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Abstract—In the problem of multiple support recovery,
we are given access to linear measurements of multiple
sparse samples in Rd. These samples can be partitioned
into ` groups, with samples having the same support
belonging to the same group. For a given budget of m
measurements per sample, the goal is to recover the `
underlying supports, in the absence of the knowledge of
group labels. We study this problem with a focus on the
measurement-constrained regime where m is smaller than
the support size k of each sample. We design a two-
step procedure that estimates the union of the underlying
supports first, and then uses a spectral algorithm to
estimate the individual supports. Our proposed estimator
can recover the supports with m < k measurements per
sample, from Õ(k4`4/m4) samples. Our guarantees hold
for a general, generative model assumption on the samples
and measurement matrices.

I. INTRODUCTION

We study the problem of multiple support recovery
using linear measurements, where there are n random
samples X1, . . . , Xn taking values in Rd, such that for
each i ∈ [n], supp(Xi) ∈ {S1, . . . ,S`} almost surely,1

with Si ⊂ [d] and Si ∩Sj = ∅ for all i 6= j. We assume
that the samples Xi are sparse and that |Si| = k � d, i ∈
[`]. We are given low dimensional projections of these
samples using m×d matrices Φ1, . . . ,Φn. In our setting,
we focus on the regime where we have access to very few
measurements per sample, namely when m < k. Given
access to the projections Yi = ΦiXi, i ∈ [n], and the
projection matrices, we seek to recover the underlying
supports {S1, . . . ,S`}.

This is a generalization of the well-studied problem
of recovering a single unknown support from linear
measurements [18], [6], [12], [15], that has been applied
to solve inverse problems in imaging, source localization,
and anomaly detection [5], [7], It is also related to the
study of sparse random effects in mixed linear models
[3], [4]. Mixed linear models are a generalization of
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1The support of x ∈ Rd is the set supp(x) = {u ∈ [d] : xu 6= 0}.

linear models where an additional additive correction
component is included to model a class-specific correc-
tion to the average behavior. The problem of multiple
support recovery is also discussed in [9], [20] under the
assumption of slowly varying supports.

There are two sets of unknowns in our setting: the
labels indicating which support was chosen for each
sample, and the ` supports S1, . . . ,S`. Note that, given
the knowledge of the labels, one could group samples
with the same support together, and use standard algo-
rithms to recover the support. However, in the absence
of access to the labels, the problem of recovering the
supports is much harder. A naive scheme could be to
just estimate each support individually, which requires
m = O(k log(d − k)) measurements per sample [21],
[1]. But can we do better if we exploit the joint structure
present across the samples, since there will be several
samples that have the same support? In this work,
we show that one can operate in the measurement-
constrained regime of m < k, when a sufficiently large
number of samples is available.

For the special case with n = ` = 1, when there
is a single k-sparse sample of length d, it is known
that m = Θ(k log(d − k)) measurements are necessary
and sufficient to recover the support [21] with noisy
measurements, when the inputs are worst-case. For the
case with a single common support across multiple
samples (i.e., ` = 1 and n > 1), several previous works
have studied the question of support recovery in the
m > k setting [18], [6], [12].

In the m < k regime, on the other hand, we recently
showed that n = Θ((k2/m2) log d) samples are neces-
sary and sufficient, assuming a subgaussian generative
model on the samples and measurement matrices, and
that the measurement matrices are drawn independently
across samples [14], [15]. In fact, the lower bound
of [15] applies to the worst-case setting as well, showing
that while k overall measurements2 suffice when m
exceeds k, at least (roughly) k2/m measurements are
required when m < k.

In [11], the problem of recovering the union of sup-
ports from linear measurements is considered. Another

2The overall measurements in our model are nm.



line of related works is on multi-task learning/multi
task sparse estimation [22], [13], [2]. However, none
of these results shed light on how to recover multiple
supports when we are constrained to observe less than
k measurements per sample.

Organization. In the next section, we formally state
the problem and the assumptions we make in our gen-
erative model setting. This is followed by a statement
of our main result, which provides an upper bound on
the sample complexity of multiple support recovery. We
describe the estimator in Section III, and present a sketch
of the proof of our main result in Section IV. We provide
the full proofs of our results, along with experiments on
recovering handwritten images from random projections
in the longer version of this paper.

Notation. For a matrix A, we denote its (u, v)th entry
by Auv . For a collection of matrices {Ai}ni=1, we use
Ai(u, v) to denote the (u, v)th entry of the ith matrix.
Also, for a vector Xj , Xji denotes the ith component of
Xj . A random variable X is subgaussian with variance
parameter σ2, denoted X ∼ subG(σ2), if

logE
[
eθ(X−E[X])

]
≤ θ2σ2/2,

for all θ ∈ R.
A random variable X is subexponential with parame-

ters σ2 and b > 0, denoted X ∼ subexp(σ2, b), if

logE
[
eθ(X−E[X])

]
≤ θ2σ2/2,

for all |θ| < 1/b.

II. PROBLEM FORMULATION AND MAIN RESULT

We consider a Bayesian setup for modeling samples
X1, . . . , Xn taking values in Rd with supp (Xi)

def
=

{j ∈ [d] : Xij 6= 0} ∈ {S1, . . . ,S`}, where Si ⊂ [d]
are unknown sets such that |Si| = k. Specifically, we
consider distributions P(1), . . . ,P(`) with3

supp
(

P(i)
)

= {x ∈ Rd : supp(x) = Si}, i ∈ [`],

and n i.i.d. samples X1, . . . , Xn taking values in Rd and
generated from a common mixture distribution

PS1,...,S` =
1

`

∑̀
i=1

P(i), (1)

parameterized by the tuple (S1 . . . ,S`). In fact, we
assume that P(i) is a multivariate subgaussian distri-
bution with zero mean and diagonal covariance matrix
Kλi

= diag (λi), where the parameter λi is a d-
dimensional vector for which supp (λi) = Si, i ∈ [`].
More concretely, we make the following assumption.

3We consider distributions P with densities fP with respect to the
Lebesgue measure and define supp (P) = {x ∈ Rd : fP(x) > 0}.

Assumption 1. For a sample Xj ∼ P(i), j ∈ [n],
i ∈ [`], and an absolute constant c, EP(i)

{
XjX

T
j

}
=

diag (λi) with λi ∈ Rd+, supp (λi) = Si, and Xj

has independent entries with its tth entry Xjt satisfying
Xjt ∼ subG(cλit), t ∈ [d]. Furthermore, for each i ∈ [`]
and t ∈ Si, λit = λ0 > 0, and EP(i)

{
X4
jt

}
= ρ.

For samples X1, . . . , Xn generated as above, we are
given access to projections Yi = ΦiXi, i ∈ [n], where
the matrices Φi ∈ Rm×d are random and independent
for different i ∈ [n]. Our analysis requires handling
higher order moments of the entries of the measurement
matrices, which motivates the following assumption.

Assumption 2. The m × d measurement matrices
Φ1, . . . ,Φn are independent, with entries that
are independent and zero-mean. Furthermore,
Φi(u, v) ∼ subG(c′/m), and the moment conditions
E
[
Φi(u, v)2

]
= 1/m and E

[
Φi(u, v)2q

]
= cq/m

q

hold for q ∈ {2, 3, 4}, where cq and c′ are absolute
constants.

The assumption above holds, for example, when
Φi(u, v) ∼ N (0, 1/m) or when Φi(u, v) are
Rademacher, i.e., take values from {1/

√
m,−1/

√
m}

with equal probability. Also, these moment assumptions
can be relaxed to hold up to constant factors from above
and below, i.e., E

[
Φi(u, v)2q

]
= Θ(1/mq).

Our goal is to recover the supports {S1, . . . ,S`} using
{Yi,Φi}ni=1. The error criterion will be the average of
the per support errors, measured using the set difference
between the true and estimated supports. Specifically,
denote by Σ′`,d the set consisting of all ` tuples of subsets
(S1, . . . ,S`) such that Si ⊂ [d], i ∈ [`], and Si∩Sj = ∅,
for all i 6= j. Let Σk,`,d ⊂ Σ′`,d be such that |Si| = k, for

all i ∈ [`]. Denote by G`
def
= {σ : [`]→ [`]} the set of all

permutations on [`]. We have the following definition.

Definition 1. An (n, ε, δ)-estimator for Σk,`,d is a map-
ping e : (Y n1 ,Φ

n
1 ) 7→ (Ŝ1, . . . , Ŝ`) ∈ Σ′`,d for which

PS1,...,S`

(
∃σ ∈ G` s.t.

1

`

∑̀
i=1

∣∣∣Si∆Ŝσ(i)∣∣∣ < kε

)
≥ 1− δ, (2)

for all (S1, . . . ,S`) ∈ Σk,`,d, where S1∆S2 denotes the
symmetric difference between sets S1 and S2.

We seek to determine the value of n for which an
(n, ε, δ)-estimator exists. For fixed `,m, k, d, ε, and δ,
the least n such that we can find an (n, ε, δ)-estimator for
Σk,`,d is termed the sample complexity of multiple sup-
port recovery, which we denote by n∗(`,m, k, d, ε, δ).

We have the following result.

Theorem 1. Let m, k, d, ` ∈ N with log k ≥ 2. Further,
let (log k`)2 ≤ m < k, and 1/k` ≤ ε ≤ 1/`. Then,



under Assumptions 1 and 2, the sample complexity of
multiple support recovery satisfies

n∗(`,m, k, d, ε, δ)

= O

(
max

{
1

ε

(
k`

m

)4

(log k)4 log k` log
1

δ
,

k2`2

m2
log

k`(d− k`)
δ

})
.

Remark 1. For values of ε lower than 1/`k, the result
from Theorem 1 continues to hold with ε set to 1/`k.
This is because ε = 1/`k corresponds to exact recovery
of the supports.

We present the algorithm that attains this performance
in the next section, and provide a sketch of the proof of
Theorem 1 in Section IV.

Our estimator works in two steps, by estimating the
union of supports first and then estimating each support,
and the sample complexity bound above is obtained by
analyzing each of the two steps. To the best of our
knowledge, this is the first estimator that can recover
multiple supports under the constraint of m < k linear
measurements per sample. We also note that for the prob-
lem of recovering a single support exactly, it was shown
in [15] that roughly Ω((k/m)2 log k(d − k)) samples
are necessary. Thus, our sample complexity upper bound
above matches this lower bound quadratically. Closing
the gap between the lower bound and the upper bound
is an interesting problem for future research.

III. THE ESTIMATOR

Our first step will be to recover the union of the
` underlying supports, and then refine this estimate to
finally recover the individual supports. Our approach
builds on the following simple but crucial observation:
since each sample is k-sparse with support equal to
one of the Si (with the Si being disjoint), the sample
covariance matrix (1/n)

∑n
i=1XiX

>
i exhibits a block

structure under an unknown permutation of rows and
columns. This motivates the use of spectral clustering
to recover the underlying supports. However, we only
have access to projections of the data. We circumvent
this difficulty by using the approach followed in [15].

Specifically, we compute Φ>i Yi and use these as a
proxy for the data. We build on this idea and propose an
estimator that first determines the union of the ` supports
from Φ>i Yi using the estimator in [15]. We then construct
an affinity matrix using proxy samples Φ>i Yi and apply
spectral clustering to estimate individual supports from
the union.

A. Recovering the union of supports

We first observe that the samples Xi have an effective
covariance matrix whose diagonal has support equal to

the union of the supports, which allows us to use the
results from [15] to recover the union. Specifically, we
form “proxy samples” X̂i = Φ>i Yi = Φ>i ΦiXi and use
the diagonal of the sample covariance matrix of X̂i as an
estimate for the diagonal of the covariance matrix for Xi.
We will show that the k` largest entries of the recovered
diagonal correspond to the union of the supports.

Formally, define Sun
def
= ∪`i=1Si to be the union of the

` unknown disjoint supports and note that |Sun| = k`.
Next, define vectors a′1, . . . , a

′
n with entries

a′ji
def
= (Φ>jiYj)

2, i ∈ [d]. (3)

Each a′j , j ∈ [n], can be thought of as a crude estimate
for the variances along the d coordinates obtained using
the jth sample. We then define the average of these
vectors as

λ̃
def
=

1

n

n∑
j=1

a′j . (4)

This statistic captures the variance along each coordinate
of Xi. Due to the averaging across samples, we expect
a larger value of the statistic along coordinates that are
present in at least one of the supports. On the other
hand, coordinates that are not present in any support
should result in a smaller value of the statistic. As shown
in [15], such a separation between the estimate values
indeed occurs when n is sufficiently large. The algorithm
declares the indices of the k` largest entries of λ̃ as the
estimate for Sun. Letting λ̃(1) ≥ · · · ≥ λ̃(k`) represent
the sorted entries of λ̃, the estimate Ŝun for the union is

Ŝun = {(1), . . . , (k`)}, (5)

where we assume the size of the union to be known.
In practice, λ̃ can be used to estimate the size of the
union as well, by sorting the entries of λ̃ and using
the index where there is a sharp decrease in the values
as an estimate for k`, similar to the approach of using
scree plots to determine the model order in principal
component analysis [23].

B. Recovering individual supports

We now describe the main step of our algorithm where
we partition the coordinates in Ŝun recovered in the first
step into disjoint support estimates Ŝ1, . . . , Ŝ`. We will
use a′1, . . . , a

′
n described in (3) for this purpose. Since

we now have an estimate for the union, we will restrict
a′i to coordinates in Ŝun, and denote them as ai ∈ Rk`+ .
That is, ai = (a′i)Ŝun

. Also, without loss of generality,
we set Ŝun = [k`].4

4This is to keep notation simple. For a general Ŝun, we can have a
function g : [k`] → Ŝun that provides the mapping of each coordinate
of ai to its corresponding value in Ŝun as indicated in step 7 of
Algorithm 1.
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Fig. 1: Block structure of the expected clustering matrix
when ` = 2 and the supports are disjoint, under appro-
priate permutation of rows and columns.

Our approach is the following: we construct a k`×k`
affinity matrix T and perform spectral clustering using
this matrix, which will partition the coordinates in [k`]
into ` groups. The key step here is the construction
of the affinity matrix T that can provide a reliable
clustering, and we will use the per-sample variance
estimates a1, . . . , an for this purpose. The idea is that for
any coordinate pair (u, v) ∈ [k`]× [k`], if both u and v
belong to the same support, then we expect the product
aiuaiv to have a “large” value for most of the sample
indices i ∈ [n]. On the other hand, if u and v belong
to different supports, then aiuaiv will be close to zero
for most i ∈ [n]. Although each ai individually is not a
good estimate for the support of Xi, the averaging over
n makes the estimate reliable. Formally, we construct
the matrix T with entries

Tuv
def
=

1

n

n∑
j=1

ajuajv, (u, v) ∈ [k`]× [k`]. (6)

The key observation here is that the expected value of
the random matrix T has a block structure when the
rows and columns are appropriately permuted, and this
block structure corresponds to memberships of each of
the indices in [k`] to one of the underlying supports.
This is illustrated in Figure 1 for the case when ` = 2,
and we will examine this structure in detail in the next
section. A well-known method to find these member-
ships is to use spectral clustering [16], [10], which
uses properties of the eigenvectors of block-structured
matrices to determine the partition. For instance, when
` = 2, the sign of the second leading eigenvector of E [T ]
provides a way to partition the coordinates in [k`] into
two groups. When ` > 2, spectral clustering makes use
of multiple eigenvectors and a nearest neighbor step to
identify the partition. A full description of the algorithm
in the general case is provided in Algorithm 1. Although
we only have access to T , the eigenvectors of T itself
suffice for clustering, provided we have sufficiently many
samples. We also note that the `-means step in the

Algorithm 1: Multiple support recovery
Input: Measurements {Yi}ni=1, Measurement

matrices {Φi}ni=1, k, `
Output: Support estimates Ŝ1, . . . , Ŝ`

1 Form variance estimates a′1, . . . , a
′
n with entries

a′ji = (Φ>jiYj)
2, i ∈ [d].

2 Compute

λ̃ =
1

n

n∑
i=1

a′i.

Sort entries of λ̃ to get λ̃(1) ≥ · · · ≥ λ̃(d) and
output estimate for union

Ŝun = {(1), . . . , (k`)}.

3 Restrict a′1, . . . , a
′
n to the coordinates in Ŝun, to

get a1, . . . , an. Also, let g : [k`]→ Ŝun denote
the mapping from the coordinates of ai to the
true coordinate in Ŝun.

4 Construct affinity matrix T ∈ Rk`×k` as

T =
1

n

n∑
i=1

aia
>
i .

5 Compute the ` leading eigenvectors v̂1, . . . , v̂` of
T and let these be the columns of V̂ ∈ Rk`×l.

6 (The `-means step) Find
C = arg minU∈U` ‖U − V̂ ‖2F , where U` is the set
of all k`× ` matrices with at most ` distinct
rows.

7 Denote the indices of identical rows of C as sets
Ŝ ′1, . . . , Ŝ ′`. Declare

Ŝi = {g(j) ∈ Ŝun : j ∈ Ŝ ′i}.

algorithm can be implemented using standard algorithms
like Lloyd’s algorithm [8].

IV. SKETCH OF THE ANALYSIS

In this section, we provide an overview of the analysis
of our estimator that leads to Theorem 1. The analysis of
the first step where we recover the union of the supports
follows from [15], after accounting for the fact that
the samples are drawn from a mixture distribution. In
particular, we have the following result as a consequence
of [15, Theorem 3].

Theorem 2. Let Ŝun described in (5) be the estimate for
the union Sun. Then, for every δ > 0,

Pr
(
Ŝun 6= Sun

)
≤ δ,



provided m ≥ (log k`)2 > 1, and

n ≥ c
(
k2`2

m2
log

k`(d− k`)
δ

)
,

for an absolute constant c.

For the second step, our analysis follows that of
spectral clustering in the stochastic block model setting,
and the goal is to show that the eigenvectors of E [T ]
and its “perturbed” version T are close to each other.
This can be shown using the Davis-Kahan theorem from
matrix perturbation theory, which states that the angle
between any two corresponding eigenvectors of T and
E [T ] is small provided the error matrix T − E [T ] has
small spectral norm. The key challenge, therefore, is to
control ‖T − E [T ] ‖op.

Unlike typical settings, the entries of T are not in-
dependent, in addition to being heavy tailed. Standard
methods based on the ε-net argument are, therefore,
difficult to apply in this setting. One strategy to bound
‖T − E [T ] ‖op could be to first show exponential con-
centration around the mean for each entry of T . This
approach however requires a more careful tail splitting
method [19, Exercise 2.1.7]) since the moment gener-
ating function of each summand in (6) is unbounded.
We use a result due to Rudelson [17], that characterizes
the expected value of the quantity ‖T −E [T ] ‖op, when
T is a sum of independent rank-one matrices and only
requires certain moment assumptions on the summands.
This is exactly our setting since (6) can equivalently be
represented as T = (1/n)

∑n
i=1 aia

>
i . An application of

Markov inequality followed by the Davis-Kahan theorem
then shows that the eigenvectors of T and E [T ] are close.

We first show that the expected value of the matrix
constructed in (6) indeed has a block structure deter-
mined by the true supports. Following this, we show the
next result which characterizes the number of samples
required to partition the coordinates in the union into `
disjoint supports, such that error the criterion is met.

Theorem 3. Let ν1 ≥ · · · ≥ νk` denote the ordered
eigenvalues of E [T ], and define ∆` = ν` − ν`+1 when
` ≥ 2. For every ε ∈ [1/`k, 1/`), we can find an
(n, ε, 1/4)-estimator for Σk,`,k` provided

n ≥ cmax{1, ‖E [T ] ‖op}
ε∆2

`

· E
[
max
i∈[n]
‖ai‖22

]
· log k`,

for an absolute constant c.

In the next two lemmas, we bound the spectral
quantities ‖E [T ] ‖op and ∆`, and E

[
maxi∈[n] ‖ai‖22

]
appearing in Theorem 3.

Lemma 1. Under Assumptions 1 and 2, we have

‖E [T ] ‖op ≤ ρ
k2`

m2
+ λ20

k3`

m2
, and ∆` ≥

λ20k

`
.

Lemma 2. For every q ∈ N and i ∈ [n], we

have E [‖ai‖q2] ≤ cq0(Γ(q))2λq0

(
k
√
k`
m

)q
. Further, when

log k ≥ 2, it follows that E
[
maxi∈[n]‖ai‖22

]
≤

n
2

log kE
[
‖a1‖log k2

] 2
log k

.

Proof of Theorem 1. The proof of Theorem 1 now fol-
lows by combining guarantees for the union recovery
step from Theorem 2 and the clustering step from
Theorem 3.

We begin by applying Theorem 2 to get that Ŝun
coincides with Sun = ∪`i=1Si with probability close to
1. Throughout, we condition on this event occurring.
However, to avoid technical difficulties, we assume that
a different set of independent samples is used to recover
Sun than those used to recover S1, . . . ,S` – thus, the
overall number of samples needed will be the sum of
samples needed for union recovery in Theorem 2 and
the sample complexity determined in our analysis below.
In particular, the clustering step roughly dominates the
sample complexity of our algorithm.

Next, upon substituting the bounds from Lemma 1 and
Lemma 2 into Theorem 3, we see that for ε-approximate
recovery of the supports it suffices to have

n ≥ c

ε
λ20
k3`

m2

`2

λ40k
2
· n

2
log k

×
(
λ0
k
√
k
√
`

m
(log k)2

)2

· log(k`)

=
c

ε

k4`4

m4
n

2
log k (log k)4 log(k`).

For n ≥ c((1/ε)(k`/m)4 · (log k)4 log(k`)), n
1

log k =
O(1), which completes the proof in view of the sufficient
condition for n above.

V. DISCUSSION

In this work, we focused on the recovery of equal-
sized, disjoint supports in a measurement-constrained
setting. It would be interesting to extend the algorithm to
handle unequal-sized, overlapping supports. While some
simple heuristics work in practice, we are not aware
of any theoretical results for the m < k setting. Also,
our work shows a sufficient condition on the number
of samples required for multiple support recovery; ob-
taining a matching necessary condition is a challenging
task in general. It requires characterizing the distance
between mixture distributions, and using a component
wise distance bound leads to the same lower bound as
in [15] (with an additional 1/` factor).
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