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Two pictures

Left: Poisson process Right: Determinantal process

In both cases the points are randomly distributed and the
average number of points per unit area is the same. But one
is more evenly spaced out than the other.



Two more pictures
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Left: i.i.d. points Right: A determinantal process

Purpose of the lecture is to ask the question Many
models in wireless communication etc., based on Poisson
process. Is it worth trying to analyse the same models on a
determinantal process?



The setting

Ingredients:

I E is R or C or S1 or Z or Rd .... (“space”)

I K : E ⇥ E ! C, “kernel function” satisfying
1. K(x, y) = K(y, x). [Symmetry]

2.
R
E K(x, y)K(y, z) dy = K(x, z). [Reproducing property]

3.
R
E K(x, x) dx = n, a positive integer. [Rank condition]

Standing remark: If E = Z or any finite or countable set,
replace integrals by sums.

I Reproducing property:
P
y2E

K(x, y)K(y, z) = K(x, z).

I Rank condition:
P
x2E

K(x, x) = n.



Determinantal density

The key Lemma: Let f(x1, . . . , xn) = 1
n! det(K(xi, xj))i,jn for

x1, . . . , xn 2 E .
1. f is a probability density on En.

2. f is symmetric in its arguments.

3. Any k-dimensional marginal of f is given by
Z

En�k

f(x1, . . . , xn)dxk+1 . . .dxn =
(n� k)!

n!
det(K(xi, xj))i,jk.

Such an f is called a determinantal density [Macchi
(1975-76)].

Remarkable point: These multivariate densities can be
integrated out to get the marginals explicitly!



Proof of the lemma

There is only one key step: Show that
Z

E
det(K(xi, xj))i,jn dxn = det(K(xi, xj))i,jn�1.

Step 1: Write

det(K(xi, xj))i,jn =
X

⇡2Sn

sgn(⇡)
nY

`=1

K(x`, x⇡(`)).

Step 2: For each ⇡ 2 Sn, compute

Z

E

nY

`=1

K(x`, x⇡(`)) dxn.

Step 3: Add them all up and get det(K(xi, xj))i,jn�1.



Proof of the lemma [cont’d]
Want to compute

Z

E

nY

`=1

K(x`, x⇡(`)) dxn.

Case 1: ⇡(n) = n. Integral gives +n ·
n�1Q
`=1

K(x`, x�(`)).
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Proof of the lemma [cont’d]
Want to compute

Z

E

nY

`=1

K(x`, x⇡(`)) dxn.

Case 2: ⇡(n) 6= n. Integral gives �
n�1Q
`=1

K(x`, x�(`)).
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Proof of the lemma [cont’d]

A given � 2 Sn�1 comes once from case 1 and n� 1 times
from Case 2. Thus,

Z

E
f(x1, . . . , xn)dxn =

1
n!

X

�2Sn�1

sgn(�)
n�1Y

`=1

K(x`, x�(`))

=
1
n!

det(K(xi, xj))i,jn�1.

The integration over xn�1, xn�2, . . . can be continued in
exactly the same way.



Determinantal density: summary

Let K : E ⇥ E 7! C be

1. symmetric: K(x, y) = K(y, x),

2. reproducing:
R
E K(x, y)K(y, z)dy = K(x, z) and

3. have rank n:
R
E K(x, x)dx = n.

Then f(x1, . . . , xn) = 1
n! det(K(xi, xj))i,jn is a symmetric

probability density on En whose marginals are of the form

(n� k)!
n!

det (K(xi, xj))i,jk .

Remarkable feature: A multivariate density whose
marginals can be explicitly found!



Are there such kernels? Yes, many!
Define K(x, y) =  1(x) 1(y) + . . . +  n(x) n(y)
where  1, . . . , n are orthonormal in L2(E). That is,

Z

E
 j(x) k(x) dx =

(
1 if j = k,

0 if j 6= k.

Symmetry: Obvious.

Reproducing property:
Z

E
K(x, y)K(y, z)dy =

X

j,k

 j(x) k(z)
Z

E
 j(y) k(y)dy

=
X

j

 j(x) j(z) = K(x, z).

Rank condition:
Z

E
K(x, x)dx =

nX

j=1

Z

E
| j(x)|2dx = n.



A motivation from quantum physics

Question: Probability densities f1, . . . , fn on R. Simplest
density on Rn made out of these?

Answer: f1(x1)f2(x2) . . . fn(xn). Independent particles.

Question: Quantum amplitudes  1, . . . , n: complex-valued
functions such that | k|2 is a density. What is the simplest
n-particle amplitude made out of these?

 1(x1) . . . n(xn)? Not acceptable as elementary particles are
indistinguishable.

If we assume that  k are orthogonal to each other, there are
two acceptable answers.

I Symmetric amplitude: 1p
n!

P
⇡2Sn

Qn
k=1  ⇡(k)(xk)

I Anti-symmetric: 1p
n!

P
⇡2Sn sgn(⇡)

Qn
k=1  ⇡(k)(xk).

In either case, |Amplitude|2 is symmetric.



A motivation from quantum physics [cont’d]

Anti-symmetric case: Write 1
n!

���det
�
 j(xk)

�
j,kn

���
2
as

1
n!

det

2

64
 1(x1) . . .  n(x1)

...
...

...
 1(xn) . . .  n(xn)

3

75

2

64
 1(x1) . . .  1(xn)

...
...

...
 n(x1) . . .  n(xn)

3

75

=
1
n!

det (K(xi, xj))i,jn

where K(x, y) =
Pn

`=1  `(x) `(y). Determinantal density!!



Example 1: Circular unitary ensemble (CUE)

Let E = S1, the unit circle. Let  k(✓) = 1p
2⇡
eik✓, 0  k  n� 1.

Then,

Kn(✓,�) =
1
2⇡

n�1X

k=0

eik✓e�ik� =
1
2⇡

sin[(n + 1
2)(✓ � �)]

sin[12(✓ � �)]
.

The density 1
n! det(Kn(✓i, ✓j))i,jn can also be written as

1
n!

���det
�
 j�1(✓k)

�
1j,kn

���
2

=
1

(2⇡)nn!

Y

j<k

|ei✓j � ei✓k |2.

Probabilistic origin: Pick a random n⇥ n unitary matrix
according to the Haar measure. The eigenvalues have the
CUE density (Weyl, Dyson).



Example 1: CUE simulation
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Example 2: Ginibre ensemble

Let E = C, the complex plane. Let  k(z) = 1p
⇡
p
k!
zke�|z|

2
.

Then,

Kn(z,w) =
1
⇡

n�1X

k=0

(zw)k

k!
.

The density 1
n! det(Kn(zi, zj))i,jn can also be written as

1
⇡nn!

Y

j<k

|zj � zk|2 ·
nY

k=1

e�|zk|
2
.

Probabilistic origin: Pick a random n⇥ n matrix whose
entries are independent complex Gaussian random variables.
The eigenvalues have the Ginibre density (Ginibre-1965).



Example 2: Ginibre simulation



Example 3: Spherical ensemble

Let E = C and let  k(z) =
q

n
⇡

�n�1
k

�
zk

(1+|z|2)
1
2 (n+1)

. Then,

Kn(z,w) =
1
⇡

(1 + zw)n�1

(1 + |z|2)
n+1
2 (1 + |w|2)

1
2 (n+1)

.

The density 1
n! det(Kn(zi, zj))i,jn can also be written as

1
⇡nn!

Y

j<k

|zj � zk|2 ·
nY

k=1

1
(1 + |zk|2)n+1 .

Probabilistic origin: Pick two random n⇥ n matrices A,B
whose entries are independent complex Gaussian random
variables. The eigenvalues of A�1B have the spherical density
(K.-2006).



Example 3: Spherical ensemble simulation
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Equivalent: Pick n points on the sphere with density
Y

j<k

kPj � Pkk2R3 .



Many examples from random matrix theory

Many random matrices have eigenvalues with determinantal
densities. Some example below. All matrices, A,B,Ai are
independent and have i.i.d. standard complex Gaussian
entries.

I (GUE). A + A⇤ has n real eigenvalues with densityQ
j<k(xj � xk)2 · e�

Pn
j=1 x

2
j on Rn. Kernel can be written in

terms of Hermite polynomials. (Wigner 1950s). The most
studied determinantal density...

I A1A2 . . .Am. (Akemann and Burda 2012).

I A±1
1 A±1

2 . . .A±1
m . (K. Adhikari, N. Reddy, T. Reddy, K. Saha -

2014).

I m⇥m sub-matrix of a random unitary matrix.
(Zyczkowski and Sommers - 2000)



A standard class of examples in the line and plane

Let E be R or C. Let w : E 7! R+ be any weight function. Then,
the density

Cn ·
nY

k=1

w(zk) ·
Y

j<k

|zj � zk|2

is a determinantal density. The kernel is

Kn(z,w) =
n�1X

j=0

 j(z) j(w)

where  0, . . . , n�1 are got by applying Gram-Schmidt top
w(z), z

p
w(z), . . . , zn�1

p
w(z). [Want to see why?]

Remark: The density Cn ·
Qn

k=1w(zk) ·
Q

j<k |zj � zk|2.1

appears similar to the previous one qualitatively. But no
explicit formulas for the marginal densities!



Example 4: Uniform spanning tree

Let G = (V,E) be a finite graph. Orient each edge in one of
two possible ways. Regard each edge as a unit resistor.
Define the transfer-current matrix

K(e, f) = current flowing through f when unit current

flows from tail of e to head of e.

K turns out to have symmetry, reproducing property and rank
|V|� 1. Hence it defines a determinantal pmf on E|V|�1.

Probabilistic origin: Among all spanning trees of G, pick
one uniformly at random. Regard T as a random subset of E
containing |V|� 1 edges. Then,

P{T = {e1, . . . , e|V|�1}} = det(K(ei, ej))i,j|V|�1.

[Burton and Pemantle - 1993].



General properties?

Although the definition looks esoteric, we have shown a good
number of natural examples of determinantal densities. We
claimed that they are also amenable to analytical and
computational study. To justify we show:

1. An algorithm to simulate from a general determinantal
density.

2. That the distribution of the number of points that fall in a
given region may be exactly computed. In particular, the
mean and variance.

3. Asymptotics of determinantal densities reduce to
asymptotics of the kernels.



How to sample from a determinantal density?

The following algorithm was introduced in HKPV (2006). Recall
that K : E ⇥ E ! C is symmetric, reproducing and has rank n.

1. i = 1.

2. 1
nK(x, x) is a density on E . Sample a point U from this
density. Set Xi = U.

3. Reset the kernel to

K(x, y) K(x, y)� K(x,U)K(U, y)
K(U,U)

.

4. i = i + 1 and n = n� 1. If K = 0, stop; Else go to Step 2.

Proof: Check that the new kernel in Step 3 is symmetric,
reproducing and has one rank less.



Algorithm: illustration

Let E = S1 and K(✓,�) = 1
2⇡

sin[(6+ 1
2 )(✓��)]

sin[ 12 (✓��)]
(CUE with n = 6).
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After two more steps, the kernel becomes zero identically and
the process stops.



Distribution of points

Let 1
n! det(K(xi, xj))i,jn be a determinantal density on En. Let

(X1, . . . ,Xn) be a sample from this density. What we care
about is the set X := {X1, . . . ,Xn}, not the order. X is a point
process with a total of n points, almost surely.

Theorem
For A ✓ E , let X (A) be the number of points of X that fall in A.

1. E[X (A)] =
R
A K(x, x) dx and

Var(X (A)) =
R
A

R
Ac |K(x, y)|2 dx dy.

2. X (A)
d
= ⇠1 + ⇠2 + . . ., where ⇠k are independent Ber(�k)

random variables where the parameters �1,�2, . . . are
determined by K and A.

The last statement is implicit in a paper of Shirai and
Takahashi (2003) and made explicit and used in HKPV (2006).



Distribution of points [cont’d]

Expected number of points: If A ✓ E , then

E[X (A)] =
nX

k=1

P{Xk 2 A}

= n
Z

A

1
n
K(x, x) dx

=

Z

A
K(x, x) dx.



Distribution of points [cont’d]
Second moment:

E[X (A)(X (A)� 1)] = 2
X

1j<kn
P{Xj 2 A,Xk 2 A}

= 2

✓
n
2

◆
P{X1 2 A,X2 2 A}

= n(n� 1)

Z

A⇥A

(n� 2)!

n!
(K(x, x)K(y, y)� K(x, y)K(y, x))dydx

=

✓Z

A
K(x, x)dx

◆2

�
Z

A

Z

A
K(x, y)K(y, x) dy dx.

Then, Var(X (A)) = E[X (A)(X (A)� 1)] + E[X (A)]� E[X (A)]2

which is equal to

= �
Z

A

Z

A
K(x, y)K(y, x) dy dx +

Z

A
K(x, x)dx

=

Z

A

Z

Ac
|K(x, y)|2 dy dx.



Distribution of points [cont’d]

Full distribution: One can compute all the moments of X (A)
in terms of the kernel K. Then one can check that it has the
same distribution as ⇠1 + ⇠2 + . . . where ⇠j ⇠ Ber(�j) are
independent.
The parameters �j: Consider the operator TA : L2(A)! L2(A)
defined as

(TAf)(x) =

Z

A
K(x, y)f(y) dy.

TA is a compact operator and has eigenvalues
1 � �1 � �2 � �3 � . . .. These are the parameters of the
Bernoullis.

It is also possible to write the moment generating function of
the joint distribution of X (A),X (B),X (C), . . ., but the formulas
are a tad complicated looking, so we do not present them.



Infinite determinantal point processes?

Is it possible to define an infinite collection of points that are
determinantal in some sense?
As stated, our definition involves densities, hence does not
make sense.
But...if (X1, . . . ,Xn) has determinantal density, by the
symmetry of the density, there is no meaning to the first
point, second point, etc. Hence, better to not think of the
random vector (X1, . . . ,Xn) but the random set {X1, . . . ,Xn} or
equivalently the random measure

Pn
k=1 �Xk . The right notion

is

Point process: A random (finite or infinite, but locally finite)
set of points in E .



How to describe a random collection of points?

Let X be a random countable subset of E (we say that X is a
point process) with the property that there are only finitely
many points in any bounded set.

Joint intensities: Suppose that

pk(x1, . . . , xk) = lim
✏!0

P{X has one point in each of B(xj, ✏), j  n}Qn
k=1 Vol(B(xj, ✏))

exists for all k � 1 and all x1, . . . , xn 2 E .

Remark: If E is Z or Zd etc., we could simply set

pk(x1, . . . , xk) = P{X contains x1, . . . , xk}.

If E = Rd, the probability on the right is zero, hence the more
indirect definition.



Joint intensities determine the point process

If X is a point process with joint intensities pk, k � 1, then

E[X (A)] =

Z

A
p1(x)dx,

E

2

4
kY

j=1

(X (A)� j + 1)

3

5 =

Z

Ak
pk(x1, . . . , xk) dx1 . . .dxk,

E[X (A)X (B)] =

Z

A

Z

B
p2(x, y) dxdy if A \ B = ;

etc. Thus, joint intensities determine all the moments of X (A)
and joint moments of X (A) and X (B), etc.

Fact: Assume that X (A) has exponential decay of tails for any
A ✓ E . Then the joint intensities of X determine the entire
distribution of X .



Example: Poisson process

Let � : E 7! R+ be any locally integrable function. Then, the
Poisson process with intensity function � is the point process
whose joint intensities are

pk(x1, . . . , xk) =
kY

j=1

�(xj).

From this one gets independence of X (A) and X (B) if
A \ B = ; etc.



Determinantal point process

Let X be a (simple) point process on E whose joint intensities
are of the form:

pk(x1, . . . , xk) = det (K(xi, xj))i,jk

for all k and all x1, . . . , xk, for some particular kernel
K : E ⇥ E ! C.
Then, X is said to be a determinantal point process with
kernel K [Macchi - 1975-76].



Example: Determinantal densities

Let K be a rank n, symmetric, reproducing kernel on E . Then
we defined the determinantal density 1

n! det(K(xi, xj))i,jn.

If (X1, . . . ,Xn) is a sample from this density, regard it now as a
point process X := {X1, . . . ,Xn}. Then X is a determinantal
point process with kernel K.



Which kernels define determinantal point processes?

Theorem: [Macchi, Soshnikov]. Let K : E ⇥ E 7! C be

1. Symmetric: K(x, y) = K(y, x).

2. Locally of trace class:
R

A
K(x, x) dx <1 if A is bounded.

Then, K defines a determinantal point process if and only if
the integral operator TK define by K satisfies 0  TK  I.

Some examples If K(x, y) =
P1

j=0  j(x) j(y) where  j are
orthonormal in L2, then this condition is satisfied.



Example 1: Infinite Ginibre ensemble

Let E = C and

K(z,w) = ezw�
1
2 |z|

2� 1
2 |w|

2
= e�

1
2 |z|

2� 1
2 |w|

2
1X

n=0

1
n!

(zw)n.

The corresponding determinantal point process is called the
infinite Ginibre ensemble (limit of the finite Ginibre
ensembles). It is a translation and rotation-invariant point
process in the plane. The intensity of points is

K(z, z) =
1
⇡

.



Example 2: Zeros of the i.i.d. power series

Let E = {z 2 C : |z| < 1} and

K(z,w) =
1

(1� zw)2
. (Bergman kernel)

It was a discovery of B. Virág and Y. Peres that the zeros of the
random power series

f(z) = a0 + a1z + a2z
2 + . . .

where an are i.i.d. standard complex Gaussian, form a
determinantal point process with Bergman kernel.



Some properties

Let X be a determinantal process with kernel K. Let A ✓ E .
I E[X (A)] =

R
A K(x, x) dx.

I Var(X (A)) =
R
A

R
Ac |K(x, y)|2 dx dy.

I X (A)
d
= ⇠1 + ⇠2 + . . . where ⇠k are independent Ber(�k)

random variables whose parameters �k are the
eigenvalues of the integral operator TA : L2(A) 7! L2(A)
defined by

TAf(x) =

Z

A
K(x, y)f(y) dy.

I P{X (A) = 0} =
Q
k�1

(1� �k).

I Negative association: We state one consequence only.

P{X (A) = 0 and X (B) = 0}  P{X (A) = 0}P{X(B) = 0}.



Continuum percolation on the infinite Ginibre
ensemble

Let X be the infinite Ginibre ensemble. Place balls of radius r
centered at each point of X . Is there an infinite connected
cluster?
As for Poisson process, for small r the answer is No. For large r
the answer is yes and in fact there is a unique infinite cluster.
[Ghosh, K., Peres 2014].
Key points.

I Negative association helps.

I These point processes are not as flexible as Possion.
Important to understand the exact tolerance levels.



A very surprising property of the infinite Ginibre
ensemble

Theorem: [S. Ghosh, Y. Peres] Let X be the infinite Ginibre
ensemble. Condition on the configuration of points outside a
bounded region A. Then,

1. the number of points in A, i.e., X (A) is completely
determined!

2. Nothing more than that is.



Connectivity question

Suppose we consider the infinite Ginibre ensemble restricted
to [0,n]2. Call it Xn. Place balls of radius rn around each point.
Question: How large should rn be to ensure that all points
are connected.

Answer expected (logn)
1
4 [M. K., R. Sundaresan, simple

calculation ???]
Contrast with Poisson process where the answer is (logn)

1
2 .

Key point: In the infinite Ginibre ensemble

P{X (D(0; r)) = 0} ⇡ e�cr
4
.

Many questions can be asked, and some perhaps answered...



Many things that we could not touch upon

I Karlin-McGregor determinant formula.

I Generating function formulas for linear statistics.

I Central limit theorems for linear statistics with slow or no
variance growth.

I Concentration results of Pemantle and Peres.

I Stationary DPPs with kernel 1̂A(x� y).

I Tail triviality, ergodicity, mixing and such questions.

I Application to sampling columns of a matrix: Beyond
length2 sampling to sampling pairs of columns according
to determinantal probabilities.

I Dynamics: Dyson’s Brownian motion. Non-intersecting
walks.

I Negative association (Russell Lyons).

And perhaps many more.



A few references

We just refer to three surveys. See references therein for
more.

I A. Soshnikov, Determinantal random point fields. Russian
Math. Surveys 55 (2000), no. 5, 923–975

I R. Lyons, Determinantal probability measures. Publ.
Math. Inst. Hautes Études Sci. No. 98 (2003), 167–212.

I Hough, J. B., Krishnapur, M., Peres, Y., Virág, B.,
Determinantal processes and independence. Probab.
Surv. 3 (2006), 206–229.


