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Abstract
We study high-dimensional sparse estimation under three natural constraints: communication
constraints, local privacy constraints, and linear measurements (compressive sensing). Without
sparsity assumptions, it has been established that interactivity cannot improve the minimax rates
of estimation under these information constraints. The question of whether interactivity helps with
natural inference tasks has been a topic of active research. We settle this question in the affirmative
for the prototypical problems of high-dimensional sparse mean estimation and compressive sensing,
by demonstrating a gap between interactive and noninteractive protocols. We further establish that
the gap increases when we have more structured sparsity: for block sparsity this gap can be as large
as polynomial in the dimensionality. Thus, the more structured the sparsity is, the greater is the
advantage of interaction. Proving the lower bounds requires a careful breaking of a sum of correlated
random variables into independent components using Baranyai’s theorem on decomposition of
hypergraphs, which might be of independent interest.
Keywords: Mean estimation, parameter estimation, communication constraints, compressive sens-
ing, adaptive sensing, local privacy interactivity, adaptivity, distributed inference

1. Introduction

Estimating high-dimensional parameters is a central task arising in various scientific disciplines and
data-driven applications. Modern applications often involve data from distributed or online sources
which restrict the mechanism via which we have access to the data; for instance, limitations may be
placed due to ease of implementation, or due to stringent communication constraints (bandwidth), or
legal constraints (privacy).

Understanding the interplay between these restrictions and the task at hand is the key to designing
better and more efficient algorithms for these tasks. In this paper, we make progress on that front,
considering the fundamental question of sparse parameter estimation.

Sparse mean estimation: Upon observing independent samplesX1, . . . , Xn from a high-dimensional
product distribution over {±1}d with mean vector µ ∈ [−1, 1]d, the goal is to output an esti-
mate µ̂ such that

Pr[‖µ̂− µ‖2 > ε] ≤ 1/10, (1)
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i.e., to achieve good accuracy of estimation under `2 loss. In addition, we are promised that the
unknown parameter µ is s-sparse; namely, it has at most s nonzero coordinates and ‖µ‖0 ≤ s.
However, the observations are subject to an `-bit communication constraint, where 1 ≤ ` ≤ d.
Namely, each Xt must be compressed to an `-bit message Yt, and the estimate µ̂ is then
computed from the n messages Y1, . . . , Yn ∈ {0, 1}` only. Our results also apply to local
differential privacy (LDP) constraints (Dwork et al., 2006; Kasiviswanathan et al., 2011),
where each message is required not to reveal too much about the observation; we relegate the
details to the appendix.

Block-sparse mean estimation: The task is very similar, but the sparsity structure imposed on µ is
now more restrictive. Specifically, we are promised that the (at most) s nonzero coordinates of
the unknown parameter µ are contiguous:

∃1 ≤ i ≤ d− s : ∀j /∈ {i, i+ 1, . . . , i+ s}, µ(j) = 0. (2)

Compressive sensing: There is an unknown s-sparse vector x ∈ Rd, which can only be observed
through noisy linear measurements given by

Yt := Atx+ Zt, 1 ≤ t ≤ n, (3)

where Z1, . . . , Zn are i.i.d. N (0, Im) random variables (noise), and A1, . . . , An ∈ Rm×d are
measurement unitary matrices1 chosen (possibly adaptively) by the protocol. The goal is to
estimate x to `2 loss ε using observations Y1, . . . , Yn ∈ Rm, minimizing the number m · n
of overall measurements. When the matrices At are chosen interactively, this is known as
adaptive sensing (Arias-Castro et al., 2012); specifically, adaptive sensing considers the case
m = 1 and allows each measurement to be of the form 〈at, x〉 + zt for a vector at that is
adaptively chosen dependent on Y1, . . . , Yt−1.

All these tasks have received significant attention in recent years. But the role of interactivity in
communication protocols is not completely understood. Interactivity allows clients to choose the
messaging scheme based on clients’ outputs from previous communication rounds. Formally, for
(sequentially) interactive protocols, the messaging scheme from Xt to Yt is allowed to be chosen
based on previous messages Y1, . . . , Yt−1 while for noninteractive protocols, the mapping from Xt

to Yt is chosen independently without observing others’ messages. Although interactivity brings
flexibility in the protocol design, it often comes with extra cost. For example, interaction may lead
to time delays since each client needs messages from previous clients, which can be prohibitive for
large-scale distributed learning systems such as those used for Federated Learning (Kairouz et al.,
2021). Despite these overheads, it is not fully understood whether interactivity can lead to significant
savings.

We make progress in this direction and show that for the three examples above interactivity does
enable more data-efficient solutions. At a high level, our results can be interpreted as follows:

Interactivity allows one to leverage the structure (sparsity) of the three tasks considered to obtain
provably more data-efficient estimation algorithms (in a minimax sense).

1. More generally, this can be relaxed to requiring only that each row vector has bounded `2 norm.
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This is to be put in contrast to two related tasks. First, it has recently been shown that for
unstructured estimation tasks, allowing for interactivity does not yield any speedup over noninterac-
tive protocols, or, indeed, even over private-coin protocols (where the users do not have access to
any common random seed, but instead are fully independent) (Braverman et al., 2016; Han et al.,
2018; Acharya et al., 2020a). That is, for unstructured estimation, neither public randomness nor
interactivity are useful. Second, for communication (or local privacy) constraints such as the ones
considered in this work, a sequence of papers (Acharya et al., 2020b,c, 2022, 2020e) showed that
goodness-of-fit testing (not estimation) could be more data-efficient when allowing for some coordi-
nation between users; however, this gain in efficiency was enabled by the use of a common random
seed (i.e., public-coin protocols), a weaker setting than interactivity. Moreover, once this common
random seed was available, letting the users interact would not lead to any additional saving: put
differently, under those constraints public randomness helps for testing, but interactivity does not.

We state the formal statements of our results in Section 1.1, and then put them in context and
discuss prior work in Section 1.2. We discuss details about sparse estimation and block-sparse
estimation in Section 2 and Section 3 respectively. We present extensions to adaptive sensing and
estimation under local privacy constraints in the appendix.

1.1. Our results and contributions

Our first result concerns the lower bound of noninteractive protocols for sparse mean estimation,
which provides a lower that establishes a strict separation between the performance of interactive and
noninteractive protocols:

Theorem 1 For any s ≥ 4 log d, any `-bit noninteractive protocol for mean estimation of s-sparse
product distributions over {±1}d must have sample complexity Ω

(
sd
ε2` log ed

s

)
.

Combined with previously known results Braverman et al. (2016); Acharya et al. (2020a) for sparse
mean estimation (detailed in Section 2), this lower bound immediately implies the following:

Corollary 2 For any s ≥ 4 log d, the noninteractive sample complexity of mean estimation of
s-sparse product distributions over {±1}d under `-bit communication constraints is Θ

(
sd
ε2` log ed

s

)
,

while the interactive sample complexity is Θ
(
sd
ε2` + s

ε2 log ed
s

)
.

This shows that interactive protocols outperform the noninteractive ones by a factor up to Ω(log d/s).
We emphasize that prior to our work this gap was only known for ε�

√
`/d, from (Han et al., 2018),

even for the case s = 1. 2

Our second set of results focuses on block sparsity.

Theorem 3 For any s ≥ 1, the noninteractive sample complexity of mean estimation of s-block
sparse product distributions over {±1}d under `-bit communication constraints is Θ

(
sd+d log d

ε2`

)
,

while the interactive sample complexity is Õ
(
s2+d
ε2` + s

ε2

)
and Ω

(
s2+d
ε2` + s

ε2

)
.

2. The result in (Han et al., 2018) holds under the setting where the data comes from Gaussian distributions with identity
covariance matrices, which implies the lower bound for product distributions over {±1}d. However, the restriction
on the lower bound that ε �

√
`/d still holds even if we modify the technique in (Han et al., 2018) to the setting

considered in this paper.
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Only a restricted version of the upper bound in the interactive case was previously known;3 our results,
by complementing them with the required lower bounds (as well as the noninteractive upper bound)
establish that interactivity leads to significant savings under this more structured sparsity constraint.
As an example, for s ≈

√
d, the sample complexity for interactive protocols is Θ̃(d/(ε2`)) whereas

that of noninteractive protocols is Θ̃(d3/2/(ε2`)). Interestingly, establishing the lower bound in the
noninteractive case (Lemma 14) requires circumventing many technical hurdles, and in particular
handling high-order correlations between random variables when trying to bound the expectation of
a multivariate polynomial with the information bound of Lemma 7. To achieve this, we carefully
decompose the dependency (hyper)graph of the resulting monomials into sums of independent terms,
taking recourse to a result of Baranyai (1974) on factorization of hypergraphs (Lemma 17). We
believe this strategy to be of independent interest, with applications to other statistical lower bounds
in distributed settings.

Finally, our third set of results departs from communication constraints, and instead focuses on the
well-studied question of compressive sensing. Specifically, as discussed earlier, we consider the
problem of estimating (under the `2 loss) an s-sparse signal, when the only measurements allowed
are m-dimensional noisy linear measurements (as defined in Eq. (3)).

Theorem 4 For any s ≥ 4 log d, there exists an interactive protocol for compressive sensing
for s-sparse vectors using m-dimensional noisy linear measurements with sample complexity
O
(
sd
ε2m + s

ε2 log ed
s

)
.

Combined with known results Raskutti et al. (2011); Arias-Castro et al. (2012); Wu (2020) on
compressive sensing (detailed in Appendix C), our upper bound readily implies the following:

Corollary 5 For any s ≥ 4 log d, the noninteractive sample complexity of compressive sensing for
s-sparse vectors using m-dimensional random measurements is Θ

(
sd
ε2m log ed

s

)
, while the interactive

sample complexity is Θ
(
sd
ε2m + s

ε2 log ed
s

)
.

Taken together, our three sets of results show that, across various tasks, interactivity does help for
estimation under constraints, as soon as sparsity enters the picture. Further, it is not too hard to show
that the analogues of Corollary 2 and Theorem 3 hold for local privacy constraints as well, replacing
` by square of the privacy parameter, which demonstrates corresponding separations under LDP.

Theorem 6 (Local privacy (LDP)) All the bounds from Corollary 2 and Theorem 3 hold when
considering %-LDP constraints instead of `-bit communication constraints, replacing ` by %2 in the
corresponding expressions for any value of the privacy parameter % ∈ (0, 1].

We provide the necessary definitions and the proof of this theorem in Appendix A.

1.2. Prior and related work

In the recent years, there has been a significant work on both distribution mean estimation and signal
estimation under various constraints. We highlight below the most relevant to our work.

Distributed mean estimation under both communication and privacy constraints has been exten-
sively considered (Shamir, 2014; Erlingsson et al., 2014; Duchi et al., 2018; Han et al., 2018; Barnes

3. That is, the existing upper bound worked under an additional promise on the block sparsity, which was that all biased
coordinates had the same magnitude (Acharya et al., 2021).
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et al., 2020; Braverman et al., 2016; Ye and Barg, 2018; Acharya et al., 2020b, 2019). Most of these
results pertain to noninteractive protocols, namely schemes where the measurements/messaging
schemes are decided simultaneously, not allowing for dependence on the outcomes from prior sym-
bols. There are some notable exceptions. Braverman et al. (2016); Duchi and Rogers (2019) establish
interactive lower bounds for estimating high dimensional distributions under communication and
local privacy constraints. Their strong results establish that the minimax rates of interactive and
noninteractive schemes are the same. However, these minimax lower bounds are tight only for
dense distributions. Braverman et al. (2016) considered sparse high-dimensional mean estimation
under communication and establish lower bounds for interactive schemes and upper bounds for
noninteractive schemes; still, their result leave open the existence of a gap between the two for sparse
mean estimation. Similarly, Duchi and Rogers (2019) consider sparse mean estimation under local
privacy: their work also leaves unanswered the existence of a gap between the interactive lower
bounds and their noninteractive upper bounds. Shamir (2014) consider 1-sparse mean estimation for
d-dimensional product distributions, and their bounds also have a similar gap.

Block-sparse signals are common in several applications such as DNA microarrays, sensor
networks and MIMO communication systems (Elhamifar and Vidal, 2013; Stojnic et al., 2009;
Barbotin et al., 2012; Baron et al., 2009; Gogineni and Nehorai, 2011; Shoukry and Tabuada, 2015;
Vorobyov et al., 2004; Baraniuk et al., 2010). Estimating distributions with block-sparse means
was considered in Acharya et al. (2021). They study the constraint where one has access to a
few coordinates of each sample and showed that for this constraint there is a separation between
interactive and noninteractive protocols. This is in the context of first-order optimization, where
they used a reduction to this mean estimation problem in order to show that adaptive processing of
gradients can lead to faster convergence rates for distributed optimization.

Compressive sensing has been immensely popular since the pioneering works of Candès et al.
(2006); Donoho (2006). Adaptive sensing, i.e., choosing the measurements adaptively, was studied
in Arias-Castro et al. (2012) for the case m = 1. Their results leave open a logarithmic (in
the dimension) gap between upper and lower bounds on the number of measurements (sample
complexity). For a slightly different problem of exact support recovery, Malloy and Nowak (2014)
shows that adaptive sensing can help reduce the minimum required signal level in the support.
However, it does not show a separation in terms of sample complexity.

The question of whether interactivity helps under local privacy constraints has been extensively
studied, starting with the influential work of Kasiviswanathan et al. (2008), who designed a problem
for which there show a separation between interactive and noninteractive schemes. Daniely and
Feldman (2019) designed a class of Boolean functions for which learning under interactive LDP
protocols is exponentially more expensive than noninteractive schemes. Dagan and Feldman (2020)
showed that exponentially more samples are needed to learn linear models with convex loss without
interaction than that with, under both privacy and communication constraints. Joseph et al. (2019)
went a step further and showed that allowing for fully interactive schemes can provide an advantage
over sequentially interactive schemes. Ullman (2018) proves a lower bound for locally private
hypothesis selection for noninteractive protocols, which can be viewed as a 1-sparse mean estimation
problem. The role of interactivity for the problem of locally private hypothesis selection was
discussed in Gopi et al. (2020). But the result doesn’t imply strict separation between interactive and
non-interactive protocols in the LDP setting.

Another line of work (Agarwal et al., 2017; Jin et al., 2019; Thananjeyan et al., 2021) shows
that interactivity brings advantage for the task of best arm identification in multi-armed bandits. The
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feedback model in multi-armed bandit can be simulated by a 1-bit communication protocol, hence
our result would imply the same separation.

1.3. Notation and Preliminaries.

We use log and ln for logarithm in base 2 and natural logarithm respectively. Throughout the paper,
we use standard asymptotic notation O(·), Ω(·), and Θ(·), with asymptotics to be taken as d, s� 1
and small ε. Our lower bounds will routinely involve both Kullback–Leibler (KL) and chi-squared
(χ2) divergences between probability distributions, defined as

KL(p || q) :=
∑
x∈X

p(x) ln p(x)
q(x) , χ2(p || q) :=

∑
x∈X

(p(x)− q(x))2

q(x)

for any two distributions p,q over a (discrete) domain X , with the convention that 0 ln 0 = 0. These
divergences satisfy KL(p || q) ≤ χ2(p || q). We will also require the notion of (Shannon) entropy
H(X) = −

∑
x∈X pX(x) log pX(x) of a random variable X with distribution pX , as well as that

of the mutual information I(X ∧ Y ) between two random variables X,Y , defined as

I(X ∧ Y ) := KL(pXY || pX ⊗ pY ),

where pXY , pX ,pY are the joint distribution of (X,Y ) and the marginal distributions of X and Y ,
respectively, and p⊗q is the product distribution with marginals p,q. We will also use the conditional
mutual information I(X ∧ Y | Z), defined as I(X ∧ Y | Z) := EZ

[
KL
(
pXY |Z || pX|Z ⊗ pY |Z

)]
(where pXY |Z , pX|Z ,pY |Z are now the analogous distributions, conditioned on Z). For more on
these notions and their properties, we refer the reader to the textbook by Cover and Thomas (2006).

Throughout the paper, we often use the term channel to refer to the probabilistic mapping from
the user’s observation to messages. Formally, the tth user selects a channel Wt : X → Y , where, for
all input x ∈ X and possible output y ∈ Y ,

Wt(y | x) = Pr[Yt = y | Xt = x].

For instance, by restricting the output space Y to satisfy |Y| ≤ 2`, the formulation captures `-bit
communication constraints. In noninteractive protocols, users must select their channels indepen-
dently without observing each other’s message. In contrast, for (sequentially) interactive4 protocols,
the tth user can select their channel based on previous users’ messages Y1, Y2, . . . , Yt−1. For both
interactive and non-interactive protocols considered in this paper, we assume all users and the server
have access to a public random seed U , which is independent of the samples.5

Our proof will rely on the following information bound adapted from Acharya et al. (2020d).

Lemma 7 Consider a random variable X taking values in X . Let Φ: X → Rd be such that the
random vector Φ(X) has independent coordinates and is σ2-subgaussian. Let W : X → Y be an
`-bit channel. Then, we have∑

y∈Y

‖E[Φ(X)W (y | X)]‖22
E[W (y | X)] ≤ 2(ln 2)σ2`.

4. The lower bounds in the paper also holds for fully interactive protocols (the so-called blackboard model) while the
provided upper bounds only require sequential interactivity. We focus on sequentially interactive protocols in this
paper for clarity of presentation.

5. For a formal definition, see Acharya et al. (2022).
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2. Sparse mean estimation under communication constraints

We first establish Theorem 1, thus establishing the claimed gap between interactive and noninteractive
communication-constrained sparse mean estimation.

Of the four ingredients required to prove Theorem 1 (two upper bounds, and two lower bounds),
three follow from the literature; we restate them below for completeness. The following statements
establish the sample complexity for interactive sparse mean estimation.

Lemma 8 ((Acharya et al., 2020a, Proposition 2)) For any s ≥ 1, the interactive sample com-
plexity of mean estimation of s-sparse product distributions over {±1}d under `-bit communication
constraints is O

(
sd
ε2` + s

ε2 log ed
s

)
.

Lemma 9 (Braverman et al. (2016); Acharya et al. (2020a)) For any s ≥ 1, the interactive sam-
ple complexity of mean estimation of s-sparse product distributions over {±1}d under `-bit commu-
nication constraints is Ω

(
sd
ε2` + s

ε2 log ed
s

)
.

The algorithm achieving Lemma 8 is based on successive elimination and requires interaction
between clients. Turning to noninteractive estimation, similar bounds can be obtained, but with an
extra logarithmic factor.

Lemma 10 For any s ≥ 1, the noninteractive sample complexity of mean estimation of s-sparse
product distributions over {±1}d under `-bit communication constraints is O

(
sd log(ed/s)

ε2`

)
.

Proof The key observation is that, by using the “simulate-and-infer” idea of Acharya et al. (2020c)
(specifically used in the context of product distributions over {±1}d in Acharya et al. (2020d)),
it suffices to show an O

(
s log(ed/s)

ε2

)
upper bound in the unconstrained setting (where all the ob-

servations are fully available), as any such algorithm can be simulated by a private-coin protocol
under `-bit communication constraints at the cost of a factor d/` in the sample complexity. The idea
is to partition d coordinates into dd/`e blocks of size at most `. Then dd/`e users can send their
observation within each block using ` bits. By independence of the coordinates, we get a valid sample
from the source distribution by combining the messages. With samples from the original distribution,
the O

(
s log(ed/s)

ε2

)
sample complexity upper bound, in turn, is well-known, and is attained by e.g.,

the maximum likelihood estimator. See, for instance, Wu (2020, Section 20.2).

The final component needed to show the additional logarithmic factor is necessary is the nonin-
teractive sample complexity lower bound. As discussed earlier, the required lower bound is shown
in Han et al. (2018, Theorem 3), but under the restriction that n ≥ sd2 log(ed/s)

`2 , making the lower
bound vacuous unless ε �

√
`/d. We provide a proof of this lower bound, which removes this

restriction on n. The crux in removing this regularity condition is to handle the dependent terms
in the obtained information bound (Eq. (5)) directly through careful conditioning; while previous
techniques consider linearization of the information vector, which results in loose bounds.

Lemma 11 For any s ≥ 4 log d, the noninteractive sample complexity of mean estimation of
s-sparse product distributions over {±1}d under `-bit communication constraints is Ω

(
sd log(ed/s)

ε2`

)
.
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Proof Consider the following set of s-sparse product distributions, which we will use as the “hard
instances” for our lower bound. Setting γ := ε√

s
, for any z ∈ {−1, 0,+1}d we define θz ∈ Rd by

θz,i = γz(i), i ∈ [d]. Let Z be a random variable on {−1, 0,+1}d satisfying

Pr[Z(i) = +1] = s

4d, Pr[Z(i) = −1] = s

4d, Pr[Z(i) = 0] = 1− s

2d.

Note that θZ is then (s/2)-sparse in expectation, and further E[Z(i)] = 0, σ2 := E
[
Z(i)2] = s

2d
for all i. By a Chernoff bound, we also get that θZ is s-sparse with high probability: if s ≥ 4 log d,
Pr[‖θZ‖0 ≤ s] ≥ 1− s

4d . This will be enough for our purposes, and allows us to consider the random
prior of hard instances above (product distributions over {−1, 0,+1}d, with mean θZ for random Z
with independent coordinates) instead of enforcing s-sparsity with probability one (details follow).

Consider the following generative process. First pick Z at random from {−1, 0,+1}d as above.
Then, each of the n users observes one sample Xt from the product distribution pZ with mean vector
θZ and sends its samples through a channel Wt : {±1}d → {0, 1}` to compress it to a message Yt.

The next claim states that any sufficiently accurate estimation protocol must provide enough
information about each Z(i) from the tuple of messages Y n.

Claim 1 (Assouad-type Bound) For any protocol that estimates s-sparse product distributions to
`2 accuracy ε/4, we must have

∑d
i=1 I(Z(i) ∧ Y n) = Ω

(
s log ed

s

)
. In particular, by independence

of the coordinates of Z, this implies I(Z ∧ Y n) = Ω
(
s log ed

s

)
.

Proof [ Proof of Claim 1] Fix any such protocol, and consider the corresponding estimator θ̂ = θ̂(Y n).
From there, define an estimator Ẑ for Z by choosing

Ẑ = arg min
z∈{−1,0,+1}d

‖θz − θ̂‖2 .

In particular, ‖θẐ − θZ‖2 ≤ 2‖θ̂ − θZ‖2 with probability 1, and

E
[
‖θẐ − θZ‖

2
2

]
≤ E

[
‖θẐ − θZ‖

2
21{‖θZ‖0≤s}

]
+ s

4d ·max
z,z′
‖θz − θz′‖22 ≤ 2· ε

2

16 + s

4d ·
ε2

s
·d = 3ε2

8 ,

where we used the fact that θ̂ has the guarantees of a good estimator (to `2 loss ε/4) whenever θZ is
s-sparse, our bound on the probability that Z is not s-sparse, and the fact that the maximum distance
between any two of the mean vectors θz, θz′ from our construction is ε/

√
d. Since ‖θẐ − θZ‖

2
2 =

ε2

s

∑d
i=1 1{Z(i)6=Ẑ(i)}, this implies

d∑
i=1

Pr
[
Z(i) 6= Ẑ(i)

]
≤ 3s

8 .

By the data processing inequality, considering the Markov chain Z(i)− Y n − Ẑ(i), we have

d∑
i=1

I
(
Z(i) ∧ Ẑ(i)

)
≤

d∑
i=1

I(Z(i) ∧ Y n) .

Thus, it is enough to show that
∑d
i=1 I

(
Z(i) ∧ Ẑ(i)

)
= Ω

(
s log ed

s

)
. Towards that, we have

by Fano’s inequality that for all i I
(
Z(i) ∧ Ẑ(i)

)
= H(Z(i)) − H(Z(i) | Ẑ(i)) ≥ h

(
s
2d
)
−

8
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h(Pr
[
Z(i) 6= Ẑ(i)

]
), where h(x) = −x log x− (1− x) log(1− x) is the binary entropy. It follows

that
d∑
i=1

I
(
Z(i) ∧ Ẑ(i)

)
≥ d

(
h

(
s

2d

)
− 1
d

d∑
i=1

h
(
Pr
[
Z(i) 6= Ẑ(i)

]))

≥ d
((

s

2d

)
− h

(
1
d

d∑
i=1

Pr
[
Z(i) 6= Ẑ(i)

]))

≥ d
(
h

(
s

2d

)
− h

(3s
8d

))
≥ 3

100s log es
d
,

where the second inequality by concavity and monotonicity (on [0, 1/2]) of h, respectively, and the
last by observing that

inf
x∈[0,1]

h(x/2)− h(3x/8)
x log(e/x) > 0.03 .

This concludes the proof.

The next (key) claim below states that, under communication constraints, the mutual information
scales as the total number of bits communicated from the users.

Claim 2 For any noninteractive protocol with ` bits from each of the n users, we must have
I(Z ∧ Y n) = O

(
nε2`
d

)
.

Proof First, we note that while the noninteractive protocol might allow for public randomness U
shared between users (public-coin protocols), it is enough to establish the bound for private-coin
protocols. This is because we can condition on a particular realization u of the public randomness
U : by obtaining a uniform upper bound on I(Z ∧ Y n | U = u) for all u, the same applies to the
conditional mutual information I(Z ∧ Y n | U) = I(Z ∧ Y n, U) which is the quantity of interest.

With that in mind, note that for private-coin protocols the messages Y1, Y2, . . . , Yn are mutually
independent conditioned on Z. This implies that

I(Z ∧ Y n) ≤
n∑
t=1

I(Z ∧ Yt) ,

and thus it is enough to bound each term of the sum as I(Z ∧ Yt) = O
(
ε2`/d

)
. To do so, fix any

1 ≤ t ≤ n, and denote u the uniform distribution over {±1}d. For the channelWt : {±1}d → {0, 1}`
used by user t, let Wp

t be the distribution on Y := {0, 1}` induced by an input X drawn from p:

Wp
t (y) = EX∼p[Wt(y | X)], y ∈ Y . (4)

We can rewrite and bound the mutual information as

I(Z ∧ Yt) = EZ
[
KL
(
WpZ
t ||Wu

t

)]
≤ EZ

[
χ2(WpZ

t ||Wu
t

)]
.

We bound the mutual information for each user t and drop the subscript t from Wt when it is clear
from context. Expanding out the chi-square divergence, we obtain the following bound on the mutual
information:

I(Z ∧ Yt)≤
∑
y∈Y

(
σ2γ2 ∑

i∈[d]

Eu[W (y | X)X(i)]2

Eu[W (y | X)] +
d∑
r=2

σ2rγ2r∑
B⊆[d]
|B|=r

Eu[W (y | X)
∏
i∈BX(i)]2

Eu[W (y | X)]
)
, (5)

9
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where γ = ε/
√
s and σ2 = s

2d .
We defer the proof of Eq. (5) to Appendix D, and proceed to bound the right-hand-side. For the

first term, since X is 1-subgaussian, we can invoke Lemma 7 to get

σ2 ∑
y∈Y

γ2 ∑
i∈[d]

Eu[W (y | X)X(i)]2

Eu[W (y | X)] = s

2dγ
2 ∑
y∈Y

‖Eu[XW (y | X)]‖22
Eu[W (y | X)] ≤ (ln 2)ε

2`

d
. (6)

Next we handle the second-order terms, i.e.,

σ4γ4 ∑
y∈Y

d∑
i=1

∑
j 6=i

Eu[W (y | X)X(i)X(j)]2

Eu[W (y | X)] ,

For all i ∈ [d], we have

∑
j 6=i

Eu[W (y | X)X(i)X(j)]2

Eu[W (y | X)] ≤
∑
j 6=i

1
2Eu|X(i)=1[W (y | X)X(j)]2 + 1

2Eu|X(i)=−1[W (y | X)X(j)]2
1
2Eu|X(i)=1[W (y | X)] + 1

2Eu|X(i)=−1[W (y | X)]

≤
∑
j 6=i

(
Eu|X(i)=1[W (y | X)X(j)]2

Eu|X(i)=1[W (y | X)] +
Eu|X(i)=−1[W (y | X)X(j)]2

Eu|X(i)=−1[W (y | X)]

)
,

and so

σ4γ4 ∑
y∈Y

d∑
i=1

∑
j 6=i

Eu[W (y | X)X(i)X(j)]2

Eu[W (y | X)]

≤ σ4γ4 ∑
y∈Y

d∑
i=1

∑
j 6=i

(
Eu|X(i)=1[W (y | X)X(j)]2

Eu|X(i)=1[W (y | X)] +
Eu|X(i)=−1[W (y | X)X(j)]2

Eu|X(i)=−1[W (y | X)]

)

= σ4γ4
d∑
i=1

∑
y∈Y

(∑
j 6=i Eu|X(i)=1[W (y | X)X(j)]2

Eu|X(i)=1[W (y | X)] +
∑
j 6=i Eu|X(i)=−1[W (y | X)X(j)]2

Eu|X(i)=−1[W (y | X)]

)

= σ4γ4
d∑
i=1

∑
y∈Y

(
‖Eu|X(i)=1[W (y | X)X−i]‖22

Eu|X(i)=1[W (y | X)] +
‖Eu|X(i)=−1[W (y | X)X−i]‖22

Eu|X(i)=1[W (y | X)]

)

≤ 2(ln 2)σ4γ4 · (2d`) = (ln 2)`ε
2

d
· ε2. (7)

Similarly, we can bound the jth-order terms as

σ2rγ2r ∑
y∈Y

∑
B⊆[d]
|B|=r

Eu[W (y | X)
∏
i∈BX(i)]2

Eu[W (y | X)] ≤ `ε2

d
· (ln 2)(ε2)j−1. (8)

We defer the details to Appendix D. And thus, summing over all terms, we get

I(Z ∧ Yt) ≤
(ln 2)ε2`

d

∞∑
j=1

ε2(j−1) ≤ 2(ln 2)`ε2

d
.

Summing over 1 ≤ t ≤ n, we get the desired result.

Putting together Claims 1 and 2 then completes the proof of Lemma 11.

10
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Remark 12 As a byproduct, the proof of Lemma 11 above (for the noninteractive case) has an
interesting corollary: the lower bound framework of Acharya et al. (2020a) for the interactive case,
which proceeds by bounding a quantity termed average discrepancy, could not possibly go through
in the sparse case with

∑d
i=1 I(Z(i) ∧ Y n) instead of average discrepancy. Indeed, if the bound

of Acharya et al. (2020a) applied to
∑d
i=1 I(Z(i) ∧ Y n) as well, we would get the same lower

bound above for interactive protocols, which in turn will contradict the upper bound of Lemma 8 for
interactive protocols.

Combining Lemmas 10, 8, 9, and 11 establishes Theorem 1. Finally, we mention that while our
noninteractive lower bound (Lemma 11) requires s = Ω(log d), we are able to establish separately
the case s = 1 via a simple, different proof (see Theorem 24). We provide this result in Appendix B,
as we believe it to be of independent interest and will also be requiring it in the proof of Lemma 14.

3. Block-sparse mean estimation under communication constraints

In this section, we establish Theorem 3, our result for s-block-sparse mean estimation under `-bit
communication constraints. In order to establish the result, we need an upper and a lower bound on
the sample complexity of both noninteractive and interactive protocols.

Of these four bounds, only a restricted version of the interactive upper bound was known,
which assumed that all coordinates of the block-sparse mean had the same magnitude and that
` = 1 (Acharya et al., 2021, Theorem 13). While the algorithm can easily be made to extend to
` > 1, it crucially relies on the former assumption on the structure of the block-sparse mean, and
thus does not translate to our setting.

We proceed to prove separately the four bounds, starting with the noninteractive upper bound.

Lemma 13 For any s ≥ 1, the noninteractive sample complexity of mean estimation of s-block
sparse product distributions over {±1}d under `-bit communication constraints is O

(
sd+d log d

ε2`

)
.

Proof As in the proof of Theorem 10, by using the “simulate-and-infer” idea of Acharya et al.
(2020c) it suffices to show an O

(
s+log d
ε2

)
upper bound in the unconstrained setting (where all

the observations are fully available). This O
(
s+log d
ε2

)
sample complexity upper bound then can

be obtained by the following simple estimator: partition the d coordinates in dd/se consecutive
blocks of (at most) s coordinates, and, using the same samples, separately estimate the dd/se mean
subvectors to `2 loss ε2/3, with probability of success δ := s/(10d). This can be done with

O

(
s+ log(1/δ)

ε2

)
= O

(
s+ log d

s

ε2

)
= O

(
s+ log d

ε2

)

samples, by (sub) Gaussian concentration of measure. By a union bound, all of the dd/se estimates
are simultaneously accurate, with probability at least 9/10. Since the “true” block overlaps at most 2
consecutive blocks of the dd/se considered, it then suffices to output the vector µ̂ consisting of only
the two estimated subvectors with largest magnitude (and all other coordinates set to zero).

Next, we establish a matching lower bound for noninteractive protocols.

11
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Lemma 14 For any s ≥ 1, the noninteractive sample complexity of mean estimation of s-block
sparse product distributions over {±1}d under `-bit communication constraints is Ω

(
sd+d log d

ε2`

)
.

Proof The Ω
(
d log d
ε2`

)
term follows from the 1-sparse estimation lower bound established in Theo-

rem 24, since any 1-sparse product distribution is s-block-sparse for every s. We thus focus on the
main term, and establish the Ω

(
sd
ε2`

)
lower bound.

To do so, consider the following set of s-block sparse distributions. Partition [d] into b := d/s
consecutive nonoverlapping blocks, B1, B2, . . . , Bb, each of size at most s. For all z ∈ {±1}d and
j ∈ [b], define pz,j as a product distribution over {±1}d with mean θz,j given by

θz,j(i) =


ε√
s
z(i), if i ∈ Bj ,

0, otherwise.
(9)

Consider the following generative process. First independently pick Z uniformly at random from
{±1}d and J uniformly from [b]. Then, each of the n users observes one sample Xt from the product
distribution pZ,J with mean vector θZ,J and sends its samples through a channel Wt : {±1}d →
{0, 1}` to compress it to a message Yt.

The next result states that any sufficiently accurate estimation protocol must provide enough
information about each Z(i) from the tuple of messages Y n, even if J is known.

Lemma 15 (Assouad-type Bound) For any protocol that estimates s-block-sparse product distri-
butions to `2 accuracy ε, we must have

∑d
i=1 I(Z(i) ∧ Y n | J) = Ω(s).

Proof Let Ẑ be an estimator of Z based on Y n. By the data processing inequality, it is be enough to
prove

∑d
i=1 I

(
Z(i) ∧ Ẑ(i) | J

)
= Ω(s). By definition,

d∑
i=1

I
(
Z(i) ∧ Ẑ(i) | J

)
= s

d

b∑
j=1

d∑
i=1

I
(
Z(i) ∧ Ẑ(i) | J = j

)
= s

d

b∑
j=1

∑
i∈Bj

I
(
Z(i) ∧ Ẑ(i) | J = j

)
.

(10)

Now,
b∑

j=1

∑
i∈Bj

I
(
Z(i) ∧ Ẑ(i) | J = j

)
=

b∑
j=1

∑
i∈Bj

(
H(Z(i) | J = j)−H

(
Z(i) | Ẑ(i), J = j

))

≥
b∑

j=1

∑
i∈Bj

(
H(Z(i) | J = j)− h

(
Pr
[
Ẑ(i) 6= Z(i) | J = j

]))

= d−
b∑

j=1

∑
i∈Bj

h
(
Pr
[
Ẑ(i) 6= Z(i) | J = j

])

≥ d− d · h

1
d

b∑
j=1

∑
i∈Bj

Pr
[
Ẑ(i) 6= Z(i) | J = j

] , (11)

where h : [0, 1]→ R is the binary entropy function. By construction, for any valid protocol, we must
have

ε2

10 ≥ E
[
d∑
i=1

ε2

s
1{Ẑ(i)6=Z(i)}

]
= ε2

s

d∑
i=1

Pr
[
Ẑ(i) 6= Z(i)

]

12
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= ε2

s

s

d

b∑
j=1

d∑
i=1

Pr
[
Ẑ(i) 6= Z(i) | J = j

]

≥ ε2

d

b∑
j=1

∑
i∈Bj

Pr
[
Ẑ(i) 6= Z(i) | J = j

]
,

which implies
1
d

b∑
j=1

∑
i∈Bj

Pr
[
Ẑ(i) 6= Z(i) | J = j

]
≤ 1

10 .

Combining this with Eqs. (10) and (11) completes the proof of the lemma.

Using independence of Z(i)’s, by additivity of mutual information this claim then implies that

I(Z ∧ Y n | J) ≥
d∑
i=1

I(Z(i) ∧ Y n | J) = Ω(s). (12)

Having obtained a lower bound on the mutual information, we now provide an upper bound for it;
combining the two will yield our lower bound for sample complexity.

Lemma 16 For any noninteractive protocol using `-bit communication constraints, we must have

I(Z ∧ Y n | J) = O

(
nε2`

d

)
.

Proof Note that, since I(Z ∧ Y n | J) = 1
b

∑
j∈[b] I(Z ∧ Y n | J = j), it is enough to prove that∑

j∈[b] I(Z ∧ Y n | J = j) = O
(
nε2`
s

)
. Similar to Eq. (5), the first step of the proof is to bound the

mutual information at each time step. Let γ := ε/
√
s, at each user t, the following inequality holds.∑

j∈[b]
I(Z ∧ Yt | J = j)

≤
∑
j∈[b]

∑
y∈Y

(
γ2∑
i∈Bj

EX [W (y | X)X(i)]2

EX [W (y | X)] +
s∑
r=2

γ2r ∑
B⊆Bj

|B|=r

EX [W (y | X)
∏
i∈BX(i)]2

EX [W (y | X)]
)
. (13)

We defer the proof of Eq. (13) to Appendix D, and proceed to bound the RHS. For all r ∈ [s], let

ζr := γ2r ∑
j∈[b]

∑
y∈Y

∑
B⊆Bj ,|B|=r

EX [W (y | X)
∏
i∈BX(i)]2

EX [W (y | X)] ,

whereby we can rewrite the earlier bound as∑
j∈[b]

I(Z ∧ Yt | J = j) ≤
∑
r∈[s]

ζr. (14)

We will bound each ζr separately. To bound ζ1, since X is 1-subgaussian, from Lemma 7 we have

∑
j∈[b]

∑
y∈Y

ε2

s

∑
i∈Bj

EX [W (y | X)X(i)]2

EX [W (y | X)] = ε2

s

∑
y∈Y

‖EX [XW (y | X)]‖22
EX [W (y | X)] ≤ 2(ln 2)ε

2`

s
,

13
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Next we bound

ζ2 = γ4 ∑
y∈Y

∑
j∈[b]

∑
i<i′∈Bj

EX [W (y | X)X(i)X(i′)]2

EX [W (y | X)] .

Note that each term in the summation above is a product of two entries of X , which are not
independent: hence, we cannot use Lemma 7 directly. To resolve this, we use the following lemma,
which is a consequence of Baranyai’s Theorem (Baranyai, 1974).

Lemma 17 Let [s] = {1, 2, . . . , s}. {B ⊂ [s] : |B| = r}, the set of all size-r subsets of [s], can
be partitioned into m ≤ 2

(s−1
r−1
)

setsM1,M2, . . . ,Mm such that all subsets within eachMi are
disjoint.

Without loss of generality, assume that, for all j ∈ [b], Bj = {(j − 1)s + 1, . . . , js}. Using
Lemma 17 with r = 2, we can rewrite ζ2 as

ζ2 = γ4 ∑
y∈Y

∑
j∈[b]

∑
i<i′∈Bj

EX [W (y | X)X(i)X(i′)]2

EX [W (y | X)]

= γ4 ∑
y∈Y

∑
j∈[b]

∑
k∈[s−1]

∑
(i,i′)∈Mk

EX [W (y | X)X((j − 1)s+ i)X((j − 1)s+ i′)]2

EX [W (y | X)]

= γ4 ∑
k∈[s−1]

∑
y∈Y

∑
j∈[b]

∑
(i,i′)∈Mk

EX [W (y | X)X((j − 1)s+ i)X((j − 1)s+ i′)]2

EX [W (y | X)] .

Note that in the summation above, for each subset Mk, the pairwise products have disjoint en-
tries and hence independent. Moreover, X(i)X(i′) is 1-subgaussian as well since it is supported
on {±1} with mean zero. For k ∈ [s − 1], let Φk(X) be the vector whose coordinates are
X((j − 1)s+ i)X((j − 1)s+ i′) for j ∈ [b] and (i, i′) ∈ Mk. Then we have Φk(X) have in-
dependent coordinates and is 1-subgaussian. Proceeding from above, applying Lemma 7, the
equation can be bounded by

ζ2 = γ4 ∑
k∈[s−1]

∑
y∈Y

∑
j∈[b]

∑
(i,i′)∈Mk

EX [W (y | X)X((j − 1)s+ i)X((j − 1)s+ i′)]2

EX [W (y | X)]

= γ4 ∑
k∈[s−1]

∑
y∈Y

‖EX [W (y | X)Φk(X)]‖22
EX [W (y | X)]

≤ 2(ln 2)ε
2`

s
· ε2.

By similar grouping techniques on the higher order terms, using Lemma 17, we can prove that for
all r ≥ 3 ζr ≤ 2(ln 2) ε2`s · (ε

2)r−1. Combining these and Eq. (14), we get

∑
j∈[b]

I(Z ∧ Yt | J = j) ≤ 2(ln 2)ε
2`

s

∑
r∈[s]

(ε2)r−1 ≤ 4(ln 2)ε
2`

s
.

14
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The claim follows from the observation above since, conditioned on Z, Y1, Y2, . . . , Yn are
independent,6 we have

1
b

∑
j∈[b]

I(Z ∧ Y n | J = j) ≤ 1
b

n∑
t=1

∑
j∈[b]

I(Z ∧ Yt | J = j) ≤ 1
b
· 4(ln 2)nε

2`

s
= 4(ln 2)nε

2`

d
,

showing the result.

Combining the two claims concludes the proof, as this implies that one must have nε2`
d = Ω(s).

We now turn to the upper bound for interactive protocols. The algorithm has a two-stage procedure.
In the first stage, users first detects the “active" block with size Θ(s). Then in the second stage, the
users will focus on learning coordinates within the detected block, which needs less samples.

Lemma 18 For any s ≥ 1, the interactive sample complexity of mean estimation of s-block sparse
product distributions over {±1}d under `-bit communication constraints is

O

(
s2 + d log(d/s) log(s/ε)

ε2`
+ s log(d/s) log(s/ε)

ε2

)
.

Proof The algorithm works in two stages: detection and estimation. We start by partitioning the d
coordinates into T := dd/se consecutive blocks of (at most) s coordinates, B1, . . . , BT . Let µBj be
the mean vector restricted on block Bj . Since the actual support of the mean vector overlaps at most
2 such blocks, if ‖µ‖22 > ε2 there exists some j ∈ [T ] such that ‖µBj‖

2
2 > ε2/2. On the other hand,

if ‖µ‖22 ≤ ε2, then no such j may exist, but our task in that case will be simpler.
The algorithm proceeds in the following two stages:

1. Detection: Identify, with probability at least 19/20, a block Bj such that ‖µBj‖
2
2 > ε2/2, if

there exists one, using O
(
d log(d/s) log(s/ε)

`ε2 + s log(d/s) log(s/ε)
ε2

)
samples. This detection step is

the most involved, and will constitute most of the proof below.

2. Estimation: If no such block was identified, output the zero vector (which is a good estimate);
otherwise, consider the union of the 3 blocks Bj−1 ∪ Bj ∪ Bj+1, which has at most 3s
coordinates and contains the support of the unknown s-sparse vector µ. Use the noninteractive
estimation algorithm (with “d = 3s”) to learn, with probability 19/20, the corresponding
mean with O

(
s2

min(s,`)ε2
)

= O
(
s2

ε2` + s
ε2

)
new samples.

The overall algorithm has the claimed sample complexity and, by a union bound, is successful overall
with probability 9/10. Details for the first stage follow.

Our algorithm will use public randomness as follows. All users jointly draw a Rademacher vector
ξ = (ξ(i))i∈[d] uniformly at random. Let ∆ := 5

√
s log(s/ε). Any given user computes the T bits

M(1), . . . ,M(T ) based on ξ as follows. For every j ∈ [T ], upon observing X (and knowing ξ) each
user computes M(j) based on X̄j :=

∑
i∈Bj

X(i)ξ(i) using a stochastic rounding algorithm:

M(j) =

+1, with probability
∆+Clip∆(X̄j)

2∆ ,

−1, with probability
∆−Clip∆(X̄j)

2∆ .

6. We can here ignore public randomness, as we can bound the quantity under each fixed realization of the public coins.
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where Clip∆(x) := max{min{x,∆},−∆} denotes the clipping function on the interval [−∆,∆].
It can be seen that (M(1), . . . ,M(T )) follows a product distribution over {±1}T . Next we analyze
the mean on each coordinate, conditioned on ξ.

E[M(j) | ξ] = 2 · E

∆ + Clip∆

(
X̄j

)
2∆

∣∣∣∣∣∣ ξ
− 1 =

E
[
Clip∆

(
X̄j

) ∣∣∣ ξ]
∆ . (15)

Let µ̄(Bj , ξ) := E
[
X̄j | ξ

]
=
∑
i∈Bj

ξ(i)µ(i). Note that when a block j does not intersect with the
support of µ, then µ̄(Bj , ξ) = 0. Further, since each X(i) in Bj is then symmetric, the clipping does
not change the mean: thus, for any j ∈ [T ] such that Bj does not intersect the support of µ,

E[M(j) | ξ] = 0.

That is, we then have Pr[M(j) = 1 | ξ] = 1/2 regardless of the realization of the shared random
variable ξ.

Suppose now that Bj does intersect the support of the mean vector µ, and specifically that
‖µBj‖

2
2 > ε2/2. We then show the following:

Claim 3 If ‖µBj‖
2
2 > ε2/2, then with probability at least 1/8 over the choice of ξ, we have

|E[M(j) | ξ]| ≥ ε

40
√
s log(s/ε)

.

Proof We first show that before performing stochastic rounding, with probability at least 1/4 over
the randomness of ξ it is the case that

|µ̄(Bj , ξ)| ≥
ε

4 . (16)

To see this, notice that the second moment of µ̄(Bj , ξ) is large:

Eξ
[
µ̄(Bj , ξ)2

]
= Eξ


∑
i∈Bj

ξiµi

2
 =

∑
i∈Bj

µ2
i ≥

ε2

2 .

We also can control the fourth moment of µ̄(Bj , ξ) as follows:

Eξ
[
µ̄(Bj , ξ)4

]
= Eξ


∑
i∈Bj

ξiµi

4
 =

∑
i∈Bj

µ4
i + 6

∑
i<i′∈Bj

µ2
iµ

2
i′ ≤ 3

∑
i∈Bj

µ2
i

2

.

Hence, by the Paley–Zygmund inequality, we have

Pr
[
|µ̄(Bj , ξ)| >

ε

4

]
≥ Pr

[
µ̄(Bj , ξ)2 >

1
8E
[
µ̄(Bj , ξ)2

]]
≥ 3

4
E
[
µ̄(Bj , ξ)2]2

E[µ̄(Bj , ξ)4] ≥
1
4 ,

which proves that, as stated, (16) holds with probability at least 1/4. Next we prove that the clipping
does not affect this too much; namely, that with probability least 8/9 over the randomness of ξ,∣∣∣E[Clip∆

(
X̄j

)
| ξ
]
− µ̄(Bj , ξ)

∣∣∣ ≤ ε

8 . (17)
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Before proving the above statement, we note that by a union bound, both (16) and (17) simultaneously
happen with probability at least 1/4− 1/9 > 1/8. Combining this with (15) and the value of ∆ then
establishes the claim. Thus, to conclude it only remains to prove (17).

Since Eξ
[
µ̄(Bj , ξ)2] =

∑
i∈Bj

µ2
i ≤ s, by Markov’s inequality, with probability at least 8/9,

|µ̄(Bj , ξ)| ≤ 3
√
s.

Call this event E . Conditioning on E , we bound the probability that the sum gets clipped. By
Hoeffding’s inequality, we have

Pr
[
X̄j /∈ [−∆,∆] | ξ, E

]
≤ Pr

[∣∣∣X̄j − µ̄(Bj , ξ)
∣∣∣ ≥ 2

√
s log(s/ε)

∣∣∣∣ ξ, E] ≤ 2
(
ε

s

)2
.

Hence assuming ε ≤ 1/16, we can upper bound the clipping error by∣∣∣E[Clip∆

(
X̄j

)
| ξ
]
− µ̄(Bj , ξ)

∣∣∣ ≤ s · Pr
[
X̄j /∈ [−∆,∆]

]
≤ 2ε2

s
≤ ε

8 ,

concluding the proof.

With this claim in hand, we can analyze the detection step as follows. We have, after the above
transformation and conditioned on ξ, each user obtains (M(1),M(2), . . . ,M(T )) from a product
distribution over {±1}T . By the “simulate-and-infer” trick (Acharya et al., 2020c), the mean vector
of the product distribution can be learned to `∞ distance ε

20
√
s log(s/ε)

with

O

(
T log T

min(T, `)(ε/
√
s log(s/ε))2

)
= O

(
d log(d/s) log(s/ε)

min(d/s, `)ε2

)
samples, allowing us to detect (with probability at least 99/100) the at most 2 biased coordinates. Of
course, overall, we may only detect them when the choice of ξ was good (so that the coordinates
corresponding to the (at most two) biased blocks ended up indeed Ω(ε/

√
s)-biased); but since this

happens with constant probability, one can pay a constant factor in the sample complexity and
amplify this, to get a 99/100 success probability overall. This concludes the proof.

Finally, we prove the matching lower bound (up to logarithmic factors).

Lemma 19 For any s ≥ 1, the interactive sample complexity of mean estimation of s-block sparse
product distributions over {±1}d under `-bit communication constraints is Ω

(
s2+d
ε2` + s

ε2

)
.

Proof The Ω
(
s
ε2

)
term is simply the (unconstrained) “oracle bound,” as Ω( s

ε2 ) samples are required
even without communication constraints and knowing which block of coordinates corresponds to the
support of the mean vector.

The Ω( d
ε2`) term follows from the case of 1-sparse estimation (Shamir, 2014, Theorem 2) (since,

again, any 1-sparse product distribution is s-block-sparse for any s ≥ 1). Finally, the last term of
the lower bound, Ω( s2

ε2`), follows from the lower bound on mean estimation under communication
constraints (see, e.g., Acharya et al. (2020a, Theorem 3)) in the nonsparse case with d = s, since
even knowing the location of the block we still have a mean estimation task under information
constraints, with dimensionality s.
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Appendix A. Results for the local privacy setting

In this section, we discuss how the results can be extended to the local privacy setting (LDP). In
particular, we will focus on estimating the mean of sparse product distributions over {±1}d. The
results on the block-sparse case will follow similarly. Under LDP constraints, each observation Xt

must be privatized using an %-LDP channel to get Yt, which the estimate is based on.

Definition 20 For % > 0, a channel W : X → Y is said to be %-LDP if, for all x, x′ ∈ X and y ∈ Y ,

W (y | x)
W (y | x′) ≤ e

%.
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We focus on the high privacy regime, i.e., when ρ = O(1), and state the results below. Note that, in
this regime, (e% − 1)2 = O(%2).

Theorem 21 For any s ≥ 4 log d, any ρ-LDP noninteractive protocol for mean estimation of
s-sparse product distributions over {±1}d must have sample complexity Ω

(
sd
ε2%2 log ed

s

)
.

Combined with previously known results for sparse mean estimation, this lower bound immediately
implies the following:

Corollary 22 For any s ≥ 4 log d, the noninteractive sample complexity of mean estimation of
s-sparse product distributions over {±1}d under %-LDP constraints is Θ

(
sd
ε2%2 log ed

s

)
, while the

interactive sample complexity is Θ
(

sd
ε2%2

)
.

Of these bounds, the interactive upper and lower bounds are shown in Acharya et al. (2020a) and
Duchi and Rogers (2019). The noninteractive upper bound was established in Duchi et al. (2018).
The proof of Theorem 21, the noninteractive lower bound, follows similar steps as the proof of
Theorem 17. We now discuss how to modify the argument for estimation under LDP constraints.

We first follow the same steps as in the proof of Theorem 1 until Eq. (5), which we write below.

I(Z ∧ Yt) ≤
∑
y∈Y

(sγ2

2d
∑
i∈[d]

EX [W (y | X)Xi]2

EX [W (y | X)] +
d∑
r=2

(
sγ2

2d

)r ∑
B⊆[d]
|B|=r

EX [W (y | X)
∏
i∈BXi]2

EX [W (y | X)]
)
.

To bound each term, we need the lemma below, proved in Acharya et al. (2020a), which follows
from direct application of Bessel’s inequality.

Lemma 23 Let φi : X → R, for i ≤ 1, be a family of functions. If the functions satisfy, for all i, j,

EX [φi(X)φj(X)] = 1{i=j},

then, for any %-LDP channel W , we have∑
i

EX [φi(X)W (y | X)]2 ≤ VarX [W (y | X)] .

Note that for the first term,

∑
y∈Y

s

2dγ
2 ∑
i∈[d]

EX∼u[W (y | X)Xi]2

EX [W (y | X)] ≤ s

2dγ
2 ∑
y∈Y

VarX [W (y | X)]
EX [W (y | X)]

≤ s

2dγ
2 ∑
y∈Y

(e% − 1)2EX [W (y | X)]2

EX [W (y | X)]

= ε2

2d(e% − 1)2.

7. For the case of s = 1, a lower bound of Ω
(

d
ε2%2

)
is shown in Ullman (2018).
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As in the proof of Theorem 1, we can use Lemma 23 to bound the jth order term by (e% −
1)2 ε2

2d(ε2/2)j−1. And thus, summing over all terms, we get

I(Z ∧ Yt) ≤ (e% − 1)2 ε
2

2d

∞∑
j=1

(ε/2)2(j−1) ≤ (e% − 1)2 ε
2

d
.

Since I(Z ∧ Y n) ≤
∑n
t=1 I(Z ∧ Yt), we conclude the proof using Theorem 15, thus establish-

ing Theorem 21.

Upper and lower bounds for the block-sparse case. For the lower bound part, similar to the
above derivation, we can change the proof of Theorem 14 by applying Theorem 23 whenever
Theorem 7 is applied and result in a bound which replaces 2(ln 2)` by (eρ − 1)2. To get the
corresponding upper bound, we notice that we just need to replace the `∞ mean estimation step
(for the Detection phase) and the `2 mean estimation step (for the Estimation phase) with an LDP
protocol, which already exists in the literature (e.g., see Acharya et al. (2020a)). We ignore the details
here since it will mostly resemble the proof for the communication constrained case.

Appendix B. One-sparse noninteractive lower bound

In this section, we prove the following result for 1-sparse estimation under communication constraints.

Theorem 24 Any `-bit noninteractive protocol for mean estimation of 1-sparse product distributions
over {±1}d must have sample complexity Ω

(
d log d
ε2`

)
.

Proof Consider the following family of distributions. For i ∈ [d], pi is a product distribution over
{±1}d with mean θj = 2ε1{i=j} for 1 ≤ j ≤ d. Consider the generative process where we first
sample J uniformly from [d] and then each user observes one sample from pJ and follows the
protocol, thus obtaining a tuple Y n of messages.
By Fano’s inequality, we have that for any 1-sparse estimation protocol the following must hold:

I(J ∧ Y n) = Ω(log d).

It remains to provide an upper bound on I(J ∧ Y n). Since (Y1, Y2, . . . , Yn) are independent condi-
tioned on J , we have

I(J ∧ Y n) ≤
n∑
t=1

I(J ∧ Yt) ,

and therefore it suffices to show that I(J ∧ Yt) = O
(
ε2`
d

)
for every t ∈ [n]. Using the same notation

as in the proof of Lemma 11 we have

I(J ∧ Yt) ≤ EJ
[
KL
(
WpJ
t ||Wu

t

)]
≤ EJ

[
χ2(WpJ

t ||Wu
t

)]
.

Now, we can expand

EJ
[
χ2(WpJ

t ||Wu
t

)]
= EJ

∑
y∈Y

(
∑
xW (y | x)(pJ(x)− u(x)))2∑

xW (y | x)u(x)


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= EJ

∑
y∈Y

Eu[W (y | X)2εX(J)]2

Eu[W (y | X)]


= 4ε2

d

∑
y∈Y

∑
j∈[d]

Eu[W (y | X)X(j)]2

Eu[W (y | X)]

= 4ε2

d

∑
y∈Y

‖Eu[W (y | X)X]‖22
Eu[W (y | X)] .

Note that the uniformly random vector X is 1-subgaussian. Hence using Lemma 7, we get
I(J ∧ Yt) ≤ 8(ln 2)ε2`

d , which lets us conclude the proof as we get that n must satisfy Ω(log d) =
I(J ∧ Y n) ≤

∑n
t=1 I(J ∧ Yt) ≤ n · 8(ln 2)ε2`

d .

Appendix C. Adaptive sensing from m-dimensional measurements

In this section, we prove Theorem 4. The theorem states that there is an algorithm which estimates a
sparse signal up to `2 accuracy ε with m ·n = O

(
sd
ε2 + s

ε2 log ed
s

)
noisy linear measurements, which

is optimal as shown by the adaptive sensing lower bound from Arias-Castro et al. (2012) and the
sparse mean estimation lower bound from the centralized case (see, e.g., Wu (2020, Section 19)).
Moreover, as shown in Raskutti et al. (2011), m · n = Ω

(
sd
ε2 log ed

s

)
measurement are required

for a noninteractive protocol. All together, this demonstrates a separation between noninteractive
compressed sensing and adaptive sensing.
Proof [ Proof of Theorem 4.] We establish the result by a reduction to estimating the mean of a
sparse product distribution over {±1}d, which we have considered in previous sections.

Let ei be the ith standard base vector in Rd. Consider the family of selection matrices containing,
for every S ⊆ [d] of size |S| = m, the matrix AS := [ei]i∈S . Then by Eq. (3), for any S ⊆ [d],
Y ∼ N (xS , Im), where xS ∈ Rm denotes the subvector of x restricted to coordinates indexed by S.
Let Y ′ = (sign(Y (i)))i∈S . Then Y ′ has a product distribution such that, for every i ∈ S, Y ′i ∈ {±1}
has mean

µ(i) := E
[
Y (i)′

]
= 2 Pr[Y (i) > 0]− 1 = Erf

(
x(i)√

2

)
,

where Erf is the Gaussian error function. For x ∈ [−1,+1]d, µ ∈ [−Erf(1/
√

2),Erf(1/
√

2)] ⊂
[−1,+1]d. We will rely on the following lemma from Acharya et al. (2020a), which states that a
good estimate for µ is also a good estimate for x.

Lemma 25 (Acharya et al. (2020a, Lemma 7)) For µ̂ ∈ [−η, η]d, define x̂ ∈ [−1, 1]d by x̂(i) :=√
2 Erf−1(µ̂(i)), for all i ∈ [d]. Then ‖x̂− x‖2 ≤

√
eπ
2 · ‖µ− µ̂‖2 .

It only remains to establish an upper bound on estimating the mean of a product distribution over
{±1}d by observing a subset of m coordinates from each sample (in particular, this is a more
restricted constraint than `-bit communication, where the message is not restricted to consist of
bits of the original sample). Nonetheless, in the protocol in Acharya et al. (2020a) which achieves
Theorem 8, each user does actually send ` coordinates of the observed sample, meaning that it can be
directly applied here by setting ` = m. Plugging m for ` in Theorem 8, we get the desired bound.
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Appendix D. Missing proofs in Sections 2 and 3

We now provide the proofs of the two inequalities used in Sections 2 and 3, respectively.
Proof [ Proof of Eq. (5)] We can rewrite and bound the mutual information as

I(Z ∧ Yt) = EZ
[
KL
(
WpZ
t ||Wu

t

)]
≤ EZ

[
χ2(WpZ

t ||Wu
t

)]
.

We drop the subscript t from Wt when it is clear from context. Using the definition of chi-square
divergence and Eq. (4), for X,X ′ generated i.i.d. from u, we have

EZ
[
χ2(WpZ

t ||Wu
t

)]
= EZ

∑
y∈Y

(
∑
xW (y | x)(pZ(x)− u(x)))2∑

xW (y | x)u(x)


=
∑
y∈Y

EZ

Eu
[
W (y | X)

(∏d
i=1(1 + γZ(i)X(i))− 1

)]2
Eu[W (y | X)]


=
∑
y∈Y

EZ

EX,X′∼u
[
W (y | X)W (y | X ′)

(∏d
i=1(1 + γZ(i)X(i))− 1

)(∏d
i=1(1 + γZ(i)X(i)′)− 1

)]
Eu[W (y | X)]

,
where we recall that γ = ε/

√
s. Note that since EZ [Z(i)] = 0 and EZ

[
Z(i)2] = s

2d = σ2 for all
i ∈ [d] and the Z(i)’s are independent, we further obtain that

EZ

[(
d∏
i=1

(1 + γX(i)Z(i))− 1
)(

d∏
i=1

(1 + γX(i)′Z(i))− 1
)]

= EZ

[
d∏
i=1

(1 + γZ(i)X(i))(1 + γZ(i)X(i)′)
]
− 2EZ

[
d∏
i=1

(1 + γZ(i)X(i))
]

+ 1

=
d∏
i=1

(1 + σ2γ2X(i)X(i)′)− 1 .

Plugging this into the previous expression, we get

EZ
[
χ2(WpZ

t ||Wu
t

)]
=
∑
y∈Y

EX,X′∼u
[
W (y | X)W (y | X ′)

(∏d
i=1(1 + σ2γ2X(i)X(i)′)− 1

)]
Eu[W (y | X)]

=
∑
y∈Y

EX,X′∼u
[
W (y | X)W (y | X ′)

(∑d
r=1

∑
B⊆[d],|B|=r σ

2rγ2r∏
i∈BX(i)X(i)′

)]
Eu[W (y | X)]

=
∑
y∈Y

(
σ2γ2 ∑

i∈[d]

EX,X′∼u[W (y | X)W (y | X ′)X(i)X(i)′]
Eu[W (y | X)]

+
d∑
r=2

∑
B⊆[d]
|B|=r

σ2rγ2rEX,X′∼u[W (y | X)W (y | X ′)
∏
i∈BX(i)X(i)′]

Eu[W (y | X)]
)

25



ACHARYA CANONNE SUN TYAGI

=
∑
y∈Y

(
σ2γ2 ∑

i∈[d]

Eu[W (y | X)X(i)]2

Eu[W (y | X)] +
d∑
r=2

σ2rγ2r∑
B⊆[d]
|B|=r

Eu[W (y | X)
∏
i∈BX(i)]2

Eu[W (y | X)]
)
,

which is the inequality we wanted to establish.

Proof [ Proof of Eq. (8)] For the rth order term, we have:

∑
B⊆[d]
|B|=r

Eu[W (y | X)
∏
i∈BX(i)]2

Eu[W (y | X)] =
∑
B′⊆[d]
|B′|=r−1

∑
j /∈B′

Eu[W (y | X)X(j)
∏
i∈B′ X(i)]2

Eu[W (y | X)]

≤
∑
B′⊆[d]
|B′|=r−1

∑
j /∈B′

∑
x∈{±1}r−1

1
2r−1Eu|XB′=x[W (y | X)X(j)

∏
i∈B′ X(i)]2∑

x∈{±1}r−1
1

2r−1Eu|XB′=x[W (y | X)]

≤
∑
B′⊆[d]
|B′|=r−1

∑
x∈{±1}r−1

∑
j /∈B′

Eu|XB′=x[W (y | X)X(j)]2

Eu|XB′=x[W (y | X)]

=
∑
B′⊆[d]
|B′|=r−1

∑
x∈{±1}r−1

‖Eu|XB′=x[W (y | X)X−B′ ]‖22
Eu|XB′=x[W (y | X)] ,

where XB′ denotes the sub-vector of X indexed by elements in B′ and X−B′ denotes the sub-vector
without elements in B′. Hence the rth order term can be bounded by

σ2rγ2r ∑
y∈Y

∑
B⊆[d]
|B|=r

Eu[W (y | X)
∏
i∈BX(i)]2

Eu[W (y | X)] ≤
(
ε2

2d

)r ∑
B′⊆[d]
|B′|=r−1

∑
x∈{±1}r−1

∑
y∈Y

‖Eu|XB′=x[W (y | X)X−B′ ]‖22
Eu|XB′=x[W (y | X)]

Invoking Theorem 7, we get for all x,B′,

∑
y∈Y

‖Eu|XB′=x[W (y | X)X−B′ ]‖22
Eu|XB′=x[W (y | X)] ≤ 2(ln 2)`.

Hence we can further bound the rth order term by(
ε2

2d

)r(
d

r − 1

)
· 2r−1 · 2(ln 2) · ` ≤ `ε2

d
· (ln 2)(ε2)r−1,

where we use
( d
r−1
)
≤ dr−1.

Proof [ Proof of Eq. (13)] Let u denote the uniform distribution over {±1}d, and γ := ε/
√
s. For

all j ∈ [b], we have

I(Z ∧ Yt | J = j)
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≤ EZ [KL(WpZ,j ||Wu)]

≤ EZ
[
χ2(WpZ,j ||Wu)

]
= EZ

∑
y∈Y

(
∑
xW (y | X)(pZ,j(x)− u(x)))2∑

xW (y | X)u(x)


=
∑
y∈Y

EZ

EX
[
W (y | X)

(∏
i∈Bj

(1 + γZ(i)X(i))− 1
)]2

EX [W (y | X)]


=
∑
y∈Y

EZ

EX,X′
[
W (y | X)W (y | X ′)

(∏
i∈Bj

(1 + γZ(i)X(i))− 1
)(∏

i∈Bj
(1 + γZ(i)X(i)′)− 1

)]
EX [W (y | X)]


=
∑
y∈Y

EX,X′
[
W (y | X)W (y | X ′)EZ

[(∏
i∈Bj

(1 + γZ(i)X(i))− 1
)(∏

i∈Bj
(1 + γZ(i)X(i)′)− 1

)]]
EX [W (y | X)] ,

(18)

where X,X ′ ∼ u are independent. Note that since EZ [Z(i)] = 0 and EZ
[
Z(i)2] = 1 for all i ∈ [d]

and the Z(i)’s are independent, we have

EZ

( ∏
i∈Bj

(1 + γZ(i)X(i))− 1
)( ∏

i∈Bj

(1 + γZ(i)X(i)′)− 1
)

=
∏
i∈Bj

EZ
[
(1 + γZ(i)X(i))(1 + γZ(i)X(i)′)

]
− 1 =

∏
i∈Bj

(1 + γ2X(i)X(i)′)− 1 .

Plugging this into Eq. (18), we obtain

I(Z ∧ Yt | J = j) ≤
∑
y∈Y

EX,X′
[
W (y | X)W (y | X ′)

(∏
i∈Bj

(1 + γ2X(i)X(i)′)− 1
)]

EX [W (y | X)]

=
∑
y∈Y

EX,X′
[
W (y | X)W (y | X ′)

(∑s
r=1

∑
B⊆Bj ,|B|=r γ

2r∏
i∈BX(i)X(i)′

)]
EX [W (y | X)]

=
∑
y∈Y

γ2 ∑
i∈Bj

EX,X′ [W (y | X)W (y | X ′)X(i)X(i)′]
EX [W (y | X)]

+
s∑
r=2

∑
B⊆Bj

|B|=r

γ2rEX,X′ [W (y | X)W (y | X ′)
∏
i∈BX(i)X(i)′]

EX [W (y | X)]


=
∑
y∈Y

(
γ2 ∑

i∈Bj

EX [W (y | X)X(i)]2

EX [W (y | X)] +
s∑
r=2

γ2r ∑
B⊆Bj

|B|=r

EX [W (y | X)
∏
i∈BX(i)]2

EX [W (y | X)]
)
.

27



ACHARYA CANONNE SUN TYAGI

Summing over all the blocks, we get

∑
j∈[b]

I(Z ∧ Yt | J = j) ≤
∑
j∈[b]

∑
y∈Y

(
γ2 ∑

i∈Bj

EX [W (y | X)X(i)]2

EX [W (y | X)] +
s∑
r=2

γ2r ∑
B⊆Bj

|B|=r

EX [W (y | X)
∏
i∈BX(i)]2

EX [W (y | X)]
)
.

which is what we set out to prove.
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