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Abstract—Consider distributed optimization of smooth convex
functions over Rd where K independent clients can provide
estimates of the gradient. Assume that all the gradient estimates
are within Euclidean distance σ of the true gradient and that each
oracle’s output must be compressed to r bits. For this problem,
in the centralized setting with one client, the optimal convergence
rate using T iterations is known to be roughly

√
σ2/T . We show

that in the distributed setting the optimal convergence rate for
large K is roughly

√
σ2/T ·

√
d/Kr. Our main contribution is

an algorithm which attains this rate by exploiting the fact that
the gradient estimates are close to each other. Specifically, our
gradient compression scheme first uses half of the parties to form
side information and then uses a Wyner-Ziv compression scheme
to compress the remaining half of the gradient estimates.

I. INTRODUCTION

In large scale machine learning or federated learning, data
is not available at a single processor or location and models
are trained by getting gradient estimates from remote clients.
In this setting, the gradients are quantized to few bits to
reduce the communication delays, which often can become the
performance bottleneck. To circumvent this bottleneck, several
gradient compression schemes have been proposed (see, for
instance, [3]–[5], [9]–[11], [13], [14], [20], [22]–[24], [28]–
[31], [34], [35]). In a related different direction, [7], [17], [32]
focused on the problem of distributed mean estimation, which
is a common primitive used in both distributed optimization
and federated learning.

The quantizers used in most of these prior works are for
compressing high-dimensional vectors. In a recent thread,
an interesting setup has been considered when some “side-
information” about the gradients is available at the decoder.
Specifically, for distributed mean estimation, [8] and [22]
presented several compression schemes when side information
is used for decoding each sample vector. [18], [19] build upon
some of the ideas presented in these works to exploit the
correlation across different clients (spatial) as well as histor-
ical gradient data (temporal) to design efficient compression
schemes in federated learning. [15], too, propose exploiting
spatial and temporal correlations for gradient compression in
federated learning.

These schemes are reminiscent of Wyner-Ziv compression
in information theory (see, for instance [25], [36], [37]) ; we
use this term broadly in the current paper to indicate compres-
sion schemes for vectors when the decoder has another vector
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that is close to the vector being compressed. In this work,
we exhibit the role of Wyner-Ziv compression for gradient
compression in distributed optimization when the data across
different clients is similar, and thereby the gradient updates of
different clients are close. At a high-level, our result shows
that Wyner-Ziv compression schemes can allow us to exploit
this closeness of gradient updates to communicate less and get
nearly optimal convergence rates.

Specifically, we consider the setting where a central server
can make gradient queries about an unknown smooth convex
function over Rd to K clients each of which have gradients
estimates within bounded Euclidean distance σ of the true
gradient. The clients can only send r-bits about their gradient
estimates. We first show that the error after T iterations of
any such algorithm must be at least Ω(

√
σ2d/KrT ). We

then present a scheme that attains this bound for a large Kr
setting (though r can be small). In this scheme, we quantize
and send gradient estimates from K/2 clients to form a
preliminary estimate, and then apply a Wyner-Ziv compression
scheme to send the gradient estimates from the remaining K/2
clients treating the preliminary estimate as side-information.
Technically, to apply our Wyner-Ziv scheme, we need to
ensure that the preliminary estimate has a subgaussian error
with appropriately small variance parameter, which is a more
stringent requirement than the expected mean-squared loss
needed in prior work.

The rest of the paper is organised as follows. We set up the
problem in next section and discuss preliminaries containing
the lower bound. We then provide our main result and our
scheme in Section III .The analysis of our scheme is provided
in Section IV.

II. SETUP AND PRELIMINARIES

We consider the problem of minimizing an unknown convex
function f : X → R over its domain X ⊂ Rd using a set of
K clients who have access to independent noisy gradients
of the function. In particular, the optimization algorithm is
not directly given access to the function but can get K
different gradient estimates of the function at various points
of its choice. This class of optimization algorithms includes
various descent algorithms, which provide close to optimal
convergence rate within the class and are appealing in practice
due to their distributed nature.

In our setup, the gradient estimates supplied by the K
clients must pass through r-bit quantizers, chosen from a
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fixed set of quantizers Qr1, and the optimization algorithm
π only has access to the quantized outputs. An r-bit quan-
tizer consists of randomized mappings (Qe, Qd) with the
encoder mapping Qe : Rd → {0, 1}r and the decoder map-
ping Qd : {0, 1}r → Rd. We denote the overall quantization
procedure by the composition mapping Q = Qd ◦Qe.

Our objective is to select quantizers Qi,t, ∀i ∈ [K], t ∈ [T ],
and an optimization algorithm π to guarantee the minimum
worst-case optimization error. In our setting, we allow for
adaptive gradient processing, whereby, the quantizer Qi,t se-
lected in tth iteration may depend on all the previous quantized
outputs. Specifically, denoting by Yi,t the ith client’s quantized
output at time t, the adaptive quantizer selection strategy
S := (S1, . . . , ST ) over T iterations consists of mappings
St : RdK(t−1) → QKr that take {Yi,t′}i∈[K],t′∈[t−1] as input
and outputs a tuple of K quantizers {Qi,t}i∈[K] ∈ QKr . We
write SQr,T for the collection of all such quantizer selection
strategies. The entire framework can be summarized as fol-
lows:

1) At iteration t, the first-order optimization algorithm π
makes a query for point xt to clients C1, . . . CK .

2) Upon receiving the point xt ∈ X , the client i ∈ [K]
outputs ĝi(xt), an unbiased estimate of ∇f(xt).

3) The gradient estimate ĝi(xt) is passed through a quan-
tizer Qi,t ∈ Qr chosen based on strategy S, and the
output Yi,t is observed by the first-order optimization
algorithm π. The algorithm then uses all the messages
{Qi,t′(xt′)}i∈[K],t′∈[t] to further update xt to xt+1.

Denote by C the collection of K clients (C1, . . . , CK).
Let ΠT be the set of all first-order optimization algo-
rithms that make T queries to C and for the tth query
xt, get back the outputs {Yi,t}i∈[K]. We measure the per-
formance of an optimization protocol π and a quantizer
selection strategy S for a given function f and clients
Ci, i ∈ [K], using the metric E(f, C, π, S) defined as

E(f, C, π, S) = E
[
f (x̄T )−min

x∈X
f(x)

]
,

where x̄T := 1
T

∑
t∈[T ] xt and the expectation is over the

randomness in x̄T .
For a set of various function and client pairs above, denoted

by O, the set of r-bit quantizers Qr and the number of
iterations T , we define the minimax optimization error as

E∗(X ,O, T,Qr) = inf
π∈ΠT

inf
S∈SQr,T

sup
(f,C)∈O

E(f, C, π, S) .

Below we will describe the class O of interest to us.

A. Function classes

We now define the class of functions and state the as-
sumptions related to the stochastic clients accessible to the
algorithm π.

1The set of r-bit quantizers Qr is used to model the communication
constraints in a distributed setting.

a) Convex and smooth function family: Throughout, we
restrict ourselves to convex and L-smooth functions over X ⊂
Rd, i.e., functions satisfying, ∀λ ∈ [0, 1],∀x, y ∈ Rd,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), (1)
‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2, (2)

where ∇f(x) ∈ Rd denotes the gradient of f at input x.
b) Stochastic gradients: We assume that the output ĝi(x)

by client Ci, 1 ≤ i ≤ K, when a point x ∈ X is queried
satisfies the following conditions:

E [ĝi(x) | x] = ∇f(x), (unbiased estimates) (3)

‖ĝi(x)−∇f(x)‖22 ≤ σ2, (maximum deviation bound) (4)

max
x∈X
‖ĝi(x)‖22 ≤ B2. (a.s. bounded estimate) (5)

Assumption (3) is standard in stochastic optimization liter-
ature (cf. [27], [26], [6]. However, it is enough to assume a
bound on the variance of stochastic gradients instead of (4)
to prove convergence guarantees for smooth stochastic opti-
mization without any communication constraints. The stronger
assumption made here is to aid a much tighter analysis under
communication constraints. In Section III-A, we provide a
scheme which can operate under the standard variance bound.

Denote by Osc the set of tuples of function and K clients,
(f, C), satisfying (1), (2), (3), (4) and (5).

B. Lower bound

Before proceeding further, the following bound will serve as
a basic benchmark for our problem. Let D > 0 and X2(D) :=
{X ⊆ Rd : maxx,y∈X ‖x − y‖2 ≤ D} be the collection of
subsets of Rd whose `2 diameter is at most D.

Theorem II.1. There exists an absolute constant 0 ≤ c0 ≤ 1
such that for r ∈ N and T ≥ d/(6Kr),

sup
X∈X2(D)

E∗(X ,Osc, T,Qr) ≥
c0Dσ√
KT
·
√

d

d ∧ r
.

Note that affine function are 0-smooth and admitted in
the class of L smooth functions. We use affine functions
as difficult functions and proceed in the same manner as in
the lower bounds for convex, Lipschitz optimization under
communication constraints ([1, Section 4.5]; see, also, [2]),
since the lower bounds for convex Lipschitz optimization also
use affine functions as difficult functions.

C. A general convergence bound

We present a general convergence bound based on a non-
adaptive channel strategy. In particular, we fix same quanti-
zation process in every iteration, and the quantized outputs
{Yi,t}i∈[K] are passed through a mapping Q : RKd → Rd in
order to update the query.

We use PSGD as the first-order optimization algorithm; the
overall optimization procedure is described in Algorithm 1.
PSGD proceeds as SGD, with the additional projection step
where it projects the updates back to domain X using the map
ΓX (y) := minx∈X ‖x− y‖, ∀ y ∈ Rd.



1: for t = 0 to T − 1 do
2: xt+1=ΓX (xt − ηtQ(Y1,t, ..., YK,t))

3: Output x̄T = 1
T

∑T
t=1 xt

Algorithm 1: PSGD with quantizers {Qi}i∈[K]

The convergence rate of Algorithm 1 is controlled by
the worst-case L2-norm α(Q) and the worst-case bias β(Q)
defined as

α(Q) := sup
{∀x,i∈[K],ĝi∈Rd:

‖ĝi−∇f(x)‖2≤σ2}

√
E
[
‖Q(Ȳ )−∇f(x)‖2

]
, (6)

β(Q) := sup
{∀x,i∈[K],ĝi∈Rd:

‖ĝi−∇f(x)‖2≤σ2}

‖E
[
(Q(Ȳ )−∇f(x)

]
‖, (7)

where for i ∈ [K], Ȳ = (Y1,t, ..., YK,t). Using a slight
modification of the standard proof of convergence for PSGD,
we can derive the following lemma.

Lemma II.2. For any mapping Q and set of quantizers
{Qi}i∈[K] defined above, the output x̄T of optimization al-
gorithm given in Algorithm 1 satisfies

sup
(f,C)∈O

E(f, C, π, S)

≤
√

2α(Q)D√
T

+ β(Q)

(
D +

DB

α(Q)
√

2T

)
+
LD2

2T
,

with the learning rate ηt = min{ 1
L ,

D
α(Q)

√
2T
},∀t ∈ [T.]

D. Sub-gaussian norm and random rotation

For our analysis, it will be convenient to recall the definition
of subgaussian norm2 of a random variable.

Definition II.3 ([33]). A subgaussian norm of a subgaussian
random variable X , denoted ‖X‖ψ2

, is defined as ‖X‖ψ2
:=

inf{t > 0 : E
[
eX

2/t2
]
≤ 2}. It follows that for a centered

subgaussian random variable X, Pr(|X|) ≥ t) ≤ 2e
− t2

‖X‖2
ψ2 .

In addition to this, we require a random Hadamard matrix
to perform random rotation. Specifically, denoting by H the
d× d Walsh-Hadamard Matrix (See [12]), define

R := 1/
√
dHD′, (8)

where D′ is a diagonal matrix with each diagonal entry
generated uniformly from {−1,+1}.

III. MAIN RESULT: AN OPTIMAL UPPER BOUND FOR
DISTRIBUTED OPTIMIZATION

A. Baseline: Parallel SGD

We begin by presenting the convergence result for the
baseline scheme in our setup: the Parallel SGD algorithm.
In Parallel SGD, all clients compress their stochastic
gradient estimates to r bits using an efficient quantizer for the
Euclidean ball and send it to the server, which then takes the

2‖ · ‖ψ2
is indeed a norm.

1: for Clients i ∈ [K] do
2: if i ∈ C1 then Qi = Qu

3: else Qi = QWZ,i

4: Intialize x1 ∈ X
5: for t ∈ [T ] do
6: for Server do
7: Broadcast xt to clients
8: for Clients i ∈ [K] do . Encoding
9: Compute ĝi(xt)

10: Send Qe
i (ĝi(xt)) to server

11: for Server do . Decoding
12: for i ∈ C1 do
13: Qi(ĝi(xt)) = Qd

i (Q
e
i (ĝi(xt)))

14: Zt = 2
K

∑
i∈C1 Qi(ĝi(xt)) . Side-information

15: for i ∈ C2 do
16: Qi(ĝi(xt), Zt) = Qd

i (Q
e
i (ĝi(xt)), Zt)

17: xt+1 = ΓX
(
xt − ηt · 2

K

∑
i∈C2 Qi(ĝi(xt), Zt)

)
18: At Server Output: x̄T = 1

T

∑
t∈[T ] xt+1

Algorithm 2: WZ− SGD algorithm

average of the quantized gradients for the projected gradient
descent step. We choose subsampled RATQ ([24]) for this
efficient quantizer. We denote by QRATQ the subsampled version
of RATQ using r bits, which is described in [24, Section 3.5].
Denote by Qt the average of all the quantized gradients, i.e.,

Qt =
1

K

K∑
i=1

QRATQ(ĝj(xt)). (9)

We use Qt to make the projected descent step as seen in line
2 of Algorithm 1.

Theorem III.1. Let S be the quantizer selection strategy
which fixes the quantizer to be QRATQ for all clients at all
iterations. Let π be the optimization algorithm described in
Algorithm 1 where Qt as described in (9) is used to make the
PSGD step after the tth query. Then, for universal constants
c1 and c2, and r such that d ≥ r ≥ c1 log log∗ d, we have

E(f, C, π, S) ≤ c2D√
KT

√
σ2 +

c2dB2 log log∗ d

r
+
LD2

T
.

We note that the term dB2 log log∗ d
r illustrates the slowdown

in convergence due to quantization error. This is nearly the
best rate which can be achieved when one uses r-bit quantizers
without any side information3. Note that for the cases when B
is large relative to σ2, the slowdown due to this term can be
significant, and the algorithm maybe far away from our lower
bound in Theorem II.1.

B. WZ-SGD: An almost optimal algorithm for distributed
optimization

We are now ready to present our main algorithm: WZ-SGD.
WZ-SGD significantly improves over the convergence rate of

3Similar convergence bounds (upto log log d factor) for parallel SGD can
be achieved by using subsampled version of rotated quantizer in [32] or the
subsampled version of uniform quantizer after preprocessing due to Kashin’s
representation (cf. [16], [21]).



Theorem III.1 and relegates the dependence of convergence
rate on B to only second order terms.

At each iteration t, WZ-SGD uses the clients in C1 to form
the side information estimate Zt at the server and then uses the
clients in C2 to estimate the gradient for the gradient descent
step, where4 C1 : ={C1, . . . , CK/2}, C2 : =C \ C1.

a) The side information estimate Zt: The side informa-
tion is formed as follows. Under the r-bit communication
constraint, we divide the coordinates into blocks of dimension
r1, where r1:=d/ log `1, and log `1 denotes the precision bits
used by clients to represent each coordinate in the assigned
block. This way we have d/r1 blocks. We assign each
block to Kr1/(2d) clients to form the side information for
the coordinates represented by that block. To quantize the
coordinates within any block, the clients assigned to that
block will use a coordinate-wise uniform quantizer (CUQ).
CUQ is an unbiased, uniform quantizer that has appeared
recently in many works on gradient quantization. We denote
by Qu : [−B,B] → {−B + 2B · (i − 1)/(`1 − 1) : i ∈ [`1]}
the `1-level CUQ quantizer. For a scalar input x ∈ [−B,B],

Qu(x) =


⌈
x(`1−1)

2B

⌉
· 2B
`1−1 , w.p. x−b x(`1−1)

2B c
2B
`1−1

,

bx(`1−1)
2B c · 2B

`1−1 , w.p.

⌈
x(`1−1)

2B

⌉
−x

2B
`1−1

.
(10)

Each client uses an `1-level CUQ to quantize the associated
block of coordinates separately. Thus, the overall commu-
nication by each client is r1 · log `1 = r and satisfies the
communication constraint.

For each block, we then form the side information by taking
the average of the quantized outputs from all its associated
clients. Denote by Zt the side-information formed at the server
by using the clients in C1 at iteration t. Then, from the
description of our scheme, for all coordinates i ∈ {r1(j −
1) + 1, . . . , r1j} and for all j ∈ [d/r1] we have

Zt(i) =
2d

Kr1

∑
k∈Sj

Qu(ĝk(xt)(i)),

where Sj denotes the set of Kr1
2d clients assigned to form the

side information for the coordinates {r1(j− 1) + 1, . . . , r1j},
i.e., Sj = {C(Kr1/(2d))·(j−1)+1, . . . , C(Kr1/(2d))·j}.

We remark that to decode each quantized gradient estimate
sent by clients in C2, we will use Zt as side information.
However, Zt will not be used as is but a version which is
rotated5 using a random matrix (8) will be used.

b) The Wyner-Ziv gradient estimate QWZ: We use the
clients in C2 to form the actual gradient estimate. The clients
encode the stochastic gradients using a subsampled RMQ
quantizer from [22, Section 3.3].

In subsampled RMQ, before compressing the computed
gradients, each client preprocesses the stochastic gradients by
randomly rotating them using iid versions of R given in (8),

4For simplicity, we assume that K/2 and d/r1 are integers such that d/r1
divides K/2.

5For decoding each quantized gradient sent by clients in C2, Zt will be
rotated using independent and identical versions of matrix R

which in turn is generated using public randomness between
the client and the server.

Then, each coordinate of the rotated vector is quantized
to log `2 bits using Modulo quantizer (MQ). MQ was recently
proposed for distributed mean estimation with side information
in [8] and also used in [22]. We follow the description given
in [22, Section 3.1]. Specifically, MQ is a uniform quanitzer
used to quantize input vector x ∈ R with side-information y
available for decoding. As additional inputs, MQ needs ∆′,
an estimate on distance between x and y, the precision log `2,
and lattice parameter ε. The encoder of MQ first randomly
quantizes x to either dx/εe or bx/εc such that the output is
an unbiased estimate of x/ε. Then, a modulo- k operation is
performed on that output and it is sent to the decoder. That is,

Qe
M(x) = z̃ mod k,where z̃ =

{
dx/εe , w.p. x/ε− bx/εc
bx/εc, w.p. dx/εe − x/ε.

The decoder is described as follows.

QM(x, y) = min{|(z`2 +Qe
M(x))ε− y| : z ∈ Z}.

Then, each client Cj independently samples a set Dj ∈ [d] of
cardinality r2 := r/ log `2 uniformly at random. Once again,
uniform sampling is done by using the public randomness
shared between the client and the server. Only the output of
MQ corresponding to coordinates in the set Dj is sent to the
server. Therefore, for stochastic gradient ĝj(xt), the output
encoded by client Cj using subsampled RMQ is described as
follows: Qe

WZ,j(ĝj(xt)) = {Qe
M(Rj ĝj(xt)(i)) : i ∈ Dj}.

At the server, the communication for all Cj ∈ C2 is decoded
as follows:

QWZ,j(ĝj(xt), Zt)=R
−1
j

 d

r2

∑
i∈Dj

(g̃j −RjZt(i)) ei +RjZt


where g̃j(i) = QM(Rj ĝj(xt)(i), RjZt(i)). Finally, the server
averages over all the quantized gradient estimates of clients in
C2 to get Q, which in turn is used to make the PSGD step in
line 2 of Algorithm 1. That is,

Qt =

∑K
j=K/2+1QWZ,j(ĝj(xt), Zt)

K/2
. (11)

We are now ready to present our main result: the conver-
gence rate of WZ− SGD algorithm.

Theorem III.2. Let S be the communication protocol which
uses the CUQ quantizer for clients C1 and the subsampled
RMQ quantizer for clients in C2. Let π be the optimization
algorithm described in Algorithm 1 which uses Qt in (11) to
make the PSGD step after the tth query. Then, for universal
constants c1, c2, and c3 and r,K such that d ≥ r ≥
c1 max{log logKT, log(B/σ)} and Kr ≥ c2d2 log(B/σ), we
have

E(f, C, π, S) ≤ c3Dσ√
KT
·
√
d log logKT

r
+
LD2

2T
.

Thus, in the setting where the number of clients K is large,
we match the lower bound in Theorem II.1 upto a log logKT
factor.



IV. ANALYSIS OF WZ-SGD

a) Side information is close to gradient estimates:
We begin by noting that side-information Z6 is close to
the stochastic gradient estimates computed by clients in C2.
Specifically, setting the parameters as log `1 =

⌈
log 2B

σ + 1
⌉

and r1 = r/ dlog 2B/σ + 1e for clients in C1, we get the
following.

Lemma IV.1. For all x ∈ Rd, j ∈ C2, and i ∈ [d], we have

Pr(|Rĝj(x)(i)−RZ(i)| ≥ t) ≤ 2e−cmin{ t2

4σ′2
, t
√
d

2σ′ }+2e−c
t2d
4σ2 ,

where R is a random Hadamard matrix (8) and for a universal
constant c

σ′2 =
c8dσ2 dlog(2B/σ + 1)e

Kr
. (12)

Remark 1. In the analysis for RMQ in [22], the difference
between the coordinates of the rotated input and rotated
side information had subgaussian tails. However, note that in
Lemma IV.1, we can only prove a slightly weaker concentra-
tion result.

Towards proving Lemma IV.1, we begin by showing the fol-
lowing result which holds from the subgaussian properties of
uniform quantizer error and standard properties of subgaussian
random variables.

Lemma IV.2. For all x ∈ Rd and i ∈ [d] we have
‖Z(i)−∇f(x)(i)‖2ψ2

≤ σ′2.

Remark 2. In order to quantize a d-dimensional gradient to
r ≤ d bits, the technique of uniform sampling has been
used in recent papers on distributed optimization (cf. [32],
[24]). However, this only gives small quantization error in the
mean square sense, which will not suffice for our Wyner-Ziv
compression algorithm.

Next, using standard properties of subgaussian random
variables (cf. [33, Lemma 2.7.7 and Theorem 2.8.1]), we can
show the following.

Lemma IV.3. For all x ∈ Rd and i ∈ [d] we have
Pr(|RZ(i)−R∇f(x)(i)| ≥ t) ≤ 2e(−cmin{t2/σ′2,t

√
d/σ′}).

Finally, using similar proof techniques as in [24, Lemma
5.8], we can show that the rotated gradient estimates of clients
in C2 is close to the rotation of the true gradient.

Lemma IV.4. For all x ∈ Rd we have
‖Rĝj(x)(i)−R∇f(x)(i)‖2ψ2

≤ cσ2/d.

Lemma IV.1 follows from Lemmas IV.3 and IV.4.
b) Bounds on α(Q) and β(Q): Let the grid size ε of

modulo quantizer be set as follows: ε = 2∆′

`2−2 , where ∆′ =
3σ√
cd
· log( 2σ√

cδ
) for some parameter δ to be specified later.

Remark 3. Note that such a choice of ε ensures that whenever
a coordinate of the rotated vector Rĝj(x) is within ∆′ of
the corresponding coordinate of the rotated side information

6For convenience, we drop the iteration subscript t in this Section.

there is no error in decoding. Therefore, the output of modulo
quantizer is unbiased and ε close to input under this event.
Also, note that because of the minimum distance decoding at
the decoder, each coordinate decoded by modulo quantizer is
always `ε close to the side information.

Denote by QRMQ,j the rotated modulo quantizer without any
subsampling for client j ∈ C2. That is,

QRMQ,j(ĝj(x), Z)=R−1
j

∑
i∈[d]

(g̃j −RjZ(i)) ei +RjZ


where g̃j(i) = QM(Rj ĝj(x)(i).

The key step of the proof is bounding MSE and bias of
RMQ. Towards that, we have the following lemma.

Lemma IV.5. Under the condition that Kr ≥ c2d2 log(B/σ),
we have for all x ∈ Rd, j ∈ C2, and δ ∈ (0, 2σ/

√
c) that

E
[
‖QRMQ,j(ĝj(x), Z)− ĝj(x)‖22

]
≤ 144σ2

c(`2 − 2)2

(
ln

2σ√
cδ

)2

+ 251δ2

‖E [QRMQ,j(ĝj(x), Z)]− ĝj(x)‖22 ≤ 251δ2.

Proof. By considering events {|Rj(ĝj(x)−Z)(i)| ≤ ∆′} and
{|Rj(ĝj(x)−Z)(i)| ≥ ∆′}, and then using the facts in Remark
3 for modulo quantizer, we have

E
[
‖QRMQ,j(ĝj(x), Z)− ĝj(x)‖22

]
≤ dε2+
d∑
i=1

E
[
(QRMQ,j(ĝj(x), Z)− ĝj(x))(i)

2
1{|Rj(ĝj(x)−Z)(i)|≥∆′}

]
≤ dε2 + 2`2ε2

d∑
i=1

Pr(|Rj(ĝj(x)− Z)(i)| ≥ ∆′)

+ 2

d∑
i=1

E
[
(Rj(ĝj(x)− Z)(i))2

1{|Rj(ĝj(x)−Z)(i)|≥∆′}
]
.

Note that the terms Pr(|Rj(ĝj(x) − Z)(i)| ≥ ∆′)
and E

[
(Rj(ĝj(x)− Z)(i))2

1{|Rj(ĝj(x)−Z)(i)|≥∆′}
]

can be
bounded appropriately using the concentration bound in
Lemma IV.1. Due to space constraints we skip the details.

The bound on bias follows by noting that it is bounded by
E
[
‖QRMQ,j(ĝj(x), Z)− ĝj(x)‖221{|Rj(ĝj(x)−Z)(i)|≥∆′}

]
Remark 4. The condition on Kr is needed to remove any B
dependence from the MSE upper bound.

Then using standard bounds for subsampling and averaging
of vectors (see, for instance, [22, Lemmas 2.1 and 3.3]), we
can extend the above result and show the following bounds for
α(Qt) and β(Qt) for log `2 = dc log logKT e and δ ≤ 2σ

KT :

α2(Qt) ≤ c1 σ
2 log logKT

K · dr , β
2(Qt) ≤ c2σ

2

KT . The convergence
proof of Theorem III.2 can be completed by using the bounds
on α, β and using Lemma II.2.
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