicating parties that has not attained
local omniscience, the rate vector (Ri, i ∈ A) belongs to
R∆−νn

CO (A|PXA). At this point, OMN is called and the rates of
each party in A are incremented by ∆ per round. By Lemma 3,
the modified protocol engages in at most 2νn/∆ rounds before
the parties in A attain local omniscience. Since there are at
most 2m transition points (one for each subset ofM), the total
number of rounds of interaction in execution of the modified
protocol is at most 2m+1νn/∆. The next result follows by
modifying the proof of [8, Theorem 4] to reflect the reduced
number of rounds of interaction, accounting for the probability
of the event excluded in Lemma 3, and setting ∆ =

√
νn/n.

Theorem 4. Denoting by P̂XnM the type of the sequence Xn
M,

the probability of error Pe for the protocol described above
is bounded as

Pe ≤ P

(
RCO(P̂XnM) + C5

√
|XM| ·

(
log n

n

) 3
4

≥ Rmax

)

+ C1

(
log |XM|

n
+m

)
p(n)2−

√
nνn +

2|XM|
n2

,

where C5 depends only on m.

Next, we weaken the individual-sequence-based perfor-
mance bound above to obtain a form amenable to second-
order asymptotic analysis. To that end, we use the following
observation.

Lemma 5. For every Rn ≥ 0,

P
(
RCO(P̂XnM) ≥ Rn

)

≤ P

 ⋃
σ∈Σ(M)

{
1

n

n∑
t=1

hσ (XM,t)

}
≥ Rn

 ,

where hσ(·) is defined in (4).

The proof is omitted due to lack of space and is based on
the observation that for XM distributed according to P̂XnM

H
(
XM|XB

)
≤ E

[
log

1

PXM|XB
(
XM|XB

)] .
Combining the bounds above, we obtain our final bound for
Pe.

Corollary 6. The probability of error Pe for the protocol
described above is bounded as

Pe ≤ P

 ⋃
σ∈Σ(M)

{
1

n

n∑
t=1

hσ (XM,t)

}
≥ Rmax − δn

+ εn,

where δn = o(
√
n) and εn = o(1).

IV. CONVERSE

We establish the following single-shot converse bound for
multiparty data exchange.

Theorem 7. For every ε-DE protocol π and λ > 0, we have

|π| ≥ λ+
m

m− 1
· log(Pλ − ε)−

m2

m− 1

where the tail-probability Pλ is given by

Pλ = P

 ⋃
σ∈Σ(M)

{hσ(XM) > λ}

 .

In fact, we prove the following alternative form of Theo-
rem 7 which shows that for any protocol π, the probability of
error Pe is bounded below as

Pe ≥ P

 ⋃
σ∈Σ(M)

{hσ(XM) > λ}

− ∑
σ∈Σ(M)

2
|σ|−1
|σ| (|π|−λ).

(6)

This alternative form leads to the bound in (5) when the
observations are IID.

Proof. Let X̂(j)
M = X̂

(j)
M (Xj , π(XM)), j ∈ M, denote the

output function of the jth party for π. Further, for a partition
σ ∈ Σ(M), let

Tσ(λ) =
{
xM ∈ XM : hσ(xM) ≤ λ

}
,

and

T (λ) =
⋂

σ∈Σ(M)

Tσ(λ).

We show that

P
(
X̂

(j)
M = XM, ∀j ∈M

)



≤ PXM (T (λ)) +
∑

σ∈Σ(M)

2
|σ|−1
|σ| (|π|−λ).

which is equivalent to (6) and Theorem 7.
To that end, note that xM ∈ Tσ(λ)c implies

PXM (xM) ≤ 2−λ
|σ|−1
|σ|

 |σ|∏
i=1

PXσi (xσi)

 1
|σ|

. (7)

Denote by S the support supp(PXM) of PXM and by C the
set of sequences for which an error does not occur, i.e.,

C :=
{
xM ∈ S : X̂

(j)
M (xj , π(xM)) = xM, ∀j ∈M

}
.

Further, for each transcript τ of π, let

S(τ) = {xM ∈ S : π(xM) = τ}

and

C(τ) =
{
xM ∈ S : π(xM) = τ, X̂

(j)
M (xj , τ) = xM, ∀j ∈M

}
;

clearly, C(τ) ⊆ S(τ). With these notations, we have

PXM (C) = PXM (C ∩ T (λ)) + PXM (C ∩ T (λ)c)

≤ PXM (T (λ)) +
∑

σ∈Σ(M)

PXM (C ∩ Tσ(λ)c) ,

where the inequality follows from the union bound. To com-
plete the proof, we show that

PXM (C ∩ Tσ(λ)c) ≤ 2
|σ|−1
|σ| (|π|−λ).

Indeed, for each σ ∈ Σ(M), we have

PXM (C ∩ Tσ(λ)c)

=
∑
τ

PXM (C(τ) ∩ Tσ(λ)c)

=
∑
τ

∑
xM∈C(τ)∩Tσ(λ)c

PXM (xM)

≤ 2−λ
|σ|−1
|σ|

∑
τ

∑
xM∈C(τ)

 |σ|∏
i=1

PXσi (xσi)

 1
|σ|

,

where the inequality is by (7). To complete the proof, we note
two properties of the set C(τ); the proofs are omitted due to
lack of space.

1) The set C(τ) consists of sequences which are disjoint
along each coordinate j ∈M, i.e., the set is of the form
C(τ) = {x(τ)

M,` = (x
(τ)
1,` , . . . , x

(τ)
m,`) : ` = 1, . . . , Lτ} for

some integer Lτ , where x(τ)
j,` 6= x

(τ)

j,˜̀
for every ` 6= ˜̀ and

j ∈M.
2) Let Sj(τ) be the projection of the set S(τ) along the jth

coordinate, i.e.,

Sj(τ) = {xj ∈ Xj : ∃xM\{j} s.t. (x1, . . . , xm) ∈ S(τ)}.

Then, the rectangles S1(τ) × · · · × Sm(τ) and S1(τ̃) ×
· · · × Sm(τ̃) are disjoint for every τ 6= τ̃ .

The obvious extensions of these properties for any partition σ

of coordinates M also hold. Using these properties and the
fore-mentioned bound for PXM (C ∩ Tσ(λ)c), we have

PXM (C ∩ Tσ(λ)c)

≤ 2−λ
|σ|−1
|σ|

∑
τ

∑
xM∈C(τ)

 |σ|∏
i=1

PXσi (xσi)

 1
|σ|

,

= 2−λ
|σ|−1
|σ|

∑
τ

Lτ∑
`=1

 |σ|∏
i=1

PXσi

(
x

(τ)
σi,`

) 1
|σ|

≤ 2−λ
|σ|−1
|σ|

∑
τ

|σ|∏
i=1

(
Lτ∑
`=1

PXσi

(
x

(τ)
σi,`

)) 1
|σ|

≤ 2−λ
|σ|−1
|σ|

∑
τ

 |σ|∏
i=1

PXσi (Sσi(τ))

 1
|σ|

≤
(

2−λ+|π|
) |σ|−1
|σ|

∑
τ

|σ|∏
i=1

PXσi (Sσi(τ))

 1
|σ|

≤
(

2−λ+|π|
) |σ|−1
|σ|

,

where the second and the fourth inequalities use Hölder’s
inequality, the third inequality uses property 1 and the final
inequality uses property 2.

V. DISCUSSION

An application of the single-shot converse bound in Section
IV to the uniform distribution on a given joint type class yields
a converse in an individual sequence setup. It can be shown
that if the parties observe a sequence xM of joint type PxM

which is known to the parties, they still require communication
roughly of rate RCO(PxM) to attain omniscience. This, when
combined with the performance bound for RDE in [8], shows
that RDE attains a worst-case redundancy of O(

√
n) bits when

compared with a class of data exchange protocols which know
the joint type. We have omitted this result due to lack of space.
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