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Part 1: Interactive Communication



Interactive Communication

Communication Network

X1 X2 Xm

FmF1 F2

◮ In communication round i terminal j sends:

Fij = Fij(Xj , prior communication)

◮ Overall communication: F = F1, ...,Fm
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Common Randomness Based Converses

Common randomness (CR) is simply shared information:

A random variable L is ǫ-CR for F if

P (L = Li(Xi,F), 1 ≤ i ≤ m) ≥ 1− ǫ

Converse approach for problems with interactive communication:

Bound the number of bits of CR that can be generated
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A random variable L is ǫ-CR for F if

P (L = Li(Xi,F), 1 ≤ i ≤ m) ≥ 1− ǫ

Converse approach for problems with interactive communication:

Bound the number of bits of CR that can be generated

[Ahlswede-Csiszár ’93, ’98] Two-terminal secret key agreement

[Csiszár-Narayan ’04, ’08] Multiterminal secret key agreement

[T-Narayan-Gupta ’10, ’11] Secure computing with trusted parties

[T-Watanabe ’14] General converse for information theoretic secrecy
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A Property of Interactive Communication

[Csiszár-Narayan ’08] (also, [Madiman-Tetali ’10])

Lemma
For an interactive communication F, it holds that

H(F) ≥
∑

B∈B

λBH (F | XBc )

for every fractional partition λ of [m] = {1, ..., m}

Here a fractional partition of [m] refers to a set of weights λB s.t.

∑

B:B∋i

λB = 1, for all 1 ≤ i ≤ m

◮ This property does not hold for a noninteractive function F

Consequences:

◮ Independent observations remain so when conditioned on an interactive F

◮ Extrinsic information is not less than intrinsic information
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The Csiszár-Narayan CR Converse

Lemma (Recoverability Lemma)

Let L be an ǫ-CR for F taking values in L. Then,

H(L) ≤

[

H (XM)−
∑

B∈B

λBH (XB | XBc )

]

+ I(L ∧ F) +O(ǫ log |L|)

for every fractional partition λ of M
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The Csiszár-Narayan CR Converse

Lemma (Recoverability Lemma)

Let L be an ǫ-CR for F taking values in L. Then,

H(L) ≤

[

H (XM)−
∑

B∈B

λBH (XB | XBc )

]

+ I(L ∧ F) +O(ǫ log |L|)

for every fractional partition λ of M

Measure of correlation Leakage parameter

Shortcoming: ǫ shows up in multiplication with log |L|

5



Conditional Independence Testing Converse

Digression: Binary Hypothesis Testing

Consider the following binary hypothesis testing problem:

H0 : X ∼ P

vs.

H1 : X ∼ Q

Define
βǫ(P,Q) , inf

∑

x∈X

Q(x)T (0|x),

where the inf is over all random tests T : X → {0, 1} s.t.

∑

x∈X

P (x)T (1|x) ≤ ǫ
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Conditional Independence Testing Converse

[T-Watanabe ’14]

Consider L-valued random variables L,L1, ...., Lm, Z s.t.

P (L1 = ... = Lm = L) ≥ 1− ǫ

and let
δ = ‖PLZ − Punif × PZ‖1

Theorem (Conditional Independence Testing Bound)

For any distribution Q such that

QL1...Lm|Z =

m
∏

i=1

QLi|Z

and any η < 1− ǫ− δ, it holds that

log |L| ≤ −
1

m− 1
log βǫ+δ+η(PL1...LmZ ,QL1...LmZ) +

m

m− 1
log

1

η
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Application to Interactive Communication

Suppose QX1...Xm|Z =
∏

i QXi|Z

Then, for every interactive communication F

QX1...Xm|ZF =
∏

QXi|ZF

Consequently, for any CR L for F

QL1...Lm|ZF =

m
∏

i=1

QLi|ZF
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Bound is in the spirit of meta-converse of [Polyanskiy-Poor-Verdú ’10]
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Implications for secure computing explored in [T-Watanabe ’14]
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Part 2: Application to the Wiretap Channel



Wiretap Channel with Interactive Communication

W

Zt

Xt
Legitimate

Receiver

Eavesdropper

Transmitter
Message

Ft

Yt

Ft

M

t: Interactive Communication at timeFt

Transmitting M in n channel uses

Encoder et : (M,F1, ..., Ft−1) 7→ Xt

Decoder d : (Y1, ..., Yn,F) 7→ M̂

◮ Reliability: P
(
M 6= M̂

)
≤ ǫ

◮ Secrecy: ‖PMZnF − Punif × PZnF‖1 ≤ δ
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Wiretap Channel with Interactive Communication

W

Zt

Xt
Legitimate

Receiver

Eavesdropper

Transmitter
Message

Ft

Yt

Ft

M

t: Interactive Communication at timeFt

Transmitting M in n channel uses

Encoder et : (M,F1, ..., Ft−1) 7→ Xt

Decoder d : (Y1, ..., Yn,F) 7→ M̂

◮ Reliability: P
(
M 6= M̂

)
≤ ǫ

◮ Secrecy: ‖PMZnF − Punif × PZnF‖1 ≤ δ

What is the maximum rate Cǫ,δ of message M possible?
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A Brief History of Wiretap Channel

[Wyner ’75] Capacity of degraded wiretap channel

[Csiszár-Körner ’78] Capacity of general wiretap channel

[L. Y. Cheong-Hellman ’78] Capacity of Gaussian wiretap channel

[Mid 90’s onward] Physical layer security based on wiretap models

[Morgan-Winters ’14] A partial strong converse

[Tan-Bloch, this conference] Strong converse for all ǫ, if δ ≈ 0

10



A Brief History of Wiretap Channel

[Wyner ’75] Capacity of degraded wiretap channel

[Csiszár-Körner ’78] Capacity of general wiretap channel

[L. Y. Cheong-Hellman ’78] Capacity of Gaussian wiretap channel

[Mid 90’s onward] Physical layer security based on wiretap models

[Morgan-Winters ’14] A partial strong converse

[Tan-Bloch, this conference] Strong converse for all ǫ, if δ ≈ 0

We prove strong converse for all ǫ, δ such that ǫ+ δ < 1
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Recall...

Consider a random variable L taking values in L s.t.

1. Estimates L1, L2 of L satisfy P (L1 = L2 = L) ≥ 1− ǫ

2. Let δ = ‖PLZ − Punif × PZ‖1

Lemma (Conditional Independence Testing Bound)

For any distribution Q such that QL1L2|Z = QL1|ZQL2|Z and any

η < 1− ǫ− δ, it holds that

log |L| ≤ − log βǫ+δ+η(PL1L2Z ,QL1L2Z) + 2 log
1

η
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Consider a random variable L taking values in L s.t.

1. Estimates L1, L2 of L satisfy P (L1 = L2 = L) ≥ 1− ǫ

2. Let δ = ‖PLZ − Punif × PZ‖1

Lemma (Conditional Independence Testing Bound)

For any distribution Q such that QL1L2|Z = QL1|ZQL2|Z and any

η < 1− ǫ− δ, it holds that

log |L| ≤ − log βǫ+δ+η(PL1L2Z ,QL1L2Z) + 2 log
1

η

Do we have such L and Z?

Sure we do. Choose L = M and Z = Zn,F

But how do we choose Q?

Carefully!
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Choosing Q for the Wiretap Channel

Lemma

For a wiretap channel V : X → Y ×Z such that

V (y, z|x) = V2(z|x)V1(y|z)

and any wiretap code, we get

Q
MM̂ |ZnF

= QM|ZnF ×Q
M̂|ZnF
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Choosing Q for the Wiretap Channel

Lemma

For a wiretap channel V : X → Y ×Z such that

V (y, z|x) = V2(z|x)V1(y|z)

and any wiretap code, we get

Q
MM̂ |ZnF

= QM|ZnF ×Q
M̂|ZnF

Thus, by the conditionally independence testing bound

(# of bits of message M) ≤ − log βǫ+δ+η(PMM̂Z
,Q

MM̂Z
) + 2 log

1

η

We seek to distinguish W from V by observing F, Xn, Y n, Zn

Let βǫ+δ+η(W,V, n) be defined correspondingly
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Active Hypothesis Testing

Theorem ( [Hayashi ’09] )

For 0 < ǫ < 1,

lim
n

−
1

n
log βǫ(W,V, n) = max

PX

D(W‖V | PX)

= max
x

D(Wx‖Vx)

where Wx and Vx, respectively, denote the xth row of W and V
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Theorem ( [Hayashi ’09] )

For 0 < ǫ < 1,

lim
n

−
1

n
log βǫ(W,V, n) = max

PX

D(W‖V | PX)

= max
x

D(Wx‖Vx)

where Wx and Vx, respectively, denote the xth row of W and V

Thus, for every ǫ, δ such that ǫ+ δ < 1

lim
n

1

n
(# of bits of message M) ≤ max

PX

D(W‖V | PX)

for every V (y, z|x) = V2(z|x)V1(y|z)
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Strong Converse for a Degraded Wiretap Channel

Lemma

If the channel W is degraded, i.e., W (y, z|x) = W2(z|y)W1(y|x), then

min
V

max
PX

D(W‖V | PX) = max
PX

I(X ∧ Y | Z)

Theorem

For a degraded wiretap channel W

Cǫ,δ =




max
PX

I(X ∧ Y | Z), 0 < ǫ < 1− δ

max
PX

I(X ∧ Y ), 1− δ ≤ ǫ < 1

14



In Closing...

The rate of a code for a degraded wiretap channel cannot be improved
even if we don’t ask for perfect reliability and secrecy

The Big Picture

Bounds on common randomness lead to converses for specific problems
with interactive communication
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