Escaping the Poisson Packet
Black Hole
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Wireless Network
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Military Networks
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MeshDynamics Persistent Third Generation Mesh ™ (P3M)
Seamless self synchronized convergence and dispersion



Sensor Network

¥ Video Camera
A Infrared Camera
® Microphones

e Surveillance
e Data collection



Vehicular Network

® Traffic Management
e Road Safety



Why Poisson !
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® The number of points falling in B is Binomial with

P (#(B) = k) = (Z)pk(l—p)”‘k P= i)
I/(W) = A
P(#(B) = k) ~ Poisson (Av(B))

® Asn — oo Wwhile fixing
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SINR is a random variable: multiple attempts required



PPP network
Negative result

- Expected delay to any node is infinite

[Baccelli, Blacszczyszyn, Mirsadeghi, Adv. App. Prob. 201 0]

min delay has infinite expectation



Negative Result

Even in the absence of interference (AWGN is sufficient)

Unbounded sized holes in PPP
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More Bad News.

Let d(t) be the successful distance traveled by a tagged
particle from origin in time ¢

Then speed or information velocity is

[V: lim @]
t

t— 00

[ In a PPP network )V = (0 [Baccelljetal, 20|0]]




Negative Result Primer

®
v Sij..--=® sij = Pihijl(dij)
6: 3 T  Time to exit to any other node
o
Drop the Interference  SINR;,; = —°¥ SNR;; = 24

I;+N N

P(T>k) =P(SNR;;(t) <BNYjed t=1,... k)

Conditioned over location of nodes, SNRs are independent
P(T > k@) = || P(SNR;(t) > B)*
jED

After unconditioning  P(T > k) > %



Main Tool

PGF(f) =E< ] flzn)

For a PPP ® with density A

[ PGF(f) = eXp—A f(l—f(x))da:]




Remedy

® Add a regular square grid [Baccelli,etal,2010]




A more practical solution

sij = hijt(dij)

source °
destination

Power Control : power P; = cf(d;;) ™ 'with prob. p; = M P

Transmit with higher power Less frequently



Results

® Expected delay to nearest neighbor is finite

® Information velocity is positive



Issues with New Policy

Choice of cones at any time are correlated

new cone °




Analysis |deas - Power Control

P(T > k) = P(SINR o) (t) < Byt =1,...,k)

Earlier it was sufficient to condition over @

Not any more

With correlated choice of cones across time slots

condition over sigma field G, generated by ® and choice of cones

4 k )
P(T>k)=ES | [P(SINRy,)(t) < BIGk) ¢

\t=1 y




Analysis |deas - Power Control

P(T > k) = {HP SINRon(o)()<ﬁgk)}

t=1

Interferer X

ﬂ3(X) .ﬂz(X)

For any interferer z, use the choice of cone that
maximizes the interference seen at n(o) at time t=1,...,k



Analysis |deas - Power Control

o) k
E{T} = ZP(T > ]{) P(T > k) — E {HP(S[NRon(O)(t) < ng)}
k=0

t=1

Power Control : power P; = cé(dij)_lwith prob. p; = ]\4PZ._1

For any interferer z, the average interference is bounded

p.P. <M

Thus, if /é(]w\)dw < 00

using Campbell’s Theorem we can show that expected delay is
finite



Information Velocity

Look at tagged particle at origin [V — lim Q ]

t— 00

dest

progress

~ E{Rcos(0)}

First Guess V= E{T;)



Information Velocity

Look at tagged particle at origin

vacant

Tg, T1 are not identically distributed



Information Velocity

Dominate the delay by adding an infinite chain of points

\ fill Poisson points
same distribution as R and 6 .

To, T1, ... are identically distributed



Information Velocity

T, T1,... are stationary

similar to before  E{T;} < o

n—1
1 . .
Birkoff's Ergodic Theorem Jim -~ kg O T, =T
where T'is a rv with mean E{7}}

> Tim ]k\[:(? Ry, cos(0x) _ E[R cos(6)]
- t—oo ]k\r:(tl)—i_l Tk T

effective distance progress



Conclusions

Good Old Power Control works !
Cone angle to be optimized
Best Upper bound on expected delay ?

Fundamental Lower Bound on delay and velocity 7
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This book discusses the theoretical limits of information transfer in random wireless
networks or ad hoc networks, where nodes are distributed uniformly random in space
and there is no centralized control. Examples of ad hoc networks include sensor
networks, military networks, and vehicular networks that have widespread
applications. Decentralized nature of these networks makes them easily configurable,

scalable, and inherently robust.

The author provides a detailed analysis of the two relevant notions of capacity for
random wireless networks — transmission capacity and throughput capacity. The book
starts with the transmission capacity framework that is first presented for the single-
hop model and later extended to the multi-hop model with retransmissions. By
reusing some of the tools developed for analysis of transmission capacity, few key
long-standing questions about the performance analysis of cellular networks are also
addressed for the benefit of students. To complete the throughput capacity
characterization, the author finally discusses the concept of hierarchical cooperation

that allows the throughput capacity to scale linearly with the number of nodes.
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The optimal role of multiple
antennas, ARQ protocols, and
scheduling protocols in random
wireless networks is identified using
the transmission capacity
paradigm. This book provides a
holistic view of all relevant tools
and concepts used to analyse
random wireless networks. A
conscious attempt is made to bring
out the connections between
transmission and throughput
capacity, between percolation
theory and throughput capacity,
and stochastic geometry and
cellular networks. For effective
understanding, an extensive effort
is made to explain the physical

interpretation of all results.



