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Abstract
A central server needs to perform statistical in-
ference based on samples that are distributed
over multiple users who can each send a mes-
sage of limited length to the center. We study
problems of distribution learning and identity test-
ing in this distributed inference setting and exam-
ine the role of shared randomness as a resource.
We propose a general purpose simulate-and-infer
strategy that uses only private-coin communica-
tion protocols and is sample-optimal for distri-
bution learning. This general strategy turns out
to be sample-optimal even for distribution test-
ing among private-coin protocols. Interestingly,
we propose a public-coin protocol that outper-
forms simulate-and-infer for distribution testing
and is, in fact, sample-optimal. Underlying our
public-coin protocol is a random hash that when
applied to the samples minimally contracts the
chi-squared distance of their distribution from the
uniform distribution.

1. Introduction
Sample-optimal statistical inference has taken center-stage
in modern data analytics where the number of samples can
be comparable to the dimensions of the data. In many emerg-
ing applications, especially those arising in sensor networks
and the Internet of Things (IoT), we are not only constrained
in the number of samples but are also given access to only
limited communication about the samples. We consider
such a distributed inference setting and seek sample-optimal
algorithms for inference under communication constraints.

In our setting, n players get independent samples from an
unknown k-ary distribution and each can send only ` bits
about their observed sample to a central referee using a
simultaneous message passing (SMP) protocol for commu-
nication. The referee uses communication from the players
to accomplish an inference task P .
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Question 1.1. What is the minimum number of players n
required by an SMP protocol that successfully accomplishes
P , as a function of k, `, and the relevant parameters of P?

Our first contribution is a general simulate-and-infer strat-
egy for inference under communication constraints where
we use the communication to simulate samples from the un-
known distribution at the referee. To describe this strategy,
we introduce a natural notion of distributed simulation: n
players observing an independent sample each from an un-
known k-ary distribution p can send `-bits each to a referee.
A distributed simulation protocol consists of an SMP proto-
col and a randomized decision map that enables the referee
to generate a sample from p using the communication from
the players. Clearly, when1 ` ≥ log k such a sample can
be obtained by getting the sample of any one player. But
what can be done in the communication-starved regime of
` < log k?

We first show that perfect simulation is impossible using
any finite number of players in the communication-starved
regime. But perfect simulation is not even required for our
application. When we allow a small probability of declaring
failure, namely admit Las Vegas simulation schemes, we
obtain a distributed simulation scheme that requires an opti-
mal O

(
k/2`

)
players to simulate k-ary distributions using

` bits of communication per player. Thus, our proposed
simulate-and-infer strategy can accomplish P with a blow-
up in sample-complexity by an extra factor of O

(
k/2`

)
.

The specific inference tasks we consider are those of dis-
tribution learning, where we seek to estimate the unknown
k-ary distribution to an accuracy of ε in total variation dis-
tance, and identity testing where we seek to know if the
unknown distribution is q or ε-far from it in total variation
distance. For distribution learning, the simulate-and-infer
strategy matches the lower bound from (?) and is therefore
sample-optimal. For identity testing, the plot thickens.

Recently, a lower bound for the sample complexity of iden-
tity testing using only private-coin protocols was estab-
lished (?). The simulate-and-infer protocol is indeed a
private-coin protocol and it attains this lower bound. When
public coins (shared randomness) are available, (?) derived
a different, more relaxed lower bound. The performance of
simulate-and-infer is far from this lower bound. Our second
contribution is a public-coin protocol for identity testing

1We assume throughout that log k is an integer.
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that not only outperforms simulate-and-infer but matches
the lower bound in (?) and is sample-optimal.

We provide a concrete description of our results in the next
section, followed by an overview of our proof techniques
in the subsequent section. To put our results in context, we
provide a brief overview of the literature as well.

1.1. Main results

We begin by summarizing our distributed simulation results.

Theorem 1.2. For every k, ` ≥ 1, there exists a private-
coin protocol with ` bits of communication per player for
distributed simulation over [k] and expected number of play-
ers O

(
(k/2`) ∨ 1

)
. Moreover, this expected number is op-

timal, up to constant factors, even when public-coin and
interactive communication protocols are allowed.

The proposed algorithm is a Las Vegas algorithm,2 which
produces a sample from the unknown distribution when they
terminate, but they may never terminate. In fact, we can
show that distributed simulation is impossible, unless we
allow for such algorithms.

Theorem 1.3. For k ≥ 1, ` < log k, and any N ∈ N,
there does not exist a SMP protocol with N players and `
bits of communication per player for distributed simulation
over [k]. Furthermore, the result continues to hold even for
public-coin and interactive communication protocols.

The proof is delegated to Section 4.1.

Since the distributed simulation protocol in Theorem 1.3 is
a private-coin protocol, we can use it to generate the desired
number of samples from the unknown distribution at the
center to obtain the following result.

Theorem 1.4 (Informal). For any inference task P over
k-ary distributions with sample complexity s in the non-
distributed model, there exists a private-coin protocol for
P using ` bits of communication per player and requiring
n = O(s · (k/2` ∨ 1)) players.

Instantiating this general statement for distribution learning
and identity testing leads to the following results.

Corollary 1.5. For every k, ` ≥ 1, simulate-and-infer can
accomplish distribution learning over [k], with ` bits of

communication per player and n = O
(

k2

(2`∧k)ε2

)
players.

Corollary 1.6. For every k, ` ≥ 1, simulate-and-infer can
accomplish identity testing over [k] using ` bits of communi-

cation per player and n = O
(

k3/2

(2`∧k)ε2

)
players.

Using the lower bound in (?) (see, also, (?)), we obtain that
simulate-and-infer is sample-optimal for distribution learn-
ing even when public-coin protocols are allowed. In fact,

2Or, roughly equivalently, when one is allowed to abort with a
special symbol with small constant probability.

the sample complexity of simulate-and-infer for identity
testing matches the lower bound for private-coin protocols
in (?), rendering it sample-optimal.

Our most striking result is the next one which shows that
public-coin protocols can outperform the sample complexity
of private-coin protocols for identity testing by a factor of√
k/2`.

Theorem 1.7. For every k, ` ≥ 1, there exists a public-
coin protocol for identity testing over [k] using ` bits of

communication per player and n = O
(

k√
2`∧kε2

)
players.

We further note that our protocol is remarkably simple to de-
scribe and implement: We generate a random partition of [k]
into 2` parts and report which part each sample lies in. Al-
though, as stated, our protocol seems to require Ω(` · k) bits
of shared randomness, an immediate inspection of the proof
shows that 4-wise independent shared randomness suffice,
drastically reducing the number of random bits required.

Our results are summarized in the table below.

Distribution Learning Identity Testing

Public-Coin Private-Coin Public-Coin Private-Coin

k
ε2
· k
2`

√
k

ε2
·
√

k
2`

√
k

ε2
· k
2`

Table 1. Summary of the sample complexity of distributed learn-
ing and testing, under private and public randomness. All results
are order optimal.

Interestingly, this shows that public randomness, despite
allowing a significant sample complexity improvement for
identity testing, is not helpful for distribution learning. A
high-level heuristic to explain this discrepancy can be ob-
tained by focusing on the uniform distribution. For testing,
we are given a fixed (unknown) distribution at distance ε,
and public randomness helps as it allows focusing on the
appropriate direction to separate this distribution from the
uniform one. However, for learning, ones needs to dis-
tinguish the uniform distribution from all distributions at
distance ε – i.e., in all directions at once, thereby making
public randomness useless.

1.2. Proof techniques

We now provide a high-level description of the proofs of
our main results.

Distributed simulation. The upper bound of Theorem 1.3
uses a rejection sampling based approach; see Section 5 for
details. The lower bound follows by relating distributed sim-
ulation to communication constrained distribution learning
and using the lower bound for sample complexity of latter
from (??).

Distributed identity testing. Using a reduction due Gol-
dreich (?), we note first that it suffices to consider uniformity
testing. To test whether an unknown distribution p is uni-
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form using at most ` bits to describe each sample, a natural
idea is to randomly partition the alphabet into L := 2`

parts, and send to the referee independent samples from the
L-ary distribution q induced by p on this partition. For a
random balanced partition (i.e., where every part has cardi-
nality k/L), clearly the uniform distribution uk is mapped
to the uniform distribution uL. Thus, one can hope to re-
duce the problem of testing uniformity of p (over [k]) to
that of testing uniformity of q (over [L]). The latter task
would be easy to perform, as every player can simulate one
sample from q and communicate it fully to the referee with
logL = ` bits of communication. Hence, the key issue is
to argue that this random “flattening” of p would somehow
preserve the distance to uniformity; namely, that if p is ε-far
from uk, then (with a constant probability over the choice
of the random partition) q will remain ε′-far from uL, for
some ε′ depending on ε, L, and k. If true, then it is easy
to see that this would imply a very simple protocol with
O(
√
L/ε′

2
) players, where all agree on a random partition

and send the induced samples to the referee, who then runs
a centralized uniformity test. Therefore, in order to apply
the aforementioned natural recipe, it suffices to derive a
“random flattening” structural result for ε′ �

√
(L/k)ε.

An issue with this approach, unfortunately, is that the total
variation distance (that is, the `1 distance) does not behave
as desired under these random flattenings, and the validity
of our desired result remains unclear. Fortunately, an analo-
gous statement with respect to the `2 distance turns out to
be much more manageable and suffices for our purposes.
In more detail, we show that a random flattening of p does
preserve, with constant probability, the `2 distance to unifor-
mity; in our case, by Cauchy–Schwarz the original `2 dis-
tance will be at least γ � ε/

√
k, which implies using known

`2 testing results that one can test uniformity of the “ran-
domly flattened” q with O(1/(

√
Lγ2)) = O(k/(2`/2ε2))

samples. This yields the desired guarantees on the proto-
col. However, the proposed algorithm suffers one drawback:
The amount of public randomness required for the players
to agree on a random balanced partition is Ω(k logL) =
Ω(k · `), which in cases with large alphabet size k can be
prohibitive.

1.3. Related prior work

Distribution learning problem is finite-dimensional paramet-
ric learning problem, and the identity testing problem is a
specific goodness-of-fit problem. Both these problems have
a long history in statistics. However, the sample-optimal
setting of interest to us has received a lot of attention in the
past decade, especially in the computer science literature;
see (???) for survey. Most pertinent to our work is uni-
formity testing (???), the prototypical distribution testing
problem for which the sample complexity was established
to be Θ(

√
k/ε2) in ??.

Distributed hypothesis testing and estimation problems were

first studied in information theory, although in a different set-
ting than what we consider (???). The focus in that line of
work has been to characterize the trade-off between asymp-
totic error exponent and communication rate per sample.

Closer to our work is distributed parameter estimation and
functional estimation that has gained significant attention in
recent years (see e.g., (????)). In these works, much like our
setting, independent samples are distributed across players,
which deviates from the information theory setting described
above where each player observes a fixed dimension of each
independent sample. However, the communication model
in these results differs from ours, and the communication-
starved regime we consider has not been studied in these
works.

The problem of distributed density estimation, too, has gath-
ered recent interest in various statistical settings (????????).
Our work is closest to two of these: The aforementioned (??)
and (?). The latter considers both `1 (total variation) and
`2 losses, although in a different setting than ours. Specif-
ically, they study an interactive model where the players
do not have any individual communication constraint, but
instead the goal is to bound the total number of bits commu-
nicated over the course of the protocol. This difference in
the model leads to incomparable results and techniques (for
instance, the lower bound for learning k-ary distributions in
our model is higher than the upper bound in theirs).

Our current work further deviates from this prior literature,
since we consider distribution testing as well and examine
the role of public-coin for SMP protocols. Additionally,
a central theme here is the connection to distribution sim-
ulation and its limitation in enabling distributed testing.
In contrast, the prior work on distribution estimation, in
essence, establishes the optimality of simple protocols that
rely on distributed simulation for inference. (We note that
although recent work of (?) considers both communication
complexity and distribution testing, their goal and results
are very different – indeed, they explain how to leverage on
negative results in the standard SMP model of communica-
tion complexity to obtain sample complexity lower bounds
in collocated distribution testing.)

Problems related to joint simulation of probability distri-
butions have been the object of focus in the information
theory and computer science literature. Starting with the
works of Gács and Körner (?) and Wyner (?) where the
problem of generating shared randomness from correlated
randomness and vice-versa, respectively, were considered,
several important variants have been studied such as corre-
lated sampling (????) and non-interactive simulation (???).
Yet, our problem of exact simulation of a single (unknown)
distribution with communication constraints from multiple
parties has not been studied previously to the best of our
knowledge.
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1.4. Organization

We begin by setting notation and recalling some useful defi-
nitions and results in Section 2, before formally introducing
our distributed model in Section 3. Next, Section 4 intro-
duces the question of distributed simulation and contains our
protocols and impossibility results for this problem. In Sec-
tion 5, we consider the relation between distributed simula-
tion and private-coin distribution inference. The subsequent
section, Section 6, focuses on the problem of uniformity test-
ing and contains the proofs of the upper and lower bounds
of Theorem 1.7. Due to lack of space, we only provide
proof outlines and the details are relegated to the appendix.

2. Preliminaries
We write log (resp. ln) for the binary (resp. natural) loga-
rithm, and [k] for the set of integers {1, 2, . . . , k}. Given a
fixed (and known) discrete domain X of size k, we denote
by ∆X the set of probability distributions over X , i.e.,

∆X = { p : X → [0, 1] : ‖p‖1 = 1 } .

A property of distributions over X is a subset P ⊆ ∆X .
Given p ∈ ∆X and a property P , the distance from p to the
property is defined as

dTV(p,P) := inf
q∈P

dTV(p,q) (1)

where dTV(p,q) = supS⊆X (p(S)− q(S)) for p,q ∈
∆X , is the total variation distance between p and q. For
a given parameter ε ∈ (0, 1], we say that p is ε-close to
P if dTV(p,P) ≤ ε; otherwise, we say that p is ε-far
from P . For a discrete set X , we write uX for the uniform
distribution on X , and will sometimes omit the subscript
when the domain is clear from context. We indicate by
x ∼ p that x is a sample drawn from the distribution p.

In addition to total variation distance, we shall rely in some
of our proofs on the χ2 and Kullback–Leibler (KL) di-
vergences between discrete distributions p,q ∈ ∆X , de-
fined respectively as χ2(p,q) :=

∑
x∈X

(px−qx)
2

qx(1−qx)
and

D(p‖q) :=
∑
x∈X px ln px

qx
.

We use the standard asymptotic notation O(·), Ω(·), and
Θ(·); and will sometimes write an . bn to indicate that
there exists an absolute constant c > 0 such that an ≤
c · bn for all n. Finally, we will denote by a ∧ b and a ∨
b the minimum and maximum of two numbers a and b,
respectively.

3. Communication, Simulation, and Inference
Protocols

We set the stage by describing the communication proto-
cols we study for both the distributed simulation and the
distributed inference problems. Throughout the paper, we
restrict to simultaneous communication models with private

and public randomness. We remark that simultaneous com-
munication does not mean that the messages are sent at the
same time. It is a formalism that implies that the messsages
from any user cannot be used by others in their protocols.

Formally, n players observe samples X1, . . . , Xn with
player i given access to Xi. The samples are assumed to be
generated independently from an unknown distribution p. In
addition, player i has access to uniform randomness Ui such
that (U1, . . . , Un) is jointly independent of (X1, . . . , Xn).
An `-bit simultaneous message-passing (SMP) communi-
cation protocol π for the players consists of {0, 1}`-valued
mappings π1, . . . , πn where player i sends the message
Mi = πi(Xi, Ui). The message M = (M1, . . . ,Mn) sent
by the players is received by a common referee. Based
on the assumptions on the availability of the randomness
(U1, . . . , Un) to the referee and the players, three natural
classes of protocols arise:

1. Private-coin protocols: U1, . . . , Un are mutually inde-
pendent and unavailable to the referee.

2. Public-coin protocols: All player and the referee have
access to U1, . . . , Un.

For the ease of presentation, we represent the private
randomness communication fi(xi, Ui) using a channel
Wi : X → {0, 1}` where player i upon observing xi de-
clares y with probability Wi(y|xi). Also, for public-coin
protocols, we can assume without loss of generality that
U1 = U2 = · · · = Un.

Distributed simulation protocols. An `-bit simulation
S = (π, δ) of k-ary distributions using n players consists of
an `-bit SMP protocol π and a decision map δ comprising
mappings δx : (M,U) 7→ [0, 1] such that for each message
m and randomness u,∑

x

δx(m,u) ≤ 1.

Upon observing the message M = (M1, . . . ,Mn) and
(depending on the type of protocol) randomness U =
(U1, . . . , Un), the referee declares the random sample X̂ =
x with probability δx(M,U) or declares an abort symbol
⊥ if no x is selected. For concreteness, we assume that the
random variable X̂ takes values in X ∪ {⊥} with {X̂ =⊥}
corresponding to the abort event. When π is a private or
public-coin protocol, respectively, the simulation S is called
private or public-coin simulation.

A simulation S is an α-simulation if for every p

Pr
p

[
X̂ = x | X̂ 6=⊥

]
= px, ∀x ∈ X ,

and the abort probability satisfies Prp

[
X̂ =⊥

]
≤ α.When

the probability of abort is zero, S is termed a perfect simu-
lation.
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Distributed inference protocols. We give a general defi-
nition of distributed inference protocols that is applicable
beyond the use-cases considered in this work. An inference
problem P can be described by a tuple (C,X , E , L) where
C denotes a family of distributions on the alphabet X , E a
class of allowed estimates for elements of C (or their func-
tions), and L : C × E → Rq+ is a loss function that evaluates
the accuracy of our estimate e ∈ E when p ∈ C was the
ground truth.

An `-bit distributed inference protocol I = (π, e) for the
inference problem (C,X , E , L) consists of an `-bit SMP pro-
tocol π and an estimator e available to the referee who, upon
observing the messageM = π(Xn, U) and the randomness
U , estimates the unknown p as e(M,U) ∈ E . As before,
we say that a private-, or public-coin inference protocol,
respectively, uses a private- or public-coin communication
protocol π.

For ~γ ∈ Rq+, an inference protocol (π, e) is a ~γ-inference
protocol if

Ep[Li(p, e(M,U))] ≤ γi, ∀1 ≤ i ≤ q.

We instantiate the abstract definition above in two illustrative
questions that we will pursue in this paper.
Example 3.1 (Distribution learning). Consider the prob-
lem Lk(ε, δ) of estimating a k-ary distribution p by observ-
ing independent samples from it, namely the finite alphabet
distribution learning problem. This problem is obtained
from the general formulation above by setting X to be [k], C
and E both to be the (k−1)-dimensional probability simplex
Ck, and L(p, p̂) as follows:

L(p, p̂) = 1{dTV(p,p̂)>ε}.

For this case, we term the δ-inference protocol an `-bit
(k, ε, δ)-learning protocol for n player. In this case, γ is
equal to δ, the probability of error.
Example 3.2 (Uniformity testing). In the uniformity testing
problem Tk(ε, δ), our goal is to determine whether p is the
uniform distribution uk over [k] (null hypothesis H0) or if it
satisfies dTV(p,uk) > ε (alternative hypothesis H1). This
can be obtained as a special case of our general formulation
by setting X = [k], C to be the set containing uk and all
p satisfying dTV(p,uk) > ε, E = {0, 1}, and the loss
function L to be

L(p, b) = b · 1{p=uk} + (1− b) · 1{p6=uk}, b ∈ {0, 1} ,

where b denotes the output of the test (i.e., declaring hypoth-
esis Hb).

For this case, we term the δ-inference protocol an `-bit
(k, ε, δ)-uniformity testing protocol for n players. Further,
for simplicity we will refer to (k, ε, 1/3)-uniformity testing
protocols simply as (k, ε)-uniformity testing protocols.

Note that distributed variants of several other inference prob-
lems such as that of estimating functionals of distributions
and parametric estimation problems can be included as in-
stantiations of the distributed inference problem described
above.

We close by noting that while we have restricted to the SMP
model of communication, the formulation can be easily
extended to include interactive communication protocols
where the communication from each player can be heard
by all the other players (and the referee), and in its turn,
a player communicates using its local observation and the
communication received from all the other players in the
past. A formal description of such a protocol can be given
in the form of a multiplayer protocol tree à la (?). However,
such considerations are beyond the scope of this paper.

A note on the parameters. It is immediate to see that
for ` ≥ log k the distributed and centralized settings are
equivalent, as the players can simply send their input sample
to the referee (thus, both upper and lower bounds from the
centralized setting carry over).

4. Distributed Simulation
In this section, we consider the distributed simulation prob-
lem described in the previous section. The proof of impossi-
bility of perfect simulation (Theorem 1.2) when ` < log k
and n < ∞ is given in Section 4.1. We now consider
α-simulation for constant α ∈ (0, 1) and exhibit an `-bit α-
simulation of k-ary distributions using O(k/2`) players. In
fact, by drawing on a reduction from distributed distribution
learning, we will show in the next section that this is the
least number of players required (up to a constant factor) for
α-simulation for any α ∈ (0, 1). The sample complexity of
our simulation algorithm for a general α can be shown to be
O(k/2` log(1/α)); we omit the argument here due to space
constraints and defer it to the full version of the paper (?).

We now establish Theorem 1.3 and provide α-simulation
protocols for k-ary distributions using n = O(k/2`) players.
We first present the protocol for the case ` = 1, before
extending it to general `. The proof of lower bound for
the number of players required for α-simulation of k-ary
distributions is based on the connection between distributed
simulation and distributed distribution learning and will
be provided in the next section where this connection is
discussed in detail.

For ease of presentation, we allow a slightly different class
of protocols where we have an infinitely long sequence of
players, each with access to one independent sample from
the unknown p. The referee’s protocol entails checking
each player’s message and deciding either to declare an
output X̂ = x and stop, or see the next player’s output. We
assume that with probability one the referee uses finitely
many players and declares an output. The cost of maximum
number of players of the previous setting is now replaced
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with the expected number of players used to declare an
output. By an application of Markov’s inequality, this can
be easily related to our original setting of private-coin α-
simulation.

Theorem 4.1. There exists a 1-bit private-coin protocol
that outputs a sample x ∼ p using messages of at most 20k
players in expectation.

Proof Sketch. We describe the base version of the protocol
below, and the delegate the description of the complete
protocol and the detailed proof to ??.

The scheme, base version. Consider a protocol with 2k
players where the 1-bit communication from players (2i−1)
and (2i) just indicates if their observation is i or not, namely
π2i−1(x) = π2i(x) = 1{x=i}.

On receiving these 2k bits, the refereeR acts as follows:

• if exactly one of the bits M1,M3, . . . ,M2k−1 is equal
to one, say the bit M2i−1, and the corresponding bit
M2i is zero, then the referee outputs X̂ = i;

• otherwise, it outputs ⊥.

In the above, the probability ρp that some i ∈ [k] is declared
as the output (and not ⊥) is

ρp :=

k∑
i=1

(1− pi) · pi
∏
j 6=i

(1− pj) =

k∏
j=1

(1− pj),

so that

ρp = exp

k∑
j=1

ln(1− pj) = exp

(
−
∞∑
t=1

‖p‖tt
t

)

≥ exp

(
−

(
1 +

∞∑
t=2

‖p‖t2
t

))
=

1− ‖p‖2
e1−‖p‖2

which is bounded away from 0 as long as p is far from being
a point mass (i.e., ‖p‖2 is not too close to 1).

Further, for any fixed i ∈ [k], the probability thatR outputs
i is

pi ·
k∏
j=1

(1− pj) = piρp ∝ pi .

The full scheme now requires some modifications to this
approach, esp. to handle this “point mass” issue; we provide
the entire proof in ??, establishing the stated bound of 20k
players (in expectation).

The extension for general ` is given in ??.

5. The Simulate-and-Infer Strategy
In this section, we focus on the connection between dis-
tributed simulation and (private-coin) distributed inference.

We first describe the implications of the results from Sec-
tion 4 for any distributed inference task; before considering
the natural question this general connection prompts: “Are
the resulting protocols optimal?”

Having a distributed simulation protocol at our disposal, a
natural protocol for distributed inference entails using dis-
tributed simulation to generate independent samples from
the underlying distribution, as many as warranted by the
sample complexity of the underlying problem, before run-
ning a sample inference algorithm (for the centralized set-
ting) at the referee. The resulting protocol will require a
number of players roughly equal to the sample complexity
of the inference problem when the samples are centralized
times

(
k/2`), the number of players required to simulate

each independent sample at the referee. We refer to such
protocols that first simulate samples from the underlying
distribution and then use a standard sample-optimal infer-
ence algorithm at the referee as simulate-and-infer protocols.
Formally, we have the following result.

Theorem 5.1. Let P be an inference problem for distri-
butions over a domain of size k that is solvable using
ψ(P, k) samples with error probability at most 1/3. Then,
the simulate-and-infer protocol for P requires at most
O
(
ψ(P, k) · k

2`

)
players, with each player sending at most

` bits to the referee and the overall error probability at most
2/5.

Proof. The reduction is quite straightforward, and works in
the following steps: (i) Partition the players into blocks of
size 54k/2`; (ii) run the distributed simulation protocol on
each block; and (iii) run the centralized algorithm over the
simulated samples. Recall from the previous section that we
have a Las Vegas protocol for distributed simulation using
27k/2` players in expectation. Thus, by Markov’s inequal-
ity, each block in the above protocol simulates a sample
with probability at least 1/2. If the number of samples sim-
ulated is larger than ψ(P, k), then the algorithm has error
at most 1/3. Denoting the number of blocks by B, the num-
ber of samples produced has expectation at least B/2, and
variance at most B/4. By Chebychev’s inequality, the prob-
ability that the number of samples simulated being less than
B/2 −

√
B/4
√

15 is at most 1/15. If B > 4ψ(P, k) + 8,
then B/2−

√
B
√

15/4 > ψ(P, k). As 1/3 + 1/15 = 2/5,
the result follows from a union bound.

As immediate corollaries of the result, we obtain distributed
inference protocols for distribution learning and unifor-
mity testing. Specifically, using the well-known result that
Θ
(
k/ε2

)
samples are sufficient to learn a distribution over

[k] to within a total variation distance ε with probability 2/3,
we obtain ??.

Next, from the existence of uniformity testing algorithms
using O(

√
k/ε2) samples (???), we obtain Corollary 1.5
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for uniformity testing. The result for identity testing follows
using the reduction from (?).

Interestingly, a byproduct of this connection between
simulate-and-infer and distribution learning (more precisely,
of ??) is that our α-simulation protocol requires the optimal
number of players, up to constants.

Corollary 5.2. Let ` ∈ {1, . . . , log k}, and α ∈ (0, 1).
Then, any `-bit public-coin (possibly adaptive) α-simulation
protocol for k-ary distributions must have n = Ω(k/2`)
players.

Remark 5.3. We note that the learning upper bound of ??
coincides with the one reported in (?), although the latter
was obtained using a different technique. The authors of (?)
also describe a distributed protocol for distribution learning,
but their criterion is the `2 distance instead of total varia-
tion.3 Finally, the learning lower bound we invoke in the
proof of Corollary 5.4 is established by adapting a similar
lower bound from (?) which, too, applied to learning in the
`2 metric.

6. Public-Coin Uniformity Testing
In this section, we consider public-coin protocols for (k, ε)-
uniformity testing and establish the following upper and
lower bounds for the required number of players.

Theorem 6.1. For 1 ≤ ` ≤ log k, there exists an `-
bit public-coin (k, ε)-uniformity testing protocol for n =
O
(

k
2`/2ε2

)
players.

Note that this is much fewer than the O(k3/2/(2`ε2))
players required by simulate-and-infer, and indeed by any
private-coin using the private-coin uniformity testing lower
bound from (?). In fact, public-coin uniformity testing lower
bound from (?) shows that the required number of players
is optimal up to constant factors.

We establish Theorem 6.1 below. Before delving into the
proof, we note that the results for uniformity testing imply
similar upper and lower bounds for the more general ques-
tion of identity testing, where the goal is to test whether
the unknown distribution p is equal to (versus ε-far from) a
reference distribution q known to all the players.

Corollary 6.2. For 1 ≤ ` ≤ log k, and for any fixed
q ∈ ∆[k], there exists an `-bit public-coin (k, ε,q)-identity
testing protocol for n = O

(
k

2`/2ε2

)
players. Further, any `-

bit public-coin (k, ε,q)-identity testing protocol must have
Ω
(

k
2`/2ε2

)
players (in the worst case over q).

We describe this reduction (similar to that in the non-
distributed setting) in Appendix A, further detailing how it
actually leads to the stronger notion of “instance-optimal”
identity testing in the sense of (?).

3We note that, based on a preliminary version of our manuscript
on arXiv, the `2 learning upper bound of (?) was updated to use a
“simulate-and-infer” protocol as well.

We now prove Theorem 6.1. Interestingly, the corre-
sponding protocol is remarkably simple, and, moreover,
is “smooth” – that is, no player’s output depends too much
on any particular symbol from [k] (this in turn could be
a desirable feature in some cases, for instance, in privacy-
minded settings, to control the sensitivity of the algorithm;
or for extensions where a quantization of the samples had
to be performed, and one seeks an algorithm robust to the
specific choice of quantization). Before delving into the
details of this protocol, we mention (as briefly evoked in
the introduction) that it can actually be implemented in a
randomness-efficient way. Indeed, although it at first glance
appears to require a significant amount of public random-
ness, namely Θ(k · `) = Ω(k) bits, we note that the analysis
only relies on properties of the second and fourth moments
of some suitable random variables; as such, correctness of
the protocol only requires 4-wise independent random bits.
This in turn can be implemented with only O(log k) bits of
public randomness.

The protocol will rely on a generalization of the following
observation: if p is ε-far from uniform, then for a subset
S ⊆ [k] of size k

2 generated uniformly at random, we have
p(S) = 1

2±Ω(ε/
√
k), with constant probability. Of course,

if p is uniform, then p(S) = 1
2 with probability one. Fur-

ther, note that this fact is qualitatively tight: for the specific
case of p assigning probability (1± ε)/k to each element,
the bias obtained will be 1

2±Θ(ε/
√
k) with high probability.

As a warm-up, we observe that the above claim immediately
suggests a protocol for the case ` = 1: The n players,
using their shared randomness, agree on a uniformly random
subset S ⊆ [k] of size k/2, and send to the referee the bit
indicating whether their sample fell into this set. Indeed,
if p is ε-far from uniform, with constant probability all
corresponding bits will be (ε/

√
k)-biased, and in this case

the referee can detect it with n = O(k/ε2) players.4

The claim in question, although very natural, is already
non trivial to establish due to the dependencies between the
different elements randomly assigned to the set S. We
refer the reader to Corollary 15 in (?) for a proof in-
volving anticoncentration of a suitable random variable,
Z :=

∑
i∈[k](pi − 1/k)Xi, with X1, . . . , Xk being (corre-

lated) Bernoulli random variables summing to k/2. At a
high-level, the argument goes by analyzing the second and
fourth moments of Z, and applying the Paley–Zygmund
inequality.

For our purposes, we need to show a generalization of the
aforementioned claim, considering balanced partitions into
L := 2` pieces instead of 2. To do so, we first set up
some notation. Let L < k be an integer; for simplicity
and with little loss of generality, assume that L divides k.

4To handle the small constant probability, it suffices to re-
peat this independently constantly many times, on disjoint sets of
O(k/ε2) players.
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Further, with Y1, . . . , Yk independent and uniform random
variables on [L], let random variables X1, . . . , Xk have the
same distribution as Y1, . . . , Yk conditioned on the event
that for every r ∈ [L],

∑k
i=1 1{Yi=r} = k

L . Note that each
Xi, too, is uniform on [L], but Xis are not independent. For
p ∈ ∆[k], define random variables Z1, . . . , ZL as follows:

Zr :=

k∑
i=1

pi1{Xi=r} . (2)

Equivalently, (Z1, . . . , ZL) correspond to the probabilities
(p(S1), . . . ,p(SL)) where S1, . . . , SL is a uniformly ran-
dom partition of [k] into L sets of equal size.

Theorem 6.3. For the (random) distribution q =
(Z1, . . . , ZL) over [L] induced by (Z1, . . . , ZL) above, the
following holds: (i) if p = u, then ‖q− uL‖2 = 0 with
probability one; and (ii) if `1(p,u) > ε, then

Pr
[
‖q− uL‖22 > ε2/k

]
≥ c ,

for some absolute constant c > 0.

The proof of this theorem is quite technical and is deferred
to Appendix C. We now explain how it yields a protocol with
the desired guarantees (i.e., matching the bounds of The-
orem 6.1). By Theorem 6.4, setting L = 2` we get that
with constant probability the induced distribution q on [L]
is either uniform (if p was), or at `2 distance at least ε′ from
uniform, where ε′ :=

√
ε2/k.5 However, testing uniformity

vs. (γ/
√
L)-farness from uniformity in `2 distance, over

[L], has sample complexity O(
√
L/γ2) (see e.g., Proposi-

tion 3.1 of (?) or Theorem 2.10 of (?)), and for our choice
of γ :=

√
Lε′ ∈ (0, 1), we have
√
L

γ2
=

√
L

Lε′2
=

k√
Lε2

=
k

2`/2ε2
, (3)

giving the bound we sought. This is the idea underlying the
following result:

Corollary 6.4. For 1 ≤ ` ≤ log k, there exists an `-
bit public-coin (k, ε)-uniformity testing protocol for n =
O
(

k
2`/2ε2

)
players, which uses O(`k) bits of randomness.

Proof. The protocol proceeds as follows: Let m = Θ(1)
be an integer such that (1 − c)m ≤ 1/6, where c is the
constant from Theorem 6.4; define δ := 1/(6m). Let N =
Θ(k/(2`/2ε2)) be the number of samples sufficient to test
(ε/
√
k)-farness in `2 distance from the uniform distribution

over [L], with failure probability δ (as guaranteed by (7)).

5Note that here `2 and χ2 distances are equivalent, as the
reference distribution is the uniform one. With this in mind, the
result we establish can be seen as a random hashing of the k-
ary alphabet into L elements, which preserves the χ2 distance to
uniform of each distribution with constant probability.

Finally, let n := mN = Θ(k/(2`/2ε2)). Given n players,
the protocol divides them into m disjoint batches of N
players, and each group acts independently as follows:

• Using their shared randomness, the players choose
uniformly at random a partition Π of [k] into subsets
of size k/2`.

• Next, they send to the referee the ` bits indicating in
which part of the partition their observed sample fell.

The referee, receiving these N messages (which correspond
to N independent samples of the distribution q ∈ ∆[2`]

induced by p on Π) runs the `2 uniformity test, with failure
probability δ and distance parameter ε/

√
k. After running

these m tests, the referee rejects if any of the batch is re-
jected, and accepts otherwise.

By a union bound, all these m tests will be correct with
probability at least 1 − mδ = 5/6. If p = uk, then all
m batches generate samples from the uniform distribution
on [L], and the referee returns accept with probability at
least 5/6. However, if p is ε-far from uniform then with
probability at least 1− (1−c)m ≥ 5/6 at least one of them
groups will choose a partition such that the corresponding
induced distribution on [L] is at `2 distance at least ε/

√
k

from uniform; by a union bound, this implies the referee
will return reject with probability at least 1− 2 · 1/6 = 2/3.

The bound on the total amount of randomness required
comes from the fact that m = Θ(1) independent partitions
of [k] into L := 2` are chosen and each such partition can
be specified using O(log(Lk)) = O(k · `) bits.
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A. From uniformity to parameterized identity
testing

In this appendix, we explain how the existence of any dis-
tributed protocol for uniformity testing implies the existence
of one for identity testing with roughly the same parame-
ters, and further even implies one for identity testing in the
massively parameterized sense6 (“instance-optimal” in the
vocabulary of Valiant and Valiant, who introduced it (?)).
These two results will be seen as a straightforward conse-
quence of (?), which establishes the former reduction in
the standard non-distributed setting; and of (?), which im-
plies that massively parameterized identity testing reduces
to “worst-case” identity testing. Specifically, we show the
following:

Proposition A.1. Suppose that there exists an `-bit protocol
π for testing uniformity of k-ary distributions, with number
of players n(k, `, ε) and failure probability 1/3. Then there
exists an `-bit protocol π′ for testing identity against a fixed
k-ary distribution q (known to all players), with number of
players n(5k, `, 1625ε) and failure probability 1/3.

Furthermore, this reduction preserves the setting of random-
ness (i.e., private-coin protocols are mapped to private-coin
protocols).

Proof. We rely on the result of Goldreich (?), which de-
scribes a randomized mapping Fq : ∆[k] → ∆[5k] such
that Fq(q) = u[5k] and dTV

(
Fq(p),u[5k]

)
> 16

25ε for any
p ∈ ∆[k] ε-far from q.7 In more detail, this mapping pro-
ceeds in two stages: the first allows one to assume, at essen-
tially no cost, that the reference distribution q is “grained,”
i.e., such that all probabilities q(i) are a multiple of 1/m
for some m = O(k). Then, the second mapping transforms
a given m-grained distribution to the uniform distribution
on an alphabet of slightly larger cardinality. The resulting
Fq is the composition of these two mappings.

Moreover, a crucial property of Fq is that, given the knowl-
edge of q, a sample from Fq(p) can be efficiently simulated
from a sample from p; this implies the proposition.

Remark A.2. The result above crucially assumes that every
player has explicit knowledge of the reference distribution q
to be tested against, as this knowledge is necessary for them

6Massively parameterized setting, a terminology borrowed
from property testing, refers here to the fact that the sample com-
plexity depends not only on a single parameter k but a k-ary
distribution q.

7In (?), Goldreich exhibits a randomized mapping that converts
the problem from testing identity over domain of size k with
proximity parameter ε to testing uniformity over a domain of size
k′ := k/α2 with proximity parameter ε′ := (1− α)2ε, for every
fixed choice of α ∈ (0, 1). This mapping further preserves the
success probability of the tester. Since the resulting uniformity
testing problem has sample complexity Θ

(√
k′/ε′

2
)

, the blowup

factor 1/(α(1− α)4) is minimized by α = 1/5.

to simulate a sample from Fq(p) given their sample from
the unknown p. If only the referee R is assumed to know
q, then the above reduction does not go through, although
one can still rely on any testing scheme based on distributed
simulation.

The previous reduction enables a distributed test for any
identity testing problem using at most, roughly, as many
players as that required for distributed uniformity testing.
However, we can expect to use fewer players for specific
distributions. Indeed, in the standard, non-distributed set-
ting, Valiant and Valiant in (?) introduced a refined analy-
sis termed the instance-optimal setting and showed that
the sample complexity of testing identity to q is essen-
tially captured by the 2/3-quasinorm of a sub-function of
q obtained as follows: Assuming without loss of generality
q1 ≥ q2 ≥ . . .qk ≥ 0, let t ∈ [k] be the largest integer that∑k
i=t+1 qi ≥ ε, and let qε = (q2, . . . ,qt) (i.e., removing

the largest element and the “tail” of q). The main result
in (?) shows that the sample complexity of testing identity to
q is upper and lower bounded by max(‖qε/16‖2/3/ε2, 1/ε)
and max(‖qε‖2/3/ε2, 1/ε), respectively.

However, it is not clear if the aforementioned reduction be-
tween identity and uniformity of Goldreich preserves this
parameterization of sample complexity for identity testing;
in particular, the 2/3-quasinorm characterization does not
seem to be amenable to the same type of analysis as that un-
derlying Proposition A.1. Interestingly, a different instance-
optimal characterization due to Blais, Canonne, and Gur (?)
admits such a reduction, enabling us to obtain the analogue
of Proposition A.1 for this massively parameterized setting.

To state the result as parameterized by q (instead of k), we
will need the following definition of Φ(p, γ); see Section 6
of (?) for a discussion on basic properties of Φ(p, γ) and
how it relates to notions such as the sparsity of p and the
functional ‖p−max

γ ‖ defined in (?). For a ∈ `2(N) and
t ∈ (0,∞), let

κa(t) := inf
a′+a′′=a

(‖a′‖1 + t‖a′′‖2)

and, for p ∈ ∆N and any γ ∈ (0, 1), let

Φ(p, γ) := 2κ−1p (1− γ)2 . (4)

It can be seen that, if p is supported on at most k elements,
Φ(p, γ) ≤ 2k for all γ ∈ (0, 1). We are now in a position
to state our general reduction.

Proposition A.3. Suppose that there exists an `-bit protocol
π for testing uniformity of k-ary distributions, with number
of players n(k, `, ε) and failure probability 1/3. Then there
exists an `-bit protocol π′ for testing identity against a fixed
distribution p (known to all players), with number of players
O
(
n(Φ(q, ε9 ), `, ε18 ))

)
and failure probability 2/5.

Further, this reduction preserves the setting of randomness
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(i.e., private-coin protocols are mapped to private-coin pro-
tocols).

Proof. This strengthening of Proposition A.1 stems from
the algorithm for identity testing given in (?), which at
a high-level reduces testing identity to q to three tasks:
(i) computing the (ε/3)-effective support8 of q, Sq(ε),
which can be done easily given explicit knowledge of q;
(ii) testing that the unknown distribution p puts mass at most
ε/2 outside of Sq(ε) (which only requires O(1/ε) play-
ers to be done with a high constant probability, say 1/30);
and (iii) testing identity of p and q conditioned on Sq(ε)
with parameter ε/18, which can be done using rejection
sampling and Proposition A.1 with O

(
n(|Sq(ε)| , `, ε18 )

)
players and success probability, say 2/3 − 1/30, where
the additional 1/30 error probability comes from rejection
sampling. See Fig. 1 for an illustration.

As shown in Section 7.2 of (?), we have |Sq(ε)| ≤ Φ(q, ε9 ),
and thereby the claimed result, since it follows that the ap-
proach above indeed yields an algorithm which is instance-
optimal. Technically, the claimed bound is obtained upon
recalling that n(Φ(q, ε9 ), `, ε18 )) = Ω(1/ε) using the triv-
ial lower bound of Ω(1/ε) on uniformity testing, so that
n(Φ(q, ε9 ), `, ε18 )) +O(1/ε) = O

(
n(Φ(q, ε9 ), `, ε18 )

)
.

q(i),p(i)

i
k1 kεSq(ε)

ε

Figure 1. The reference distribution q (in blue; assumed non-
increasing without loss of generality) and the unknown distribution
p (in red). By the reduction above, testing equality of p to q is
tantamount to (i) determining Sq(ε), which depends only on q;
(ii) testing identity for the conditional distributions of p and q
given Sq(ε), and (iii) testing that p assigns at most O(ε) probabil-
ity to the complement of Sq(ε).

B. Impossibility of perfect simulation when
` < log k

We begin with a proof of impossibility which shows that
any simulation that works for all points in the interior of
the (k − 1)-dimensional probability simplex must fail for a
distribution on the boundary. Our main result of this section
is the following:

8Recall the ε-effective support of a distribution q is the minimal
set of elements accounting for at least 1− ε probability mass of q.

Theorem B.1. For any n ≥ 1, there exists no `-bit public-
coin perfect simulation of k-ary distributions using n play-
ers unless ` ≥ log k.

Proof. Let S = (π, δ) be an `-bit perfect simulation for
k-ary distributions using n players. Suppose that ` < log k.
We show a contradiction for any such public-coin simulation
S. Fix a realization U = u of the public randomness. By
the pigeonhole principle we can find a message vector m =
(m1, . . . ,mn) and distinct elements xi, x′i ∈ [k] for each
i ∈ [n] such that

πi(xi, u) = πi(x
′
i, u) = mi.

Note that the probability of declaring ⊥ for a public-coin
simulation must be 0 for every k-ary distribution. There-
fore, since the message m occurs with a positive probability
under a distribution p with pxi > 0 for all i, the referee
must declare an output x ∈ [k] with positive probability
when it receives m, i.e., there exists x ∈ [k] such that
δx(m,u) > 0. Also, since xi and x′i are distinct for each i,
we can assume without loss of generality that xi 6= x for
each i. Now, consider a distribution p such that px = 0
and pxi

> 0 for each i. For this case, the referee must
never declare px, i.e., Pr

[
X̂ = x

]
= 0. In particular,

Pr
[
X̂ = x

∣∣∣ U = u
]

must be 0, which can only happen if
Pr[M = m | U = u ] = 0. But since pxi

> 0 for each i,

Pr[M = m | U = u ] ≥
n∏
i=1

pxi > 0 ,

which is a contradiction.

Note that the proof above shows, as stated before, that any
perfect simulation that works for every p in the interior of
the (k − 1)-dimensional probability simplex, must fail at
one point on the boundary of the simplex. In fact, a much
stronger impossibility result holds. We show next that for
k = 3 and ` = 1, we cannot find a perfect simulation that
works in the neighborhood of any point in the interior of the
simplex.

Theorem B.2. For any n ≥ 1, there does not exist any `-bit
perfect simulation of 3-ary distributions unless ` ≥ 2, even
under the promise that the input distribution comes from an
open set in the interior of the probability simplex.

Before we prove the theorem, we show that there is no
loss of generality in restricting to deterministic protocols,
namely protocols where each player uses a deterministic
function of its observation to communicate. The high-level
argument is relatively simple: By replacing player j by two
players j1, j2, each with a suitable deterministic strategy,
the two 1-bit messages received by the referee will allow
him to simulate player j’s original randomized mapping.
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Lemma B.3. For X = {0, 1, 2}, suppose there exists a
1-bit perfect simulation S′ = (π′, δ′) with n players. Then,
there is a 1-bit perfect simulation S = (π, δ) with 2n play-
ers such that, for each j ∈ [2n], the communication π is
deterministic, i.e., for each realization u of public random-
ness

πj(xj , u) = πj(x), x ∈ X .

Proof. Consider a mapping f : {0, 1, 2}×{0, 1}∗ → {0, 1}.
We will show that we can find mappings g1 : {0, 1, 2} →
{0, 1}, g2 : {0, 1, 2} → {0, 1}, and h : {0, 1} × {0, 1} ×
{0, 1}∗ → {0, 1} such that for every u

Pr[ f(X,u) = 1 ] = Pr[h(g1(X1), g2(X2), u) = 1 ],
(5)

where random variables X1, X2, X are independent and
identically distributed and take values in {0, 1, 2}. We can
then use this construction to get our claimed simulation S
using 2n players as follows: Replace the communication
π′j(x, u) from player j with communication π2j−1(x2j−1)
and π2j(x2j), respectively, from two players 2j − 1 and
2j, where π2j−1 and π2j correspond to mappings g1 and
g2 above for f = π′j . The referee can then emulate the
original protocol using the corresponding mapping h and
using h(π2j−1(x2j−1), π2j(x2j), u) in place of communi-
cation from player j in the original protocol (recall that,
the protocol being known to all parties, the referee knows
the mapping f = π′j and thus can implement this strategy).
Then, since the probability distribution of the communica-
tion does not change, we retain the performance of S′, but
using only deterministic communication now.

Therefore, it suffices to establish (2). For convenience, de-
note αu := 1{f(0,u)=1}, βu := 1{f(1,u)=1}, and γu :=
1{f(2,u)=1}. Assume without loss of generality that αu ≤
βu+γu; then, (βu+γu−αu) ∈ {0, 1}. Let gi(x) = 1{x=i}
for i ∈ {1, 2}. Consider the mapping h given by

h(0, 0, u) = αu, h(1, 0, u) = βu,

h(0, 1, u) = γu, h(1, 1, u) = (βu + γu − αu) .

Then, for every u,

Pr[h(g1(X1), g2(X2), u) = 1 ]

= αu(1− p1)(1− p2) + βu(1− p1)p2

+ γup1(1− p2) + (βu + γu − αu)p1p2

= αu(1− p1 − p2) + βup2 + γup1

= Pr[ f(X,u) = 1 ] ,

which completes the proof.

We now prove Theorem 4.2, but in view of our previous
observation, we only need to consider deterministic commu-
nication.

Proof of Theorem 4.2. Suppose by contradiction that there
exists such a 1-bit perfect simulation protocol S = (π, δ)
for n players on X = {0, 1, 2} such that π(x, u) = π(x).
Assume that this protocol is correct for all distributions p in
the neighborhood of some p∗ in the interior of the simplex.
Consider a partition the players into three sets S0, S1, and
S2, with

Si := { j ∈ [n] : πj(i) = 1 } , i ∈ X .

Note that for deterministic communication the message M
is independent of public randomness U . Then, by the defini-
tion of perfect simulation, it must be the case that

px = EU
∑

m∈{0,1}n
δx(m,U) Pr[M = m | U ] (6)

= EU
∑
m

δx(m,U) Pr[M = m ]

=
∑
m

EU [δx(m,U)] Pr[M = m ] (7)

for every x ∈ X , which with our notation of S0,S1,S2 can
be re-expressed as

px

=
∑

m∈{0,1}n
EU [δx(m,U)]

2∏
i=0

∏
j∈Si

(mjpi + (1−mj)(1− pi))

=
∑

m∈{0,1}n
EU [δx(m,U)]

2∏
i=0

∏
j∈Si

(1−mj + (2mj − 1)pi) ,

for every x ∈ X . But since the right-side above is a polyno-
mial in (p0,p1,p2), it can only be zero in an open set in the
interior if it is identically zero. In particular, the constant
term must be zero:

0 =
∑

m∈{0,1}n
EU [δx(m,U)]

2∏
i=0

∏
j∈Si

(1−mj)

=
∑

m∈{0,1}n
EU [δx(m,U)]

n∏
j=1

(1−mj) .

Noting that every summand is non-negative, this implies that
for all x ∈ X and m ∈ {0, 1}n, EU [δx(m,U)]

∏n
j=1(1 −

mj) = 0. In particular, for the all-zero message 0n, we
get EU [δx(0n, U)] = 0 for all x ∈ X , so that again by
non-negativity we must have δx(0n, u) = 0 for all x ∈ X
and randomness u. But the message 0n will happen with
probability

Pr[M = 0n ] =

2∏
i=0

∏
j∈Si

(1− pi)

= (1− p0)|S0|(1− p1)|S1|(1− p2)|S2| > 0,
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where the inequality holds since p lies in the interior of the
simplex. Therefore, for the output X̂ of the referee we have

Pr
[
X̂ 6= ⊥

]
=
∑
m

∑
x∈X

EU [δx(m,U)] · Pr[M = m ]

=
∑
m 6=0n

Pr[M = m ]
∑
x∈X

EU [δx(m,U)]

≤
∑
m 6=0n

Pr[M = 0n ]

= 1− Pr[M = 0n ] < 1 ,

contradicting the fact that π is a perfect simulation protocol.

Remark B.4. It is unclear how to extend the proof of Theo-
rem 4.2 arbitrary k, `. In particular, the proof of Lemma 4.3
does not extend to the general case. A plausible proof-
strategy is a black-box application of the k = 3, ` = 1
result to obtain the general result using a direct-sum-type
argument.

We close this section by noting that perfect simulation is
impossible even when the communication from each player
is allowed to depend on that from the previous ones. Specif-
ically, we show that availability of such an interactivity can
at most bring an exponential improvement in the number of
players.

Lemma B.5. For every n ≥ 1, if there exists an interactive
public-coin `-bit perfect simulation of k-ary distributions
with n players, then there exists a public-coin `-bit perfect
simulation of k-ary distributions with 2`n+1 players that
uses only SMP.

Proof. Consider an interactive communication protocol π
for distributed simulation with n players and ` bits of com-
munication per player. We can view the overall protocol
as a (2`)-ary tree of depth n where player j is assigned all
the nodes at depth j. An execution of the protocol is a path
from the root to the leaf of the tree. Suppose the protocol
starting at the root has reached a node at depth j, then the
next node at depth j+1 is determined by the communication
from player j. Thus, this protocol can be simulated non-
interactively using at most ((2`)n − 1)/(2` − 1) < 2`n+1

players, where players (2j−1 + 1) to 2j send all messages
correspond to nodes at depth j in the tree. Then, the referee
receiving all the messages can output the leaf by following
the path from root to the leaf.

Corollary B.6. Theorems 4.1 and 4.2 extend to interactive
protocols as well.

C. Distributed Simulation with one bit
Proof of Theorem 4.7. To help the reader build heuristics
for the proof, we describe the protocol and analyze its per-
formance in steps. We begin by describing the basic idea

and building blocks; we then build upon it to obtain a full-
fledged protocol, but with potentially unbounded expected
number of players used. Finally, we describe a simple modi-
fication which yields our desired bound for expected number
of player’s accessed.

The scheme, base version. Consider a protocol with 2k
players where the 1-bit communication from players (2i−1)
and (2i) just indicates if their observation is i or not, namely
π2i−1(x) = π2i(x) = 1{x=i}.

On receiving these 2k bits, the refereeR acts as follows:

• if exactly one of the bits M1,M3, . . . ,M2k−1 is equal
to one, say the bit M2i−1, and the corresponding bit
M2i is zero, then the referee outputs X̂ = i;

• otherwise, it outputs ⊥.

In the above, the probability ρp that some i ∈ [k] is declared
as the output (and not ⊥) is

ρp :=

k∑
i=1

(1− pi) · pi
∏
j 6=i

(1− pj) =

k∏
j=1

(1− pj),

so that

ρp = exp

k∑
j=1

ln(1− pj) = exp

(
−
∞∑
t=1

‖p‖tt
t

)

≥ exp

(
−

(
1 +

∞∑
t=2

‖p‖t2
t

))
=

1− ‖p‖2
e1−‖p‖2

which is bounded away from 0 as long as p is far from being
a point mass (i.e., ‖p‖2 is not too close to 1).

Further, for any fixed i ∈ [k], the probability thatR outputs
i is

pi ·
k∏
j=1

(1− pj) = piρp ∝ pi .

The scheme, medium version. The (almost) full protocol
proceeds as follows. Divide the countably infinitely many
players into successive, disjoint batches of 2k players each,
and apply the base scheme to each of these runs. Execute the
base scheme to each of the batch, one at a time and moving
to the next batch only when the current batch declares a ⊥;
else declare the output of the batch as X̂ .

It is straightforward to verify that the distribution of the out-
put X̂ is exactly p, and moreover that on expectation 1/ρp
runs are considered before a sample is output. Therefore, the
expected number of players accessed (i.e., bits considered
by the referee) satisfies

2k

ρp
≤ 2k · e

1−‖p‖2

1− ‖p‖2
. (8)

The scheme, final version. The protocol described above
can have the expected number of players blowing to infin-
ity when p has `2 norm close to one. To circumvent this



Communication Constraints and Shared Randomness

difficulty, we modify the protocol as follows: Consider the
distribution q on [2k] defined by

q2i = q2i−1 =
pi
2
, i ∈ [k] .

Clearly, ‖q‖2 = ‖p‖2/
√

2 ≤ 1/
√

2, and therefore by (4)
the expected number of players required to simulate q using
our previous protocol is at most

4k · e
1−1/

√
2

1− 1/
√

2
≤ 20k.

But we can simulate a sample from p using a sample from
q simply by mapping (2i− 1) and 2i to i. The only thing
remaining now is to simulate samples from q using samples
from p. This, too, is easy. Every 2 players in a batch that
declare 1 on observing symbols (2i−1) and (2i) from q de-
clare 1 when they see i from p. The referee then simply flips
each of this 1 to 0, thereby simulating the communication
corresponding to samples from q. In summary, we modified
the original protocol for p by replacing each player with two
identical copies and modifying the referee to flip 1 received
from these players to 0 independently with probability 1/2;
the output is declared in a batch only when there is exactly
one 1 in the modified messages, in which case the output
is the element assigned to the player that sent 1. Thus, we
have a simulation for k-ary distributions that uses at most
20k players, completing the proof of the theorem.

D. Distributed Simulation for any `

Proof of Theorem 1.3. For simplicity, assume that 2` − 1
divides k. We can then extend the previous protocol by
considering a partition of domain intom = k/(2`−1) parts
and assigning one part of size 2` − 1 each to a player. Each
player then sends the all-zero sequence of length ` when it
does not see an element from its assigned set, or indicates
the precise element from its assigned set that it observed.
For each batch, the referee, too, proceeds as before and
declares an output if exactly one player in the batch sends
a 1 – the declared output is the element indicated by the
player that sent a 1; else it moves to the next batch. To
bound the number of players, consider the analysis of the
base protocol. The probability that an output is declared for
a batch (a ⊥ is not declared in the base protocol) is given by

ρp :=

m∑
i=1

(1− p(Si)) ·
∑
`∈Si

p`
∏
j 6=i

(1− p(Sj))

=

m∏
j=1

(1− p(Sj)) ·
m∑
i=1

∑
`∈Si

p`

=

m∏
j=1

(1− p(Sj)) ,

where {S1, . . . , Sm} denotes the partition used. Then, writ-
ing p(S) for the distribution on [m] given by p(S)(j) =
p(Sj), by proceeding as in the ` = 1 case we obtain

ρp ≥
1− ‖p(S)‖2
e1−‖p

(S)‖2
.

Once again, this quantity may be unbounded and we cir-
cumvent this difficulty by replacing each player with two
players that behave identically and flipping their commu-
nicated 1’s to 0’s randomly at the referee; the output is
declared in a batch only when there is exactly one 1 in the
modified messages, in which case the output is the element
indicated by the player that sent 1. The analysis can be
completed exactly in the manner of the ` = 1 case proof
by noticing that the protocol is tantamount to simulating q
with ‖q(S)‖2 ≤ 1/

√
2 and accesses messages from at most

20m players in expectation.

E. Proof of Theorem 6.4
In this appendix, we prove Theorem 6.4, stating that taking
a random balanced partition of the domain in L ≥ 2 parts
preserves the `2 distance between distributions with constant
probability. Note that the special case of L = 2 was proven
in (?). In fact, the proof for general L is similar to the proof
in (?), but requires some additional work. We provide a
self-contained proof here for easy reference.

We begin by recall the Paley–Zigmund inequality, a key tool
we shall rely upon.
Theorem E.1 (Paley–Zygmund). Suppose U is a non-
negative random variable with finite variance. Then, for
every θ ∈ [0, 1],

Pr[U > θE[U ] ] ≥ (1− θ)2E[U ]
2

E[U2]
.

We will prove a more general version of Theorem 6.4, show-
ing that the `2 distance to any fixed distribution q ∈ ∆[k]

is preserved with a constant probability.9 Let random vari-
ables X1, . . . , Xk be as in Theorem 6.4; in particular, each
Xi is distributed uniformly on [L] and for every r ∈ [L],∑k
i=1 1{Xi=r} = k

L .
Theorem E.2. Suppose 2 ≤ L < k is an integer dividing
k, and fix δ ∈ Rk such that

∑
i∈[k] δi = 0. For random

variables X1, ..., Xk above, let Z = (Z1, . . . , ZL) ∈ RL
with

Zr :=

k∑
i=1

δi1{Xi=r}, r ∈ [L] .

Then, there exists a constant c > 0 such that

Pr

[
‖Z‖2 >

1

2
· ‖δ‖2

]
≥ c.

9For this application, one should read the theorem statement
with δ := p− q.
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Proof of Theorem C.2. As in Theorem 14 of (?), the gist of
the proof is to consider a suitable non-negative random vari-
able (namely, ‖Z‖22) and bound its expectation and second
moment in order to apply the Paley–Zygmund inequality to
argue about anticoncentration around the mean. The diffi-
culty, however, lies in the fact that bounding the moments of
‖Z‖2 involves handling the products of correlated L-valued
random variables Xi’s, which is technical even for the case
L = 2 considered in (?). For ease of presentation, we have
divided the proof into smaller results.

Lemma E.3 (Each part has the right expectation). For every
r ∈ [L],

E[Zr] = 0 .

Proof. By linearity of expectation,

E[Zr] =

k∑
i=1

δiE
[
1{Xi=r}

]
=

1

L

k∑
i=1

δi = 0.

Lemma E.4 (The `22 distance to uniform of the flattening
has the right expectation). For every r ∈ [L],

VarZr = E
[
Z2
r

]
=

1

L
‖δ‖22

(
1− 1

L
+

L− 1

L(k − 1)

)
≥ 1

2L
‖δ‖22 .

In particular, the expected squared `2 norm of Z is

E
[
‖Z‖22

]
= E

[
L∑
r=1

Z2
r

]
≥ 1

2
‖δ‖22 .

Proof. For a fixed r ∈ [L], using the definition of Z, the
fact that

∑k
i=1 1{Xi=r} = k

L , and Lemma C.3, we get that

Var[Zr]

= E
[
Z2
r

]
= E

( k∑
i=1

δi1{Xi=r}

)2


=
∑

1≤i,j≤k

δiδjE
[
1{Xi=r}1{Xj=r}

]
=

k∑
i=1

δ2i E
[
1{Xi=r}

]
+ 2

∑
1≤i<j≤k

δiδjE
[
1{Xi=r}1{Xj=r}

]
.

Since the Xi’s – while not independent – are identically dis-
tributed, it is enough by symmetry to compute E

[
1{Xk=r}

]
and E

[
1{Xk−1=r}1{Xk=r}

]
. The former is 1/L; for the

latter, note that

E
[
1{Xk−1=r}1{Xk=r}

]
(9)

= E
[
E
[
1{Xk−1=r}1{Xk=r}

∣∣ 1{Xk=r}
]]

(10)

=
1

L
Pr[Xk−1 = r | Xk = r ]

=
1

L
Pr

[
Xk−1 = r

∣∣∣∣∣
k−1∑
i=1

1{Xi=r} =
k

L
− 1

]
(11)

=
1

L2
· k − L
k − 1

, (12)

where the final identity uses symmetry once again, along
with the observation that

k−1∑
i=1

E

1{Xi=r}

∣∣∣∣∣∣
k−1∑
j=1

1{Xj=r} =
k

L
− 1

 =
k

L
− 1.

Putting it together, we get the result as follows:

Var[Zr] =
1

L

k∑
i=1

δ2i +
1

L2
· k − L
k − 1

· 2
∑

1≤i<j≤k

δiδj

=
1

L
‖δ‖22 −

1

L2

(
1− L− 1

k − 1

)
‖δ‖22

=
1

L
‖δ‖22

(
1− 1

L
+

L− 1

L(k − 1)

)
.

Lemma E.5 (The `22 distance to uniform of the flattening
has the required second moment). There exists an absolute
constant C > 0 such that

E
[
‖Z‖42

]
≤ C‖δ‖42 .

Proof of Lemma C.5. Expanding the square, we have

E
[
‖Z‖42

]
= E

( L∑
r=1

Z2
r

)2
 =

L∑
r=1

E
[
Z4
r

]
+2
∑
r<r′

E
[
Z2
rZ

2
r′
]

(13)
We will bound both terms separately. For the first term, we
note that using Equation(21) of (?) with 1{Xi=r} in the
role of Xi there, each term E

[
Z4
r

]
is bounded above by

19‖δ‖42/L whereby

L∑
r=1

E
[
Z4
r

]
≤ 19‖δ‖42. (14)

However, we need additional work to handle the second
term comprising roughly L2 summands. In particular, to
complete the proof we show that each summand in the
second term is less than a constant factor times ‖δ‖42/L2.
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Claim E.6. There exists an absolute constant C ′ > 0 such
that ∑

r<r′

E
[
Z2
rZ

2
r′
]
≤ C ′‖δ‖42 .

Proof. Fix any r 6= r′. As before, we expand

E
[
Z2
rZ

2
r′
]

= E

( k∑
i=1

δi1{Xi=r}

)2( k∑
i=1

δi1{Xi=r′}

)2


=
∑

1≤a,b,c,d≤k

δaδbδcδdE
[
1{Xa=r}1{Xb=r}1{Xc=r′}1{Xd=r′}

]
.

Using symmetry once again, note that the term
E
[
X̃aX̃bX̃cX̃d

]
depends only on the number of distinct

elements in the multiset {a, b, c, d}, namely the cardinality
|{a, b, c, d}|. The key observation here is that if {a, b} ∩
{c, d} 6= ∅, then 1{Xa=r}1{Xb=r}1{Xc=r′}1{Xd=r′} = 0.
This will be crucial as it implies that the expected value
can only be non-zero if |{a, b, c, d}| ≥ 2, yielding a 1/L2

dependence for the leading term in place of 1/L.

E
[
Z2
rZ

2
r′
]

(15)

=
∑

|{a,b,c,d}|=2

δ2aδ
2
bE
[
1{Xa=r}1{Xb=r′}

]
+

∑
|{a,b,c,d}|=3

δ2aδbδcE
[
1{Xa=r}1{Xb=r′}1{Xc=r′}

]
+

∑
|{a,b,c,d}|=3

δaδbδ
2
cE
[
1{Xa=r}1{Xb=r}1{Xc=r′}

]
+

∑
|{a,b,c,d}|=4

δaδbδcδdE
[
1{Xa=r}1{Xb=r}1{Xc=r′}1{Xd=r′}

]
.

(16)

The first term, which we will show dominates, is bounded
as ∑

|{a,b,c,d}|=2

δ2aδ
2
bE
[
1{Xa=r}1{Xb=r′}

]
= E

[
1{Xk−1=r}1{Xk=r′}

]
‖δ‖42 ≤

2

L2
‖δ‖42

where the inequality uses

E
[
1{Xk−1=r}1{Xk=r′}

]
=

1

L2
· k

k − 1
≤ 2

L2
,

which in turn is obtained in the manner of (15).

For the second and the third terms, noting that

E
[
1{Xa=r}1{Xb=r′}1{Xc=r′}

]
=
∣∣δ2aδbδc∣∣· 1

L3

k(k − L)

(k − 1)(k − 2)
,

and that∑
|{a,b,c,d}|=3

δ2aδbδc =
∑

1≤a,b,c≤k

δ2aδbδc−
∑
a6=b

δ2aδ
2
b−2

∑
a6=b

δ3aδb

with
∑

1≤a,b,c≤k δ
2
aδbδc =

(∑k
a=1 δ

2
a

)(∑k
a=1 δa

)2
=

0,
∑
a6=b δ

2
aδ

2
b ≤

∑
1≤a,b≤k δ

2
aδ

2
b = ‖δ‖42, and∑

a 6=b δ
3
a |δb| ≤

∑
1≤a,b≤k δ

3
a |δb| ≤ ‖δ‖∞‖δ‖

3
3 ≤ ‖δ‖

4
2,

we get

− 6

L3
‖δ‖42

≤
∑

|{a,b,c,d}|=3

δ2aδbδcE
[
1{Xa=r}1{Xb=r′}1{Xc=r′}

]
≤ 6

L3
‖δ‖42 .

Finally, as E
[
1{Xa=r}1{Xb=r}1{Xc=r′}1{Xd=r′}

]
=

1
L4

k2(k−L)2
(k−1)(k−2)(k−3)(k−4) ≤

10
L4 , similar manipulations yield

− α

L4
‖δ‖42

≤
∑

|{a,b,c,d}|=4

δaδbδcδdE
[
1{Xa=r}1{Xb=r}1{Xc=r′}1{Xd=r′}

]
≤ α

L4
‖δ‖42

for some absolute constant α > 0. Gathering all this in (18),
we get that there exists some absolute constant C ′ > 0 such
that ∑

r<r′

E
[
Z2
rZ

2
r′
]
≤ C ′

∑
r<r′

1

L2
‖δ‖42 ≤

C ′

2
‖δ‖42 .

The lemma follows by combining the previous claim with
(17).

We are now ready to establish Theorem 6.4. By Lemmas C.4
to C.5, we have E

[
‖Z‖22

]
≥ 1

2‖δ‖
2
2 and E

[
‖Z‖42

]
≤

C‖δ‖42, for some absolute constant C > 0. Therefore, by
the Payley–Zygmund inequality (Theorem C.1) applied to
‖Z‖22 for θ = 1/2,

Pr

[
‖Z‖22 >

1

4
‖δ‖22

]
≥ Pr

[
‖Z‖22 >

1

2
E
[
‖Z‖22

] ]

≥ 1

4

E
[
‖Z‖22

]2
E
[
‖Z‖42

] ≥ 1

16C
.

This concludes the proof.


