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Abstract—We study the problem of recovering the com-
mon k-sized support of a set of n samples of dimension
d, using m noisy linear measurements per sample. Most
prior work has focused on the case when m exceeds
k, in which case n of the order (k/m) log(d/k) is both
necessary and sufficient. Thus, in this regime, only the
total number of measurements across the samples matter,
and there is not much benefit in getting more than k
measurements per sample. In the measurement-constrained
regime where we have access to fewer than k measurements
per sample, we show an upper bound of O((k2/m2) log d)
on the sample complexity for successful support recovery
when m ≥ 2 log d. Along with the lower bound from our
previous work, this shows a sharp phase transition for the
sample complexity of this problem around k/m = 1. In
fact, our proposed algorithm is sample-optimal in both the
regimes. It follows that, in the m � k regime, multiple
measurements from the same sample are more valuable
than measurements from different samples.

I. INTRODUCTION

The problem of support recovery in the single sample
setting considers the following question: given noisy
linear measurements Y = Φx + W ∈ R

m of a k-
sparse vector x ∈ Rd, can we recover the locations of its
nonzero entries when m < d? The set of indices corre-
sponding to the nonzero entries of x is called the support
of x, and is denoted by supp(x). The measurement
matrix Φ ∈ Rm×d is a design parameter that is chosen
to enable exact or approximate recovery of supp(x), and
W ∼ N (0, σ2I) is noise. This problem (also sometimes
referred to as model selection or variable selection) has
received a lot of attention in the past decade [17], [4],
[2], [14], [7], with a focus on designing recovery algo-
rithms and on determining the number of measurements
m required for successful recovery. In particular, it is
known that m = Θ(k log(d − k)) measurements are
necessary and sufficient for support recovery with high
probability using a Gaussian measurement matrix [17].
It is important to note that this tight scaling holds in the
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low signal to noise ratio (SNR) regime of xmin/σ
2 =

Θ(1/k), where xmin
def
= mini∈S |xi|. In other regimes

of SNR, either the log dependence changes or the upper
and lower bounds are known to differ by a factor of
(log(1+kx2min/σ

2))−1; see [7] for a detailed discussion.
Parallel to the results in the single sample setting,

there has been work on the natural extension of this
problem to the multiple sample setting, which is the
focus of this work. In this setting, there are multiple
samples x1, . . . , xn, all sharing a common unknown
support S of cardinality k. For each sample xi, we
observe measurements Yi = Φixi+Wi, and the goal is to
recover S . We can ask the question of how the number of
measurements per sample m and the number of samples
n can be traded-off for each other, and whether it is
useful to take more samples or more measurements per
sample.

While there have been several works in the multiple
sample setting [18], [16], [5], [6], [15], [10], they focus
on the regime where one has access to roughly m ≥ k
measurements per sample. In particular, omitting the de-
pendence on SNR, [10] shows that mn = Θ(k log(d/k))
is necessary and sufficient assuming m = Ω(k) and
k = o(d). While the sufficient condition in [10] is
obtained via analysis of an exhaustive search decoder,
algorithms such as the group LASSO also show a similar
scaling of mn = Θ(k log(d − k)) provided m > k [8].
From the discussion in the previous paragraph, it is clear
that if we have m = Ω(k log(d − k)), then a single
sample is sufficient for support recovery. Therefore,
given that we have access to multiple samples now, a
more interesting question to consider is whether we can
perform recovery with m < k measurements per sample.
This measurement-constrained regime has received some
attention in the past [3], [9], [11] and it was recently
shown for the case of random inputs drawn from a
subgaussian distribution that the tradeoff (ignoring noise
variance and parameters dependent on the generative
model for the samples) is n = Θ((k2/m2) log d) for
(log k)2 ≤ m < k/2 [12].

In this work, we focus on the case of deterministic
inputs xi with |xij | ∈ [xmin, xmax], j ∈ S , and show
that the tradeoff identified in [11] for Gaussian inputs
holds for the worst-case setting as well. In particular,



Fig. 1: Sample complexity of support recovery as a
function of k/m.

the lower bound from [12] for Gaussian inputs applies
to this worst-case setting, since an instantiation in the
Gaussian case can be thought of as a deterministic
input. Showing that the upper bound also remains the
same requires more work, and is the main focus of this
paper. Specifically, we analyze the performance of the
estimator from [12] in the deterministic input setting,
which requires improved bounds on the tail probability
of heavy-tailed random variables1 than the one used in
[12].

In summary, we settle the question of tradeoff between
m and n in the m < k regime, and show that there
exists a phase transition for the sample complexity of this
problem at k/m = 1 as depicted in Figure I. Roughly,
around this point, the sample complexity for support
recovery undergoes a change from being linear in the
ratio k/m to being quadratic in k/m (up to a factor
log d).

We note that the current lower bound proof from [12]
requires some separation between k and m; namely, it
requires k/m > γ for some γ > 1. While the lower
bound of n = Ω((k/m) log(d/k)) [10] continues to hold
for m < k, it is not clear if a tighter lower bound on
sample complexity in the regime 1 < k/m ≤ γ can
be obtained. Such a separation between k and m is,
however, not required when deriving the upper bound.
We also note that the constants in our upper and lower
bounds may not be optimal.

Notation. We use upper case letters to denote either
random variables or deterministic matrices, and lower-
case letters to denote deterministic scalars or vectors.

1We refer to a random variable X as heavy-tailed if its moment
generating function E

[
eλ(X−E[X])

]
is infinite for all λ ∈ R.

For a vector x, we use xi to denote its ith entry, and for
matrices {Ai}ni=1 we use Aij to denote the jth column
of Ai. We use ‖x‖pp

def
=
∑d
i=1 x

p
i to denote the `p norm

of a vector x ∈ Rd, and ‖Z‖pLp
def
= E [|Z|p] to denote

the Lp norm of a random variable Z.
Organization. In the next section, we formally state

the problem and present our main result. We present the
proof of our main result in Section III, and end with a
discussion on directions for further work in Section IV.
Proofs that are omitted here can be found in [13].

II. PROBLEM FORMULATION AND MAIN RESULT

Let vectors x1, . . . , xn in Rd have a common support
S ⊂ [d] of cardinality k. For each of these vectors,
we have access to noisy linear measurements of the
form Yi = Φixi + Wi, i ∈ [n]. Here, Φi ∈ R

m×d

with m < d are called the measurement matrices and
Wi

iid∼ N (0, σ2I) is noise. The goal is to recover the
support S using {Yi,Φi}ni=1. An estimator for S is a
mapping Ŝ : Rm×n × Rm×d×n →

(
[d]
k

)
, where

(
[d]
k

)
denotes the set of all subsets of [d] of cardinality k.
We assume that the estimator has knowledge of k and
consider the probability of exact recovery, Pr

(
Ŝ 6= S

)
,

as our recovery criterion. We note that one could also
consider the setting where |S| ≤ k. The estimator that
we consider here would output an Ŝ that contains the true
support with high probability. In this work, however, we
assume that the true support has cardinality exactly k.

We make the following two assumptions on the mea-
surement matrices and the input samples:

Assumption 1. The m × d measurement matrices
Φ1, . . . ,Φn are independent, with entries that are in-
dependent and distributed as N (0, 1/m).

Assumption 2. The d-dimensional inputs x1, . . . , xn are
such that supp(xi) = S, for all i ∈ [n], where S ⊂ [d] is
a fixed set of cardinality k. Further, |xiu| ∈ [xmin, xmax],
for all i ∈ [n], u ∈ S, where xmin, xmax ∈ R.

We focus on a measurement-constrained setting where
we obtain only m < k measurements per sample. The
fundamental quantity of interest for us in this paper is the
sample complexity of support recovery, defined below.

Definition 1. For m, k, d ∈ N, the sample complexity
of support recovery n∗(m, k, d, xmin, xmax, σ

2, δ) is the
minimum number of samples n for which we can find
an estimator that can recover S with probability of error
at most δ. Mathematically,

Pr
(
Ŝ 6= S

)
≤ δ, ∀S ∈

(
[d]

k

)
. (1)

For notational convenience, we use
n∗(m, k, d, xmin, xmax, σ

2, δ) = n∗ in the rest of
the paper. Our main result shows a phase transition that



occurs at k/m = 1 for the problem of support recovery.
In particular, the dependence of sample complexity of
support recovery on k/m undergoes a sharp change
from linear to quadratic as we move from the k/m ≤ 1
regime to the k/m > 1 regime. As mentioned before, a
tight characterization of n∗ in the interval 1 < k/m ≤ γ
is not known, although our upper bound stated in
Theorem 1 below continues to hold for this case. Our
main result is the following.

Theorem 1. The sample complexity of support recovery
under Assumptions 1 and 2, for m ≥ 2 log(d/δ), satisfies

n∗ = O

(
x4max

x4min

max

{(
k

m
+

σ2

x2max

)
log

d

δ
,(

k

m
+

σ2

x2max

)2

log
d

δ

})
.

As a special case, in the noiseless setting with m <
k, we have the following corollary, which follows from
Theorem 1 above and the lower bound in [12]2. Note
that the lower bound is stated for a constant probability
of error.

Corollary 1. In the noiseless setting, with 4 log 3d ≤
2m < k ≤ d/2, d ≥ 4 and δ = 1/3, we have,

n∗ = Θ

(
x4max

x4min

k2

m2
log d

)
.

We provide the proof of Theorem 1 in the next section.

III. ANALYSIS OF THE ESTIMATOR

We will analyze the closed form estimator from [12],
but instead of random inputs, here we will consider
deterministic inputs x1, . . . , xn. To see why the analysis
in [12] does not extend in a straightforward way to
this case, we first recall the form of the estimator. Let
Φiu ∈ R

m denote the uth column of Φi. We first
compute proxy samples X̂1, . . . , X̂n with entries

X̂iu
def
= Φ>iuYi = Φ>iuΦixi + Φ>iuWi, u ∈ [d], (2)

and then the sample second moment along each coordi-
nate as

λ̃u
def
=

1

n

n∑
i=1

X̂2
iu, u ∈ [d]. (3)

The support estimate S̃ consists of the k indices of λ̃
with the largest value. Analyzing the estimator would
basically involve obtaining tail bounds for the random
variable above. Considering the noiseless case first, note
that each summand in (3) is of the form (Φ>iuΦixi)

2,
and can be viewed as a quadratic in either xi or Φ>iuΦi.

2When k ≤ d/2 and d ≥ 4, the log(k(d− k)) factor in the lower
bound is equal, upto constants, to log d.

When xis are random and subgaussian with inde-
pendent coordinates, we can exploit the quadratic form
in xi to obtain a tail bound using the Hanson-Wright
inequality (after conditioning on Φi). On the other hand,
when xi are deterministic, the summands in (3) are
quadratic in Φ>iuΦi, resulting in a heavy-tailed random
variable, and standard methods based on bounding the
moment generating function (MGF) do not work.

We explain in the next section how a careful anal-
ysis involving conditioning on a certain column of Φi
followed by a moment based bound can be used to
get exponential tail bounds for heavy-tailed random
variables. The analysis in [12] also deals with heavy-
tailed random variables, but using a more elementary
approach (see [Lemma B.2, [12]] and [Lemma B.3, [12]]
for instance) which does not appear to work here.

A. A separation condition for support recovery
We will analyze the error probability of a threshold-

based version of the estimator described in the previous
section. In particular, we will use the estimate λ̂

def
=

1{λ̃≥τ}, for an appropriate threshold τ , since

Pr
(
S̃ 6= S

)
≤ Pr

(
Ŝ 6= S

)
,

where Ŝ denotes the support of λ̂. The error probability
Pr
(
Ŝ 6= S

)
will essentially be determined by the tail

behaviour of the variance estimate λ̃. Recall from the last
section that variance estimate is an average of random
variables of the form (Φ>iuΦixi+Φ>iuWi)

2. The Φ>iuΦixi
term will be indicative of whether the coordinate u lies
in the support or not, since it will have a ‖Φiu‖22 term
only when u ∈ S.

The analysis is greatly simplified once we condition
on Φiu, because then the summands in (3) are noncentral
chi-square distributed, for which tail bounds can be
obtained using standard methods. The error probabil-
ity can be made small provided these tail probabili-
ties (parameterized by Φiu) can be made small, which
eventually leads to a condition on the measurement
ensemble. We will show, using tail bounds for heavy-
tailed random variables, that this condition is satisfied
with high probability for the Gaussian ensemble when
the parameters (n,m, k, d) scale as indicated in Theorem
1, thus finishing the proof.

The probability of error can be bounded as

Pr
(
Ŝ 6= S

)
≤
∑
u∈S

Pr
(
λ̃u < τ |E

)
+
∑
u′∈Sc

Pr
(
λ̃u′ ≥ τ |E

)
+ Pr (Ec) ,

(4)

where E denotes the event that the measurement ensem-
ble satisfies a certain condition, which we will describe



shortly. For the right hand side to remain below δ, we
require the summands in the first two terms to be at most
δ/(3 max{k, d− k}). For simplicity, we will work with
a requirement of δ/3d.

Now, using (2) and (3), we can see that X̂iu|Φiu ∼
N (µi, ν

2
i ) for u ∈ S with

µi = ‖Φiu‖22xiu,

and

ν2i =
‖Φiu‖22
m

∑
v∈S\{u}

x2iv + σ2‖Φiu‖22.

Similarly, we have X̂iu′ |Φiu′ ∼ N (0, ν′2i ), for u′ ∈ Sc,
where

ν′2i =
‖Φiu′‖22
m

∑
v∈S

x2iv + σ2‖Φiu′‖22.

A direct application of Lemma A.1 then yields, for every
u ∈ S,

Pr
(
λ̃u < τ |{Φiu}ni=1

)
≤ exp

(
−n2(µ− τ)2

4(
∑n
i=1 ν

4
i + ν2i µ

2
i )

)
,

where µ
def
= E

[
λ̃u|{Φiu}ni=1

]
. For u′ ∈ Sc, we can

obtain in a similar manner from Lemma A.1,

Pr
(
λ̃u′ ≥ τ |{Φiu′}ni=1

)
≤ exp

(
−min

{
n2(τ − µ′)2

16
∑n
i=1 ν

′4
i

,
n(τ − µ′)

8 maxi∈[n] ν
′2
i

})
,

where µ′ def= E
[
λ̃u′ |{Φiu}ni=1

]
. For the missed detection

and false alarm probabilities above to remain bounded
above by δ/3d, we require

τ ≤ µ−

√√√√ 4

n2

n∑
i=1

(ν4i + µ2
i ν

2
i ) log

3d

δ
,

and

τ ≥ µ′ + max

{√√√√16

n2

n∑
i=1

ν′4i log
3d

δ
,

8

n
max
i∈[n]

ν′2i log
3d

δ

}
.

Therefore, for the existence of a threshold τ , we can see
upon simplification that it suffices to have

µ− µ′ >

√√√√ 4

n2

n∑
i=1

(ν4i + ν2i µ
2
i ) log

3d

δ

+ max

{√√√√16

n2

n∑
i=1

ν′4i log
3d

δ
,

8

n
max
i∈[n]

ν′2i log
3d

δ

}
.

(5)

A simple calculation shows that the conditional mean of
the estimator under the u ∈ S and u′ ∈ Sc cases are sep-

arated roughly by a constant term (after averaging over
the measurement matrices), which makes the distinction
between the two cases possible. In particular,

µ =
1

n

n∑
i=1

(
x2iu‖Φiu‖42

+ ‖Φiu‖22
(

1

m

∑
v∈S\{u}

x2iv + σ2

))
,

and

µ′ =
1

n

n∑
i=1

‖Φiu‖22
(

1

m

∑
v∈S

x2iv + σ2

)
.

Substituting this into (5) and simplifying, we can rewrite
the condition as

x2min

x2max

1

n

n∑
i=1

(
‖Φiu‖42 −

1

m
‖Φiu‖22

)

>

√√√√ 4

n2

(
k − 1

m
+

σ2

x2max

)2 n∑
i=1

‖Φiu‖42 log
3d

δ

+

√√√√ 4

n2

(
k − 1

m
+

σ2

x2max

) n∑
i=1

‖Φiu‖62 log
3d

δ

+

√√√√16

n2

(
k

m
+

σ2

x2max

)2 n∑
i=1

‖Φiu′‖42 log
3d

δ

+
8

n

(
k

m
+

σ2

x2max

)
max
i∈[n]
‖Φiu′‖22 log

3d

δ
, (6)

for every (u, u′) ∈ S × Sc.

B. Separation condition for the Gaussian ensemble

We will show that when the measurement ensemble is
Gaussian as described in Assumption 1, the separation
condition in (6) is satisfied with high probability for a
certain regime of the parameters (n,m, k, d). We will
derive upper and lower bounds on the right hand side
and left hand side respectively in (6), that hold with high
probability, which after simplification will finally result
in a condition on the parameters as stated in Theorem 1.
Note that this translates to obtaining tail bounds for the
random variable (1/n)

∑n
i=1 ‖Φiu‖

2q
2 with q = 2, 3. It

is easy to see that ‖Φiu‖22 is chi-square distributed (after
scaling by m), and ‖Φ‖2q2 is therefore a heavy-tailed
random variable, and so MGF based methods cannot be
used here. We will see that a bound on the moments can
be used to get exponential tail bounds (even when the
MGF is unbounded).

We will fix q = 3 and derive our results; the same
arguments can be used for the q = 2 case as well. Define
Z

def
= |(1/n)

∑n
i=1(‖Φiu‖62 −E

[
‖Φiu‖62

]
| and note that



for all p ≥ 1,

Pr
(
Z ≥ e(E [Zp])

1
p

)
= Pr (Zp ≥ epE [Zp]) ≤ e−p.

(7)

Further, for all p ≥ 2, if we can show that (E [Zp])
1
p ≤

cpβ for some β > 0, then together with the previous
inequality it implies that Pr

(
Z ≥ ecpβ

)
≤ e−p, or,

equivalently, for t > 0, that

Pr (Z ≥ t) ≤ exp(−(t/ec)
1
β ). (8)

We now need to determine an upper bound on ‖Z‖Lp
def
=

(E [Zp])
1
p . We show such a moment bound, resulting in

the following lemma.

Lemma 1. For every t > 0, there exists an absolute
constant C such that

Pr

(∣∣∣∣ 1n
n∑
i=1

(‖Φiu‖62 − E
[
‖Φiu‖62

]
)

∣∣∣∣ ≥ t
)

≤ exp

(
− C min

{
nt, (m3nt)

1
4 , nt2

})
.

In [13], we provide a simple, self-contained proof of
this lemma. We note that since ‖Φiu‖62 is a polynomial
in m i.i.d. Gaussian random variables, results such as [1,
Theorem 1.3] can be used to obtain tail bounds for some
of the terms. The proof in [13] is more straightforward.

Together with the fact that E
[
‖Φiu‖42

]
= 1+2/m and

E
[
‖Φiu‖62

]
= 1+6/m+8/m2, the results above give up-

per and lower bounds that hold with high probability on
all but the maxi∈[n] ‖Φiu′‖22 term in (6). The latter can
be bounded with high probability using concentration
for chi-squared random variables and a union bounding
step, as given by the following lemma. The proof can be
found in [13].

Lemma 2. Let µmax
def
= E

[
maxi∈[n] ‖Φiu‖22

]
. Then, for

every t > 0,

Pr

(
max
i∈[n]
‖Φiu‖22 ≥ µmax + t

)
≤ n exp

(
−m

8
min

{
(µmax + t− 1)2, µmax + t− 1

})
.

To ensure that the random variable on the left hand
side of (6) exceeds the one on the right hand side with
large probability, we can substitute the bounds we de-
rived for each term, and check when the inequality holds.
This results (up to some constant loss in the δ factor)
in a condition on the problem parameters under which
(6) holds for a fixed (u, u′) ∈ S ×Sc. Applying a union
bound over all k(d−k) pairs gives the final requirement
on n. Note that the leading terms on the right hand
side of (6) would roughly be

√
(k2/m2n) log d/δ or√

(k/mn) log d/δ (assuming m ≥ 2 log(d/δ), see [13]

for details of the proof), while the left hand side would
roughly be a constant, leading to the following result.

Lemma 3. The separation condition (6) holds for every
(u, u′) ∈ S×Sc, with probability at least 1−δ, provided
m ≥ 2 log(d/δ) and

n ≥ cx
4
max

x4min

max

{(
k

m
+

σ2

x2max

)
log

d

δ
,(

k

m
+

σ2

x2max

)2

log
d

δ

}
,

for an absolute constant c.

By defining E as the event that the measurement
matrices satisfy condition (6) for every (u, u′) ∈ S×Sc,
we can see that the probability of error in (4) is at most
δ, provided n satisfies the condition in Lemma 3. This
completes the proof of Theorem 1.

IV. DISCUSSION

We showed a phase transition for the problem of sup-
port recovery from multiple samples. While the closed
form estimator that we analyzed here is sample-optimal,
it would be interesting to design other estimators that can
work in the measurement-constrained regime without
knowledge of the support size, and for which guarantees
can be obtained with worst-case inputs. Finally, extend-
ing the lower bound on n∗ to include the 1 < k/m ≤ γ
regime for γ > 1 would provide a better understanding
of the problem.

APPENDIX A

Lemma A.1 ([13]). Let X1, . . . , Xn be drawn i.i.d. from
N (µi, σ

2
i ). Then, for every t > 0,

Pr

(
1

n

n∑
i=1

X2
i ≤

1

n

n∑
i=1

(σ2
i + µ2

i )− t

)

≤ exp

(
−n2t2

4
∑n
i=1(σ4

i + σ2
i µ

2
i )

)
,

and

Pr

(
1

n

n∑
i=1

X2
i ≥

1

n

n∑
i=1

(σ2
i + µ2

i ) + t

)

≤ exp

(
−min

{
n2t2

16
∑n
i=1(σ4

i + σ2
i µ

2
i )
,

nt

8max
i∈[n]

σ2
i

})
.
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