
Wyner-Ziv Estimators: Efficient Distributed Mean Estimation
with Side Information

Prathamesh Mayekar
Indian Institute of Science
prathamesh@iisc.ac.in

Ananda Theertha Suresh
Google Research

theertha@google.com

Himanshu Tyagi
Indian Institute of Science

htyagi@iisc.ac.in

Abstract
Communication efficient distributed mean estimation is an important primitive that arises

in many distributed learning and optimization scenarios such as federated learning. Without
any probabilistic assumptions on the underlying data, we study the problem of distributed
mean estimation where the server has access to side information. We propose Wyner-Ziv
estimators, which are communication and computationally efficient and near-optimal when
an upper bound for the distance between the side information and the data is known. As a
corollary, we also show that our algorithms provide efficient schemes for the classic Wyner-Ziv
problem in information theory. In a different direction, when there is no knowledge assumed
about the distance between side information and the data, we present an alternative Wyner-Ziv
estimator that uses correlated sampling. This latter setting offers universal recovery guarantees,
and perhaps will be of interest in practice when the number of users is large and keeping track
of the distances between the data and the side information may not be possible.

1

prathamesh@iisc.ac.in
theertha@google.com
 htyagi@iisc.ac.in


Contents
1 Introduction 3

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries and the structure of our protocols 7

3 Distributed mean estimation with known ∆ 8
3.1 Modulo Quantizer (MQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Rotated Modulo Quantizer (RMQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Subsampled RMQ: A Wyner-Ziv quantizer for Rd . . . . . . . . . . . . . . . . . . . . 11
3.4 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Distributed mean estimation for unknown ∆ 13
4.1 The correlated sampling idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Distance Adaptive Quantizer (DAQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Rotated Distance Adaptive Quantizer (RDAQ) . . . . . . . . . . . . . . . . . . . . . 14
4.4 Subsampled RDAQ: A universal Wyner-Ziv quantizer for unit Euclidean ball . . . . 16

5 The high-precision regime 17
5.1 RMQ in the high-precision regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Boosted RDAQ: RDAQ in the high-precision regime. . . . . . . . . . . . . . . . . . . 18

6 The Gaussian Wyner-Ziv problem 20

7 Proofs of results 21
7.1 Proof of Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.3 Proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.4 Proof of Lemma 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.5 Proof of Theorem 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.6 Proof of Lemma 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.7 Proof of Lemma 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.8 Proof of Lemma 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.9 Proof of Lemma 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.10 Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2



1 Introduction
1.1 Background
Consider the problem of distributed mean estimation for n vectors {xi}ni=1 in Rd, where xi is
available to client i. Each client communicates to a server using a few bits to enable the server to
compute the empirical mean

x̄ = 1
n

n∑
i=1

xi. (1)

This estimation problem has become a crucial primitive for distributed optimization scenarios
such as federated learning, where the data is distributed across multiple clients (see Bottou (2010),
Kairouz et al. (2019), Konečnỳ et al. (2016), Alistarh et al. (2017), Ramezani-Kebrya et al. (2019),
Gandikota et al. (2019), Basu et al. (2019), Seide et al. (2014), Wang et al. (2018), Stich et al. (2018),
Wen et al. (2017), Wangni et al. (2018), Lu and De Sa (2020), Vogels et al. (2019), Acharya et al.
(2019)). One of the main bottlenecks in such distributed scenarios is the significant communication
cost incurred due to client communication at each iteration of the distributed algorithm. This has
spurred a recent line of work which seeks to design quantizers to express xis using a low precision
and, yet, enable the server to compute a high accuracy estimate of x̄ (see Suresh et al. (2017),
Konečnỳ and Richtárik (2018), Chen et al. (2020), Huang et al. (2019), Mayekar and Tyagi (2020b),
Safaryan et al. (2020), Albasyoni et al. (2020), and the references therein).

Most of the recent works on distributed mean estimation focus on the setting where the server
must estimate the sample mean based on the client vectors, and nothing else. However, in practice,
the server may also have access to some side information. For example, consider the task of training
a machine learning model based on remote client data as well as some publicly accessible data. At
each iteration, the server communicates its global model to the client, based on which the clients
compute their updates (the gradient estimates based on their local data), compress them, and then
send them to the server. The server may choose to compute its own update using the publicly
available dataset to complement the updates from the client. In a related setting, the server can use
the previously received gradients as side information for the next gradients expected from the clients.
Similarly, distributed mean estimation with side information can be used for variance reduction in
other problems such as power iteration or parallel SGD (cf. Davies et al. (2020)).

Motivated by these observations, for the distributed mean estimation problem described at the
start of the section, we study the setting in which the server has access to the side information
{yi}ni=1 in Rd, in addition to the communication from clients. Here, yi can be viewed as server’s
initial estimate (guess) of xi. We emphasize that the side information yi is available only to the
sever and can, therefore, be used for estimating the mean at the server, but is not available to the
clients while quantizing the updates {xi}ni=1.

1.2 The model
Consider the input x := (x1, . . . , xn) and the side information y := (y1, . . . , yn). The clients use
a communication protocol to send r bits each about their observed vector to the server. For the
ease of implementation, we restrict to non-interactive protocols. Specifically, we allow simultaneous
message passing (SMP) protocols π = (π1, ..., πn) where the communication Ci = πi(xi, U) ∈ {0, 1}r

3



of client1 i, i ∈ [n], can only depend on its local observation xi and public randomness U . Note
that the clients are not aware of side information y, which is available only to the server. In effect,
the message Ci is obtained by quantizing xi using an appropriately chosen randomized quantizer.
Denoting the overall communication by Cn := (C1, C2, ..., Cn), the server uses the transcript (Cn, U)
of the protocol and the side information y to form the estimate of the sample mean2 ˆ̄x = ˆ̄x(Cn, U,y);
see Figure 1 for a depiction of our setting. We call such a π an r-bit SMP protocol with input (x,y)
and output ˆ̄x.

(y1, . . . , yn)

Server

x1

Client 1

x2

Client 2

xn

Client n

Figure 1: Problem setting of mean estimation with side information

We measure the performance of protocol π for inputs x and y and output ˆ̄x using mean squared
error (MSE) given by

E(π,x,y) := E
[
‖ˆ̄x− x̄‖22

]
,

where the expectation is over the public randomness U and x̄ is given in (1). We study the MSE of
protocols for x and y such that the Euclidean distance between xi and yi is at most ∆i, i.e.,

‖xi − yi‖2 ≤ ∆i, ∀ i ∈ [n]. (2)

Denoting ∆ := (∆1, . . . ,∆n), we are interested in the performance of our protocols for the following
two settings:

1. The known ∆ setting, where ∆i is known to client i and the server;
2. The unknown ∆ setting, where ∆is are unknown to everyone.
In both these settings, we seek to find efficient r-bit quantizers for xi that will allow accurate

sample mean estimation. In the known ∆ setting, the quantizers of different clients can be chosen
using the knowledge of ∆; in the unknown ∆ setting, they must be fixed irrespective of ∆.

In another direction, we distinguish the low-precision setting of r ≤ d from the high-precision
setting of r > d. The former is perhaps of more relevance for federated learning and high-dimensional
distributed optimization, while the latter has received a lot of attention in the information theory
literature on rate-distortion theory.

As a benchmark, we recall the result for distributed mean estimation with no side-information
from Suresh et al. (2017). When all xis lie in the Euclidean ball of radius 1, Suresh et al. (2017)
showed that the minmax MSE in the no side-information case is

Θ
(
d

nr

)
. (3)

1[n] := {1, . . . , n}.
2While side information yi is associated with client i, we do not enforce this association in our general formulation

at this point.

4



1.3 Our contributions
Drawing on ideas from distributed quantization problem in information theory (cf. Wyner and
Ziv (1976)), specifically the Wyner-Ziv problem, we present Wyner-Ziv estimators for distributed
mean estimation. In the known ∆ setting, for a fixed ∆, and the low-precision setting of r ≤ d, we
propose an r-bit SMP protocol π∗k which satisfies3

E(π∗k ,x,y) = O

(
n∑
i=1

∆2
i

n
· d log logn

nr

)
,

for all x and y satisfying (2). Thus, in the case where all xis lie in the Euclidean ball of radius
1, we improve upon the optimal estimator for distributed mean estimation (3) in the regime∑n

i=1
∆2
i log logn

n ≤ 1. Our estimator is motivated by the classic Wyner-Ziv problem, and hence, we
refer to it as the Wyner-Ziv estimator. The details of the algorithm are given in Section 3.3.

Our protocol uses the same (randomized) r-bit quantizer for each client’s data and simply uses
the sample mean of the quantized vectors as the estimate for x̄. Furthermore, the common quantizer
used by the clients is efficient and has nearly linear time-complexity of O(d log d). Our proposed
quantizer first applies a random rotation (proposed in Ailon and Chazelle (2006)) to the input
vectors xi at client i and the side information vector yi at the server. This ensures that the ∆i

upper bound on the `2 distance of xi and yi is converted to roughly a ∆i/
√
d upper bound on the

`∞ distance between xi and yi. This then enables us to use efficient one-dimensional quantizers for
each coordinate of the xi, which can now operate with the knowledge that the server knows a yi
with each coordinate within roughly ∆i/

√
d of xi’s coordinates.

Moreover, we show that this protocol π∗k has optimal (worst-case) MSE up to an O(log logn)
factor. That is, we show that for any other r-bit SMP protocol π for r ≤ d, we can find x and y
satisfying (2) such that

E(π,x,y) = Ω
(

min
i∈{1,...,n}

∆2
i ·

d

nr

)
.

In the unknown ∆ setting, we propose a protocol π∗u which adapts to the unknown distance ∆i

between xi and yi and, remarkably, provides MSE guarantees dependent on ∆. Specifically, for the
low-precision setting of r ≤ d, the protocol satisfies4

E(π∗u,x,y) = O

(
n∑
i=1

∆i

n
· d ln∗ d

nr

)
,

for all x and y in the unit Euclidean ball B := {x ∈ Rd : ‖x‖2 ≤ 1} and satisfying (2). Thus,
we improve upon the optimal estimator for the no side information counterpart (3) in the regime∑n

i=1
∆i ln∗ d

n ≤ 1. Once again, the quantizer employed by the protocol is efficient and has nearly
linear time-complexity of O(d log d). At the heart of our proposed quantizer is the technique of
correlated sampling from Holenstein (2009) which enables to derive a ∆ dependent MSE bound.

Furthermore, both our quantizers can be extended to the high-precision regime of r > d. The
quantizer for the known ∆ setting directly extends by using r/d bits per dimension. The MSE of

3We denote by log(·) logarithm to the base 2 and by ln(·) logarithm to the base e.
4We denote by ln∗(a) the minimum number of iterated logarithms to the base e that must be applied to a to make

it less than 1.

5



the SMP protocol using this quantizer for all the clients is only a factor of logn + r/d from the
lower bound derived in Davies et al. (2020) for the high-precision regime. The quantizer for the
unknown ∆ setting can be extended by sending the “type” of the communication vector, following
an idea proposed in Mayekar and Tyagi (2020a). The MSE of the SMP protocol using this quantizer
for all the clients falls as 2−r/d ln∗ d as opposed to d/r that can be obtained using naive extensions
of our quantizer.

Finally, in a different direction, we revisit the classic Gaussian rate-distortion problem (cf.Oohama
(1997)) in information theory. In this problem, the encoder observing an Gaussian vector X wants
to send it to a decoder observing a correlated Gaussian vector Y using r bits. Using the quantizer
developed in the known ∆ setting, we obtain an efficient scheme for this classic problem which re-
quires a minuscule excess rate over the optimal asymptotic rate. Our scheme for this classic problem
is interesting for two reasons: The first that it gives almost optimal result while using “covering”
for each coordinate separately and hence is computationally efficient. All the existing schemes
rely on high-dimensional covering constructed using structured codes and are not computationally
efficient. The second reason is that we do not require the distribution to be exactly Gaussian and
subgaussianity suffices.

1.4 Prior work
The known ∆ setting described above was first considered in Davies et al. (2020). The scheme
of Davies et al. (2020) relies on lattice quantizers with information theoretically optimal covering
radius. Explicit lattices to be used and computationally efficient decoding is not provided.

In contrast, we provide explicit computationally efficient protocols for both low- and high-
precision settings. Also, we establish lower bounds showing the optimality of our quantizer upto a
multiplicative factor of log logn in the low-precision regime of r ≤ d . In comparison, the scheme of
Davies et al. (2020) is off by a factor of dr from this lower bound. Thus, when r � d, our scheme
performs significantly better than that in Davies et al. (2020). We remark that the unknown ∆
setting, which is perhaps more important in certain applications where estimating the distance of
side information of each client is infeasible, has not been considered before.

In the classic information theoretic setting, related problems of quantization with side information
at the decoder have been considered in rate-distortion theory starting with the seminal work of Wyner
and Ziv (Wyner and Ziv, 1976). Practical codes for settings where the observations are generated
from known distributions have been constructed using channel codes; see, for instance, Korada and
Urbanke (2010); Ling et al. (2012); Liu and Ling (2015); Pradhan and Ramchandran (2003); Zamir
et al. (2002). However, these codes are computationally too expensive for our setting, cannot be
directly used for our distribution-free setup, and are designed for the high-precision setting of r > d.
We remark that the scheme proposed in Davies et al. (2020) is similar to lattice schemes in Ling
et al. (2012); Liu and Ling (2015); Zamir et al. (2002).

The version of the distributed mean estimation problem with no side information at the server
has been extensively studied. For any protocol in this setting operating with a precision constraint of
r ≤ d bits per client, using a strong data processing inequality from Duchi et al. (2014), Suresh et al.

(2017) shows a lower bound on MSE of Ω
(
d

nr

)
, when all xis lie in the Euclidean ball of radius

one. Suresh et al. (2017) propose a rotation based uniform quantization scheme which matches
this lower bound up to a factor of log log d for any precision constraint r. This upper bound is
further improved by a random rotation based adaptive quantizer in Mayekar and Tyagi (2020b) to a

6



much tighter log log∗ d factor. For a precision constraint of r = Θ(d), the variable-length quantizers
proposed in Suresh et al. (2017), Alistarh et al. (2017), Ramezani-Kebrya et al. (2019) as well as
the fixed-length quantizers in Mayekar and Tyagi (2020a), Gandikota et al. (2019) are order-wise
optimal.

Our results for the low-precision regime in known ∆ setting are provided in Section 3 and
in the unknown ∆ setting are provided in Section 4. In Section 5, we extend our results to the
high-precision regime. In Section 6, we provide an application of the quantizer developed for the
known-setting to the Gaussian Wyner-Ziv problem. Finally, we close with all the proofs in Section 7.
Before presenting these results, we review some preliminaries in the next section.

2 Preliminaries and the structure of our protocols
While our lower bound for the known ∆ setting holds for an arbitrary SMP protocol, both the
protocols we propose in this paper, for the known ∆ and the unknown ∆ settings, have a common
structure. We use r-bit quantizers to form estimates of xis at the server and then compute the
sample mean of the estimates of xis. To describe our protocols and facilitate our analysis, we begin
by concretely defining the distributed quantizers needed for this problem. Further, we present a
simple result relating the performance of the resulting protocol to the parameters of the quantizer.

An r-bit quantizer Q for input vectors in X ⊂ Rd and side information Y ⊂ Rd consists of
randomized mappings5 (Qe, Qd) with the encoder mapping Qe : X → {0, 1}r used by the client to
quantize and the decoder mapping Qd : {0, 1}r × Y → X used by the server to aggregate quantized
vectors. The overall quantizer Q is given by the composition mapping Q(x, y) = Qd((Qe(x), y).

In our protocols, for input x and side information y, client i uses the encoder Qe
i for the r-bit

quantizer Qi to send Qe
i (xi). The server uses Qe

i (xi) and yi to form the estimate x̂i = Qi(xi, yi) of
xi. We assume that the randomness used in quantizers Qi for different i is independent, whereby x̂i
are independent of each other for different i. Then server finally forms the estimate of the sample
mean as

ˆ̄x := 1
n

n∑
i=1

x̂i. (4)

For any quantizer Q, the following two quantities will determine its performance when used in
our distributed mean estimation protocol:

α(Q; ∆) := sup
x∈X ,y∈Y:‖x−y‖2≤∆

E
[
‖Q(x, y)− x‖22

]
,

β(Q; ∆) := sup
x∈X ,y∈Y:‖x−y‖2≤∆

‖E [Q(x, y)− x] ‖22,

where the expectation is over the randomization of the quantizer. Note that α(Q; ∆) can be
interpreted as the worst-case MSE and β(Q,∆) the worst-case bias over x ∈ X and y ∈ Y such that
‖x− y‖2 ≤ ∆.

The result below will be very handy for our analysis.

5We can use public randomness U for randomizing.

7



Lemma 2.1. For x ∈ Xn and y ∈ Yn satisfying (2) and r-bit quantizers Qi, i ∈ [n], using
independent randomness for different i ∈ [n], the estimate ˆ̄x in (4) and the sample mean x̄ in (1)
satisfy

E
[
‖ˆ̄x− x̄‖22

]
≤

n∑
i=1

α(Qi; ∆i)
n2 +

n∑
i=1

β(Qi; ∆i)
n

.

3 Distributed mean estimation with known ∆
In this section, we present our Wyner-Ziv estimator for the known ∆ setting. As described in
Section 2, we use the the same (randomized) quantizer across all the clients and form the estimate
of sample mean as in (4). We only need to define the common quantizer used by all the clients,
which we do in Section 3.3. In Sections 3.1 and 3.2, we provide the basic building blocks of our final
quantizer. Further, in Section 3.4, we derive a lower bound for the worst-case MSE that establishes
the near-optimality of our protocol. Throughout we restrict to the low-precision setting of r ≤ d.

3.1 Modulo Quantizer (MQ)
The first subroutine used by our larger quantizer is the Modulo Quantizer (MQ). MQ is a one
dimensional distributed quantizer that can be applied to the input x ∈ R with side information
y ∈ R. We give an input parameter ∆′ to MQ where |x− y| ≤ ∆′. In addition to ∆′, MQ also has
the resolution parameter k and the lattice parameter ε as inputs.

For an appropriate ε to be specified later, we consider the lattice Zε = {εz : z ∈ Z}. For a given
input x, the encoder Qe

M finds the closest points in Zε larger and smaller than x. Then, one of these
points is sampled randomly to get an unbiased estimate of x. The sampled point will be of the form
z̃ε, where z̃ is in Z. We note that the chosen point z̃ satisfies

εE [z̃] = x and
|x− εz̃| < ε, almost surely. (5)

The encoder sends w = z̃ mod k to the decoder, which requires log k bits.
Upon receiving this w, the decoder Qd looks at the set Zw,ε = {(zk+w) · ε : z ∈ Z} and decodes

the point closest to y, which we denote by QM(x, y). Note that declaring y will already give a MSE
of less than ∆. A useful property of this decoder is that its output is always within a bounded
distance from y; namely, since in Step 1 of Alg. 3 we look for the closest point to y in the lattice
Zw,ε := {(zk + w) · ε : z ∈ Z}, the output QM(x, y) satisfies

|QM(x, y)− y| ≤ kε, almost surely. (6)

We summarize MQ in Alg. 2 and 3.
The result below provides performance guarantees for QM. The key observation is that the output

QM(x, y) of the quantizer equals z̃ε with z̃ found at the encoder, if ε is set appropriately.

Lemma 3.1. Consider the Modulo Quantizer QM described in Alg. 2 and 3 with parameter ε set to
satisfy

kε ≥ 2(ε+ ∆′). (7)

8



Require: Input x ∈ R, Parameters k, ∆′, and ε
1: Compute zu = dx/εe, zl = bx/εc

2: Generate z̃ =
{
zu, w.p. x/ε− zl
zl, w.p. zu − x/ε

3: Output: Qe
M(x) = z̃ mod k

Algorithm 2: Encoder Qe
M(x) of MQ

Require: Input w ∈ {0, . . . , k − 1}, y ∈ R
1: Compute ẑ = arg min{|(zk + w) · ε− y| : z ∈ Z}
2: Output: Qd

M(w, y) = (ẑk + w)ε

Algorithm 3: Decoder Qd
M(w, y) of MQ

Then, for every x, y in R such that |x− y| ≤ ∆′, the output QM(x, y) of MQ satisfies

E [QM(x, y)] = x and
|QM(x, y)− x| ≤ ε, almost surely.

In particular, we can set ε = 2∆′/(k − 2), to get |QM(x, y) − x| ≤ 2∆′/(k − 2). Furthermore, the
output of QM can be described in log k bits.

We close with a remark that the modulo operation used in our scheme is the simplest and
easily implementable version of classic coset codes obtained using nested lattices used in distributed
quantization (cf. Forney (1988); Liu (2016); Zamir et al. (2002)) and was used in Davies et al. (2020)
as well.

3.2 Rotated Modulo Quantizer (RMQ)
We now describe Rotated Modulo Quantizer (RMQ). RMQ and the subsequent quantizers in this
section will be used to quantize input vector x in Rd with side information y in Rd, where ‖x−y‖2 ≤ ∆.
RMQ first preprocesses the input x and side information y by randomly rotating them and then
simply applies MQ for each coordinate. For rotation, we multiply both x and y with a matrix R
given by

R = 1√
d
·HD, (8)

where H is the d× d Walsh-Hadamard Matrix (see Horadam (2012))6 and D is a diagonal matrix
with each diagonal entry generated uniformly from {−1,+1}. Note that we use public randomness7

to generate the same D at both the encoder and the decoder. We formally describe the quantizer
in8 Alg. 4 and 5.

6We assume that d is a power of 2. If it isn’t, we can pad the vector by zeros to make it a power of 2; even in the
worst-case, this only doubles the required bits.

7In practice, this can be implemented by using the same seed for pseudo-random number generator at encoder and
decoder.

8We denote by (e1, ..., ed) the standard basis of Rd.

9



Remark 1. We remark that the vector R (x− y) has zero mean subgaussian coordinates with a
variance factor of ∆2/d. This implies that for all coordinates i in [d], we have

P (|R (x− y) (i)| ≥ ∆′) ≤ 2e−
∆′2d
2∆2

(see, for instance, (Boucheron et al., 2013, Theorem 2.8)). This observation allows us to use
∆′ ≈ ∆/

√
d for MQ applied to each coordinate.

Require: Input x ∈ Rd, Parameters k and ∆′
1: Sample R as in (8) using public randomness
2: x′ = Rx
3: Output: Qe

M,R(x) = [Qe
M(x′(1)), . . . , Qe

M(x′(d)]T using parameters k, ε, and ∆′ for Qe
M

of Alg. 2

Algorithm 4: Encoder Qe
M,R(x) of RMQ

Require: Input w ∈ {0, . . . , k − 1}d, y ∈ Rd,
Parameters k and ∆′

1: Get R from public randomness.
2: y′ = Ry

3: Output: Qd
M,R(w, y) = R−1

∑
i∈[d]

Qd
M(w(i), y′(i))ei

using parameters k, ε, and ∆′ for Qd
M of Alg. 3,

Algorithm 5: Decoder Qd
M,R(w, y) of RMQ

Lemma 3.2. Fix ∆ ≥ 0. Let QM,R be RMQ described in Alg. 4 and 5. Then, for9 k ≥ 4, δ ∈ (0,∆),
∆′ =

√
6(∆2/d) ln(∆/δ) and the parameter ε of MQ set to ε = 2∆′/(k−2), we have for X = Y = Rd

that

α(QM,R; ∆) ≤ 24 ∆2

(k − 2)2 ln ∆
δ

+ 154 δ2 and

β(QM,R; ∆) ≤ 154 δ2.

Furthermore, the output of quantizer QM,R can be described in d log k bits.

Remark 2. The choice of ∆′ in the first statement of the Lemma 3.2 is based on Remark 1. We note
that δ is a parameter to control the bias incurred by our quantizer. By setting ∆′ = ∆ we can get
an unbiased quantizer, but it only recovers the performance obtained by simply using MQ for each
coordinate, an algorithm considered in Davies et al. (2020) as well.

9In the proof, we provide a general bound which holds for all k.

10



3.3 Subsampled RMQ: A Wyner-Ziv quantizer for Rd

Our final quantizer is a modification of RMQ of previous section where we make the precision less
than r bits by randomly sampling a subset of coordinates. Specifically, note that Qe

M,R(x) sends d
binary strings of log k bits each. We reduce the resolution by sending only a random subset S of
these strings. This subset is sampled using shared randomness and is available to the decoder, too.
Note that Qd

M,R applies Qd
M to these strings separately; now, we use Qd

M to decode the entries in S
alone. We describe the overall quantizer in Alg. 6 and 7.

Require: Input x ∈ R, Parameters k, ∆′, and µ
1: Sample S ⊂ [d] u.a.r. from all subsets of [d] of cardinality µd and sample R as in (8)

using public randomness
2: Output: Qe

WZ(x) = {Qe
M(Rx(i)) : i ∈ S} using parameters k, ε, and ∆′ for Qe

M of Alg. 2

Algorithm 6: Encoder Qe
WZ(x) of subsampled RMQ

Require: Input w ∈ {0, . . . , k − 1}µd, y ∈ R
1: Get S and R from public randomness
2: Compute x̃ = (Qd

M(w(i), Ry(i)), i ∈ S) using parameters k, ε, and ∆′ for Qd
M of Alg. 3

3: x̂R = 1
µ

∑
i∈S (x̃(i)−Ry(i)) ei +Ry

4: Output: Qd
WZ(w, y) = R−1x̂R

Algorithm 7: Decoder Qd
WZ(w, y) of subsampled RMQ

Remark 3. We remark that, typically, when implementing random sampling, we set the unsampled
components to 0. However, to get ∆ dependent bounds on MSE, we set the unsampled coordinates
to the corresponding coordinate of side information and center our estimate appropriately to only
have small bias.

The result below relates the performance of our final quantizer QWZ to that of QM,R, which was
already analysed in the previous section.

Lemma 3.3. Fix ∆ > 0. Let QWZ and QM,R be the quantizers described in Alg. 6 and 7 and Alg. 4
and 5, respectively. Then, for µd ∈ [d], we have for X = Y = Rd that

α(QWZ; ∆) ≤ α(QM,R; ∆)
µ

+ ∆2

µ
and

β(QWZ; ∆) = β(QM,R; ∆).

Furthermore, the output of quantizer QWZ can be described in µd log k bits.

We are now equipped to prove our first main result. Our protocol π∗k uses QWZ for each client as
described in Section 2 and forms the estimate ˆ̄x as in (4). We set the parameters needed for QWZ in
Alg. 6 and 7 as follows: For client i, we set the parameters of MQ as

δ = ∆i√
n
, log k =

⌈
log(2 +

√
12 lnn)

⌉
, ∆′ =

√
6(∆2

i /d) ln(∆i/δ), ε = 2∆′/(k − 2), (9)

11



and set the parameter µ as

µd =
⌊

r

log k

⌋
. (10)

We characterize the resulting error performance in the next result.

Theorem 3.4. For a n ≥ 2, a fixed ∆ = (∆1, ...,∆n), and d ≥ r ≥ 2
⌈
log(2 +

√
12 lnn)

⌉
, the

protocol π∗k with parameters as set in (9) and (10) is an r-bit protocol which satisfies

E(π∗k,x,y) ≤ (79 dlog(2 +
√

12 lnn)e+ 26)
(

n∑
i=1

∆2
i

n
· d
nr

)
,

for all x,y satisfying (2).

Proof. Denoting by Qi the quantizer QWZ with parameters set for user i, by Lemmas 2.1 and 3.3, we
get

E
[
‖ˆ̄x− x̄‖22

]
≤

n∑
i=1

α(Qi; ∆i)
n2 +

n∑
i=1

β(Qi; ∆i)
n

≤ 1
µn2

n∑
i=1

(α(QM,R,i; ∆i) + ∆2
i ) +

n∑
i=1

β(QM,R,i; ∆i)
n

,

where QM,R,i denotes RMQ with parameters set for user i. Further, since k ≥ 4 holds when n ≥ 2
for our choice of parameters, by using Lemma 3.2 and substituting δ2 = ∆2

i /n, we get

α(QM,R,i; ∆i) ≤
12∆2

i lnn
(k − 2)2 + 154∆2

i

n
,

β(QM,R,i; ∆i) ≤
154∆2

i

n
,

which with the previous bound gives

E
[
‖ˆ̄x− x̄‖22

]
≤ 1
µd

(
12 lnn

(k − 2)2 + 154
n

+ 1 + 154µ
) n∑
i=1

d∆2
i

n2

≤ 79dlog(2 +
√

12 lnn)e+ 26
r

n∑
i=1

d∆2
i

n2 ,

where in the final bound we used our choice of k, the assumption that n ≥ 2 (which implies that
d ≥ r ≥ 6), and the fact that dr/ log ke ≥ r/2 if r ≥ 2 log k.

Remark 4. We note that by using MQ for each coordinate without rotating (or even with rotation
using R as above) and with ∆′ = ∆i yields MSE less than

O

(
n∑
i=1

∆2
i

n
· d log d

nr

)
,

for r ≤ d. Thus, our approach above allows us to remove the log d factor at the cost of a (milder for
large d) log logn factor.

12



Thus, as can be seen from the lower bound presented in Theorem 3.5 below, our Wyner-Ziv
estimator π∗k is nearly optimal. Finally, QWZ can be efficiently implemented as both the encoding
and decoding procedures have nearly-linear time complexity10 of O(d log d).

3.4 Lower bound
We now prove a lower bound on the MSE incurred by any SMP protocol using r bits per client. The
proof relies on the strong data processing inequality in Duchi et al. (2014) and is similar in structure
to the lower bound for distributed mean estimation without side-information in Suresh et al. (2017).

Theorem 3.5. Fix ∆ = (∆1, . . . ,∆n). There exists a universal constant c < 1 such that for any
r-bit SMP protocol π, with r ≤ cd, there exists input (x,y) ∈ R2d satisfying (2) and such that

E(π,x,y) ≥ cmin
i∈[d]

∆2
i ·

d

nr
.

4 Distributed mean estimation for unknown ∆
Finally, we present our Wyner-Ziv estimator for the unknown ∆ setting. We first, in Section 4.1,
describe the idea of correlated sampling from Holenstein (2009), which will serve as an essential
building block for all our quantizers in this section. We then build towards our final quantizer,
described in 4.4, by first describing its simpler versions in Section 4.2 and 4.3. Once again, we
restrict to the low-precision setting of r ≤ d.

4.1 The correlated sampling idea
Suppose we have two numbers x and y lying in [0, 1]. A 1-bit unbiased estimator for x is the random
variable 1{U≤x}, where U is a uniform random variable in [0, 1]. The variance of such an estimator
is x− x2. We consider a variant of this estimator given by:

X̂ = 1{U≤x} − 1{U≤y} + y, (11)

where, like before, U is a uniform random variable in [0, 1]. Such an estimator still uses only 1-bit of
information related to x. It is easy to check that this estimator unbiased estimator of x, namely
E
[
X̂
]

= x. The variance of this estimator is given by

Var(X̂) = E
[
(X̂ − x)2

]
= |x− y| − (x− y)2,

which is lower than that of the former quantizer when x is close to y. We build-on this basic
primitive to obtain a quantizer with MSE bounded above by a ∆-dependent expression, without
requiring the knowledge of ∆.

10The most expensive operation at both the encoder and decoder of this estimator is the Hadamard matrix
multiplication operation, which requires d log d real operations.

13



4.2 Distance Adaptive Quantizer (DAQ)
DAQ and subsequent quantizers in this Section will be described for input x and side information
y lying in Rd. The first component of our quantizer, DAQ, which uses (11) and incorporates the
correlated sampling idea discussed earlier. Both the encoder and the decoder of DAQ use the same d
uniform random variables {U(i)}di=1 between [−1, 1], which are generated using public randomness.
At the encoder, each coordinate of vector x is encoded to the bit 1{U(i)≤x(i)}. At the decoder, using
the bits received from the encoder, side information y, and the public randomness {U(i)}di=1, we
first compute bits 1{U(i)≤y(i)} for each i ∈ [d]. Then, the estimate of x is formed as follows:

QD(x, y) =
d∑
i=1

(
1{U(i)≤x(i)} − 1{U(i)≤y(i)}

)
ei + y.

We formally describe the quantizer in Alg. 8 and 9.

Require: Input x ∈ Rd
1: Sample U(i) ∼ Unif [−1, 1],∀i ∈ [d]
2: x̃ =

∑d
i=1 1{U(i)≤x(i)} · ei

3: Output: Qe
D(x) = x̃, where x̃ is viewed as binary vector of length d

Algorithm 8: Encoder Qe
D(x) of DAQ

Require: Input w ∈ {0, 1}d, y ∈ Rd,
1: Get U(i),∀i ∈ [d], using public randomness
2: Set ỹ =

∑d
i=1 1{U(i)≤y(i)} · ei

3: Output: Qd
D(w, y) = 2(w − ỹ) + y, where w is viewed as a vector in Rd

Algorithm 9: Decoder Qd
D(w, y) of DAQ

The next result characterizes the performance for DAQ.

Lemma 4.1. Let QD denote DAQ described in Algorithms 8 and 9. Then, for X = Y = B and
every ∆ > 0, we have

α(QD; ∆) ≤ 2∆
√
d and β(QD; ∆) = 0.

Furthermore, the output of quantizer QD can be described in d bits.

4.3 Rotated Distance Adaptive Quantizer (RDAQ)
Next, we proceed as for the known ∆ setting and add a preprocessing step of rotating x and y using
random matrix R of (8), which is sampled using shared randomness. We remark that here random
rotation is used to exploit the subgaussianity of the rotated x and y, whereas in RMQ of previous
section it was used to exploit the subgaussianity of x− y. After this rotation step, we proceed with
a quantizer similar to DAQ, but we quantize each coordinate at multiple “scales.” We describe this
step in detail below.

14



Using multiple scales. In DAQ, we considered each coordinate x to be anywhere between
[−1, 1] and used one uniform random variable for each coordinate. Now, we will use h independent
uniform random variables for each coordinate, each corresponding to a different scale [−Mj ,Mj ],
j ∈ {0, 1, 2, . . . , h− 1}. For convenience, we abbreviate [h]0 := {0, 1, 2, . . . , h− 1}.

Specifically, let U(i, j) be distributed uniformly over [−Mj ,Mj ], independently for different
i ∈ [d] and different j ∈ [h]0. The values Mjs correspond to different scales and are set, along with
h, as follows: For all j ∈ [h]0,

M2
j := 6

d
· e∗j , log h := dlog(1 + ln∗(d/6))e , (12)

where e∗j denotes the jth iteration of e given by e∗0 := 1, e∗1 := e, e∗j := ee
∗(j−1)

. All the dh
uniform random variables are generated using public randomness and are available to both the
encoder and the decoder.

The intervals [−Mj ,Mj ] are designed to minimize the MSE of our quantizer by tuning its
“resolution” to the “scale” of the input, and while still ensuring unbiased estimates. This idea of
using multiple intervals [−Mj ,Mj ] for quantizing the randomly rotated vector is from Mayekar and
Tyagi (2020b), where it was used for the case with no side information.

Multiscale DAQ. After rotation, we proceed as in DAQ, except that we use different scale Mj

for different coordinates. Ideally, for the ith coordinate, we would like to use Mz∗(i), where z∗(i) is
the smallest index such that both Rx(i) and Ry(i) lie in [−Mz∗(i),Mz∗(i)]. However, since y is not
available to the encoder, we simply resort to sending the smallest value z(i) which is the smallest
index such that Rx(i) ∈ [−Mz(i),Mz(i)] and apply the encoder of DAQ h times to compress x at all
scales, i.e., we send h bits (1{U(i,j)≤Rx(i)}, j ∈ [h]0).

Thus, the overall number of bits used by RDAQ’s encoder is d · (h + dlog he). At RDAQ’s
decoder, using z(i), we compute the smallest index z∗(i) containing both Rx(i) and Ry(i). In effect,
the decoder emulates the decoder for DAQ applied to Ry, but for scale Mz∗(i). The encoding and
decoding algorithm of RDAQ are described in Alg. 10 and 11, respectively.

Require: Input x ∈ B

1: Sample U(i, j) ∼ Unif [−Mj ,Mj ], i ∈ [d], j ∈ [h]0, and sample R as in(8) using public
randomness.

2: xR = Rx
3: for i ∈ [d] do

z(i) = min{j ∈ [h]0 : |xR(i)| ≤Mj}
4: for j ∈ [h]0 do

x̃j =
∑d
i=1 1{U(i,j)≤xR(i)}ei

5: Output: Qe
D,R(x) = ([x̃0, . . . , x̃h−1], z), where we view x̃js as binary vectors

Algorithm 10: Encoder Qe
D,R(x) at for RDAQ

Then, the quantized output QD,R corresponding to input vector x and side-information y is

QD,R(x, y) = R−1

[
d∑
i=1

2Mz∗(i)
(
1{U(i,z∗(i))≤Rx(i)} − 1{U(i,z∗(i))≤Ry(i)}

)
+Ry

]
.

15



Require: Input (w, z) ∈ {0, 1}d×h × [h]d0 and y ∈ B

1: Get U(i, j), i ∈ [d], j ∈ [h]0, and R using public randomness.
2: yR = Ry
3: for i ∈ [d] do

z′(i) = min{j ∈ {[h]0} : |yR(i)| ≤Mj}
z∗(i) = max{z(i), z′(i)}

4: w′ =
∑d
i=1 2Mz∗(i)

(
w(i, z∗(i))− 1{U(i,z∗(i))≤yR}

)
5: x̂R = w′ +Ry
6: Output: Qd

D,R(w, y) = R−1x̂R.

Algorithm 11: Decoder Qd
D,R(x) for RDAQ

We remark that since rotated coordinates Rx(i) and Ry(i) have subgaussian tails, with very high
probability Mz∗(i) will be much less than 1, which helps in reducing the overall MSE significantly.
The performance of the algorithm is characterized below.

Lemma 4.2. Let QD,R be RDAQ described in Alg. 10 and 11. Then, for X = Y = B and every
∆ > 0, we have

α(QD,R; ∆) ≤ 16
√

3∆ and β(QD,R; ∆) = 0.

Furthermore, the output of quantizer Q can be described in d(h+ log h) bits.

4.4 Subsampled RDAQ: A universal Wyner-Ziv quantizer for unit Eu-
clidean ball

Finally, we bring down the precision of RDAQ to r, as before for the known ∆ setting, by retaining
the output of RDAQ for only coordinates i ∈ S, where S is generated uniformly at random from all
subsets of [d] of cardinality µd using public randomness. Specifically, we execute Alg. 10 and 11
with S replacing [d] and multiplying w′ in Step 4 of Alg. 11 by normalization factor of d/|S|. The
output of the resulting encoder is given by

Qe
WZ,u(x) = {Qe

D,R(x)(i) : i ∈ S}, (13)

where Qe
D,R(x)(i) represents the encoded bits ([x̃0(i), . . . , x̃h−1(i)], z(i)) for the ith coordinate using

RDAQ, and the output of the resulting decoder is given by

QWZ,u(x, y) = R−1

[
1
µ

∑
i∈S

2Mz∗(i)

(
1{U(i,z∗(i))≤Rx(i)} − 1{U(i,z∗(i))≤Ry(i)}

)
+Ry

]
. (14)

Lemma 4.3. Let QWZ,u be the quantizers described in (13) and (14) and QD,R be RDAQ described
in Alg. 10 and 11. Then, for µd ∈ [d], X = Y = B, and every ∆ > 0, we have

α(QWZ,u; ∆) ≤ α(QD,R; ∆)
µ

and β(QWZ,u; ∆) = 0.

Furthermore, the output of quantizer QWZ,u can be described in µd(h+ log h) bits.

16



We are now equipped to prove our second main result. Our protocol π∗u uses QWZ,u for each client
as described in Section 2 and forms the estimate ˆ̄x as in (4). Unlike for the known ∆ setting, we
now use the same parameters for QWZ,u for all clients, given by

µd =
⌊

r

h+ log h

⌋
. (15)

Theorem 4.4. For d ≥ r ≥ 2(h+ log h) and h given in (12), the r-bit protocol π∗u with parameters
as set in (15) satisfies

E(π∗u,x,y) ≤ (128
√

3 (1 + ln∗(d/6)))

∑
i∈[n]

∆i

n
· d
nr

 ,

for all x,y satisfying (2), for every ∆ = (∆1, ...,∆n).

Proof. Denote by ˆ̄x the output of the protocol. Then, by Lemmas 2.1 and Lemma 4.3, we get

E
[
‖ˆ̄x− x̄‖22

]
≤ 1
n2µ

n∑
i=1

α(QD,R; ∆i)

≤ 16
√

3
n2µ

n∑
i=1

∆i,

where the previous inequality is by Lemma 4.2. The proof is completed by using µ ≥ r
2d(h+logh) ≥

r
4dh ,

which follows from (15) and the assumption that r ≥ 2(h+ log h).

The Wyner-Ziv estimator π∗u is universal in ∆: it operates without the knowledge of the distance
between the input and the side information and yet gets MSE depending on ∆. Moreover, it can be
efficiently implemented as both the encoding and the decoding procedures have nearly linear time
complexity of O(d log d).

5 The high-precision regime
5.1 RMQ in the high-precision regime.
For the known ∆ setting, our quantizer RMQ described in Alg. 4 and 5 remains valid even for
r > d. We will assume r = md for integer m ≥ 2. For each client i, we set

δ = ∆i

n
1
2 (2r/d − 2)

, log k = r

d
, ∆′ =

√
6(∆2

i /d) ln ∆i/δ, ε = 2∆′

k − 2 . (11)

The performance of protocol π∗k using RMQ with parameters set as in (11) for each client can be
characterized as follows.

Theorem 5.1. For a fixed ∆ = (∆1, ...,∆n) and r = md for integer m ≥ 2, the protocol π∗k with
parameters set as in (11) satisfies

E(π∗k,x,y) =
(

12 lnn+ 24r
d

+ 154/n+ 166
)∑

i∈[n]

∆2
i

n
· 1
n(2r/d − 2)2

 ,

17



for all x,y satisfying (2).

Proof. Denoting by Qi the quantizer QM,R with parameters set for client i, by Lemmas 2.1 and 3.2,
we get

E
[
‖ˆ̄x− x̄‖22

]
≤

n∑
i=1

α(Qi; ∆i)
n2 +

n∑
i=1

β(Qi; ∆i)
n

Further, since k ≥ 4 holds when r ≥ 2d for our choice of parameters, by using Lemma 3.2 and
substituting δ2 = ∆2

i /n(2r/d − 2)2, we get

α(Qi; ∆i) ≤
12∆2

i ln(n(2r/d − 2)2)
(2r/d − 2)2 + 154∆2

i

n(2r/d − 2)2 ,

β(Qi; ∆i) ≤
154∆2

i

n(2r/d − 2)2 .

which with the previous bound gives

E
[
‖ˆ̄x− x̄‖22

]
≤
(

12 lnn+ 24r
d

+ 154
n

+ 154
) n∑
i=1

∆2
i

n2(2r/d − 2)2 ,

where use the inequality ln x ≤ x, ∀x ≥ 0, to bound ln(2r/d − 2)2/(2r/d − 2)2 by 1.

Remark 5. Similar to Remark 4, we note that using MQ for each coordinate without rotating (or
even with rotation using R as above) with ∆′ = ∆i yields MSE less than

O

(
n∑
i=1

∆2
i

n
· d

n22r/d

)
,

for r ≥ d. Thus our approach above allows us to remove the d factor at the cost of a (milder for
large d) logn+ r/d factor.

5.2 Boosted RDAQ: RDAQ in the high-precision regime.
Moving to the unknown ∆ setting, we describe an update to RDAQ described in Alg. 10 and 11 for
the high-precision setting. For brevity, we denote by m := r/d the number of bits per dimension. A
straight-forward scheme to make use of the high precision is to independently implement the RDAQ
quantizer approximately bm/ ln∗ dc times and use the average of the quantized estimates as the final
estimate. We will see that the MSE incurred by such an estimator is O(∆ ln∗ d/m). We will show
that this naive implementation can be significantly improved and an exponential decay in MSE with
respect to m can be achieved.

We boost RDAQs performance as follows. Simply speaking, instead of sending the bits produced
by multiple instances of the encoder of RDAQ, we send the “type” of each sequence. A similar idea
appeared in Mayekar and Tyagi (2020a) for the case without any side information. At the encoding
stage of RDAG given in Alg. 10 and 11, after random rotation and computing z in Steps 1 to 3 of
Alg. 10, we repeat Step 4 N times with independent randomness each time and store only the total

18



number of ones seen for each coordinate i and scale j. Specifically, let Ut(i, j) be an independent
uniform random variable in [−Mj ,Mj ], for all i ∈ [d], j ∈ [h]0, and t ∈ [N ], which are generated
using public randomness between the encoder and the decoder. Using this randomness, we compute
x̃j,t =

∑d
i=1 1{Ut(i,j)≤xR(i)}ei for all j ∈ [h]0. Then, instead of storing x̃j,t for each j and t, we store

the sum
∑n
t=1 x̃j,t for each j ∈ [h]0. Since each coordinate of the sum can be stored in logN bits,

the new encoder’s output can be stored in d(h logN + log h). Thus, we can implement this scheme
by using m = (h logN + log h) bits per dimension.

At the decoding stage, we rotate y and compute z∗ in precisely the same manner as done
in Steps 1 to 3 of the decoding Alg. 11 of RDAQ. Then, using the encoded input received, the
side-information y, the same random variables Ut(i, j) and random matrix R used by the encoder,
the final estimate Q(x) is

Q(x) = R−1

 1
N
·
∑
i∈[d]

∑
t∈[N ]

(
Bti,Rx −Bti,Ry

)
ei +Ry

 , (12)

where Bti,v = 1{Un(i,z∗(i))≤v(i)} for v in Rd.
The result below characterizes the performance of our quantizer Boosted RDAQ Q.

Lemma 5.2. Let Q be Boosted RDAQ described above. Then, we have for X = Y = Rd and every
∆ > 0, we have

αu(Q; ∆) ≤ 16
√

3∆
N

and βu(Q; ∆) = 0.

Furthermore, the output of the quantizer can be described in d(h logN + log h) bits.

Thus, when we have a total precision budget of r = dm bits using the Boosted RDAQ algorithm
with number of repetitions N = 2b(m−logh)/hc, we get an exponential decay in MSE with respect to
m.

We consider the protocol π∗u that uses the Q above for each client with Mj and h set as in (12),
i.e., with

N = 2b(m−logh)/hc, M2
j = 6e∗j

d
, j ∈ [h]0, log h = dlog(1 + ln∗(d/6))e. (13)

Therefore, by the previous lemma and Lemma 2.1, we get the following result.

Theorem 5.3. For r = dm with integer m ≥ h+ log h, the protocol π∗u with parameters as set in
(13) satisfies

E(π∗u,x,y) =
∑
i∈[n]

∆i

n
· 64

√
3

n2r/(d(2+2 ln∗(d/6))) ,

for all x,y satisfying (2), for every ∆ = (∆1, ...,∆n).

Proof. Denote by ˆ̄x the output of the protocol. Then, by Lemmas 2.1 and Lemma 5.2, we get

E
[
‖ˆ̄x− x̄‖22

]
≤ 1
n2

n∑
i=1

α(Q; ∆i)

≤ 16
√

3
n2N

n∑
i=1

∆i,

19



where the previous inequality is by Lemma 5.2. The proof is completed by using

N ≥ 2m/h

21+(logh)/h ≥
2m/h

4 ≥ 2m/(2+2 ln∗(d/6))

4 ,

where the first inequality follows from using bxc ≥ x− 1 for the floor function in the value of N in
(13), the second follows from the fact that log x ≤ x, ∀x ≥ 0, and the third follows from dxe ≤ x+ 1
for the ceil function in the value of h in (13).

6 The Gaussian Wyner-Ziv problem
Consider the random vectors X and Y , where the coordinates {X(i), Y (i)}di=1 form an i.i.d. sequence.
Furthermore, for all i ∈ [d], let

X(i) = Y (i) + Z(i),
where Y (i) and Z(i) are independent and zero-mean Gaussian random variables with variances σ2

y

and σ2
z , respectively. The encoder has access to the sequence X = {X(i)}di=1, which it quantizes

and sends to the decoder. The decoder, on the other hand, has access to Y (note that encoder does
not have access to Y ) and can use it to decode X. A pair (R,D) of non-negative numbers is an
achievable rate-distortion pair if we can find a quantizer Qd of precision dR and with mean square
error E

[
‖Qd(X,Y )−X‖22

]
≤ dD. For D ≥ 0, denote by R(D) the infimum over all R such that

(R,D) constitute an achievable rate-distortion pair for all d sufficiently large. From11 Wyner and
Ziv (1976), R(D) can be characterized as follow:

R(D) =
{

1
2 log σ2

z

D if D ≤ σ2
z ,

0 if D > σ2
z .

Several constructions that involve computational heavy methods such as error correcting codes
and lattice encoding attain the rate-distortion function, asymptotically for large d. In this section,
we show that modulo quantizer with parameters set appropriately attains a rate very close to the
rate-distortion function R(D). Moreover, we will show that this rate can be achieved for arbitrary
Y and Z, as long as Z is a zero mean subgaussian random variable with variance factor σ2

z . Our
proposed quantizer Qd(X,Y ) uses the modulo quantizer to quantize X(i) with side information Y (i)
at the decoder and the parameter k,∆′ set as follows:

δ =
√
D/308, log k =

⌈
log
(

2 +
√

24σ2
z

D
ln 308σ2

z

D

)⌉
∆′ =

√
6(σ2

z) ln(σz/δ), ε = 2∆′/(k − 2), (14)

Theorem 6.1. Consider random vectors X,Y in Rd with X(i) = Y (i) +Z(i) and Z(i) independent
of Y (i) being a centered subgaussian random variable with variance factor of σ2

z , for all coordinates
i ∈ {1, . . . , d}. Then, for D ≤ (σ2

z/308), the quantizer Qd(X,Y ) described above has MSE less than
dD and has rate R satisfying

R ≤ 1
2 log σ

2
z

D
+O

(
log log σ

2
z

D

)
.

11The model considered in Wyner and Ziv (1976) and perhaps the more popular Wyner-Ziv model is Y = X + Z.
Nevertheless, through MMSE rescaling this model can be converted to X = Y ′ + Z′ (see, for instance, Liu (2016)).

20



7 Proofs of results
7.1 Proof of Lemma 2.1
For the estimator ˆ̄x in (4), with x̂i = Qi(xi, yi), we have

E


∥∥∥∥∥∥ 1
n
·
∑
i∈[n]

Qi(xi, yi)−
1
n
·
∑
i∈[n]

xi

∥∥∥∥∥∥
2

2


= 1
n2 ·

∑
i∈[n]

E
[
‖Qi(xi, yi)− xi‖22

]
+ 1
n2 ·

∑
i6=j

E [〈Qi(xi, yi)− xi, Qj(xj , yj)− xj〉]

= 1
n2 ·

∑
i∈[n]

E
[
‖Qi(xi, yi)− xi‖22

]
+ 1
n2 ·

∑
i6=j
〈E [Qi(xi, yi)]− xi,E [Qj(xj , yj)]− xj〉

= 1
n2 ·

∑
i∈[n]

E
[
‖Qi(xi, yi)− xi‖22

]
+
(

1
n
·
∑
i

‖E [Qi(xi, yi)]− xi‖2

)2

− 1
n2 ·

∑
i

‖E [Qi(xi, yi)]− xi‖22

≤ 1
n2 ·

∑
i∈[n]

E
[
‖Qi(xi, yi)− xi‖22

]
+ (n− 1)

n2 ·
∑
i

‖E [Qi(xi, yi)]− xi‖22,

where the second identity uses the independence of Qi(xi, yi) for different i and the final step uses
Jensen’s inequality. The result follows by bound each term using the fact that x and y satisfy (2)
and the definitions of α(Qi,∆i) and β(Qi,∆i), for i ∈ [n].

7.2 Proof of Lemma 3.1
As mentioned in (5), the integer z̃ found in Alg. 2 satisfies E [z̃ε] = x and |x− z̃ε| < ε. Therefore, it
suffices to show that the output of the quantizer satisfies QM(x, y) = z̃ε.

To see that QM(x, y) = z̃ε, denote the lattice used in decoding Alg. 3 as Zw,ε := {(zk+w) · ε : z ∈
Z}. The decoding algorithm finds the point in Zw,ε that is closest to y. Note that w = z̃ mod k,
whereby z̃ε is a point in this lattice. Further, for any other point λ 6= z̃ε in the lattice, we must have

|λ− z̃ε| ≥ kε,

and so, by triangular inequality, that

|λ− y| ≥ |λ− z̃ε| − |z̃ε− y| ≥ kε− |z̃ε− y|.

Thus, z̃ε is closer to y than λ if

kε > 2|z̃ε− y|. (15)

Next, by using (5) once again, we have

|z̃ε− y| ≤ |z̃ε− x|+ |x− y| < ε+ ∆′,

21



which by condition (7) in the lemma implies that (15) holds. It follows that |λ− y| > |z̃ε− y| for
every λ ∈ Zw,ε, which shows that QM(x, y) = z̃ε and completes the proof.

7.3 Proof of Lemma 3.2
Recall from Remark 1 that for the random matrix R given in (8), for every vector z ∈ Rd, the
random variables Rz(i), i ∈ [d], are sub-Gaussian with variance parameter ‖z‖22/d. Furthermore, we
need the following bound for “truncated moments” of sub-Gaussian random variables.

Lemma 7.1. For a sub-Gaussian random Z with variance factor σ2 and every t ≥ 0, we have

E
[
Z2
1{|Z|>t}

]
≤ 2(2σ2 + t2)e−t

2/2σ2
.

Proof. Note that for any nonnegative random variable U , it can be verified that

E
[
U1{U>x}

]
= xP (U > x) +

∫ ∞
x

P (U > u) du.

Upon substituting U = Z2 and x = t2, along with the fact that Z is sub-Gaussian with variance
parameter σ2, we get

E
[
Z2
1{Z2>t2}

]
= t2P (Z2 > t2) +

∫ ∞
t2

P (Z2 > u) du

≤ 2t2e−t
2/2σ2

+ 2
∫ ∞
t2

e−u/2σ
2
du

≤ 2(t2 + 2σ2)e−t
2/2σ2

,

which completes the proof.

We now handle the MSE α(Q) and bias β(Q) separately below.

Bound for MSE α(Q): Denote by QM,R(x, y) the final quantized value of the quantizer RMQ.
For convenience, we abbreviate

x̂R := RQM,R(x, y).

Observe that x̂R =
∑
i∈[d]QM(Rx(i), Ry(i))ei, where QM is the MQ of Alg. 2 and 3 with parameters

k ≥ and ∆′ set as in the statement of the lemma. Since R is a unitary transform, we have

E
[
‖QM,R(x, y)− x‖22

]
= E

[
‖x̂R −Rx‖22

]
=

d∑
i=1

E
[
(x̂R(i)−Rx(i))2]

=
d∑
i=1

E
[
(x̂R(i)−Rx(i))2

1{|R(x−y)(i)|≤∆′}
]

+
d∑
i=1

E
[
(x̂R(i)−Rx(i))2

1{|R(x−y)(i)|≥∆′}
]

(16)

22



We consider each error term on the right-side above separately. We can view the first term as the
error corresponding to MQ, when the input lies in its “acceptance range.” Specifically, under the
event {|R (x− y) (i)| ≤ ∆′}, we get by Lemma 3.1 that

|x̂R(i)−Rx(i)| ≤ ε = 2∆′

k − 2 , almost surely,

whereby

d∑
i=1

E
[
(x̂R(i)−Rx(i))2

1|R(x−y)(i)|≤∆′
]
≤ d ε2. (17)

The second term on the right-side of (16) corresponds to the error due to “overflow” and is handled
using concentration bounds for the rotated vectors. Specifically, we get

d∑
i=1

E
[
(x̂R(i)−Rx(i))2

1{|R(x−y)(i)|≥∆′}
]

≤ 2
d∑
i=1

[
E
[
(x̂R(i)−Ry(i))2

1{|R(x−y)(i)|≥∆′}
]

+ E
[
(Rx(i)−Ry(i))2

1{|R(x−y)(i)|≥∆′}
]]

≤ 2k2ε2
d∑
i=1

P (|R (x− y) (i)| ≥ ∆′) + 2
d∑
i=1

E
[
(Rx(i)−Ry(i))2

1{|R(x−y)(i)|≥∆′}
]

≤ 4dk2ε2e−d∆′2/2∆2
+ 2

d∑
i=1

E
[
(Rx(i)−Ry(i))2

1{|R(x−y)(i)|≥∆′}
]

≤ 4dk2ε2e−d∆′2/2∆2
+ 4(2∆2 + d∆′2)e−

d∆′2
2∆2 , (18)

where the second inequality follows upon noting that from the description decoder of MQ in Alg. 3
that |x̂R(i) − Ry(i)| ≤ εk almost surely for each i ∈ [d]; the third inequality uses the fact that
R(x− y)(i) is sub-Gaussian with variance parameter ‖x− y‖22/d ≤ ∆2/d; and fourth inequality is
by Lemma 7.1.

Upon combining (16), (17), and (18), and substituting ε = 2∆′/(k−2) and ∆′2 = 6(∆2/d) log ∆/δ,
we obtain

E
[
‖QM,R(x, y)− x‖22

]
≤ d ε2 + 4dk2ε2e−

d∆′2
2∆2 + 4(2∆2 + d∆′2)e−

d∆′2
2∆2 (19)

= 24 ∆2

(k − 2)2 ln ∆
δ

+ 96δ2
(

k

k − 2

)2
· ln(∆/δ)

(∆/δ) + 8δ2 · 1 + 3 ln(∆/δ)
(∆/δ)

≤ 24 ∆2

(k − 2)2 ln ∆
δ

+
(

96
e

(
k

k − 2

)2
+ 24
e2/3

)
· δ2,

where we used (1 + 3 ln u)/u ≤ 3/e2/3 and (ln u)/u ≤ 1/e for every u > 0. We conclude by noting
that for k ≥ 4, (

96
e

(
k

k − 2

)2
+ 24
e2/3

)
≤ 154.

23



Bias β(Q): The calculation for the bias is similar to that we used to bound the second term on
the right-side of (16). Using the notation x̂R introduced above, we have

‖E [QM,R]− x‖2
= ‖E

[
R−1 (x̂R −Rx)

]
‖2

= ‖RE
[
R−1 (x̂R −Rx)

]
‖2

= ‖E
[
RR−1 (x̂R −Rx)

]
‖2

= ‖E [x̂R −Rx] ‖2,

where the second identity holds since R is a unitary matrix.
Further, since QM(x, y) is an unbiased estimate of x when |x− y| ≤ ∆′ (see Lemma 3.1), by (17)

and (18) we obtain

‖E [x̂R −Rx] ‖22 ≤
d∑
i=1

E
[
(x̂R(i)−Rx(i))1|R(x−y)i|≥∆′)

]2
≤

d∑
i=1

E
[
(x̂R(i)−Rx(i))2

1|R(x−y)(i)|≥∆′)

]
≤ 154 δ2,

which completes the proof.

7.4 Proof of Lemma 3.3
Mean Square Error α(QS,R): From the description of Algorithms 6 and 7, we know that the
quantized output of subsampled RMQ QWZ for an input x is

QWZ(x) = R−1x̂R, where

x̂R = 1
µ

∑
i∈[d]

(QM(Rx(i), Ry(i))−Ry(i))1{i∈S} ei +Ry,

and QM(Rx(i), Ry(i)) denotes the quantized output of the modulo quantizer for an input Rx(i) and
side-information Ry(i). Use the shorthand Q(Rx(i)) for QM(Rx(i), Ry(i)), we have

E
[
‖QWZ(x)− x‖22

]
=
∑
i∈[d]

E

[(
1
µ

(Q(Rx(i))−Ry(i))1{i∈S} − (Rx(i)−Ry(i))
)2
]

=
∑
i∈[d]

E
[

1
µ2Q(Rx(i))−Rx(i)2

1{i∈S}

]

+
∑
i∈[d]

E

[(
1
µ

(Rx(i)−Ry(i))1{i∈S} − (Rx(i)−Ry(i))
)2
]

=
∑
i∈[d]

1
µ
E
[
(Q(Rx(i))−Rx(i))2

]
+
∑
i∈[d]

E
[
(Rx(i)−Ry(i))2

]
· E

[(
1
µ
1{i∈S} − 1

)2
]

24



=
∑
i∈[d]

1
µ
E
[
(Q(Rx(i))−Rx(i))2

]
+
∑
i∈[d]

E
[
(Rx(i)−Ry(i))2

]
· 1− µ

µ

≤ α(QM,R)
µ

+ ∆2

µ
,

where we used the independence of S and R in the third identity and used the fact that R is unitary
in the final step.

Bias β(QS,R): This follows upon noting that the conditional expectation (over S) of the output of
subsampled RMQ given R is the vector R−1∑

i∈[d]QM(Rx(i), Ry(i))ei, which, in turn, is equivalent
in distribution to the output of RMQ.

7.5 Proof of Theorem 3.5
We denote ∆min = mini∈[d] ∆i and set yis to be 0. Let x1, ..., xn be an iid sequence with common
distribution such that for all j ∈ [d] we have

x1(j) =
{

∆min√
d

w.p. 1+α(j)δ
2

−∆min√
d

w.p. 1−α(j)δ
2 ,

where α ∈ {−1, 1}d is generated uniformly at random. We have the following Lemma for such xis,
which provides a lower bound for the MSE of any estimator of the mean of the distribution of xis.
Lemma 7.2. For x1, ..., xn generated as above and any estimator ˆ̄x of the mean formed using only
r-bit quantized version of xis, we have12

E

[∥∥∥∥ˆ̄x− δ∆min√
d

α

∥∥∥∥2

2

]
≥ c′ · d∆2

min

nr
,

where c′ < 1 is a universal constant.
Proof of Lemma 7.2 follows from either (Duchi et al., 2014, Proposition 2) or (Acharya et al., 2020,
Theorem 11).

The proof of Theorem 3.5 is completed by using this claim. Specifically, using 2a2 +2b2 ≥ (a+b)2,
we have

2E
[
‖ˆ̄x− x̄‖22

]
+ 2E

[
‖x̄− δ∆min√

d
α‖22

]
≥ E

[
‖ˆ̄x− δ∆min√

d
α‖22

]
,

which, along with the observation that

E
[
‖x̄− δ∆min√

d
α‖22

]
≤ ∆2

min

n
,

gives

E
[
‖ˆ̄x− x̄‖22

]
≥c
′d∆2

min

2nr − ∆2
min

n

≥c
′∆2

mind

4nr ,

12Note that the side information yis are all set to 0.

25



when (d/r) ≥ 4/c′. The proof is completed by setting c = c′/4.
Remark 6. Since the lower bound in Acharya et al. (2020) holds for sequentially interactive protocols,
if we allow interactive protocols for mean estimation where client i gets to see the messages
transmitted by the clients j in [i−1], and can design its quantizers based on these previous messages,
even then the lower bound above will hold.

7.6 Proof of Lemma 4.1
We will prove a general result which will not only prove Lemma 4.1 but will also be useful in the
proof of Lemma 4.2. Consider x and y in Rd such that each coordinate of both x and y lies in
[−M,M ]. Also, consider the following generalization of DAQ:

QD(x, y) =
d∑
i=1

2M
(
1{U(i)≤x(i)} − 1{U(i)≤y(i)}

)
ei + y,

where {Ui}i∈[d] are iid uniform random variables in [−M,M ]. We will show that

E [QD(x, y)] = x and E
[
‖QD(x, y)− x‖22

]
≤ 2M‖x− y‖1, (20)

which upon setting M = 1 proves Lemma 4.1.
Towards proving (20), note that from the estimate formed by QD, it is easy to see that

E [QD(x, y)] = x. The MSE can be bounded as follows:

E
[
‖QD(x, y)− x‖22

]
=

d∑
i=1

E
[
(2M

(
1{Ui≤x(i)} − 1{Ui≤y(i)}

)
− (x(i)− y(i)))2]

=
d∑
i=1

4M2 |x(i)− y(i)|
2M − ‖x− y‖22

= 2M‖x− y‖1 − ‖x− y‖22,

where we used the observations that 2M
(
1{Ui≤x(i)} − 1{Ui≤y(i)}

)
is an unbiased estimate of

(x(i)− y(i)) and that
(
1{Ui≤x(i)} − 1{Ui≤y(i)}

)2 equals one if and only if exactly one of the in-
dicators is one, which in turn happens with probability |x(i)−y(i)|

2M . .

7.7 Proof of Lemma 4.2
Worst-case bias β(QD,R∆): Since the final interval [−Mh−1,Mh−1] contains [−1, 1], we can see
that E [QD,R(x, y)] = x.

Worst-case MSE α(QD,R; ∆): We denote by Bxij and B
y
ij the bits

Bxij = 1{U(i,j)≤Rx(i)} and Byij = 1{U(i,j)≤Ry(i)}.

26



Then, the final quantized value of the quantizer RDAQ can be expressed as QD,R(X) = R−1x̂R
where, with z∗(i) denoting the smallest Mj such that the interval [−Mj ,Mj ] contains Rx(i) and
Ry(i) and [h]0 = {0, . . . , h− 1},

x̂R :=
∑

i∈{1,...,d}

 ∑
j∈[h]0

2Mj ·
(
Bxij −B

y
ij

)
+Ry(i)

1{z∗(i)=j}ei.

Since R is a unitary transform, we get

E
[
‖QD,R(x)− x‖22

]
= E

[
‖RQD,R(x)−Rx‖22

]
= E

[
‖x̂R −Rx‖22

]
=
∑
i∈[d]

E
[
(x̂R(i)−Rx(i))2]

=
∑
i∈[d]

E


 ∑
j∈[h]0

(2Mj ·
(
Bxij −B

y
ij

)
+Ry(i)−Rx(i))1{z∗(i)=j}

2


=
∑
i∈[d]

∑
j∈[h]0

E
[(

2Mj

(
Bxij −B

y
ij

)
+Ry(i)−Rx(i)

)2
1{z∗(i)=j},

]
where the last identity uses 1{z∗(i)=j1}1{z∗(i)=j2} = 0 for all j1 6= j2, to cancel the cross-terms in the
expansion of (x̂R(i)−Rx(i))2. Conditioning on R and using the independence of 1{z∗(i)=j} from
the randomness used in MQ, we get

E
[
‖QD,R(x)− x‖22

]
=
∑
i∈[d]

∑
j∈[h]0

E
[
E
[(

2Mj

(
Bxij −B

y
ij

)
+Ry(i)−Rx(i)

)2 | R]1{z∗(i)=j}]
≤
∑
i∈[d]

∑
j∈[h]0

E
[
2Mj |Rx(i)−Ry(i)|1{z∗(i)=j}

]
,

≤
∑
i∈[d]

E
[
2M0|Rx(i)−Ry(i)|1{z∗(i)=0}

]
+
∑
i∈[d]

∑
j∈[h−1]

E
[
2Mj |Rx(i)−Ry(i)|1{z∗(i)=j}

]
,

≤
∑
i∈[d]

E [2M0|Rx(i)−Ry(i)|]

+
∑
i∈[d]

∑
j∈[h−1]

E
[
2Mj |Rx(i)−Ry(i)|1{z∗(i)=j}

]
, (21)

where the first inequality follows from (20) in the proof of Lemma 4.1.
Next, noting that

1{z∗(i)=j} ≤ 1{|RX(i)|≥Mj−1} + 1{|RY (i)|≥Mj−1} almost surely,

27



an application of the Cauchy-Schwarz inequality yields

E
[
2Mj |Rx(i)−Ry(i)|1{z∗(i)=j}

]
≤ 2MjE

[
(Rx(i)−Ry(i))2]1/2 E [(1{|RX(i)|≥Mj−1} + 1{|RY (i)|≥Mj−1})

2]1/2
≤ 2MjE

[
(Rx(i)−Ry(i))2]1/2 (2P (|Rx(i)| ≥Mj−1) + 2P (|Ry(i)| ≥Mj−1))1/2

≤ 2MjE
[
(Rx(i)−Ry(i))2]1/2(8e

−dM2
j−1

2

)1/2

, (22)

where the second ineqaulity uses (a+ b)2 ≤ 2a2 + 2b2 and the third uses subgaussianity of Rx(i)
and Ry(i).

Substituting the upper bound in (22) for the second term in the RHS of (21) and using
E [X] ≤ E

[
X2]1/2 for the first term, we get

E
[
‖QD,R(x)− x‖22

]
≤
∑
i∈[d]

E
[
|Rx(i)−Ry(i)|2

]1/22M0 +
∑

j∈[h−1]

2Mj ·
(

8e−
dM2

j−1
2

)1/2


≤
√
d · E [‖Rx−Ry‖22]

2M0 +
∑

j∈[h−1]

2Mj ·
(

8e−
dM2

j−1
2

)1/2


=
√
d · ‖x− y‖22

2M0 +
∑

j∈[h−1]

2Mj ·
(

8e−
dM2

j−1
2

)1/2


=
√
d · ‖x− y‖22

2
√

6
d

+
∑

j∈[h−1]

2
√

6e∗j
d
·
(

8e−1.5e∗(j−1)
)

= 8
√

3 ·
√
‖x− y‖22

1 +
∑

j∈[h−1]

e−0.5e∗(j−1)


≤ 16

√
3 ·
√
‖x− y‖22,

where the second inequality uses the fact that
∑
i ‖a‖1 ≤

√
d‖a‖2, the first and second indentities

follow from the fact that R is unitary transform and substituting for Mis, the final inequality follows
from the bound of 1 for

∑∞
j=1 e

−0.5e∗(j−1), which, in turn, can seen as follows

e−0.5e∗(j−1) = e−0.5 + e−0.5e + e−0.5ee +
∞∑
j=3

e−0.5e∗(j)

≤ e−0.5 + e−0.5e + e−0.5ee +
∞∑
j=3

e−0.5jee

≤ e−0.5 + e−0.5e + e−0.5ee + 1
eee − 1

≤ 1.

28



7.8 Proof of Lemma 4.3

Worst-case bias β(QWZ,u; ∆): It is straightforward to see that E [QWZ,u(x)] = x.

Worst-case MSE α(QWZ,u; ∆): We denote by Bxij and B
y
ij the bits

Bxij = 1{U(i,j)≤Rx(i)} and Byij = 1{U(i,j)≤Ry(i)}.

Then, the quantized output can be stated as follows: noting that QWZ,u(x) = R−1x̂R where, with
z∗(i) denoting the smallest Mj such that the interval [−Mj ,Mj ] contains Rx(i) and Ry(i),

x̂R :=

 ∑
i∈{1,...,d}

∑
j∈{0,...,h−1}

2Mj ·
(
Bxij −B

y
ij

)
1{z∗(i)=j}1{i∈S} · ei +Ry

 ,

Since R is a unitary transform, the mean square error between QWZ,u(x) and x can be bounded
as in the proof of Lemma 4.2 as follows:

E
[
‖QWZ,u(x)− x‖22

]
= E

[
‖x̂R −Rx‖22

]
= E

[
‖x̂R −Rx‖22

]
=
∑
i∈[d]

E
[
x̂R(i)−Rx(i))2]

=
∑
i∈[d]

∑
j∈[h]

E
[(

2Mj

(
Bxij −B

y
ij

)
1{i∈S} +Ry(i)−Rx(i)

)2
1{z∗(i)=j}

]
=
∑
i∈[d]

∑
j∈[h]

E
[
E
[(

2Mj

(
Bxij −B

y
ij

)
1{i∈S} +Ry(i)−Rx(i)

)2 | R]1{z∗(i)=j}]
≤
∑
i∈[d]

∑
j∈[h]

E
[

2Mj

µ
· |Rx(i)−Ry(i)| · 1{z∗(i)=j}

]
,

where the inequality follows from similar calculations in the proof of Lemma 4.1. The rest of the
analysis proceeds as that in the proof of Lemma 4.2.

7.9 Proof of Lemma 5.2
For Q(x) as in (12), we have

Q(x) =
N∑
i=1

qi/N,

29



where qi for all i ∈ {1, . . . N} is an unbiased estimate of x and equals in distribution the output of
the RDAQ quantizer for an input x and side information y. Moreover, qis are mutually independent
conditioned on R. Therefore,

E
[
‖Q(x)− x‖22

]
= E

[
‖
N∑
i=1

qi
N
− x‖22

]

= E

[
E

[
‖
N∑
i=1

qi
N
− x‖22|R

]]

= E

[
N∑
i=1

1
N2E

[
‖qi − x‖22|R

]]

≤ 16
√

3 ∆
N
,

where the third identity follows from the conditional independence of qis after conditioning on R
and the fact that qi is an unbiased estimate of x. The final inequality follows from the fact that qi
equals in distribution the output of the RDAQ quantizer and then using Lemma 4.2.

7.10 Proof of Theorem 6.1
The proof of this Theorem is similar to that of Lemma 3.2. We denote by Q(X(i), Y (i)) the output
of the modulo quantizer with side information Y (i) and parameters k, ∆′ set as in (14). Then, we
have

E
[
‖Qd(X,Y )−X‖2

]
≤

d∑
i=1

E
[
(Q(X(i), Y (i))−X(i))2]

≤
d∑
i=1

E
[
(Q(X(i), Y (i))−X(i))2

1{|(X(i)−Y (i))|≤∆′}
]

+
d∑
i=1

E
[
(Q(X(i), Y (i))−X(i))2

1{|(X(i)−Y (i))|≥∆′}
]
. (23)

We bound the first term on the right-side in a similar manner as the bound in (17). Specifically,
under the event {|X(i)− Y (i)| ≤ ∆′}, we get by Lemma 3.1 that

|Y (i)−X(i)| ≤ ε = 2∆′

k − 2 , almost surely,

whereby

d∑
i=1

E
[
(Y (i)−X(i))2

1{|X(i)−Y (i)}|≤∆′
]
≤ d ε2. (24)

30



For the second term in the RHS note that X(i)− Y (i) is subgaussian with variance factor σ2
z .

Therefore, by proceeding in a similar manner as the derivation of (18) we get

d∑
i=1

E
[
(Q(X(i), Y (i))−X(i))2

1{|X(i)−Y (i)|≥∆′}
]

≤ 2
d∑
i=1

[
E
[
(Q(X(i), Y (i))− Y (i))2

1{|X(i)−Y (i)|≥∆′}
]

+ E
[
(Y (i)−X(i))2

1{|X(i)−Y (i)|≥∆′}
]]

≤ 2k2ε2
d∑
i=1

P (|X(i)− Y (i)| ≥ ∆′) + 2
d∑
i=1

E
[
(X(i)− Y (i))2

1{|X(i)−Y (i)|≥∆′}
]

≤ 4dk2ε2e−d∆′2/2σ2
z + 2

d∑
i=1

E
[
(X(i)− Y (i))2

1{|X(i)−Y (i)|≥∆′}
]

≤ 4dk2ε2e−∆′2/2σ2
z + 4(2σ2

z + d∆′2)e−
∆′2

2σ2
z , (25)

where the second inequality follows upon noting from the description decoder of MQ in Alg. 3 that
|Q(X(i), Y (i)) − Y (i)| ≤ εk almost surely for each i ∈ [d]; the third inequality uses the fact that
X(i)− Y (i) is sub-Gaussian with variance parameter σ2

z ; and the fourth inequality is by Lemma 7.1.
Upon bounding the two terms on the right-side of (23) from above using (24), (25), we obtain

E
[
‖Qd(X,Y )−X‖2

]
≤ dε2 + 4dk2ε2e−∆′2/2σ2

z + 4(2σ2
z + d∆′2)e−

∆′2

2σ2
z .

Note that the RHS in the upper bound above is precisely the same as in (19) with σ2
z replacing

∆2/d.Therefore proceeding in the same manner as in (19), we get

E
[
‖Qd(X,Y )−X‖2

]
≤ 24 σ2

z

(k − 2)2 ln σz
δ

+ 154δ2.

Substituting the value of k and δ completes the proof.

Acknowledgement
Prathamesh Mayekar would like to thank Shubham Jha for discussions on the Gaussian Wyner-Ziv
problem.

Prathamesh Mayekar is supported by a Ph.D. fellowship from Wipro Limited. This work is
supported, in part, by a research grant from Robert Bosch Center for Cyber Physical Systems
(RBCCPS), Indian Institute of Science, Bangalore.

References

Acharya, J., Canonne, C. L., and Tyagi, H. (2020). General lower bounds for interactive high-
dimensional estimation under information constraints. arXiv preprint arXiv:2010.06562.

Acharya, J., De Sa, C., Foster, D. J., and Sridharan, K. (2019). Distributed Learning with Sublinear
Communication. arXiv:1902.11259.

31



Ailon, N. and Chazelle, B. (2006). Approximate nearest neighbors and the fast johnson-lindenstrauss
transform. Proceedings of the ACM symposium on Theory of computing (STOC’06), pages 557–563.

Albasyoni, A., Safaryan, M., Condat, L., and Richtárik, P. (2020). Optimal gradient compression
for distributed and federated learning. arXiv preprint arXiv:2010.03246.

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic, M. (2017). QSGD: Communication-
efficient SGD via gradient quantization and encoding. Advances in Neural Information Processing
Systems, pages 1709–1720.

Basu, D., Data, D., Karakus, C., and Diggavi, S. (2019). Qsparse-local-SGD: Distributed SGD
with Quantization, Sparsification, and Local Computations. Advances in Neural Information
Processing Systems.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. Proceedings of
COMPSTAT’2010.

Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration inequalities: A nonasymptotic
theory of independence.Oxford university press.

Bubeck, S. (2015). Convex optimization: Algorithms and complexity. Foundations and Trends R© in
Machine Learning, 8(3-4):231–357.

Chen, W.-N., Kairouz, P., and Özgür, A. (2020). Breaking the communication-privacy-accuracy
trilemma. arXiv preprint arXiv:2007.11707.

Davies, P., Gurunathan, V., Moshrefi, N., Ashkboos, S., and Alistarh, D. (2020). Distributed
variance reduction with optimal communication. arXiv e-prints, pages arXiv–2002.

Duchi, J. C., Jordan, M. I., Wainwright, M. J., and Zhang, Y. (2014). Optimality guarantees for
distributed statistical estimation. arXiv:1405.0782.

Forney, G. D. (1988). Coset codes. i. introduction and geometrical classification. IEEE Transactions
on Information Theory, 34(5):1123–1151.

Gandikota, V., Kane, D., Maity, R. K., and Mazumdar, A. (2019). vqsgd: Vector quantized
stochastic gradient descent. arXiv preprint arXiv:1911.07971.

Holenstein, T. (2009). Parallel repetition: Simplification and the no-signaling case. Theory of
Computing, 5(8):141–172.

Horadam, K. J. (2012). Hadamard matrices and their applications.Princeton university press.

Huang, Z., Yilei, W., Yi, K., et al. (2019). Optimal sparsity-sensitive bounds for distributed mean
estimation. Advances in Neural Information Processing Systems, pages 6371–6381.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K.,
Charles, Z., Cormode, G., Cummings, R., et al. (2019). Advances and open problems in federated
learning. arXiv preprint arXiv:1912.04977.

Kashin, B. (1977). Section of some finite-dimensional sets and classes of smooth functions (in
russian) izv. Acad. Nauk. SSSR, 41:334–351.

32



Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., and Bacon, D. (2016). Feder-
ated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492.

Konečnỳ, J. and Richtárik, P. (2018). Randomized distributed mean estimation: Accuracy vs.
communication. Frontiers in Applied Mathematics and Statistics, 4:62.

Korada, S. B. and Urbanke, R. L. (2010). Polar codes are optimal for lossy source coding. IEEE
Transactions on Information Theory, 56(4):1751–1768.

Ling, C., Gao, S., and Belfiore, J. (2012). Wyner-ziv coding based on multidimensional nested
lattices. IEEE Transactions on Communications, 60(5):1328–1335.

Liu, L. (2016). Polar codes and polar lattices for efficient communication and source quantization.
Ph.D. Thesis.

Liu, L. and Ling, C. (2015). Polar lattices are good for lossy compression. CoRR, abs/1501.05683.

Lu, Y. and De Sa, C. (2020). Moniqua: Modulo quantized communication in decentralized sgd.
arXiv preprint arXiv:2002.11787.

Lyubarskii, Y. and Vershynin, R. (2010). Uncertainty principles and vector quantization. IEEE
Transactions on Information Theory, 56(7):3491–3501.

Mayekar, P. and Tyagi, H. (2020a). Limits on gradient compression for stochastic optimization.
Proceedings of the IEEE International Symposium of Information Theory (ISIT’ 20).

Mayekar, P. and Tyagi, H. (2020b). RATQ: A universal fixed-length quantizer for stochastic
optimization. https: // arxiv. org/ abs/ 1908. 08200 .

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. (2009). Robust stochastic approximation
approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–1609.

Oohama, Y. (1997). Gaussian multiterminal source coding. IEEE Transactions on Information
Theory, 43(6):1912–1923.

Pradhan, S. S. and Ramchandran, K. (2003). Distributed source coding using syndromes (discus):
design and construction. IEEE Transactions on Information Theory, 49(3):626–643.

Ramezani-Kebrya, A., Faghri, F., and Roy, D. M. (2019). Nuqsgd: Improved communication
efficiency for data-parallel sgd via nonuniform quantization. arXiv preprint arXiv:1908.06077.

Safaryan, M., Shulgin, E., and Richtárik, P. (2020). Uncertainty principle for communication
compression in distributed and federated learning and the search for an optimal compressor. arXiv
preprint arXiv:2002.08958.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. (2014). 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns. Fifteenth Annual Conference of
the International Speech Communication Association.

Stich, S. U., Cordonnier, J.-B., and Jaggi, M. (2018). Sparsified sgd with memory. Advances in
Neural Information Processing Systems 31.

33

https://arxiv.org/abs/1908.08200


Strassen, V. et al. (1965). The existence of probability measures with given marginals. The Annals
of Mathematical Statistics, 36(2):423–439.

Suresh, A. T., Yu, F. X., Kumar, S., and McMahan, H. B. (2017). Distributed mean estimation
with limited communication. Proceedings of the International Conference on Machine Learning
(ICML’ 17), 70:3329–3337.

Vogels, T., Karimireddy, S. P., and Jaggi, M. (2019). Powersgd: Practical low-rank gradient
compression for distributed optimization.

Wang, H., Sievert, S., Liu, S., Charles, Z., Papailiopoulos, D., and Wright, S. (2018). Atomo:
Communication-efficient learning via atomic sparsification. Advances in Neural Information
Processing Systems, pages 9850–9861.

Wangni, J., Wang, J., Liu, J., and Zhang, T. (2018). Gradient sparsification for communication-
efficient distributed optimization. Advances in Neural Information Processing Systems.

Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and Li, H. (2017). TernGrad: Ternary
gradients to reduce communication in distributed deep learning. Advances in Neural Information
Processing Systems, pages 1509–1519.

Wyner, A. and Ziv, J. (1976). The rate-distortion function for source coding with side information
at the decoder. IEEE Transactions on information Theory, 22(1):1–10.

Yu, B. (1997). Assouad, fano, and le cam. In Festschrift for Lucien Le Cam, pages 423–435. Springer.

Zamir, R., Shamai, S., and Erez, U. (2002). Nested linear/lattice codes for structured multiterminal
binning. IEEE Transactions on Information Theory, 48(6):1250–1276.

34


	Introduction
	Background
	The model
	Our contributions
	Prior work

	Preliminaries and the structure of our protocols
	Distributed mean estimation with known  
	Modulo Quantizer (MQ)
	Rotated Modulo Quantizer (RMQ)
	Subsampled RMQ: A Wyner-Ziv quantizer for Rd
	Lower bound

	Distributed mean estimation for unknown  
	The correlated sampling idea
	Distance Adaptive Quantizer (DAQ)
	Rotated Distance Adaptive Quantizer (RDAQ)
	Subsampled RDAQ: A universal Wyner-Ziv quantizer for unit Euclidean ball

	The high-precision regime
	RMQ in the high-precision regime.
	Boosted RDAQ: RDAQ in the high-precision regime.

	The Gaussian Wyner-Ziv problem
	Proofs of results
	Proof of Lemma 2.1
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Theorem 3.5
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Proof of Lemma 5.2
	Proof of Theorem 6.1


