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Abstract—We consider the problem of distributed
estimation and testing of discrete distributions under
local information constraints that include communica-
tion and privacy as special cases. Our main result is
a unified method that establishes tight bounds for in-
teractive protocols under both the constraints and both
the problems. Our main technical contribution is an av-
erage information bound which connects learning and
testing and handles correlations due to interactivity.
While we establish that for learning and testing under
both the constraints above, interactivity does not help,
we also illustrate a natural family of “leaky query” local
constraints under which interactive protocols strictly
outperform the noninteractive ones for identity testing.

I. Introduction
Classical statistics focuses on algorithms that are data-

efficient. However, modern applications entailing dis-
tributed statistics have added a new dimension to this
objective with the introduction of local information con-
straints. Canonical examples of information constraints
include communication constraints and local privacy con-
straints. In this paper, we study such modern distributed
statistics problems where only limited information about
each sample is available to the algorithm.

In particular, we consider the fundamental tasks of
estimation and goodness-of-fit testing of discrete distri-
butions. There is an unknown distribution p over [2k] =
{1, 2, . . . , 2k},1 and a set W of allowed channels with
input domain [2k], known a priori. The distributed setting
comprises n users, where the tth user observes an indepen-
dent sample Xt from p. User t chooses Wt ∈ W, passes
Xt through Wt, and the output Yt is its message. This
general setup is depicted in Fig. 1. This abstraction in-
deed captures, among others, communication and privacy
constraints as special cases.

0Jayadev Acharya is supported in part by the grant NSF-CCF-
1846300 (CAREER), NSF-CCF-1815893. Yuhan Liu and Ziteng Sun
are supported by the grant NSF-CCF-1846300 (CAREER). Himan-
shu Tyagi was supported by a grant from Robert Bosch Center
for Cyber Physical Systems (RBCCPS) at the Indian Institute of
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1For convenience, we assume throughout the paper that the do-
main X has even cardinality; specifically X = [2k]. This is merely for
ease of notation, and all results apply to any finite domain X .
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Fig. 1. The information-constrained distributed model. In the in-
teractive setting, Wt can also depend on the previous messages
Y1, . . . , Yt−1 (dotted, upwards arrows).

Communication constraints. Let W` := {W : [2k] →
{0, 1}`} be the set of channels whose output alphabet Y
is the set of all `-bit strings.
Local differential privacy constraints. For a privacy
parameter % > 0, a channel W : [2k]→ {0, 1}∗ is %-locally
differentially private (%-LDP) [? ? ? ] if

W (y | x1)
W (y | x2) ≤ e

%, ∀x1, x2 ∈ [2k],∀y ∈ {0, 1}∗.

We denote by W% the set of all %-LDP channels.
Based on how the users choose their channels, we con-

sider two natural classes of protocols.
Noninteractive (SMP2) protocols: All users must se-
lect their channels without observing others’ messages.
(Sequentially) interactive protocols3: User t can se-
lect Wt ∈ W as a function of Y t−1 := (Y1, . . . , Yt−1).

2“SMP” stands for simultaneous-message passing, i.e., for non-
interactive, one-shot protocol. SMP protocols can be divided into
private-coin protocols and public-coin protocols based on whether a
public string U is available. Since this distinction is not the focus of
this paper, we omit it and assume a public string U is available for
all SMP protocols.

3We focus on sequentially interactive protocols and use the terms
“sequentially interactive" and “interactive" interchangeably.



Finally, upon observing the messages, the server per-
forms the desired inference task. We focus on the following
tasks.

Distribution learning. The goal is to estimate an un-
known distribution p to within ε in TV distance. Formally,
a protocol Π: [2k]n → Yn (using W) and an estimator
mapping p̂ : Yn → ∆2k constitute an (n, ε)-estimator
using W if

sup
p∈∆2k

Pr
Xn∼p

[ dTV(p̂(Y n),p) < ε ] ≥ 0.99. (1)

where Y n := Π(Xn).

Identity and uniformity testing. The goal is to test if
p = q or if it is ε-far from q in TV distance. Specifically, an
(n, ε)-test using W is given by a protocol Π: [2k]n → Yn

(using W) and a randomized decision function T : Yn →
{0, 1} such that

Pr
Xn∼qn

[T (Y n) = 0 ] ≥ 0.99

inf
p:dTV(p,q)≥ε

Pr
Xn∼pn

[T (Y n) = 1 ] ≥ 0.99.

Identity testing for the uniform reference distribution u
over [2k] is termed the (2k, ε)-uniformity testing problem.
The sample complexity of both learning and testing is

then the least n for which such estimators exist.

A. The role of interactivity

While interactive protocols are arguably harder to im-
plement in a practical setting, they may come with statis-
tical benefits (e.g., smaller sample complexity). Our goal
is thus to answer the following question:

Does interactivity help for learning and testing under
local information constraints?

In this work, we resolve this question by establishing
lower bounds that hold for general channel families (mod-
eling local information constraints). As a direct corollary,
we show that interaction does not help for learning and
testing under either communication constraints or local
privacy constraints.

Yet, our lower bounds allow us to identify a family of
channels for which interaction strictly helps for testing,
establishing the first separation between interactive and
noninteractive protocols for distributed goodness-of-fit.
We term the family as “leaky-query”. Loosely speaking,
each user answers a single-bit question about its sample,
but with small probability leaks the true sample. Our re-
sult then shows that selecting those questions interactively
yields a significant advantage.

Our results are summarized in Table I.

TABLE I
Lower bounds for local information-constrained learning

and testing. The noninteractive bounds were known in
previous work; the interactive bounds all follow from our
results. The bound (†) was previously established in [? ? ].

Learning Testing

Both SMP Interactive

General k
ε2 · k

‖W‖∗

√
k

ε2 ·
√

k
‖W‖F

√
k

ε2 ·
√

k√
‖W‖∗‖W‖op

`-bit k
ε2 · k

2`

√
k

ε2 ·
√

k
2`

√
k

ε2 ·
√

k
2`

%-LDP k
ε2 · k

%2

√
k

ε2 ·
√

k
%2

√
k

ε2 ·
√

k
%2 (†)

Leaky-Query k
ε2 ·
√

k
√

k
ε2 ·
√

k
√

k
ε2 ·

4√
k

B. Our techniques

Central to our techniques is an average information
bound (Theorem 3) which appears in both learning and
testing bounds and connects them in an intriguing way. It
is folklore that “a good learner must be able to test.” In-
deed, following a standard reduction from learning to test-
ing, we obtain an Assouad-type argument which relates
learning to the average mutual information between the
messages and the unknown parameters. One of our main
results is a bound for this average mutual information,
which in turn leads to a lower bound for learning. Surpris-
ingly, the very same average mutual information bound
for learning also characterizes the difficulty of testing.
Hence, “a good test must learn” at least something about
the underlying distribution, a natural heuristic which we
formalize in our bound for testing.
Our technical contributions are non-trivial: interactivity

may give rise to complicated correlations which are absent
in the noninteractive case and are difficult to handle. In
fact, several prior works [? ? ? ] have tried to handle these
correlations and claimed a subset of the results presented
in Table I. However, we found technical gaps in these
works when handling the correlation.4 We circumvent this
difficulty by a careful application of convexity for KL
divergence to break down the mixture distributions in
Assouad’s method.
We describe the lower bound construction in the next

section, followed by related information quantities. We
present bounds on these quantities in Sections III and IV
for learning and testing, respectively. We conclude with
the complete sample complexity bounds in Section V.

II. Lower bound construction

Our lower bounds rely on a family of perturbed distri-
butions around u, the uniform distribution over [2k]. The
construction [? ] consists of 2k distributions parameterized

4Important exceptions are [? ] and [? ], which both obtain a tight
bound for testing under local privacy constraints.



by Z = {−1,+1}k. Specifically, for z ∈ Z the distribution
pz over [2k] is given by

pz = 1
2k (1 + 4εz1, 1− 4εz1, . . . , 1 + 4εzk, 1− 4εzk), (2)

where ∀i ∈ [k], zi is the ith entry of z. Each such pz is
therefore at total variation distance exactly ε from u. Let
Z be distributed uniformly over {−1,+1}k. Conditioned
on Z, let Xn denote independent samples from pZ , and
Y n denote the messages sent to the server through the
channels. We denote the distribution of Y n obtained from
the generating process above by qY n . We use uY n to
denote the corresponding distribution if Xn are generated
from u. Using Assouad’s lemma and Le Cam’s method,
respectively, we can relate learning to the amount of
information the server can extract about Z using Y n and
testing to the KL divergence between qY n and uY n .

Lemma 1 (Learning: Assouad-type bound). Consider lo-
cal constraintsW and ε ∈ (0, 1]. Let (Π, p̂) be an (n, ε/12)-
estimator usingW and Y n be the corresponding transcript.
Then, we must have

k∑
i=1

I(Zi ∧ Y n) ≥ k

2 . (3)

Lemma 2 (Testing: Le Cam’s method). Consider local
constraints W and ε ∈ (0, 1]. If (Π, T ) solves (2k, ε)-
uniformity testing using W, then we must have

D
(

qY n

‖uY n
)
≥ c, (4)

where c > 0 is an absolute constant.

Our techniques focus on analyzing how the constraints
on the channelsW will limit these quantities in (3) and (4).
The lower bounds we develop associate with each channel
W : [2k]→ Y a k-by-k positive semidefinite matrix H(W ),
which we term the channel information matrix (see (5)).
It captures the “informativeness” of the channelW . ∀i, j ∈
[k], define H(W )i,j as∑
y∈Y

(W (y | 2i−1)−W (y | 2i))(W (y | 2j−1)−W (y | 2j))∑
x∈[2k]W (y | x)

(5)
The spectrum of these matrices H(W ), for W ∈ W, will

play a central role in our results.5 In particular, for a given
family of local constraints W, the following quantities will
be used:

‖W‖op := max
W∈W

‖H(W )‖op, (maximum operator norm)

‖W‖∗ := max
W∈W

‖H(W )‖∗, (maximum nuclear norm)

‖W‖F := max
W∈W

‖H(W )‖F . (maximum Frobenius norm)

5This matrix captures the ability of the channel output to dis-
tinguish between consecutive even and odd inputs, and is thus
particularly tailored to the Paninski perturbed family defined in
Section II. However, the ordering of the elements is arbitrary and
we can associate this matrix with any partition of the domain into
equal parts.

Two key inequalities to interpret our results are

‖W‖2F ≤ ‖W‖op‖W‖∗, ‖W‖op ≤ ‖W‖F ≤ ‖W‖∗, (6)

which follow from Hölder’s inequality and monotonicity of
norms, respectively.

III. Interactive learning under information
constraints

Our first main result, Theorem 3, is an upper bound for
the average mutual information

∑k
i=1 I(Zi ∧ Y n). Upon

combining this bound with Lemma 1, we obtain the lower
bound for distribution learning, stated in Theorem 8.
Interestingly, the same bound will be useful for the

testing problem as well, and is one of the key components
of our lower bound recipes in this paper. The proof of both
theorems can be found in the full version [? ].

Theorem 3 (Average Information Bound). For ε ∈
(0, 1/4], let Y n be the transcript of an interactive protocol
using W, when the input is generated using pZ from (2)
with a uniform Z. Then, for every 1 ≤ t ≤ n,

1
k

k∑
i=1

I
(
Zi ∧ Y t

)
≤ 8tε2

k2 · ‖W‖∗.

Proof Sketch. The main difficulty lies in dealing with the
posterior distribution of the message Yt given the past
Y t−1 under the mixture distributions

pY t

+i := 1
2k−1

∑
z:zi=+1

pY t

z , pY t

−i := 1
2k−1

∑
z:zi=−1

pY t

z ,

Previous works [? ? ? ] mistakenly treated this as uni-
form mixtures of pYt

z , essentially reducing the problem to
the noninteractive setting. In this work, we handle this
correlation using a convexity argument, which reduces the
problem of distinguishing two mixtures to distinguishing
every pair of “neighboring points” in the mixture.
For z ∈ {−1,+1}k, write z⊕i for z with the ith coor-

dinate flipped. Using the convexity of KL divergence we
get

I
(
Zi ∧ Y t

)
≤ 1

2

 1
2k

∑
z∈{−1,+1}k

D
(

pY t

z ‖pY t

z⊕i

).
Now for any z, z′, by the chain rule for KL divergence, we
have

D
(

pY t

z ‖pY t

z′

)
=

t∑
r=1

EpY r−1
z

[
D
(

pYr|Y r−1

z ‖pYr|Y r−1

z′

)]
.

Next, we note that since z⊕i and z only differ at the ith
coordinate,

Pr
pz

[
Yr = y | Y r−1 ] = Pr

pz⊕i

[
Yr = y | Y r−1 ] (7)

+2εzi

k

(
WY r−1

(y | 2i− 1)−WY r−1
(y | 2i)

)
.



Using (7), and the fact that the KL divergence is bounded
by the chi square distance, we have

D
(

pYr|Y r−1

z ‖pYr|Y r−1

z⊕i

)
≤ 16ε2

k
H(WY r−1

)i,i.

It follows that
k∑

i=1
I
(
Zi ∧ Y t

)
≤ 8ε2

k

k∑
i=1

(
t∑

r=1
EpY r−1

z

[
H(WY r−1

)i,i

])

= 8ε2

k

t∑
r=1

(
EpY r−1

z

[∥∥∥H(WY r−1
)
∥∥∥
∗

])
≤ 8tε2

k
· ‖W‖∗,

concluding the proof.

IV. Interactive testing under information
constraints

A. The testing bound
In this section, we bound the KL divergence stated

in (4). We proceed by first applying the chain rule for
the KL divergence to break it into contribution for each
sample,

D
(

qY n

‖uY n
)

=
n−1∑
t=0

EqY t

[
D
(

qYt+1|Y t

‖uYt+1|Y t
)]
. (8)

Remark 4 (Comparison with decoupled chi square
bounds). Before proceeding, we draw contrast with the
decoupled chi square divergence bound technique devel-
oped [? ]. In that work, the first step was to bound KL
divergence with chi square divergence and then handle the
latter using the so-called “Ingster’s method.” While very
powerful for SMP protocols, this technique requires us to
handle the correlation of the vector Y n directly, which is a
formidable task for interactive protocols. (8) allows us to
work with one sample at a time. As we we will see below,
switching KL to chi square divergence relates distances
between distributions to a bilinear form involving H(W )s.
Thus, we can relate distances between distributions to
the spectrum of H(W ), a relation that was exploited to
establish a separation between public- and private-coin
protocols in [? ]. But now we need to handle the posterior
distribution of the message Yt given the past Y t−1, under
the mixture distribution.

We now present the key technical component of our
testing bound in the result below, which relates the per-
round divergence to the spectrum of H(W ) and average
information obtained at each round, which surprisingly,
is the information quantity we bound for distribution
learning in Theorem 3.

Lemma 5 (Per-round divergence bound). For every 0 ≤
t ≤ n− 1, we have

EqY t

[
D
(

qYt+1|Y t

‖uYt+1|Y t
)]
≤

4ε2‖W‖op
∑k

i=1 I(Zi ∧ Y t)
(ln 2)k .

Proof Sketch. Fix t. As chi square divergence upper
bounds KL divergence, we have

EqY t

[
D
(

qYt+1|Y t

‖uYt+1|Y t
)]

≤2k · EqY t

∑
y∈Y

(∑
x W

Y t(y | x)(qXt+1|Y t(x)− 1
2k )
)2

∑
x W

Y t(y | x)

.
Upon noting that, for all i ∈ [k],

qXt+1|Y t(2i− 1) = (1 + 2εE
[
Zi

∣∣ Y t
]
)/(2k),

qXt+1|Y t(2i) = (1− 2εE
[
Zi

∣∣ Y t
]
)/(2k),

we get

EqY t

[
D
(

qYt+1|Y t

‖uYt+1|Y t
)]

≤2ε2

k
EqY t

[
E
[
Z
∣∣ Y t

]T
H(WY t

)E
[
Z
∣∣ Y t

]]
(9)

≤2ε2

k
EqY t

[∥∥∥H(WY t

)
∥∥∥

op

∥∥E[Z ∣∣ Y t
]∥∥2

2

]
. (10)

Note that since Z is uniformly sampled from {−1,+1}k,
we have E

[
‖E[Z]‖22

]
= 0. Intuitively, E

[
‖E[Z | Y t]‖22

]
indicates how well Z can be estimated conditioned on
observing Y t.6 The next lemma shows that it can be
bounded by the mutual information between Y t and each
Zi, which might be of independent interest.

Lemma 6. Consider random variables (Z, Y ) with
Z ∈ {−1, 1}k being a random vector with independent
Rademacher entries. Then, for each i ∈ [k], we get

I(Zi ∧ Y ) ≥ 1
2 ln 2E

[
E[Zi | Y ]2

]
,

Take Y = Y t in Lemma 6 and sum over [k], we get

E
[∥∥E[Z ∣∣ Y t

]∥∥2
2

]
≤ 2 ln 2

k∑
i=1

I
(
Zi ∧ Y t

)
.

Combining with (10), we obtain the result.

Remark 7. The bound in (10) relates the per-sample
divergence to the “uncertainty” about Z given Y t−1. A
key heuristic underlying our analysis, formalized by this
bound, is the thesis that when the information gathered
about Z is small, the “distance” contribued by the next
sample cannot be too much. Since testing requires this
distance to become large, our bound implies that to
test, we must learn something about Z. This connection
between learning and testing bounds is interesting in its
own right.

6In fact, E
[
E
[
Zi

∣∣ Y t
]2
]

equals 1 minus the minimum mean
squared error for estimating Zi from Y t.



Upon combining Lemma 5 with (8), summing over t,
and using the average information bound of Theorem 3,
we get

D
(

qY n

‖uY n
)
≤ 16ε4n2

(ln 2)k2 ‖W‖op‖W‖∗.

For D
(
qY n‖uY n) to be Ω(1), this proves a bound n =

Ω(k/(
√
‖W‖op‖W‖∗ε2)) for interactive testing, formally

stated in Theorem 9.

B. Our general bound

We emphasize that
√
‖W‖op‖W‖∗ is a convenient, easy-

to-apply bound which is optimal for the channel families
considered in this work. However, the power of our tech-
niques goes beyond that specific evaluation. In fact, the
step from (9) to (10) can be weak. For example, for a
class of erasure channel consider in the full version [? ],
we can obtain stronger bounds using (9) directly.

The proof also gives insights to designing a family of
channels that yields the desired separation. ‖W‖F should
be maximally separated from

√
‖W‖∗‖W‖op, and for each

vector E[Z | Y t] we can find a W such that the top
eigenvector of H(W ) aligns with E[Z | Y t]. We state the
family of channels below.

C. The leaky-query channel

We now formalize the leaky-query channel which meet
the objectives above. For u ∈ [0, 1]2k, and Y := [2k] ∪
{1?,0?}, given an input x ∈ [2k], the channel Wu outputs
x with probability η = 1/

√
k; otherwise it outputs 1? and

0? with probability ux and 1 − ux respectively. Let W =
{Wu : u ∈ [0, 1]2k}

Wu(y | x) =


η, if y = x,

(1− η)ux, if y = 1?,

(1− η)(1− ux), if y = 0?.

The required norms satisfy

‖W‖∗ = Θ(
√
k), ‖W‖F = Θ(1), ‖W‖op = Θ(1).

The matching noninteractive scheme only uses the leaked
samples and hence requires k/ε2 samples. The matching
interactive scheme consists of two stages: in the first stage
we obtain a set S of the symbols that are leaked. In the
second stage, we set ux = 1{x∈S}. The idea is that u(S) =
|S|/2k while p(S) is noticeably large when p is far from
u. We perform binary hypothesis test to separate the two
cases. See the full version [? ] for details.

V. Lower bounds for learning and testing

Our results are summarized in Table I; we now describe
and discuss them in more detail below.

A. Learning
Combining Lemma 1 and Theorem 3, we obtain the

following bound on distribution learning under channel
constraint W.

Theorem 8. The sample complexity of (2k, ε)-distribution
learning under local constraints W using interactive proto-
cols is

Ω
(

k2

ε2‖W‖∗

)
.

This bound matches the known lower bound for learning
with noninteractive private-coin protocols in [? ]. By prop-
erly bounding ‖W‖∗ for LDP and communication-limited
setting, we obtain tight bounds for distribution learning
under these settings. See Table I for the bounds and the
full version [? ] for detailed statements and references to
achievability results.

B. Testing
Combining Lemma 2, Theorem 3, and Lemma 5, we

obtain a general lower bound for uniformity testing (and
thus, a fortiori, on the more general problem of identity
testing).

Theorem 9. The sample complexity of (2k, ε)-uniformity
testing under local constraints W using interactive proto-
cols is

Ω

 k

ε2
√
‖W‖op‖W‖∗

.
[? ] previously established an Ω

(
k

ε2‖W‖F

)
lower bound for

noninteractive protocols. By (6), we know the interactive
lower bound is at least as small for any channel family W.
For LDP and communication-limited channels, the bounds
are the same, and can be achieved using noninteractive
protocols. The bounds are listed in Table I. The detailed
analysis and references to achievability results can be
found in [? ].

C. A separation
By relations between matrix norms (6), it can be

seen that the noninteractive public-coin lower bound of
Ω
(

k
ε2‖W‖F

)
from [? ] can be up to a k1/4 factor smaller

than the bound in Theorem 9 for interactive protocols.
Guided by the analysis of the proof of Theorem 9, we show
that this maximal separation is achievable for uniformity
testing. See the full version [? ] for details.

Theorem 10. For the leaky-query channels, the sample
complexity of (2k, ε)-uniformity testing for noninteractive
public-coin protocols and interactive protocols are Θ(k/ε2)
and Θ(k3/4/ε2), respectively.
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