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Multiparty Secret Key Agreement

F

KmK2K1

X1 X2 Xm

COMMUNICATION NETWORK

Party i computes Ki(Xi,F) ∈ K; Eavesdropper observes F, Z

K1, ...,Km constitute an (ǫ, δ)-secret key of length logK if

P (K1 = K2 = ... = Km) ≥ 1− ǫ, :Recoverability

1

2
‖PK1FZ − Punif × PFZ‖1 ≤ δ, :Secrecy
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Alternative Definition of a Secret Key

K1, ...,Km constitute an ǫ-secret key of length logK if

1

2
‖PK1K2...KmFZ − Punif,m × PFZ‖1≤ ǫ,

where

Punif,m (k1, ..., km) =
1

|K|
1(k1 = ...km).
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Alternative Definition of a Secret Key

K1, ...,Km constitute an ǫ-secret key of length logK if

1

2
‖PK1K2...KmFZ − Punif,m × PFZ‖1≤ ǫ,

where

Punif,m (k1, ..., km) =
1

|K|
1(k1 = ...km).

Lemma

(ǫ, δ)-SK⇒ (ǫ+ δ)-SK, and conversely, ǫ-SK ⇒ (ǫ, ǫ)-SK.
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Multiparty Secret Key Agreement

F

KmK2K1

X1 X2 Xm

COMMUNICATION NETWORK

K1, ...,Km constitute an ǫ-secret key of length logK if

1

2
‖PK1K2...KmFZ − Punif,m × PFZ‖1 ≤ ǫ.

Definition

Sǫ(X1, ...,Xm | Z) , maximum length of an ǫ-secret key
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Upper bound for Sǫ(X1, ..., Xm | Z)



No Correlation No Secret Key

If X1 and X2 are independent conditioned on Z:

Sǫ(X1,X2|Z) ≈ 0
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No Correlation No Secret Key

If X1 and X2 are independent conditioned on Z:
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No Correlation No Secret Key

If X1 and X2 are independent conditioned on Z:

Sǫ(X1,X2|Z) ≈ 0

If for some partition π = {π1, ..., πk} of {1, ...,m},

Xπ1
, ...,Xπk

are independent conditioned on Z:

Sǫ(X1, ...,Xm|Z) ≈ 0

Bound Sǫ(X1, ...,Xm|Z) in terms of “how far” is PX1,...,XmZ

is from a conditionally independent distribution
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Digression: Binary Hypothesis Testing

Consider the following binary hypothesis testing problem:

H0 : X ∼ P

vs.

H1 : X ∼ Q

Define
βǫ(P,Q) , inf

∑

x∈X

Q(x)T (0|x),

where the inf is over all random tests T : X → {0, 1} s.t.
∑

x∈X

P (x)T (1|x) ≤ ǫ.

6



Digression: Binary Hypothesis Testing

Consider the following binary hypothesis testing problem:

H0 : X ∼ P

vs.

H1 : X ∼ Q

Define
βǫ(P,Q) , inf

∑

x∈X

Q(x)T (0|x),

where the inf is over all random tests T : X → {0, 1} s.t.
∑

x∈X

P (x)T (1|x) ≤ ǫ.

Data processing. For every stochastic matrix W : X → Y

βǫ(P,Q) ≤ βǫ(PW,QW )
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Reduction Argument

Given a partition π = {π1, ..., πk} of {1, ...,m}

◮ Let Q(x1, ..., xm|z) =
∏k

i=1
Q(xπi

|z)

For the binary hypothesis testing:

H0 : X1, ...,Xm, Z ∼ P,

H1 : X1, ...,Xm, Z ∼ Q,

consider the degraded observations K1, ...,Km,F, Z.
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Reduction Argument

Given a partition π = {π1, ..., πk} of {1, ...,m}

◮ Let Q(x1, ..., xm|z) =
∏k

i=1
Q(xπi

|z)

For the binary hypothesis testing:

H0 : X1, ...,Xm, Z ∼ P,

H1 : X1, ...,Xm, Z ∼ Q,

consider the degraded observations K1, ...,Km,F, Z.

Let WK1...KmF|X1...XmZ represent the protocol.

7



Reduction Argument

Consider the degraded binary hypothesis testing:

H0 : K1, ...,Km,F, Z ∼ PK1...,KmFZ = PW

H1 : K1, ...,Km,F, Z ∼ QK1...,KmFZ = QW

Consider a test with the acceptance region A defined by:

A ,

{

log
Punif,m(K1, ....,Km)

QK1...Km|FZ(K1...Km|F, Z)
≥ λπ

}

where
λπ = (|π| − 1) log |K| − |π| log(1/η)
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Reduction Argument

Consider the degraded binary hypothesis testing:

H0 : K1, ...,Km,F, Z ∼ PK1...,KmFZ = PW

H1 : K1, ...,Km,F, Z ∼ QK1...,KmFZ = QW

Consider a test with the acceptance region A defined by:

A ,

{

log
Punif,m(K1, ....,Km)

QK1...Km|FZ(K1...Km|F, Z)
≥ λπ

}

where
λπ = (|π| − 1) log |K| − |π| log(1/η)

Likelihood ratio test with PK1...Km|FZ replaced by Punif,m

- recall: 1
2
‖PK1K2...KmFZ − Punif,m × PFZ‖1 ≤ ǫ
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Reduction Argument

Missed Detection: QK1...KmFZ(A) ≤ |K|1−|π|η−|π|

False Alarm: PK1...KmFZ(A
c) ≤ ǫ+ η
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Reduction Argument

Missed Detection: QK1...KmFZ(A) ≤ |K|1−|π|η−|π| - easy

False Alarm: PK1...KmFZ(A
c) ≤ ǫ+ η - requires work

Lemma (Reduction)

For every 0 ≤ ǫ < 1 and 0 < η < 1− ǫ,

Sǫ(X1, ...,Xm|Z) ≤
1

|π| − 1
[− log βǫ+η (PW,QW ) + |π| log (1/η)] .
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Reduction Argument

Missed Detection: QK1...KmFZ(A) ≤ |K|1−|π|η−|π| - easy

False Alarm: PK1...KmFZ(A
c) ≤ ǫ+ η - requires work

Lemma (Reduction)

For every 0 ≤ ǫ < 1 and 0 < η < 1− ǫ,

Sǫ(X1, ...,Xm|Z) ≤
1

|π| − 1
[− log βǫ+η (PW,QW ) + |π| log (1/η)] .

By data processing: βǫ+η (PW,QW ) ≥ βǫ+η (P,Q)
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Conditional Independence Testing Bound

Theorem

For every 0 ≤ ǫ < 1 and 0 < η < 1− ǫ,

Sǫ(X1, ...,Xm|Z) ≤
1

|π| − 1
[− log βǫ+η (P,Q) + |π| log (1/η)] ,

where

Q(x1, ..., xm|z) =
k
∏

i=1

Q(xπi
|z).

For two parties:

Sǫ(X1,X2|Z) ≤ − log βǫ+η

(

PX1X2Z ,PX1|ZPX2|ZPZ

)

+ 2 log (1/η)
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Conditional Independence Testing Bound

Theorem

For every 0 ≤ ǫ < 1 and 0 < η < 1− ǫ,

Sǫ(X1, ...,Xm|Z) ≤
1

|π| − 1
[− log βǫ+η (P,Q) + |π| log (1/η)] ,

where

Q(x1, ..., xm|z) =
k
∏

i=1

Q(xπi
|z).

For two parties:

Sǫ(X1,X2|Z) ≤ − log βǫ+η

(

PX1X2Z ,PX1|ZPX2|ZPZ

)

+ 2 log (1/η)

Connections to meta-converse of Polyanskiy, Poor, and Vérdu
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Implications of the Upper Bound



1. Strong Converse for Secret Key Agreement

[Maurer ‘93] [Ahlswede-Csiszár ‘93] [Csiszar-Narayan ‘04]

Consider IID observations X1, ...,Xm ≡ Xn
1 , ...,X

n
m, Z = ∅

(ǫ, δ)-Secret Key Capacity: Cǫ,δ := lim inf
n

1

n
Sǫ,δ(X

n
1 , ...,X

n
m)

Secret Key Capacity: C := inf
ǫ,δ

Cǫ,δ.
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1. Strong Converse for Secret Key Agreement

[Maurer ‘93] [Ahlswede-Csiszár ‘93] [Csiszar-Narayan ‘04]

Consider IID observations X1, ...,Xm ≡ Xn
1 , ...,X

n
m, Z = ∅

(ǫ, δ)-Secret Key Capacity: Cǫ,δ := lim inf
n

1

n
Sǫ,δ(X

n
1 , ...,X

n
m)

Secret Key Capacity: C := inf
ǫ,δ

Cǫ,δ.

Theorem

For 0 < ǫ, δ with ǫ+ δ < 1,

Cǫ,δ = C,

and for all ǫ+ δ ≥ 1,
Cǫ,δ = ∞.
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2. Information Theoretically Secure OT

X2

K̂ ≈ KB

BK0, K1

F

X1

[Even-Goldreich-Lempel 85], ..., [Nascimento-Winters 06]

◮ Reliability: P
(

K̂ 6= KB

)

≤ ǫ

◮ Security 1:
1

2
‖PBK0K1X1F

− PB × PK0K1X1F
‖
1
≤ δ1

◮ Security 2:
1

2

∥

∥PK
B
BX2F

− PK
B
× PBX2F

∥

∥

1
≤ δ2
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2. Information Theoretically Secure OT

X2

K̂ ≈ KB

BK0, K1

F

X1

[Even-Goldreich-Lempel 85], ..., [Nascimento-Winters 06]

◮ Reliability: P
(

K̂ 6= KB

)

≤ ǫ

◮ Security 1:
1

2
‖PBK0K1X1F

− PB × PK0K1X1F
‖
1
≤ δ1

◮ Security 2:
1

2

∥

∥PK
B
BX2F

− PK
B
× PBX2F

∥

∥

1
≤ δ2

How large can the length l of OT be?
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Bounds on the Efficiency of OT

Theorem (Reduction of SK Agreement to OT)

For an (ǫ, δ1, δ2)-OT of length l

l <∼ min {Sǫ+δ1+2δ2(X1,X2), Sǫ+δ1+2δ2 (X1, (X1,X2) | X2)}
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Bounds on the Efficiency of OT

Theorem (Reduction of SK Agreement to OT)

For an (ǫ, δ1, δ2)-OT of length l

l <∼ min {Sǫ+δ1+2δ2(X1,X2), Sǫ+δ1+2δ2 (X1, (X1,X2) | X2)}

OT Capacity (for IID observations):

Maximum rate (l/n) of OT length (with δ1n, δ2n → 0)

Cǫ(X1,X2) ≤ min{I(X1 ∧X2),H(X1 | X2)}

“Strong” version of the Ahlswede-Csiszár upper bound
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3. Information Theoretic Bit Commitment

K ′, X ′
1

K

X1 X2

Commit

K

X1 X2

Reveal

?

F
F

Party 2 constructs a test T for the hypothesis: “Secret is k"

Recovery: P (T (K,X1,X2,F) = 1) ≤ ǫ

Security:
1

2
‖PKX2F

− PK × PX2F
‖
1
≤ δ1

Binding: P (T (K ′,X ′
1,X2,F) = 0,K ′ 6= K) ≤ δ2
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3. Information Theoretic Bit Commitment

K ′, X ′
1

K

X1 X2

Commit

K

X1 X2

Reveal

?

F
F

Party 2 constructs a test T for the hypothesis: “Secret is k"

Recovery: P (T (K,X1,X2,F) = 1) ≤ ǫ

Security:
1

2
‖PKX2F

− PK × PX2F
‖
1
≤ δ1

Binding: P (T (K ′,X ′
1,X2,F) = 0,K ′ 6= K) ≤ δ2

How large can the length l of BC be?
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Bound on the Efficiency of BC

Theorem (Reduction of SK Agreement to BC)

For an (ǫ, δ1, δ2)-BC of length l,

l <∼Sǫ+δ1+δ2 (X1, (X1,X2)|X2)
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Bound on the Efficiency of BC

Theorem (Reduction of SK Agreement to BC)

For an (ǫ, δ1, δ2)-BC of length l,

l <∼Sǫ+δ1+δ2 (X1, (X1,X2)|X2)

Efficiency of reduction of BC to OT

Given n-length OT: X1 ≡ K0,K1 X2 ≡ KB, B.

The possible length l of BC is bounded as:

l ≤ n+O(log(1− ǫ− δ1 − δ2))
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Bound on the Efficiency of BC

Theorem (Reduction of SK Agreement to BC)

For an (ǫ, δ1, δ2)-BC of length l,

l <∼Sǫ+δ1+δ2 (X1, (X1,X2)|X2)

Efficiency of reduction of BC to OT

Given n-length OT: X1 ≡ K0,K1 X2 ≡ KB, B.

The possible length l of BC is bounded as:

l ≤ n+O(log(1− ǫ− δ1 − δ2))

Improves a bound of [Ranellucci et. al. 11]
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Bound on the Efficiency of BC

Theorem (Reduction of SK Agreement to BC)

For an (ǫ, δ1, δ2)-BC of length l,

l <∼Sǫ+δ1+δ2 (X1, (X1,X2)|X2)

[Nascimento-Winters-Imai 03] BC capacity C = H(X1 | X2)

Strong converse for BC capacity

Cǫ,δ1,δ2(X1,X2) ≤ H(X1 | X2), ǫ+ δ1 + δ2 < 1
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4. Secure Computing with Trusted Parties

Parties are trusted, the communication channel is not

F

X1 X2 Xm

COMMUNICATION NETWORK

g g g

Party i computes Gi(Xi,F); Eavesdropper observes F, Z

A function g is (ǫ, δ)-secure computable if

P (G1 = G2 = ... = Gm = g(X1, ...,Xm)) ≥ 1− ǫ, :Recoverability

1

2
‖PGFZ − PG × PFZ‖1 ≤ δ, :Secrecy
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Characterization of securely computable functions

[Tyagi-Gupta-Narayan ’11] IID case with Z = ∅

A function g is secure computable (asymptotically) iff

H(G) ≤ C
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Characterization of securely computable functions

[Tyagi-Gupta-Narayan ’11] IID case with Z = ∅

A function g is secure computable (asymptotically) iff

H(G) ≤ C

A single-shot necessary condition

Theorem

If a function g is (ǫ, δ)-secure computable, then

Hξ
min

(PG)<∼
−1

|π| − 1
log βǫ+δ+2ξ

(

PXMZ ,QXMZ

)

,

where

Q(x1, ..., xm|z) =
k
∏

i=1

Q(xπi
|z).
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In Closing...

We derived converse results for IT cryptography,

which are valid for the single-shot case
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In Closing...

We derived converse results for IT cryptography,
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Key idea: Reduction of hypothesis testing to crypto primitives

By observing the outputs of any IT secure crypto primitive

we can measure the correlation in the observations

H. Tyagi and S. Watanabe, “ Converses for secret key agreement
and secure computing,” arXiv:1404.5715, 2014
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In Closing...

We derived converse results for IT cryptography,

which are valid for the single-shot case

Key idea: Reduction of hypothesis testing to crypto primitives

By observing the outputs of any IT secure crypto primitive

we can measure the correlation in the observations

H. Tyagi and S. Watanabe, “ Converses for secret key agreement
and secure computing,” arXiv:1404.5715, 2014

How close do efficient schemes come to these performance
bounds??
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