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Abstract—Intelligent electronic devices for power systems often
entail high frequency sampling of electric signals, enabled to
capture anomalous signal behavior. However, in normal operation
this oversampling is redundant and leads to excessive data being
stored or transmitted. This gives rise to a new compression
problem where the collected samples should be further subsam-
pled and quantized based on the presence of an anomaly in the
underlying signal. We propose an Anomaly-aware Compressive
Sampler (ACS) which tests the signal for the presence of an
anomaly in a block of samples, and subsamples in a hierarchical
manner to retain the desired sampling rate. ACS has been
designed keeping hardware constraints in mind, using integer
operations, an appropriate bit-packing, a simple iterated delta
filter, and a streaming data pipeline. We present a mathematical
formulation of the problem and analyze the performance of ACS,
establishing theoretically its ability to identify anomalies in the
signal and adapt the sampling rate. ACS competes with the state-
of-the-art algorithm for the better-behaved transmission system
data from DOE/EPRI, and outperforms it significantly on real-
time distribution system data recorded in our laboratory. Finally,
ACS is lightweight and was implemented on an ARM processor.

Index Terms—anomaly detection, hypothesis testing, signal
compression, streaming implementation

I. INTRODUCTION

Real-time monitoring and fault diagnosis in voltage and
current data is one of the distinguishing features of smart
grid. Intelligent Electronic Devices (IEDs) deployed across
the electrical grid are a key enabler of the required distributed
sensing apparatus. These IEDs record sampled voltage and
current data, often at high rates, and communicate the recorded
data to the control center to enable real-time monitoring and
detection and analysis of anomalies. A desired feature of
this setup is the ability to identify short time power quality
disturbances and subcycle transients. These include switching
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transients and disturbances due to lightning strikes, harmonic
distortion, voltage sags/swells, oscillatory transients at low
to medium frequencies, and voltage/current imbalances [1].
In order to capture the subcycle transients, the prescribed
number of samples per cycle is 256 to 512 [1], [2], namely a
sampling frequency of roughly 31 kHz. Moreover, often the
same IED hardware handles multiple channels corresponding
to different phases and data arrives at the same high rate in
each channel. The IEDs using edge computing devices are
usually resource-constrained and storing data at this rate is
infeasible. At the same time, it is undesirable to use expensive
communication bandwidth to transmit the raw recorded data.
This necessitates compression of the recorded data at the edge.
While compressing a stream at aforementioned data rates using
standard techniques is trivial for powerful modern computers,
it is a significant overhead for limited edge hardware, which
is already strained executing other edge analytics algorithms.
Further, one needs to establish a data pipeline where the
compression of a block of streaming data is completed in time
before the next block arrives.

Note that the high sampling rate is prescribed to enable the
capture of high frequency anomalous signal behavior, which
itself happens infrequently. Thus, it is possible to achieve
compression by identifying the presence of anomalies and ad-
justing the sampling frequency accordingly. We propose such a
compression algorithm, Anomaly-aware Compressive Sampler
(ACS) and use it to enable high-rate data acquisition at a
cheap, hardware-constrained IED. ACS evaluates each data
block received from the FIFO buffer in the data pipeline for the
presence of anomaly and retains the losslessly compressed data
only when there is an anomaly. If there is no anomaly, ACS
allows for a configurable lossy compression while retaining the
desired power quality measurement accuracy. This is achieved
by dropping a part of the block thereby effectively storing
a downsampled version of the signal. Thus, the algorithm
adjusts the sampling frequency adaptively according to the
largest frequency actually present in a particular block.

To enable the anomaly detection component required in
ACS, we need to extract a feature from the time-series
data block that is amenable to anomaly detection. Also, to
compress the same block we need an “innovation filter”
that extracts from each block x = (x[0], . . . , x[n− 1]) an
innovation sequence y = (y[0], . . . , y[n− 1]). ACS reduces
the computational cost by using the same filter to extract both
the signature for anomaly detection and compression of the
innovation sequence.

Recent literature in electrical signal compression suggests
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several techniques for obtaining y from x, ranging from
wavelet filters to machine learning based methods [3], [4].
However, such techniques are computationally heavy and their
feasibility in a streaming implementation on a processor with
low compute-power such as ARM is unclear. Instead, we take
recourse to a variant of simple difference coding that has been
prescribed recently for data compression for IoT [5], [6]. Using
offline data analysis, we choose to use an iterated ∆ filter
(a second order difference filter) where we convert x[i] to
y[i] = x[i] − 2x[i − 1] + x[i − 2]. Note that it is a linear
filter with coefficients that are powers of 2 and can be easily
implemented on hardware.

The sequence of integers y[0], . . . , y[n − 1] thus obtained
must still be represented using a fixed resolution as mandated
for signed integers by hardware. But their values are very small
and we can gain further compression by bit packing (cf. [6]).
This is an optimization in the implementation step whereby the
bit representation of the integers in the sequence are compactly
stored using a minimum number of bytes. Furthermore, since
the iterated ∆ filter is designed to attenuate the low frequency
signal in normal operation, the compression is significantly
higher when there is no anomaly. ACS uses this difference
in compressed lengths to detect anomalous behavior. At a
high level, our approach leverages the information theoretic
understanding of redundancy caused by model mismatch – our
compressor designed for normal operation has higher redun-
dancy under anomaly. A preliminary version of the proposed
algorithm was presented in [7]. In [8], we have presented the
hardware implementation results of the algorithm on an ARM
processor. This paper deals with the theoretical analysis of the
proposed algorithm, comparison with the state-of-the-art, and
rigorous testing on practical data sets.

In recent years, data compression for electrical signals
recorded in smart grids has received a lot of attention; see [9]–
[14] for a glimpse of results with different applications. Com-
mon techniques used are transform coding, which includes
wavelet-based [3] and other transform based techniques [15],
[16], lossless coding following an alternative representation
such as image [17] and mixed transform parametric coding,
which attempts to remove the “seasonality” in the data through
estimation [18]; see [19] for a survey. Algorithms for de-
tecting events in electrical signals based on different metrics
abound [20]–[22]. However, the hardware constraints in our
setting is a dimension not accounted for in many of these
works. In particular, the algorithm must be designed to operate
in real-time on streaming data and to complete the event
detection as well as the evaluation of the compression mapping
for a block before the next data block arrives. This requires
that the blocklength n be small, which is the length of sample
buffer the algorithm must maintain. At short blocklengths, it is
impossible to use DFT-based estimation methods to separate
the high frequency anomalies and the low frequency signal.
This is because DFT when evaluated on a small number of
samples collected at a very high sampling frequency, has poor
frequency resolution. Further, the presence of subharmonics
and deviations around the fundamental frequency could result
in a DFT magnitude spectrum which is close to the magnitude
spectrum in the case of a high frequency component actually

present, due to spectral leakage resulting from windowing, and
spectral sampling. Goertzel algorithm [23] which is used to
detect individual frequencies rather than the whole spectrum
is not immune to spectral leakage either. The standard tech-
nique used to mitigate spectral leakage, namely the usage of
windows with shorter main-lobe width, renders the frequency
resolution of the DFT poorer. Besides, when the signal is
nonstationary and has higher uncertainty in instantaneous fre-
quency, DFT-based techniques are unreliable. Parametric spec-
tral estimation methods (see [24]) such as Prony, Pisarenko
harmonic decomposition, MUSIC, and ESPRIT require at least
as many samples as the ordinality of the highest harmonic
that we are trying to detect and are computationally heavy
(and involve floating-point operations), both of which are
undesirable in a streaming implementation. Our algorithm, on
the other hand, extracts a signature using a simple difference
filter which facilitates event detection as well as compression
and operates on short blocklengths. Our approach is related
also to the one used in recent work on integer compression for
massive databases in [25]. In particular, our algorithm operates
entirely on integers and avoids completely the need for any
kind of floating-point computation. Indeed, our reconstruction
procedure entails spline interpolation which involves floating
point operations, but it is not carried out on the low-compute
hardware. Another desirable feature that enables easy fault
diagnosis and low latency is for the algorithm to facilitate
selective reconstruction of a few cycles of interest rather than
the entire signal of a long duration. Thus, entropic compression
techniques such as LZW (as in [16]), which incur a high
delay when implemented on processors with low compute-
power such as ARM, are not suitable. This re-emphasizes the
need for an algorithm that is “lightweight”, operates block-by-
block, and permits short blocklengths.

Perhaps the work closest to our setting is [11] where a
compression scheme called G-PQDR, based on dissimilarity
between normal and anomalous cycles of data, is proposed. G-
PQDR involves storing the wavelet coefficients of a reference
frame (and those of frames “dissimilar” to the reference
frame), and estimating and storing only the fundamental fre-
quency in frames similar to the reference frame. However, we
observe that on distribution systems data (as against transmis-
sion systems), techniques that rely on instantaneous frequency
estimation tend not to perform well due to higher variability
in measured frequency. We have implemented the scheme
for comparison, and found that the performance of ACS is
better compared to G-PQDR on distribution system data. Be-
sides, G-PQDR operates on blocklengths as large as 4 cycles
which results in a higher latency in real-time applications.
Reference [21], which proposes universal waveshape-based
disturbance detection using similarity metrics, points out some
of the drawbacks of the G-PQDR scheme as well. However,
on transmission system data, G-PQDR yields performance
comparable to our scheme. In particular, we have evaluated
the performance of both the algorithms on DOE/EPRI National
Database Repository of Power System Events [26] data. Both
the algorithms were able to detect most of the events for fixed
parameter settings and achieve good compression.

In the theory of practical, streaming compression algo-
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rithms, the mean squared error of reconstruction of a periodic
signal and a bandlimited signal from values quantized after
oversampling is shown to vary inversely with the oversampling
rate in [27] and [28], respectively, and investigated further
in [29]. Reference [30] shows that it is possible to achieve
exponential decay of the quantization error as a function
of the oversampling rate. However, none of these works
consider the setting with uncertainty in the frequency band.
Namely, available theory literature does not characterize the
dependence of quantization error on the oversampling rate,
when the signal could consist of either only low frequencies
or contain a high frequency anomaly as well. Our proposed
scheme addresses this important problem; we leave a formal
analysis of the scheme in this direction as future work.

The remainder of the paper is organized as follows. The
next section describes the problem formulation and proposes a
solution. An elaboration of the proposed algorithm is presented
in Section III. Section IV provides a theoretical analysis of
the anomaly detection block of the algorithm following which
experimental results are presented in Section V. Section VI
concludes the paper.

II. PROBLEM FORMULATION AND PROPOSED SOLUTION

Our goal is to compress voltage and current signals sampled
at a high rate. The data is fed to the compression algorithm,
block-by-block, via a FIFO buffer. The compression algorithm
takes as input a block of the sampled signal and produces a bit
stream as output. It is desirable to complete the “processing”
of a block of data before the next block arrives to ensure
that no data is lost or overwritten and to reduce the latency
caused by accumulating data over a period of time. The formal
description of the problem is provided below.

A. Problem description

A real-valued signal x(t) is sampled at a high frequency
fs Hz and the samples are quantized to r-bit resolution
by an analog-to-digital converter (ADC) to yield x[k] =
x(k/fs), k ∈ N, which take values in the set of integers,
{−2r−1, . . . ,−1, 0, 1, . . . , 2r−1 − 1}. Further, n consecutive
samples are grouped into blocks x(0), x(1), . . . where block
x(i) comprises the samples x[ni], ..., x[n(i+ 1)− 1]. We seek
to design a compression map that converts the block of data
x(i) into a bit sequence Bi in a streaming fashion. This is
depicted in Fig. 1.

FIFO Compression
map

ADC

Fig. 1: Schematic of the problem setting

The signal x(t) is nonstationary and hence at different times
could consist of high frequencies (corresponding to anomalies)
in addition to the low frequencies which are always present.
While the purpose of high sampling frequency is capturing
anomalies, under normal operation it generates a lot of sam-
ples, all of which need not be retained for reconstruction.

One measure of reconstruction accuracy is normalized mean-
squared error (NMSE) for recovering the sampled sequence
over a finite time horizon N , given by∑N

k=1 (x̂[k]− x[k])
2∑N

k=1 x[k]2
,

where x̂[·] are reconstructed samples. The performance of the
algorithm at a fixed NMSE level will be measured by the
compression ratio (CR) defined as

rnD∑D
i=1 |Bi|

,

calculated over D blocks and |Bi| denotes the length of the
bit sequence Bi. The formulation above prescribes NMSE as
the measure of accuracy for the compression algorithm. This
is standard practice. However, fault analysis in power system
requires more accurate, nearly lossless, reconstruction of the
signal near the anomaly. The algorithm must be able to offer
a variable NMSE performance, with lossless recovery around
anomaly and lossy recovery during normal operation. This
discovery of anomaly region must be in-built in the algorithm.

B. High-level approach

In the absence of an anomaly, discarding a subset of the
samples collected at a high sampling frequency results in
compression while not violating the Nyquist criterion. The
compression algorithm tests every block for anomalies and,
if found, compresses the block in a lossless fashion. If no
anomaly is found, the block could be compressed in a lossy
fashion by discarding a subset of samples. In effect, the high
sampling frequency fs Hz is retained locally in blocks where it
is essential; the data is downsampled otherwise. This anomaly-
aware adaptivity is enabled by solving a hypothesis testing
problem using a small number of samples (equal to the length
of the block).

III. ANOMALY-AWARE COMPRESSIVE SAMPLER

We now elaborate further on ACS, our proposed compres-
sion algorithm summarized in the introduction. A schematic
summary of ACS is provided in Fig. 2 and the complete
description is given in Algorithm 1. The i-th block of data
x(i) (comprising n samples) is passed through an iterated ∆
filter (Algorithm 2). The output y(i) = y(i)[0], . . . , y(i)[n− 1]
of the filter is passed through a bit packing procedure to
obtain the bit packet Bi which is obtained as follows. The bit
sequence corresponding to the first and the second sample in
y(i) are stored separately. The smallest number of bits needed
to represent each of the remaining (n − 2) samples in block
i, `(i) and the `(i)-bit representation of the (n − 2) samples
are stored together via bit packing (Algorithm 3). This bit
packet Bi is fed to an anomaly detector which labels block i as
anomalous if `(i) exceeds a threshold τ , and normal otherwise.
Normal blocks are compressed in a lossy fashion, but not
immediately since we need to retain a few cycles of data before
and after the anomaly. The bit packet Bi resulting from the
input block x(i) is pushed into a FIFO queue of length BUF

when no anomaly is detected. If no anomaly is detected during
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the time a packet Bi enters the queue and reaches the head of
the queue, it is marked to be stored in a lossy fashion. This
is achieved by storing only the part of the Bi corresponding
to the first sample in block i. This, in effect, is tantamount to
downsampling by a factor of n.

This is repeated at a higher level as well. If m consecutive
blocks are marked to be stored in a lossy fashion, namely,
retaining only the first sample, then these first samples are
passed through the same iterated ∆ filter and the output is used
to decide whether to retain all of the m values or just the first
one among them. In particular, if the number of bits per sample
resulting from this filter, `(i)B > τB , a fixed threshold, all m
values are retained. Otherwise, all values except the first one
are dropped. This process of downsampling the data first by n,
and then by m if needed, results in a hierarchical subsampling.
Indeed, it is possible to repeat this process beyond two levels;
we restrict ourselves to two-level hierarchical subsampling.

At a high level, the iterated ∆ filter and bit packing are
designed to compress the samples well when only low fre-
quencies are present. Thus, in the presence of a high frequency
anomaly, the filter output deviates from the compression model
and hence bit packing incurs more bits to represent the output
samples. Note that the statistic used by bit packing is the
smallest number of bits needed to represent each of the output
samples and hence an anomaly is detected even if it does not
exist throughout the block. Thus, the statistic works even for
nonstationary signals in which anomalies or faults are rare
events that do not last long. If the entire block of length n
is void of anomalies, all but the first sample in the block are
dropped, thereby resulting in a downsampling by a factor of n.
This sampling frequency, fs/n Hz suffices to reconstruct the
signal in this block, since it does not contain high frequencies
that impose a Nyquist rate of fs Hz. If consecutive m blocks
do not contain an anomaly, the entire mn− 1 samples could
be dropped for the same reason.

Filter Bit pack Queue

Anomaly
detector

Compressed
stream

(a) High-level schematic of ACS

Anomaly detector

YES or NO

Enqueue

 

Bit pack

 

 

Dequeue

(b) A more detailed schematic of ACS

Fig. 2: Schematic summary of the proposed algorithm

Algorithm 1: Anomaly-aware Compressive Sampler
(ACS)
Input: Stream of samples X , n, m, r, BUF, τH , τB
Steps: Repeat for i = 1, 2, . . .,

1: Read the block x(i) from the stream X .
2: Filter :

1) Pass x(i) through an iterated ∆ filter (Algorithm 2)
to get the sequence y(i) = y(i)[0], . . . , y(i)[n− 1].

2) The sequence y(mi+1)[0], . . . , y(i−1)[0], y(i)[0]
comprising the first samples y(i)[0] from i−mi

such consecutive blocks is again passed through the
same filter where mi is the largest multiple of m
smaller than i.

3: Convert into bit packet :
1) The first two elements of y(i) are converted into a

bit sequence and stored first.
2) Using Algorithm 3, the remaining elements of y(i)

are jointly converted into a sequence of bits Bi and
the number of bits used per sample, `(i) noted.

3) If i is a multiple of m, the number of bits `(i)B
needed to store the sequence
y(i−m+1)[0], . . . , y(i−1)[0], y(i)[0] using
Algorithm 3 is also noted.

4: Enqueue : `(i)B and Bi are pushed to the queue.
5: Anomaly detection : If `(i) > τH , declare that block i

contains an anomaly.
6: Dequeue : Skip this step if i < BUF. Let
b = min{0, i− 2 · BUF}.

1) If no block j is declared to contain an anomaly, for
i ≥ j > b, pop the packet P ∗ at the head of the
queue and mark it to be stored in a lossy fashion.

2) For m consecutive packets marked to be stored in a
lossy fashion, if `(i)B > τB , store the bytes B∗

corresponding to the first sample y(i)[0] in P ∗ and
discard the next m− 1 packets. Otherwise, store the
bytes B∗ corresponding to y(i)[0] in all m packets.

3) If some block j is declared to contain an anomaly,
for i ≥ j > b, store the bytes B∗ in P ∗ losslessly.

A. Building blocks of ACS

Now we describe each block of the algorithm. All numbers
are represented as signed or unsigned integers. Let |a| denote
the absolute value of the number a, and [a]r denote the r-bit
representation of a. For bit sequences a and b, let a? b denote
the concatenation of a and b.

1) Filtering: We implement a two-level linear filter. Con-
sider m consecutive blocks x(0), . . . , x(m−1), each compris-
ing n consecutive samples. First, each block x(i) is passed
through an iterated ∆ filter as described in Algorithm 2 (Note
that a slightly different operation is carried out on the first
two samples since the filter is applied block-by-block and a
second order difference filter requires two previous samples to
operate). Then, the vector of first samples of each of the m
blocks is passed through the same filter.
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Since the data is obtained by oversampling a signal that
comprises low frequencies most of the time, difference filters
produce small values under normal operation and thus aid
compression [31]. In our experiments, the iterated ∆ filter
produced smaller values compared to a ∆ filter that takes only
first order differences. For more details on delta modulation
for quantizing oversampled signals, see Section 7.4 in [31].

Algorithm 2: Iterated ∆ filter
Input: Signed integer array x[0], . . . , x[a− 1].
Output: Signed integer array y[0], . . . , y[a− 1].
Steps:

1: y[0]← x[0].
2: y[1]← x[1]− x[0].
3: For k = 2, . . . , a− 1,

y[k]← x[k]− 2x[k − 1] + x[k − 2].

2) Convert into bit packet: We adopt the Variable Byte
scheme [25], Elias coding [32], and bit packing algorithm [6]
adaptively to convert the innovation sequence y(i) into bit
packet Bi. The block is first zigzag coded [33] to handle
negative integers; a sample a is mapped to 2a if a is non-
negative, and to (2|a|−1) if a is negative. The first two values
of the zigzag coded block ỹ(i), namely ỹ(i)[0] and ỹ(i)[1]
are typically larger than the rest of the values in the block,
and hence stored separately using a procedure similar to the
Variable Byte scheme [25] – the values are stored with the
prefix 0, 10, or 11 if the value (including the prefix) can be
stored using 1, 2, or 3 bytes, respectively. For the remaining
samples, the algorithm chooses either Elias Gamma code [32]
or bit packing (Algorithm 3), the one that yields the smallest
number of output bits. Note that the number of output bits
under either scheme can be calculated (and hence this choice
can be made) without actually performing the encoding. This
is done for each block separately and a bit indicating the
scheme used is inserted into the bit representation. The above
procedure is completely lossless since the first two samples
may be extracted from the respective bit representations stored
separately and the bit packing (as well as the Elias Gamma
code) that is used to store the remaining n − 2 samples can
be inverted.

Bit packing (described in Algorithm 3) serves two purposes.
One is to convert the samples into a sequence of bits in
the following manner: each of the zigzag coded samples
ỹ(i)[2], . . . , ỹ(i)[n − 1] is represented using `(i) bits where
`(i) is the smallest number of bits using which each of the
above samples can be represented losslessly; the value of `(i)

is also stored. Secondly, the number of output bits incurred
by bit packing, more precisely `(i), is used as a statistic to
test for the presence of anomalies in that block. Note that `(i)

takes values between 0 and r since the original samples are
of resolution r bits to begin with, and hence `(i) itself could
be stored using log2 r bits1.

1If the number of bits required turns out to be r − 1 or r, we represent
the samples using r bits itself, so that `(i) takes one of only r possible values,
namely 0, 1, . . . , r − 2, r.

Algorithm 3: Bit pack
Input: Unsigned integers w[0], . . . , w[a− 1], and r
Output: Bytes fBits

Steps:
1: Find the position ` of the leftmost 1 in the bitwise OR

of w[0], . . . , w[a− 1].
2: Set fBits← [`]log2 r.
3: For k = 0, 1, . . . , a− 1,

fBits← fBits ? [w[k]]`.

3) Enqueue: For every m-th block x((i+1)m−1), `
(i)
B ,

the position of the leftmost 1 in the bitwise OR of
ỹ(im)[0], . . . , ỹ((i+1)m−1)[0] is calculated. `(i)B and packet Bi
are pushed into the queue.

4) Anomaly detection: If the value of `(i) computed in
Algorithm 3 is greater than τH , anomaly is declared and
the dequeue function is invoked with a flag lossless set
to true. This indicates to the dequeue function to store the
next BUF packets to be stored losslessly. If `(i) ≤ τH , the
flag lossless is set to false which signals to the dequeue
function to store the packet at the head of the queue in a lossy
fashion.

5) Dequeue: The algorithm dequeue is invoked with a flag
lossless which is set to true if the bit packet B∗ in the
packet P ∗ popped from the head of the queue is to be stored in
a lossless fashion, false otherwise. If m consecutive packets,
x(im), . . . , x((i+1)m−1), for some i, are marked to be stored
in a lossy fashion, the number of bits per sample required
to store only the first samples of these m packets, `(i)B is
compared with a threshold τB . If `(i)B ≤ τB , only the bytes
corresponding to the first sample of the first enqueued packet
among the latest m packets is stored; otherwise compressed
bytes corresponding to all m packets are stored. A special
character (byte) is included at the beginning of a bit sequence
whenever the algorithm switches between lossless compres-
sion, compression dropping a single packet, and compression
dropping m consecutive packets.

6) Reconstruction: In blocks i where all the samples are
retained, the first two samples are stored separately (see Sec-
tion III-A2) and are readily extracted. To obtain the remaining
n − 2 samples, the inverse of the bit packing operation is
applied to Bi, which yields the zigzag-coded sequence y(i).
The zigzag coding is inverted, followed by the application of
an inverse2 iterated ∆ filter to obtain x(i).

Reconstruction of parts of the signal which were dropped,
is performed using splines [24]. Linear splines are used to
interpolate between the available first values in consecutive
blocks where mn− 1 samples are dropped and cubic splines
in those parts where n− 1 samples are dropped. This choice
gave a better NMSE in our experiments. Indeed all mn − 1
samples are dropped if the iterated ∆ filter in both the levels
yield small values; heuristically, this corresponds to the second

2All the aforementioned inversions are straightforward; hence we do not
describe them in detail here.
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derivative being small and hence the signal in the m blocks
is well-approximated by a line.
Remark – Note that the compression algorithm involves
calculating differences of integers (filtering), bitwise OR of
unsigned integers (calculation of `(i)), shifting of bits (zigzag
coding and bit packing), and comparisons (anomaly detection).
All the aforementioned operations are linear in the number of
bits and hence the algorithm is computationally efficient. In
particular, none of the blocks involve floating point operations
(Indeed, reconstruction entails interpolation which involves
floating point operations, but it is not carried out on the low-
compute hardware). This makes ACS suitable for execution on
low-compute hardware. Further, the algorithm uses the same
signature, namely `(i), for compression as well as anomaly
detection; this is useful in a streaming implementation where
no step involves “revisiting” data that has been processed
already.

IV. ANALYSIS OF THE ANOMALY DETECTION ALGORITHM

Here we present a theoretical analysis of the anomaly
detection block of our algorithm. The identification of presence
or absence of anomaly in a given block is modeled as a
hypothesis testing problem, wherein we consider a simplified
representation of the sampled signals. The null hypothesis
H0 is that the observed signal is a sum of L low frequency
sinusoids, and the alternative hypothesis H1 is that the signal
is a sum of H harmonics of a high frequency, in addition
to the L low frequency sinusoids. Under either hypotheses,
measurement noise (modeled as a sequence of independent
and identically distributed sub-Gaussian3 random variables)
and quantization noise (which is bounded) are added to the
signal. Then, we proceed to evaluate the condition under
which the statistic, namely the maximum of the absolute value
of the filtered sequence, separates the two hypotheses while
satisfying certain requirements on the probability of error.
That is, we seek a threshold τ such that the algorithm, which
declares H0 when the statistic is less than τ and H1 when
the statistic is greater than τ , outputs the correct hypothesis
with high probability. In particular, we identify the condition
which enables us to choose a threshold τ such that under H0,
the statistic is less than τ with high probability and under H1,
the statistic is greater than τ with high probability.

Notation – PHi [A] denotes the probability of an event A
under hypothesis Hi. E[X] denotes the expectation of random
variable X . For a positive integer M , [M ] denotes the set
{1, 2, . . . ,M} and S(M) denotes the set {a, a + 1, . . . , a +
M − 1} for any non-negative integer a. For a real number a,
bac denotes the largest integer less than or equal to a. For
1 ≤ p ≤ ∞, ‖x‖p stands for the Lp-norm of the signal x.

Consider a block of n samples x[0], . . . , x[n−1] obtained by
sampling a real-valued signal at frequency fs Hz. We observe
samples x[k] = Q (x[k] + z[k]) where Q(·) is an r-bit quan-
tizer and z[k] are independent and identically distributed sub-

3This is a more general assumption on the noise than Gaussian; the
moment generating function (MGF) of a sub-Gaussian random variable with
variance parameter σ2 is upper bounded by the MGF of a Gaussian random
variable with variance σ2. See [34] for more details.

Gaussian random variables with mean 0 for k = 0, . . . , n− 1,
and seek to resolve the following hypothesis testing problem.

H0 : x[k] =

L∑
l=1

sin (ωlkts + θl) ,

H1 : x[k] =

L∑
l=1

sin (ωlkts + θl) +

H∑
h=1

sin
(
hω̃kts + θ̃h

)
,

where ts = 1/fs, and for l ∈ [L], ωl = 2πfl, fl ≤ fa <
f̃ ≤ Hf̃ < fs/2, and ω̃ = 2πf̃ . That is, we seek to determine
if the signal has only low frequency components or it has
higher frequency components as well. A test is a (randomized)
mapping which takes as input x[k], k = 0, . . . , n − 1, and
declares H0 or H1. A test T constitutes a (δ, ε) test if

PH0 [T declares H1] < δ,

PH1 [T declares H0] < ε.

An iterated ∆ filter (Algorithm 2) is applied to the block com-
prising n samples x[0], . . . , x[n−1] to obtain y[0], . . . , y[n−1].
Namely, for k = 2, . . . , n− 1,

y[k] = x[k]− 2x[k − 1] + x[k − 2]

= x[k]− 2x[k − 1] + x[k − 2] + w[k]

+ q[k]− 2q[k − 1] + q[k − 2],

where q[k] = x[k]− x[k]− z[k] is the quantization noise and
w[k] = z[k]−2z[k−1]+z[k−2] are identically distributed with
mean 0. Let qmax , maxk |q[k]| and

∣∣w[2]
∣∣, . . . , ∣∣w[n−1]

∣∣ be
sub-Gaussian with variance parameter σ2 and common mean
µ = E

[∣∣w[2]
∣∣] > 0. Then, for

Wn , max
k∈{2,...,n−1}

∣∣w[k]
∣∣, (1)

we have, for a constant c > 0 (cf. [34, Theorem 1.14]),

P (Wn > µ+ c) ≤ exp

{
− c2

2σ2
+ log(n− 2)

}
. (2)

Under H0, for k = 2, . . . , n− 1, we have

y[k] = x[k]− 2x[k − 1] + x[k − 2] + w[k]

+ q[k]− 2q[k − 1] + q[k − 2]

= −4

L∑
l=1

sin2

(
πfl
fs

)
sin (ωl (k − 1) ts + θl) + w[k]

+ q[k]− 2q[k − 1] + q[k − 2]. (3)

Similarly, under H1, for k = 2, . . . , n− 1, we have

y[k] = −4

H∑
h=1

sin2

(
hπf̃

fs

)
sin
(
hω̃ (k − 1) ts + θ̃h

)
− 4

L∑
l=1

sin2

(
πfl
fs

)
sin (ωl (k − 1) ts + θl) + w[k]

+ q[k]− 2q[k − 1] + q[k − 2]. (4)

Define
Sn , max

k∈{2,...,n−1}

∣∣∣y[k]
∣∣∣. (5)
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The test entails choosing a τ > 0 and declaring H0 whenever
Sn ≤ τ and H1 otherwise. Note that this is equivalent to the
anomaly detection procedure described in the previous section
for the following reason. An r-bit ADC yields values quantized
to 2r levels. Therefore, the number of bits per sample used by
the bit packing procedure (Algorithm 3) for a block of size
n− 2 with Sn = s ∈ (0, 1] is

` = log2(s2r) = r − log2

(
1

s

)
.

We set ` = 0 if s = 0. Thus, ` is a monotonically increasing
function of the statistic s ∈ [0, 1] and r is a constant. Hence,
it suffices to find high probability upper and lower bounds for
Sn under H0 and H1, respectively. For the latter, we need the
following lemma. We adapt the characterization of the peak
value of a signal in terms of the maximum absolute value
of the samples collected via oversampling due to Ehlich and
Zeller [35], to our setting.

Lemma 1. Consider a signal xA(·) which comprises H
harmonics of frequency f̃ Hz such that fs > 2Hf̃ . Let
ω̃ = 2πf̃ . Then,

xA(t) = a0 +

H∑
h=1

ah sin(hω̃t) + bh cos(hω̃t),

where a0, ah, and bh are real-valued, for h ∈ [H]. Let x[·] be
the discrete sequence obtained by sampling xA(·) at frequency
fs Hz. Then, for any M ≥ fs/f̃ ,

max
k∈S(M)

∣∣x[k]
∣∣ ≥ (a20 +

1

2

H∑
h=1

a2h + b2h

)1/2

cos

(
πHf̃

fs

)
.

where S(M) denotes the set {l, l+ 1, . . . , l+M − 1} for any
non negative integer l.

Proof. Let a > 1 denote the oversampling factor for the given
signal and sampling frequency; for a signal with maximum fre-
quency Hf̃ Hz and sampling frequency fs Hz, a = fs/2Hf̃ .
Then, by [35, Theorem 1] we have

‖xA‖∞ ≤
1

cos
(
π
2a

) max
k∈S(b2aHc)

∣∣x[k]
∣∣

=
1

cos
(
πHf̃
fs

) max
k∈S(bfs/f̃c)

∣∣x[k]
∣∣.

Note that Hf̃/fs < 1/2 and cos(πHf̃/fs) is positive in
[0, π/2). That is, if M ≥ fs/f̃ , then

max
k∈S(M)

∣∣x[k]
∣∣ ≥ ‖xA‖∞ cos

(
πHf̃

fs

)
. (6)

The fundamental period of xA(·) is 1/f̃ . By Plancherel’s
relation which yields

‖xA‖22 = f̃

∫
1/f̃

|xA(t)|2dt = a20 +
1

2

H∑
h=1

a2h + b2h,

and the observation, ‖xA‖2 ≤ ‖xA‖∞, we get

‖xA‖∞ ≥

(
a20 +

1

2

H∑
h=1

a2h + b2h

)1/2

,

which along with Equation (6) completes the proof.

Now we state the separation result for the statistic Sn
in (5) under either hypotheses. In particular, we identify the
condition under which it is possible to choose a value τ such
that a test T that declares H0 if Sn ≤ τ and H1 otherwise,
constitutes a (δ, ε) test.

Theorem 2. Suppose n − 2 ≥ fs/f̃ . Let T be the test that
declares H0 if Sn ≤ τ and H1 otherwise, for Sn as in (5).
Then, there exists a τ such that T constitutes a (δ, ε) test that
resolves between H0 and H1 provided

8L sin2

(
πfa
fs

)
+ σ

√
2 log

n− 2

δ
+ σ

√
2 log

n− 2

ε

+ 8qmax + 2µ < 4

√
H

2
cos

(
πHf̃

fs

)
sin2

(
πf̃

fs

)
,

where qmax , maxk |q[k]| and µ = E
[∣∣w[2]

∣∣].
Proof. T declares H1 when Sn > τ . Using triangle inequality,
from (1), (3), and (5), under H0, we have

Sn ≤ 4L sin2

(
πfa
fs

)
+Wn + 4qmax,

and hence

PH0 [T declares H1] ≤ PH0 [Wn > µ+ c] ,

where c = τ−4L sin2
(
πfa
fs

)
−4qmax−µ. Therefore, to ensure

that PH0 [T declares H1] < δ, from (2), it suffices to have

exp

{
− c2

2σ2
+ log(n− 2)

}
≤ δ,

which is satisfied when

τ ≥ σ
√

2 log
n− 2

δ
+ 4L sin2

(
πfa
fs

)
+ 4qmax + µ. (7)

Under H1, from (4) and (5), we have∣∣∣y[k]
∣∣∣ ≥ ∣∣∣∣∣4

H∑
h=1

sin2

(
hπf̃

fs

)
sin
(
hω̃ (k − 1) ts + θ̃h

)
+ 4

L∑
l=1

sin2

(
πfl
fs

)
sin (ωl (k − 1) ts + θl)− w[k]

− q[k] + 2q[k − 1]− q[k − 2]

∣∣∣∣∣. (8)

Invoking Lemma 1 with M = n− 2, we have,

max
k∈S(n−2)

∣∣∣∣∣
H∑
h=1

sin2

(
hπf̃

fs

)
sin
(
hω̃ (k − 1) ts + θ̃h

) ∣∣∣∣∣
≥
√
H

2
sin2

(
πf̃

fs

)
cos

(
πHf̃

fs

)
. (9)
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By triangle inequality, (8), and (9), we have Sn > τ whenever

4

√
H

2
sin2

(
πf̃

fs

)
cos

(
πHf̃

fs

)

− 4L sin2

(
πfa
fs

)
−Wn − 4qmax > τ.

Thus, letting A =
√

H
2 sin2

(
πf̃
fs

)
cos
(
πHf̃
fs

)
, we have

PH1
[T declares H1] = PH1

[Sn > τ ]

≥ PH1
[Wn < µ+ c] ,

where c = 4A − 4L sin2
(
πfa
fs

)
− τ − 4qmax − µ. To ensure

that PH1
[T declares H1] ≥ 1− ε, from (2), it suffices to have

exp

{
− c2

2σ2
+ log(n− 2)

}
≤ ε,

which is satisfied when

τ ≤4A− 4L sin2

(
πfa
fs

)
− σ

√
2 log

n− 2

ε
− 4qmax − µ.

(10)

From (7) and (10), T constitutes a (δ, ε) test if

σ

√
2 log

n− 2

δ
+ 4L sin2

(
πfa
fs

)
+ 4qmax + µ

< 4A− 4L sin2

(
πfa
fs

)
− σ

√
2 log

n− 2

ε
− 4qmax − µ,

which completes the proof.

We provide a numerical example that illustrates the useful-
ness of Theorem 2. For simplicity, we consider the noiseless
case. Suppose there are L = 10 low frequency components
with frequency less than or equal to fa = 50 Hz. For sampling
frequency fs = 32000 Hz and blocklength n = 16, the
requirement n − 2 ≥ fs/f̃ implies that we can detect an
anomaly of frequency f̃ ≥ 2286 Hz and its higher harmonics.
We identify the largest H , the number of harmonics of
f̃ = 2286 Hz for which the test works. Clearly, Hf̃ < fs/2,
which yields H ≤ 6. The condition

8L sin2

(
πfa
fs

)
< 4

√
H

2
cos

(
πHf̃

fs

)
sin2

(
πf̃

fs

)
in Theorem 2 is satisfied for all H ≤ 6. Thus, all “detectable”
harmonics of f̃ = 2286 Hz for the given sampling frequency
fs = 32000 Hz are detected by the test. As f̃ increases,
the number of harmonics allowed, H reduces. However, all
anomalies of frequency f̃ = 2286 Hz or above can be detected
using an appropriately chosen τ for some value of H ranging
between 1 and bfs/2f̃c, the largest possible H constrained by
the condition in Theorem 2.

Thus, we have established theoretically that the statistic Sn
(and hence the number of bits per sample incurred by bit pack-
ing, ` which is used by the anomaly detection block) is able to
separate the two hypotheses, following which the compression
algorithm can switch between lossy and lossless compression.
While a threshold-based test like the one proposed is standard,

the remarkable fact is that the number of samples used to
arrive at the decision, namely n, could be small, and hence
the decision is quick. Using a larger n for a fixed sampling
frequency fs Hz, as well as using a smaller fs for a fixed
n can help resolve between hypotheses in which the low and
high frequencies are closer.

Recall that in the filtering step, we use a two-level filter
and in the dequeue step, we perform another test involving
only the first samples of m consecutive blocks if the first test
declares no anomaly in any of the m blocks. This is, in effect,
a second hypothesis test of the same nature wherein if the first
test declares that there are no high frequencies present, then
we discard a few samples (resulting in downsampling) and
perform the same test on samples effectively collected at a
lower sampling frequency. Therefore, here the high frequency
component under H1 is closer to the low frequencies. The
efficacy of this test follows from the theorem we have shown
above, applied with different hypotheses. Thus, the two-level
hypothesis test enables the hierarchical subsampling, namely,
downsampling the data first by n, and then by m if needed.

V. EXPERIMENTAL RESULTS

A. Experiment on real data
The data is obtained from an IED connected to measure our

laboratory’s input power supply (see [8] for more details on
the IED set up). The sampling frequency was set at 32000
Hz. The measured dataset comprises 5039 files of 1 second
duration for 3 voltage channels, VA, VB , and VC , and 2 current
channels, IC and IN (the remaining two current channels are
not connected to the load as the lab input is a single phase
supply). The maximum, minimum, and average values of CR
and NMSE were calculated for all the 5039 files by varying the
thresholds, τH and τB . The results presented in this subsection
have been in part, reported in [8] wherein the hardware
platform enabling smart grid measurements is discussed, with
a brief mention of the applications, the compression algorithm
being one of them. Here, we place these results in the context
of the theoretical analysis provided in the previous section.

Table I provides CR and NMSE for two cases corresponding
to a medium and a high compression with n = 16, m = 4, and
BUF = 40. Recall that n is the blocklength, m is the number
of blocks whose first samples are used in the second-level
filtering, and BUF is the number of blocks retained before and
after a block that is declared anomalous. Note that BUF = 40
corresponds to one cycle of data for a fundamental frequency
of 50 Hz sampled at fs = 32000 Hz and blocklength n = 16.
For the medium compression case, we set τH = 11 for both
voltage and current channels and τB = 7 for the voltage
channels and τB = 6 for the current channels. Under the high
compression setting, we set τH = 15 and τB = 14 for all the
channels. In view of the theoretical analysis (and the numerical
example that follows Theorem 2), for fs = 32000, using
just n = 16 samples, the algorithm can detect the presence
of an anomaly comprising frequency 2286 Hz (or higher
frequencies) and its higher harmonics for an appropriate choice
of thresholds. While the theory is able to guarantee detection
of H harmonics of a fixed frequency f̃ , in practice, the
algorithm detects all deviations of sufficiently high frequency.
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TABLE I: Maximum, minimum, and average CR and NMSE
for ACS, with two different settings of τH and τB , and n = 16,
m = 4, and BUF = 40 [8]

Ch. CR NMSE
max. min. avg. max. min. avg.

Medium Compression
VA 16.20 05.58 14.53 0.006222 0.000099 0.000438

VB 15.70 05.64 14.14 0.004215 0.000083 0.000403

VC 15.64 05.73 14.05 0.005118 0.000145 0.000485

IC 15.19 03.13 11.50 0.031000 0.003036 0.011898

IN 15.17 05.03 13.16 0.030456 0.003435 0.011852

High Compression
VA 47.20 17.10 45.75 0.011313 0.002498 0.003303

VB 46.18 14.33 43.49 0.011204 0.002266 0.003008

VC 45.52 13.76 42.62 0.014279 0.002453 0.003263

IC 45.51 15.25 44.25 0.077090 0.012552 0.040798

IN 45.58 15.29 44.25 0.078481 0.012431 0.038999

It was observed that an average CR of around 1.42 for
current channels and 1.64 for voltage channels can be obtained
if all data has to be retained losslessly. From Table I, it
can be seen that an average CR of upto around 45 can be
configured for waveform recording based on the accuracy
requirements for the specified values of n, m, and BUF. A
snapshot of voltage and current channels corresponding to the
high compression case is provided in Fig. 3. Note that the
real values used in plotting are obtained by multiplying the
integer values (output by the ADC) with the gain associated
with the ADC channel. In Fig. 4, a heat map of block wise
CR for a snapshot of voltage and current channel respectively
for the medium compression setting in Table I is provided. It
may be noted that the algorithm achieves better compression in
regions where the signal is “smooth”. In fact, by adjusting the
parameter values (τH and τB), we can obtain reconstruction of
different accuracies. For instance, the reconstruction in Fig. 4
is “more accurate” compared to that in Fig. 3. This is because,
in Fig. 4, the setting is that of medium compression (see
Table I). Thus, it is possible to get a whole range of re-
construction accuracies (and compression ratios) by adjusting
the parameters appropriately; a specific setting may be chosen
depending on the application requirement. This is a unique
feature of ACS that enables it to cater to different applications.

B. Comparison with an existing scheme

The scheme proposed in [11], named G-PQDR was im-
plemented and executed on the same data. The scheme is
based on detection of novelty frames, which entails comparing
the energy of the signal in the high frequency spectrum
with that of a reference signal and also the difference in
the magnitudes of the fundamental frequency using a fixed
threshold. Compression is achieved mainly by discarding
frames “similar” to the reference frames and storing only
the fundamental frequency information for those frames. For
the novelty frames, a wavelet transform is calculated and

Fig. 3: Original signal and reconstruction using ACS for
voltage channel VA (top) and current channel IC (bottom) for
the high compression setting in Table I [8]

coefficients less than a threshold are discarded (set to zero).
The fundamental frequencies of the cycles in the non-novelty
frame is calculated using a Phase Locked Loop (PLL) based
method. These values are used to modulate the harmonics
of the reference frame calculated using a Sliding Window
Recursive Discrete Fourier Transform. However, the examples
given in [11] are transmission systems and the problem at hand
is that of compression of signals in a distribution system. There
is higher uncertainty in the estimated instantaneous frequency
in the latter case and hence for a chosen threshold, either
almost all frames are marked as novelty (resulting in a low CR)
or all frames are marked as non-novelty (resulting in a high
NMSE due to poor reconstruction resulting from frequency
estimation errors). This behavior is more prominent for current
channels than voltage channels.

The bit mapping proposed in G-PQDR is a fixed length
code which is not very useful when the wavelet coefficients
are set to 0 based on a threshold. In our implementation of
G-PQDR, we replace this with an Elias code which is a better
variable length code. To avoid the first frame of every file
being treated as a novelty (thereby causing a low CR), the 5039
files were passed to the algorithm as a stream (and hence only
average CR is available). For this implementation, for different
values of thresholds, CR and NMSE were obtained as shown in
Table II. A snapshot of the reconstructed signal for VA and IC
is shown in Fig. 5. It can be seen that performance of G-PQDR
is affected heavily by the frequency variations compared to its
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Fig. 4: Heat map of block wise CR for ACS for VA (top) and
IC (bottom) for the medium compression setting in Table I [8]

performance on transmission system data as exhibited in [11].
Comparing the values in Table II with those in Table I,
it is clear that ACS offers a superior performance for the
distribution system data. For instance, for the current channel
IN , for CR ≈ 15, G-PQDR incurs an NMSE ≈ 0.27 while
for ACS, the NMSE is approximately 0.07. For the voltage
channel VA, for an NMSE ≈ 0.006, G-PQDR yields a CR
≈ 2.5 whereas even the minimum CR is roughly 5.5 for ACS.
Besides, it is noteworthy that ACS achieves this performance
at blocklengths as small as n = 16, while compression by G-
PQDR entails accumulating 4 cycles worth of data, equal to
2560 samples. The merit of our algorithm is that it is oblivious
to the varying fundamental frequency and sampling frequency,
and identifies local anomalies using small blocklength of data
to switch between lossy and lossless compression in this scale
adaptively.

C. Event detection

The efficacy of ACS in identifying events was tested against
data in DOE/EPRI National Database Repository of Power
System Events [26]. For data with a fixed sampling frequency,
the value of `(i) calculated in Algorithm 3 is compared against
a fixed threshold τH . Recall that the detector uses this as a
test for events. Fig. 6 shows the voltage and current signals
sampled at fs ≈ 7679 Hz; the blocks where `(i) > τH are
labeled using circles. A blocklength of n = 16 was used and

TABLE II: CR and NMSE for G-PQDR for various thresholds
for novelty detection for voltage (top) and current (bottom)
channels

VA VB VC
CR NMSE CR NMSE CR NMSE
2.53 0.006648 2.53 0.006095 2.53 0.006655

2.62 0.011207 2.61 0.010335 2.61 0.010481

2.73 0.017596 2.70 0.014677 2.71 0.014314

3.08 0.032191 3.02 0.027255 3.03 0.026784

4.22 0.056809 4.01 0.050305 4.03 0.047745

7.15 0.100265 6.71 0.089983 6.69 0.088740

IC IN
CR NMSE CR NMSE

02.58 0.060520 02.58 0.059435

03.17 0.091964 03.16 0.090285

03.97 0.125218 03.93 0.120505

07.52 0.200162 07.40 0.196725

14.92 0.269896 15.38 0.277052

24.93 0.345035 26.91 0.354505

Fig. 5: Original signal and reconstruction using G-PQDR for
voltage VA (top) and current IC (bottom) channels for the
compression setting in the first rows of the tables in Table II

τH was set to 10 for this sampling frequency. Similar results
were obtained for other event files as well and the figures
are made available online at [36]. It can be seen that the
algorithm detects most of the events and thus, will switch to
appropriate compression when needed. Note that the algorithm
is configured to store BUF samples before and after an event
is detected losslessly; here, we only highlight the blocks in
which the detector is triggered.
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Fig. 6: Event with ID 3235 (fs ≈ 7679) in the DOE/EPRI
disturbance library [26] – circles mark the blocks i for which
`(i) > τH ; that is, the blocks where ACS detects events.

As noted in Section III-A5, a special character (byte) is
included as prefix to the compressed stream whenever the
algorithm switches between lossy and lossless compression.
In our implementation, we have used the byte 11011111 to
denote the start of lossy compression, 11101111 to denote the
start of compression dropping a single packet, and 11110111

to denote the start of compression dropping m consecutive
packets. None of these bit sequences occur as the first byte
of the compressed stream of a block since the first sample
is stored using a variable byte scheme (see Section III-A2)
and these sequences do not occur when the ADC resolution is
r = 16. Thus, by parsing the compressed stream it is possible
to determine if an event (as characterized by Theorem 2) oc-
curred or not without processing the compressed data further.
It may be noted that in the presence of an anomaly, the data
is stored losslessly and hence could be reconstructed as such.

G-PQDR also detects these events. In order to compare the
CR and NMSE of the two schemes, a reasonable number
of cycles of data is necessary and we have executed both
G-PQDR and ACS on a subset of the available data (30
files with roughly 120 cycles each) with fs ≈ 15385 with
parameters configured to detect the events. For ACS, we have
used n = 16, m = 4, and BUF = 16 so that n · BUF equals
roughly one cycle of data. CR and NMSE were obtained as
shown in Table III. The performance of both the algorithms
are comparable in the sense that the one with lower CR
has lower NMSE as well. Although the data is from a
transmission system, in this case, the reconstruction by G-
PQDR suffers from a high NMSE due to the fact that the
fundamental frequency is 60 Hz and fs = 15384.6153845672
(this corresponds to a sampling period of 65 microseconds;
see [26]), whereby the number of samples per cycle is not
an integer. In fact, this is a limitation of using G-PQDR in
practical systems which could have sampling frequencies not
necessarily integer multiples of the fundamental.

VI. CONCLUDING REMARKS

In this work, we propose a hierarchical anomaly-aware
adaptive compression algorithm that outperforms the state-

TABLE III: CR and NMSE for ACS and G-PQDR for 30 files
with fs ≈ 15385 in the DOE/EPRI disturbance library [26];
the parameters were set to detect most of the events.

Ch. ACS G-PQDR
CR NMSE CR NMSE

IA 4.79 0.000000 16.01 0.046433

IB 4.75 0.000001 14.52 0.030888

IC 4.75 0.000000 11.56 0.027281

IN 4.75 0.000007 12.67 0.150681

VA 45.28 0.045208 33.34 0.009346

VB 44.40 0.04544 36.93 0.010131

VC 40.87 0.04197 31.13 0.010780

of-the-art compression algorithm that relies on real-time fre-
quency estimation and requires accumulating a few cycles
of data. Distribution system data exhibits higher variation
in fundamental frequency and hence techniques that rely
on instantaneous frequency estimation are unsuitable. Our
scheme operates on short blocks of streaming data and uses
the same statistic to solve a hypothesis testing problem to
decide if an anomaly is present in a particular block, and to
compress the block subsequently. We establish theoretically
that the test identifies the presence of high frequencies even
for short blocklengths, the separation between the low and high
frequencies dependent on the blocklength. The efficacy of the
algorithm in detecting events has been validated on publicly
available DOE/EPRI data as well. The algorithm is suitable for
compressing nonstationary signals sampled at high frequency
when higher reconstruction accuracy is prescribed only around
rarely-occurring anomalies. Besides, it employs only integer
operations and is well-suited for streaming implementation on
low-compute hardware. The proposed anomaly-aware adaptiv-
ity in sampling frequency as a means to compressing nonsta-
tionary signals is a new paradigm, which may be implemented
with different constituent blocks corresponding to filtering,
bit packing, and anomaly detection (possibly with heavier
computation if applicable) as well.
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