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Abstract—Two parties observing sequences of bits want to
determine if their bits were generated independently or not. To
that end, the first party communicates to the second. A simple
communication scheme involves taking as few sample bits as
determined by the sample complexity of independence testing
and sending it to the second party. But is there a scheme that
uses fewer bits of communication than the sample complexity,
perhaps by observing more sample bits? We show that the answer
to this question is in the affirmative when the joint distribution
is a binary symmetric source. More generally, for any given
joint distribution, we present a distributed independence test that
uses linear correlation between functions of the observed random
variables. Furthermore, we provide lower bounds for the general
setting that use hypercontractivity and reverse hypercontractivity
to obtain a measure change bound between the joint and the
independent distributions. The resulting bounds are tight for both
a binary symmetric source and a Gaussian symmetric source.

I. INTRODUCTION

Parties P1 and P2 observe sequences Xn and Y n com-
prising finite-valued, independent and identically distributed
samples (Xi, Yi). They seek to determine if the samples are
generated from PXY or PXPY . To that end, P1 communicates
to P2, and the latter declares the output of the hypothesis
test. A simple scheme entails taking recourse to the standard
collocated version of the problem whereby P1 sends a subset
of its samples to P2 who then applies an optimal likelihood
ratio test. The number of samples sent is dictated by the
reliability requirements: P1 sends the minimum number of
samples needed to attain the required reliability. Can we
reduce the communication by using a more carefully designed
scheme, possibly by observing more samples?

Our interest in this question is motivated by applications
arising in the Internet of Things (IoT) where we need to
enable distributed inference and testing by communicating
over a low bandwidth link. In such applications, the nodes
are not restricted by the number of samples they collect,
but by the permissible amount of communication. An easily
implementable solution entails collecting all the samples at a
single location and applying a standard statistical procedure.
Restricting to the problem of independence testing, we seek to
explore if it is even possible to communicate less by using a
more sophisticated scheme, without paying heed to the number
of samples collected.

In contrast, the available information theory literature on
distributed independence testing (see [12] for a survey) pri-
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marily focuses on characterizing the exponential decay of
probability of error under fixed rate communication, as the
number of samples grows to infinity. In their seminal work [2],
Ahlswede and Csiszár initiated the study of the tradeoff be-
tween the error exponent and the rate of communication for the
general distributed hypothesis testing problem. In the specific
case of independence testing, they provided a complete single-
letter characterization of the error exponent. However, these
results cannot be used directly to address the question we
raise. In particular, the error exponent can be shown to be 0
when we restrict to communication of rate 0 (cf. [19]). In our
question, we are not interested in the dependence of error on
the number of samples, and hence, even this zero-rate regime
must be investigated.

In this paper, we derive general bounds for communication
requirements for independence testing and show that the
answer to the question raised above is in the affirmative.
In particular, we exhibit a reduction in communication re-
quirement over the simple scheme when PXY is a binary
symmetric source BSS(ρ), −1 ≤ ρ ≤ 1, i.e., X = Y = {0, 1},
PXY (0, 0) = PXY (1, 1) = (1 + ρ)/4, and PXY (0, 1) =
(1− ρ)/4.

Denote by C(δ, ε) the minimum amount of communication
required to ensure that the test declares independence erro-
neously with probability smaller than δ and correctly with
probability greater than 1− ε. Similarly, denote by n(δ, ε) the
minimum number of samples required in the standard collo-
cated independence testing problem where the observations of
both parties are at one place. It can be shown1 that for BSS(ρ),

n(δ, ε) =
1

1− h((1− ρ)/2)
log

1

ε
+ Θδ

(√
log

1

ε

)
, (1)

where h(·) denotes the binary entropy function2. On the other
hand, we show in Corollary 6 that

C(δ, ε) =
1

ρ2
log

1

ε
+Oδ

(√
log

1

ε

)
.

Note that ρ2 > 1 − h((1 − ρ)/2) for all ρ /∈ {−1, 0, 1}.
Therefore, for a fixed δ and a sufficiently small ε, our proposed

1This result is essentially a finite sample version of Stein’s lemma and is
easy to derive using standard concentration bounds; we omit the simple proof
due to lack of space.

2The notation Θx denotes that the constant implied by Θ depends on x;
similarly for Ox.



scheme communicates less than the simple scheme that simply
shares n(δ, ε) sample bits.

A similar gain can be shown for the other regime where
ε is fixed and δ is sufficiently small. Indeed, in the manner
of equation (1), we can show that the simple scheme requires
roughly 2

log 1
1−ρ2

· log 1
δ bits of communication. On the other

hand, here our proposed scheme requires roughly (see Corol-
lary 6) 1−ρ2

ρ2 · log 1
δ bits of communication, which is less than

that for simple scheme for all ρ /∈ {−1, 0, 1}.
In fact, we derive upper and lower bounds for C(δ, ε) for

a general PXY . Our upper bound is achieved by a scheme
based on [11] where communication for common randomness
generation (cf. [3]) was considered. Drawing on the heuristic
connection between independence testing and common ran-
domness generation highlighted in [22], [21], we adapt the
scheme of [11] to devise a distributed independence test.

Specifically, our scheme compares the linear correlation
of appropriately chosen zero mean, unit variance functions
f(X) and g(Y ) under PXY and PXPY . To save on the
communication, the vector (f(X1), ..., f(Xn)) is first quan-
tized using a shared (randomly generated) codebook compris-
ing {−1,+1}n-valued codewords. Roughly, P1 identifies the
codeword un such that the inner product

∑n
i=1 f(Xi)ui is

above a threshold τ and sends its index to P2. Next, P2 checks
if
∑n
i=1 g(Yi)ui is greater than θτ , in which case it declares

PXY ; else, P2 declares independence. The specific choice of
f and g is so that the E [f(X)g(Y )] is maximized. This max-
imum value is termed the maximal correlation coefficient of
(X,Y ) and denoted ρm(X,Y ). We choose θ to roughly equal
ρm(X,Y ) in our scheme. Note that for BSS(ρ), ρm(X,Y )
equals ρ.

For the converse, we use a change of measure argument
to relate the probabilities of sets under PXY and PXPY . The
distributed nature of our independence test imposes a rectangle
structure on the acceptance region for PXY . Our lower bound
is obtained by using the classic hypercontractivity and reverse-
hypercontractivity bounds (cf. [7], [10], [6], [8], [4], [14])
to relate the measures of rectangles under the joint and the
product distributions.

While our upper bound involves ρm, the lower bound is
expressed in terms of the so-called hypercontractivity ribbon
of X and Y (cf. [4], [5]). Indeed, the two are closely related
(see [5, Theorem 4]). In the particular case of BSS(ρ), the
entire hypercontractivity ribbon is characterized by ρ (see,
for instance, [17]), and our bounds coincide. The same also
applies for the case of a Gaussian symmetric source GSS(ρ),
−1 ≤ ρ ≤ 1, where (X,Y ) are jointly Gaussian with zero
mean, E

[
X2
]

= E
[
Y 2
]

= 1 and E [XY ] = ρ.
The paper is organized as follows: next section contains a

formal description of our problem and the main results. Our
scheme is given in Section III followed by the proof-sketch
for the lower bounds in Section IV. We conclude with pointers
to possible extensions, related literature, and open problems in
the final section.

Notation. Random variables are denoted by capital letters

such as X , Y , etc.; their specific realizations by the corre-
sponding small letters such as x, y, etc.; and their ranges by
the corresponding calligraphic forms such as X , Y , etc.. The
distribution of a random variable X is denoted by PX . Most
of the information theory notations are borrowed from [9]. All
the logarithms are to the base 2; when needed, we use ln a
to denote the natural logarithm of a. For a p > 0, we denote
by p′ the Hölder conjugate of p given by p/(p− 1), with the
convention that p′ =∞ for p = 1.

II. MINIMUM ONE-WAY COMMUNICATION FOR
INDEPENDENCE TESTING

We consider a simple binary hypothesis testing problem.
The observation consists of n independent and identically
distributed (i.i.d.) samples, generated with common distribu-
tion PXY under the null hypothesis H0 and with common
distribution PX × PY under the alternative hypothesis H1.
In our distributed setup, the party P1 observes Xn and
the party P2 observes Y n. In addition, P1 and P2 have
access to a shared random variable U . A distributed test
T = (c, d) consists of a communication of length l described
by a mapping c : Xn × U → {0, 1}l, where P1 trans-
mits c(Xn, U) upon observing Xn, and a decision mapping
d : Yn × {0, 1}l × U → {0, 1}, where P2, upon observing
Y n and receiving bits Bl = c(Xn, U) from P1, declares the
hypothesis d(Y n, Bl, U).

A distributed test T = (c, d) constitutes an (l, δ, ε)-test with
observation length n if c is a communication of length l,

PH0

(
d
(
Y n, Bl, U

)
= 1
)
≤ δ, and

PH1

(
d
(
Y n, Bl, U

)
= 0
)
≤ ε.

Our goal is to design a distributed test that communicates
as few bits as possible, while possessing desired probabilities
of error. Note that in contrast to the classic Neyman-Pearson
formulation where we choose a nominal value for one error
and require the other error to be very small, here we study the
more general problem of characterizing the communication
requirement for the entire decision region. However, our
results for this complete range are only partial.

Formally, we seek bounds for the minimum communication
for independence testing, defined next.

Definition 1. Given δ, ε ∈ [0, 1], the minimum communication
for independence testing C(δ, ε) is the least l such that there
exists an (l, δ, ε)-test, for some observation length n.

Remark 1. Clearly, the communication requirement does
not increase with n. In defining C(δ, ε), we allow n to be
arbitrarily large. However, it suffices to have an n that is
polynomial in (1/δε) for our proposed scheme to work.

We derive general lower and upper bounds for C(δ, ε). For
the cases of doubly symmetric binary and Gaussian sources,
our bounds match in specific regimes for δ and ε.

A. Upper bounds
Our proposed scheme for independence testing relies on

the linear correlation between appropriately chosen, zero mean



functions f and g of X and Y , respectively. The specific quan-
tity that shows up is the Hirschfeld-Gebelein-Rényi correlation
coefficient or the maximal correlation coefficient of (X,Y ),
denoted ρm(X,Y ) (cf. [18]) and defined as

ρm(X,Y ) = sup
f,g

E [f(X)g(Y )] ,

where the supremum is over all R-valued functions f of
X and g of Y satisfying E [f(X)] = E [g(Y )] = 0 and
E
[
f2(X)

]
= E

[
g2(Y )

]
= 1. Note that when computed under

the independent distribution, the expected value of f(X)g(Y )
is 0. Our scheme relies on this difference in the expected value
of f(X)g(Y ) under the two hypotheses.

We now report the upper bound on C(δ, ε) achieved by our
scheme. We will present the scheme in Section III; the analysis
of the scheme and the proof of Theorems 1 and 2 are omitted
– only a sketch is provided in Section III.

Theorem 1 (Upper bound for small ε, δ). For δ, ε ∈ (0, 1/2)
and PXY with maximal correlation coefficient ρm(X,Y ) = ρ,

C(δ, ε) ≤ 1

ρ2
·

(√
log

1

ε
+

√(
1− ρ2

)
log

1

δ

)2

+O

(√
log

1

εδ

)
.

Remark 2. When (X,Y ) correspond to BSS(ρ) or GSS(ρ),
−1 ≤ ρ ≤ 1, the maximal correlation coefficient ρm(X,Y )
equals ρ (cf. [18]).

In Section II-C, we shall see that for BSS(ρ) and GSS(ρ)
the bound above is tight up to the leading term in dependence
on ε or δ, though not simultaneously for both. In fact, for the
practically uninteresting regime of δ > 1/2, the next result
offers an improvement which will be seen to be tight for
BSS(ρ) and GSS(ρ) up to the leading term, simultaneously
for ε and δ.

Theorem 2 (Upper bound for small ε, large δ). For ε ∈
(0, 1/2), δ ∈ (1/2, 1) and PXY with maximal correlation
coefficient ρm(X,Y ) = ρ,

C(δ, ε) ≤ 1

ρ2
·

(√
log

1

ε
−
√(

1− ρ2
)

log
1

1− δ

)2

+O

(√
log

1

ε(1− δ)

)
.

B. Lower bounds

Our lower bounds involve the notions of hypercontractiv-
ity and reverse hypercontractivity (cf. [4], [16]). For 1 ≤
q ≤ p < ∞, a pair of random variables (X,Y ) is (p, q)-
hypercontractive if for all R-valued functions f of X and g
of Y

E [|f(X)g(Y )|] ≤ ‖f(X)‖p′‖g(Y )‖q,

where p′ = p/(p− 1) is the Hölder conjugate of p. Similarly,
for 1 ≥ q > p, a pair of random variables (X,Y ) is (p, q)-

reverse hypercontractive if for all R-valued functions f of X
and g of Y

E [|f(X)g(Y )|] ≥ ‖f(X)‖p′‖g(Y )‖q.

The set of all (p, q) for which (X,Y ) is (p, q)-hypercontractive
and (p, q)-reverse hypercontractive, respectively, are called the
hypercontractivity ribbon and the reverse hypercontractivity
ribbon of (X,Y ). We use the notions of hypercontractivity
and reverse hypercontractivity to obtain the change of measure
bounds between the joint distribution and the independent
distribution, which in turn lead to the following lower bounds
for C(δ, ε).

Theorem 3 (Lower bound 1). Given δ, ε ∈ (0, 1) and
(p, q) such that 1 ≤ p′ ≤ q ≤ p and (X,Y ) is (p, q)-
hypercontractive, the minimum communication for indepen-
dence testing C(δ, ε) is bounded below as

C(δ, ε) ≥ p

q
log

1

ε
− p log

1

1− δ
. (2)

The proof of Theorem 3 is given in Section IV. The next
result can be proved using similar manipulations with the
reverse hypercontractivity bound replacing the hypercontrac-
tivity bound and is omitted.

Theorem 4 (Lower bound 2). Given δ, ε ∈ (0, 1) and (p, q)
such that 1 ≥ q ≥ 0 ≥ q′ ≥ p and (X,Y ) is (p, q)-
reverse hypercontractive, the minimum communication for
independence testing C(δ, ε) is bounded below as

C(δ, ε) ≥ p

q
log

1

1− ε
− p log

1

δ
. (3)

C. Special cases: Binary and Gaussian symmetric sources
To obtain tight lower bounds for specific distributions, we

need to optimize our lower bounds over the entire hypercon-
tractivity and reverse hypercontractivity ribbon. In general, an
expression for this optimized lower bound is unavailable and
its relation to the maximum correlation that appears in the
upper bounds is unclear. However, for the special cases of
BSS(ρ) and GSS(ρ) the optimized lower bounds will be seen
to match the upper bounds. This is the content of the current
section. Note that for these special cases the functions f and
g attaining the maximum correlation are linear (for BSS(ρ),
we replace the alphabet with {−1, 1}). Thus, our distributed
independence test in these cases takes a linear form, too.

We rely on the following characterizations of the hypercon-
tractivity and the reverse hypercontractivity ribbons.

Theorem 5 ([7], [10], [6], [8], [15]). Let PXY correspond to
BSS(ρ) or GSS(ρ), −1 ≤ ρ ≤ 1. For 1 ≤ q ≤ p, (X,Y ) is
(p, q)-hypercontractive if and only if

q − 1

p− 1
≥ ρ2. (4)

Furthermore, for 1 ≥ q ≥ p, (X,Y ) is (p, q)-reverse
hypercontractive if and only if

1− q
1− p

≥ ρ2. (5)



The next corollary is obtained by maximizing the right-sides
of (2) and (3), respectively, over the set of (p, q) satisfying (4)
and (5); the upper bound is from Theorem 1.

Corollary 6. Let PXY correspond to BSS(ρ) or GSS(ρ),
−1 ≤ ρ ≤ 1. Then,

1) for δ ∈ (0, 1/2) and ε such that δ + ε
1−|ρ|
1+|ρ| ≤ 1,

C(δ, ε) =
1

ρ2
log

1

ε
+Oδ

(√
log

1

ε

)
;

2) for ε, δ ∈ (0, 1/2),

C(δ, ε) =
1− ρ2

ρ2
log

1

δ
+Oε

(√
log

1

δ

)
,

where the notation Ox denotes that the constant implied
by O depends on x.

Note that the result above yields the leading asymptotic
term for dependence on ε and δ, considered separately. How-
ever, it falls short of characterizing the joint-dependence on
(δ, ε). Indeed, a characterization of such a joint-dependence
is difficult to obtain even for sample complexity n(δ, ε).
Nevertheless, when we allow a large δ and have ε sufficiently
small, we can obtain a result characterizing simultaneous
dependence. Interestingly, the amount of communication is
below (1/ρ2) log 1/ε in this case.

Corollary 7. Let PXY correspond to BSS(ρ) or GSS(ρ),
−1 ≤ ρ ≤ 1. Then, for δ ∈ (1/2, 1) and ε such that δ +

ε
1−|ρ|
1+|ρ| ≤ 1,

C(δ, ε) =
1

ρ2

(√
log

1

ε
−
√(

1− ρ2
)

log
1

1− δ

)2

+O

(√
log

1

ε(1− δ)

)
.

III. THE SCHEME ACHIEVING OUR UPPER BOUNDS

We describe a slightly restricted form of our scheme for the
case when Y is a zero mean and unit variance random variable;
the extension to the general case is straightforward and will
be mentioned later. For this case, let ρ2 = E

[
E [Y |X]

2
]

and
define f(X) = ρ−1E [Y |X]. Note that since Y has zero mean,
f(X) is a zero mean and unit variance random variable. Our
distributed test for such (X,Y ) is described below3:

Fix parameters r > 0, θ ∈ (0, 1], and k ∈ N.
1) Using the shared randomness, parties generate a n× 2k

matrix U consisting of i.i.d. {−1,+1}-valued entries
Uij , 1 ≤ i ≤ n, 0 ≤ j ≤ 2k − 1, drawn uniformly.

2) P1 finds the least index j ∈ [2k] such that
∑n
i=1 Uij ·

f(Xi) ≥ r
√
n holds and sends the k-bit representation

of j to P2. If no such j is found, declare4 H1.

3We provide an operational description of our distributed test; the mappings
c and d can be identified readily from this.

4Formally, P1 will output 1 and communicate this outcome to P2 using
additional 1-bit communication.

3) P2, upon receiving j, declares H0 if
∑n
i=1 Uij · Yi ≥

θ · r
√
n and H1 otherwise.

This distributed independence test extends to general distri-
butions by replacing Y with any function g(Y ) such that
E [g(Y )] = 0 and E

[
g(Y )2

]
= 1 and apply the procedure

above; the resulting ρ2 will be given by E
[
E [g(Y )|X]

2
]
. As

shall be seen below, the number of bits communicated by the
distributed test above depends on ρ2, and the latter must be
chosen appropriately for optimality.

The analysis of the scheme relies on Gaussian approxima-
tion using the Berry-Esseen theorem. Note that the factor of√
n appearing in the thresholds in steps (2) and (3) is crucial

for removing the dependence of Gaussian tails on n, and
thereby that of k on n. In particular, we can show that for
any fixed η ∈ (0, 1) and a sufficiently large n

PH1
(Declare H0 | U = u) ≤ 2k+1 ·Q(r) ·Q(θr), (6)

and

PH0
(Declare H0)

≥ (1− η)Q

(
(θ − ρ)r√

1− ρ2

)(
1− e−2

k−1Q(r)
)
, (7)

where Q(·) is the complementary cumulative distribution
function of a standard normal random variable. Thus, we
obtain a (k, δ, ε)-test upon choosing θ, r, k, and η such that
the right-side of (6) is bounded above by ε and the right-
side of (7) is bounded below by 1− δ. In particular, to prove
Theorems 1 and 2, we find the minimum k for which these
constraints can be satisfied for some θ, r, and η.

Sketch of proof of Theorems 1 and 2. It suffices to ensure
that

2 ln
4

δ
≤ 2kQ(r) ≤ 4 ln

4

δ
and Q

(
(ρ− θ)r√

1− ρ2

)
≤ δ

4
,

which for ρ ≥ θ will hold if we choose k ≈ r2/(2 ln 2) for
an r2 satisfying

r2

2 ln 2
≥ min

θ≤ρ
max

{
α

(ρ− θ)2
,
β

θ2

}
=

1

ρ2
(
√
α+

√
β)2,

where α = (1− ρ2) log 4
δ and β = log 1

ε + log log 4
δ + 2.

A similar optimization yields Theorem 2; here, too, we set
k ≈ r2/(2 ln 2), but r2 now must satisfy

r2

2 ln 2
≥ min

θ≥ρ
max

{
α

(θ − ρ)2
,
β

θ2

}
=

1

ρ2
(
√
α−

√
β)2,

where α ≈ (1− ρ2) log 1
1−δ and β ≈ log 1

ε .

IV. PROOF OF LOWER BOUND 1

For 1 ≤ q ≤ p, suppose that (X,Y ) is (p, q)-
hypercontractive. Furthermore, assume that p′ ≤ q which is the
same as q′ ≤ p. Then, for any subset A ⊂ Xn and B ⊂ Yn,
we have

PXnY n (A× B) ≤ PXn (A)
1
p′ PY n (B)

1
q . (8)



For brevity, we only consider a deterministic test where the
shared randomness U is constant; randomness can be handled
using Jensen’s inequality. Specifically, given a deterministic
(l, δ, ε)-test T = (c, d), denoting L = 2l, let Ai = c−1(i) for
i = 1, ..., L. Then, {A1, ...,AL} constitutes a partition of Xn.
Further, let Bi denote the set {y ∈ Yn : d(y, i) = 0}, namely
the set of y where P2 declares H0 upon receiving i from P1.
Denoting ai = PXn (Ai) and bi = PY n (Bi), it follows by (8)

that 1 − δ ≤
∑L
i=1 PXnY n (Ai × Bi) ≤

∑L
i=1 a

1
p′

i b
1
q

i . Using
Hölder’s inequality, we can bound the right-side by( L∑

i=1

aibi

) 1
q
( L∑
i=1

a
q′( 1

p′−
1
q )

i

) 1
q′ ≤ ε

1
q

( L∑
i=1

a
q′( 1

p′−
1
q )

i

) 1
q′
,

where the previous inequality uses the requirement
PH1

(Declare H0) ≤ ε. Upon noting that q′(1/p′ − 1/q) =
1 − q′/p, the bound above together with the assumption
q′ ≤ p and Hölder’s inequality, yields the desired bound
(1− δ) ≤ ε

1
qL

1
p .

V. CONCLUDING REMARKS

For BSS(ρ) with X,Y ∈ {−1, 1}, the distributed indepen-
dence test we have presented, entails identifying a sequence
un ∈ {−1, 1}n such that xn is close to un and checking if yn,
too, is appropriately close to un. Alternatively, we can send
the sequence xn and directly check if yn is close to xn. If we
ignore the Berry-Esseen correction, this simple scheme attains
the communication rate of Corollary 6. However, in a formal
analysis, the number of samples needed is dominated by the
correction term. An important idea in our distributed scheme,
which we borrow from [11], is to appropriately choose the
parameters so that only the communication cost k shows up
in the Gaussian-tail bounds and not n.

A natural extension of the problem we consider, is to allow
multiple rounds of interaction. In the error-exponent regime,
such a formulation has been considered in [24], [25]. However,
we are unable to handle interaction in our current treatment.
A specific question of interest is whether multiple rounds
of interaction can improve the communication warranted by
Corollary 6 for BSS(ρ). A similar question was addressed for
the related problem of secret key agreement in [20] (cf. [13]).

Also, in the context of IoT, it is of interest to consider
more involved communication topologies such as those studied
in [26], [23]. Here too, our current techniques fall short. In
particular, we have difficulty in handling a separate decision
center using a random codebook generated independently of
X and Y .

Finally, note that we have not addressed the problem in a
universal setting where the distribution PXY is not known,
but only a separation of ε between PXY and PXPY in
total variation distance is assumed. Note that for BSS(ρ),
the separation ε equals ρ. Therefore, our lower bound for
BSS(ρ) yields an Ω(1/ε2) lower bound for the worst-case
communication cost over all distributions for binary X and Y .
Using the known sample complexity results for the collocated
case (cf. [1]), this lower bound implies that the simple scheme

is order-optimal. However, the case of larger alphabet-sizes
remains an interesting open problem.

REFERENCES

[1] J. Acharya, C. Daskalakis, and G. Kamath, “Optimal testing for prop-
erties of distributions,” in Advances in Neural Information Processing
Systems 28. Curran Associates, Inc., 2015, pp. 3591–3599.

[2] R. Ahlswede and I. Csiszár, “Hypothesis testing with communication
constraints,” IEEE Trans. Inf. Theory, vol. 32, no. 4, pp. 533–542, July
1986.

[3] ——, “Common randomness in information theory and cryptography–
part II: CR capacity,” IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 225–
240, January 1998.

[4] R. Ahlswede and P. Gacs, “Spreading of sets in product spaces and
hypercontraction of the markov operator,” Ann. Probab., vol. 4, no. 6,
pp. 925–939, December 1976.

[5] V. Anantharam, A. Gohari, S. Kamath, and C. Nair, “On maximal
correlation, hypercontractivity, and the data processing inequality studied
by Erkip and Cover,” 2013.

[6] W. Beckner, “Inequalities in Fourier analysis,” Ann. of Math., vol. 102,
no. 1, pp. 159–182, July 1975.

[7] A. Bonami, “Etudes des coefficients Fourier des fonctiones de Lp(G),”
Ann. Inst. Fourier, vol. 20, no. 2, pp. 335–402, 1970.

[8] C. Borell, “Positivity improving operators and hypercontractivity,” Math-
ematische Zeitschrift, no. 180, pp. 225–234, 1982.

[9] I. Csiszár and J. Körner, Information theory: Coding theorems for
discrete memoryless channels. Academic Press, 1981.

[10] L. Gross, “Logarithmic sobolev inequalities,” American Journal of
Mathematics, vol. 97, no. 4, pp. 1061–1083, 1975.

[11] V. Guruswami and J. Radhakrishnan, “Tight bounds for communication-
assisted agreement distillation,” in Proceedings of the 31st Conference
on Computational Complexity, 2016, pp. 6:1–6:17.

[12] T. S. Han and S. Amari, “Statistical inference under multiterminal data
compression,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2300–2324,
October 1998.
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