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Abstract—Data samples from R¢ with common support
of size k are accessed through m linear projections per
sample. In the measurement-starved regime of m < k,
how many samples are needed to recover the common
support? We answer this question for a generative model
with independent samples drawn from a subgaussian prior.
We show that n = ©((k*/m?)log(k(d — k))) samples are
necessary and sufficient to exactly recover the support.
QOur proposed sample-optimal estimator has a closed-form
expression and has computational complexity of O(dnm).

I. INTRODUCTION

A set of n vectors has a common support of cardinality
k that is much smaller than the dimension d of the
vectors. It is easy to find this common support simply
by looking at a single vector. But this will require d
measurements, one for each coordinate of the vector.
As is now well-known, we can make do with m =
O(klogd/k) random linear measurements on a single
vector by using compressive sensing based algorithms,
and thereby recover its support. However, since in our
setting we have multiple samples, we may use fewer
measurements. Can we still recover the unknown support
with k£ overall measurements using m < k measure-
ments per sample (i.e., would nm = k suffice even when
m < k)? We examine this question in a natural Bayesian
setting and answer it in the negative: when m < k, we
will need at least k2 /m overall measurements. Thus, in
sharp contrast with the m > k regime where k£ overall
measurements suffice, a much larger number of overall
measurements are necessary when m < k.

Specifically, consider independent samples
Xq,...,X, where each X; is a zero-mean Gaussian
vector of length d with covariance matrix diag(\). We
assume that the entries \; are either 0 or 1, whereby
the common support of the vectors coincides with the
locations of 1s. We make linear measurements on the
vectors X; using independent random Gaussian matrices
®, with columns that have unit expected squared norms.
The goal is to recover the common support using
measurements Y; = ®,; X;, 1 < i < n. We show that for
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m < ak with a < 1, the minimum number of samples
required to recover the support correctly with large
probability is O((k?/m?)log(k(d — k))).

The sample-optimal estimator we propose entails
forming an estimate A of A and then obtaining the
support by selecting the k largest entries of A. The
estimate \; has a closed-form expression: it is simply the
empirical average ~ >, (®;Y;)? where ®;; denotes
the ith column of the jth measurement matrix. This is in
contrast to the standard Sparse Bayesian Learning (SBL)
approach where maximum likelihood (ML) estimate is
used, which can only be expressed as an (often noncon-
vex) optimization problem. Furthermore, the proposed
estimator works under a much broader setting, one with
subgaussian prior on X7* and subgaussian measurement
matrices, and with additive subgaussian noise.

Our information-theoretic lower bound is obtained
using Fano’s method applied to a difficult case with size-
k supports differing in one entry. The main challenge in
the proof is to characterize the reduction in the distances
between the distributions corresponding to different sup-
ports due to linear measurements. We capture this by a
quantity related to the spectrum of the Gram matrix of
the random Gaussian measurement matrix.

Information-theoretically optimal support recovery in
the single sample setting is well-understood. In partic-
ular, [13] shows that for a deterministic input vector,
©(klog(d — k)) measurements are necessary
and sufficient to exactly recover the support using a
Gaussian measurement matrix, essentially establishing
that support recovery is impossible in the m < k regime
using a single sample. In the multiple sample setting,
[10] showed a lower bound on sample complexity of
support recovery of roughly (k/m), but the results
are not tight for our measurement-starved regime of
m < k. Despite several other works [12], [6], [14], the
question of tradeoff between m and n when m < k
has not been fully addressed. Two initial works in this
direction were [9] and [3], followed by [7] and [I11],
where it was empirically demonstrated that with multiple
samples, it is indeed possible to operate in the m < k
regime. In another recent work closely related to ours
[8], the authors demonstrate the possibility of operating
in the m < k regime. The error exponent, however, is

m =



expressed in terms of the eigenvalues of certain matrices
and its exact dependence on the parameters k, m and d
is not clear. In summary, none of these works shed light
on the sample complexity of support recovery or on the
tradeoff between measurements per sample and overall
measurements.

Our formulation of support recovery in a Bayesian
setting relates naturally to works on covariance esti-
mation. Perhaps the closest to our setting is [2] which
studies the problem of covariance estimation from low-
dimensional projections of the data. However, no struc-
tural assumptions are made on the covariance matrix,
and the general result in [2, Corollary 3] is loose for our
setting. Also, our setting is closely related to the recently
proposed inference under local information constraints
setting of [1]. We impose information constraints on
each sample by allowing only m linear measurements
per sample.

We formulate our problem and present our main result
in the next section. Our estimator and its analysis are
given in Section III, and the proof of lower bound is
in Section IV. We conclude with a discussion on some
interesting extensions in the final section.

II. PROBLEM FORMULATION AND MAIN RESULT

We start with the basic setting of Gaussian prior
with noiseless measurements obtained using Gaussian
sensing matrices. However, as we shall see below, our
results generalize to much broader settings and extend
to subgaussian priors on data, subgaussian measurement
matrices, and subgaussian additive noise.

In the basic setting, the input comprises n independent
samples X1,..., X, in RY, with each X; having a zero-
mean Gaussian distribution. We denote the covariance
of X; by Ky % diag(\, A, ..., \q), where the d-
dimensional vector A has entries A1, Az,..., Ay such
that A € Spa % {Ae€{0,1}? : |Al, = k}. That is,
the (random) data vectors have a common support S =
supp(A) of size at most k. Each X; is passed through
a random m X d measurement matrix ®;, 1 < ¢ < n,
with independent, zero-mean Gaussian entries, and the
observations Y; = ®,;X; € IR™ are made available to
a center. Using the measurements Y7, ...,Y,,, the center
seeks to determine the common support S.

To that end, the center uses an estimate S RmXn
([Z]), where ([z}) denotes the set of all subsets of [d]
of cardinality k. We seek estimators that can recover the
support of A\ accurately with probability of error no more

than 6 % 1/3! namely

Pr (S(Y”) =+ supp()\)) <0, VYAESka (1)

Note that the value § = 1/3 is chosen here for convenience and
can be replaced with any acceptable value below 1/2.

We are interested in sample-efficient estimators. The
next definition introduces the fundamental quantity of
interest for us.

Definition 1 (Sample complexity of support recovery).
For m,k,d € N, the sample complexity of support
recovery n*(m, k,d) is defined as the minimum number
of samples n for which we can find an estimator S
satisfying (1).

Remark 1. Our formulation assumes that we know the
support size k exactly. In fact, our proposed estimator
extends easily to the setting where we only have an upper
bound of k£ on the support size, and we seek to output
a set of size k containing the support.

Our main result is the following.

Theorem 1 (Characterization of sample complexity).
For m < k/2, the sample complexity of support recovery
in the setting above is given by

n*(m, k,d) = © (:; log(k(d — k))) .

We provide the optimal estimator and prove the upper
bound in Section III and the information-theoretic lower
bound in Section IV. In fact, our proof yields a lower
bound for m < ak for any o < 1. Due to lack of space,
we only provide proof sketches.

Our proposed estimator and its analysis applies to
a much broader setting involving subgaussian priors.
Recall that a random variable X is subgaussian with
variance parameter o2, denoted X ~ subG(c?), if
logE [ee(X*E[X])} < 62?02 /2 for all § € R. For X7, we
can use any prior with subgaussian distributed entries,
i.e., the entries of X; are independent and zero-mean
with E [X7,] = A; for A € Sy 4 and X, j ~ subG(X)),
where /\;- is the variance parameter for the subgaussian
random variable X; ;. Our analysis will go through as
long as A = ©(X), namely the variance and variance
parameters differ only up to a constant factor.

Also, the measurement matrices ®;s can be chosen
to have independent, zero-mean subgaussian distributed
entries in place of Gaussian. However, as above, we
assume that the variance and variance factor of each
entry are the same up to a multiplicative constant factor.
Further, we assume the fourth moment to be of the order
of the square of the variance. Two important ensembles
satisfy these properties: the Gaussian ensemble and the
Rademacher ensemble.

Finally, we can allow noisy measurements Y; =
P, X; +W; € R™ where the noise W; has independent,
zero-mean subgaussian entries independent of X; and
®;, with variance parameter o2.

We present the upper bound for this more general
setting, along with our proposed estimator, in Sec. III.



III. THE ESTIMATOR AND ITS ANALYSIS

We will work with the more general setting described
above with subgaussian random variables, where we
assume that the variance and variance parameters are
of the same order. For simplicity, we assume that X ;
and W, are subgaussian with variance parameter equal
to their respective variances. Also, for the measurement
matrix, we work with the same parameters as those for
the Gaussian ensemble and set E [®;(u,v)?] = 1/m,
E [®;(u,v)*] = 3/m? and assume that ®;(j, k) is sub-
gaussian with variance parameter 1/m. These assump-
tions of equality can be relaxed to order equality up to
multiplicative constants.

A. The estimator

We now present our closed-form estimator for A.
To build heuristics, consider the trivial case where we
can directly access samples {X;}? ;. Then, a natural
estimate for variance \; will be the sample variance. But
in our setting, we only have access to the measurements
{Y;}_,. We compute the vector ®,Y; and treat it as a
“proxy” for X;. When @ ®; = I, this proxy will indeed
coincide with X;. We compute the sample variances
using these new proxy samples and use it to find the
estimate for the support of A.

Formally, we consider the estimate A for the covari-
ance matrix of X;’s givenby A = 137" | ®7Y;Y;[®;.
Note that A is positive semidefinite. We form an inter-
mediate estimate A for the variance vector A\ using the
diagonal entries of A as follows:
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where ®;; denotes the ith column of &®;. Since we
are only interested in estimating the support, we simply
declare the indices of the largest k entries of X as the sup-
port, namely we sort \ to get /\(1) > /\(2) > > /\(d)
and output

S ={1),...(k)}, (2)

where (i) denotes the index of the ith largest entry in .
Note that evaluating )\; requires O(nm) steps, whereby
the overall computational complexity of (naively) eval-
uating our proposed estimator is roughly O(dnm).
While computationally tractable, analyzing our pro-
posed estimator directly may not be easy. Instead, we
analyze an alternative thresholding-based estimator:

3)

Unfortunately, the threshold we will choose can depend
on the set S itself, making the estimator of (3) infeasible
in practice. Nonetheless, we note that if A = A, the

Ai = L, >y

largest k entries of A must coincide with the support
of . Therefore,

Pr (S # supp(A)) < Pr ($ # supp(n)) . (&)

Using this observation, it suffices to analyze the estima-
tor A in (3), which will be our focus below.

An easy calculation shows that )\; is a biased estimate
of )\;. In particular, we have

< 1 k
E %] _mrly + oot ield,
m
where the expectation is with respect to the joint distri-
bution of {X7", T, W'}, We work with this biased A

and account for the bias in the threshold .

B. And its analysis

A high level overview of our analysis is as follows. We
first note that, conditioned on the measurement matrices,
the entries of \ are sums of independent, subexponential
random variables. If we can ensure that there is sufficient
separation between the typical values of A; in the i €
S and i € S¢ cases, we can find a threshold 7 that
can distinguish between the two cases. We show that
such a separation holds with high probability for our
subgaussian measurement matrix.

We now present the performance of our estimator.

Theorem 2. Let \ be the estimator described in (3), and
let S be its support. Then, S equals the true support with
probability at least 1 — § provided

2
n> C(k +02) log A=)
m 1)

for an absolute constant c.

Note that the result above applies for all & and m,
and not only to our regime of interest £k < m. Using
(4), we get the same performance guarantees for our
estimator (2). In particular, for o2 = 0, we obtain the
upper bound claimed in Theorem 1.

The proof of Theorem 2 entails a careful analysis of
tails of A\; and uses standard subgaussian and subexpo-
nential concentration bounds. The details are tedious and
are relegated to the longer version of the paper. Below,
we provide a brief outline, highlighting the main steps.

Denoting by S the support of A and by S the support

of \, Pr (3 #* S) can be bounded as

Pr(S;ﬁS) SZPr(S\i<T)+ Z Pr(S\i/ 27’).
i€S i’ese

(&)

Our approach entails deriving tail bounds for A, and

then choosing a threshold 7 to obtain the desired bound

for (5); we derive lower tail bounds for ¢ € S and upper
tail bounds for i’ € S°.



To that end, note

-1y (x
j=1 *les
where we used Y; = ®; X;+W;. We proceed by observ-
ing that conditioned on ®7, i is a sum of independent
subexponential random variables. Recall that a random
variable X is subexponential with parameters v> and b,
denoted X ~ subexp(v?,b), if E[exp(d(X —EX))] <
exp (#%v?/2), for || < 1/b. Using basic properties
of subexponential random variables and the connection
between subgaussian and subexponential random vari-
ables, we get that conditioned on measurement ma-

trices ®7, the random variable \; is distributed as

2
Z(I) (I)jl +(I)sz> )

subexp , where ¢ and ¢y are

2 Z] 1 ]27 n m?‘rﬁa

absolute constants and

15ill3 + D (®)250)* +0®[[@5ill3, i€ S,
ol = leS\{i}
7 Z((D;'l;@ji)Q +0?||®;;]|3, otherwise.
les

The next lemma follows from standard concentration
bounds for subexponential random variables.

Lemma 1. Using our foregoing notations and denoting
0 Y E {/\ \@”] =1y a2iicld) foric s,

P(\; < 7|®7)
2(,,. _ )2 R
<o - i {25 20111
C T 6 max o
b= 2
and for i € S¢,

P(Ay > 7|®7)
2 )2 o
Sexp<—min{n (Tn uzz 7 n(r ME) })
€1 ijl Oy CoMaX oy
j€[n]

Thus, using (5), we can obtain bounds for the error
probability by showing that with large probability &7
takes values for which we get each term above bounded
by roughly ¢/(2max{(d — k), k}). In particular, using
a manipulation of the expression for exponents, each of
the conditional probability above will be less than ¢ if
7 satisfies the following condition for any ¢ € S and
i e 8% py + vy <7 < p; —v;, where

def

1 C2
V; = max 4 2

"

This sufficient condition can be rewritten as

n n
1 Z 2 1 Z 2
n 4 n <

J=1 Jj=1

1 1 n 1 n
/ 4 4
chng EZ(XJ,L‘F ﬁza-“/ 5
j=1 j=1
where ¢ = max{cy,c2}. Indeed, this condition holds
with large probability for an appropriate choice of n.

Lemma 2. For fixed i € S and i' € 5S¢, (6) holds with
probability at least 1 — 6 if n > c(k/m + %)% log %.

Theorem 2 follows from Lemma 2 and a union bound.
Also note that the separation condition (6) fails to hold
for n = 1, regardless of which measurement ensemble is
used. This is to be expected in view of the lower bound
when m < k, which we prove next.

IV. SKETCH OF PROOF OF THE LOWER BOUND

We now provide a proof sketch for the lower bound
for sample complexity implied by Theorem 1. Recall that
each ®; has independent, zero-mean Gaussian entries
with variance 1/m. Denote by Sy the set {1,...,k} and
by S;;,1 <i < k < j <d, the set obtained by replacing
the element 4 in Sy with j from S§. Let U be distributed
uniformly over the pairs {(7,7) : 1 <i <k, k+1<j <
d}. The unknown support is set to be Sy; the random
variables X" and linear measurements Y; = o, .X; are
generated as before.

We consider the Bayesian hypothesis testing problem
where we observe Y™ and seek to determine U. Any
fixed support estimator S with probability of error less
than 0 will give an estimate U for U, and clearly,
Pr(U #* U) = Pr (5‘7& SU), which must be less
than §. Now, by Fano’s inequality and convexity of the
Kullback-Leibler (KL) divergence, we get
I(Yymu)+1
log(k(d — k)

-1 max,, D(Pynlsu Pynlso) +1

- log(k(d — k)) ’
where Py« g denotes the distribution of Y™ when the
support of A is S. Note that Pyn|s = []i_; Py,|s with
each Py,s having the same distribution, denoted by
Py|s. Thus, D(Pyn s, [[Pyns,) = nD(Pys, [Py|s,)-

Next, we bound D(Py g, ||Py|s,). Denote by &g the
m x k submatrix of ® obtained by restricting to the
columns in S and by Ag the Gram matrix ‘bg‘bg of ®g.
Further, let a; > ... > a,, >0and by > ... > b, >0
be the eigenvalues of Ag, and Ag,, respectively. Note
that a,, > 0 and b,, > 0 hold with probability 1.

Denoting by Pys,¢ the conditional distribution of ¥’
when the measurement matrix is fixed to ¢, we get

D(Py|s,.0[Pyis,,)
1 Ag
=_ <lo [As,| +Tr(Agl Ag,) — m)
|As,| 0

Pr(U#U)El—
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where the first inequality holds since for symmetric,
positive-definite matrices A and B with eigenvalues
a; > > a,, and by > > by,, respectively,
Tr(AB) < >, a;b;. Using convexity of KL diver-
gence, the Cauchy-Schwarz inequality, and the fact that
a;s and b;s are identically distributed, we can get

1 Ui (ai — bl)z
D(PY\SH||PY|SO) < §E ; T

Note that the expression on the right does not depend
on our choice of u; we fix v = (1,k 4+ 1). With an
abuse of notation, we denote by ®; the jth column of
random matrix ® with A(0,1/m) distributed entries.
Using Cauchy-Schwarz inequality, we get

m 1_()7{2
E Z(GT)

i=1 m

Ve e[Sy

i=1

By the Hoffman-Wielandt inequality [5], we have
St (a; — b)* < ||As, — As,||% where the right-
side coincides with [|[®1®] — @41 P, || Using the
triangle inequality for Frobenius norm and noting that

@@ |+ equals || ®;]|3 for a vector ®;, we get

m

i=1 m
1
S C/ E |:4:|7
A,

where the last inequality uses the expression for the
fourth moment of a chi-square random variable.

It only remains to bound E [1/aZ,|, where a,, is the
smallest eigenvalue of the (m x m) Wishart matrix Ag, .
By using a tail-bound for the minimum eigenvalue of a
Wishart matrix [4, Lemma 4.1], we get

C//m4
Ela ! < ———.
[am ] = k(1 — m/k)®

By combining all the steps above, we get

cnm2
RomyRE T 1
log(k(d— F)) ’

for a constant ¢, which yields the desired bound.

52Pr(5‘7éSU)21—

V. DISCUSSION

Our sample complexity result implies that independent
measurements applied to the same sample are much
more helpful than those applied to independent samples.
There are several possible extensions of our results.

First, one can consider using the same measurement
matrix for all samples. In this case, we observe empiri-
cally that our estimate does not perform well, but we do
not have a theoretical understanding of this phenomenon
(see [2, Proposition 2] for a related discussion). Next, our
current results are tight only for the high SNR case of
o2 < k/m; it will be of interest to get optimal bounds for
all 2. Also, it would be interesting to extend our results
to nonbinary A\, where only a lower bound is assumed for
nonzero entries of A. Finally, one can study the problem
of support recovery when k is unknown.
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