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Secure Computing of a Function of Data

Correlated data is collected and stored at separated locations.

Examples include:

◮ Data grids and data centers,

◮ Distributed video coding,

◮ Sensor networks, etc.

Each location wants to know the value of a function of the data.

- using a communication that keeps the value of the function “secure”.

Does there exist a communication protocol to do that?

2 / 21



Multiterminal Source Model

X1 X2 Xm

Observed data: Correlated rvs XM = (X1, ..., Xm).

- Probability distribution of the data is known.
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Interactive Communication Protocol

X1 X2 Xm

COMMUNICATION NETWORK

F1 F2 Fm

◮ Terminals communicate over an available network.

◮ Multiple rounds of interactive communication are allowed.

◮ Interactive communication: F = F1, ..., Fm.
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Assumptions

Assumption on the data

1. Abundance of data: Accumulated data grows with time n.

- Xi = Xn
i = (Xi1, ..., Xin)

- Data observed at time instance t: XMt = (X1t, ..., Xmt).

2. Observations are i.i.d. across time:
- XM1, ..., XMn are i.i.d. rvs.

3. Observations are discrete valued.
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- Xi = Xn
i = (Xi1, ..., Xin)

- Data observed at time instance t: XMt = (X1t, ..., Xmt).

2. Observations are i.i.d. across time:
- XM1, ..., XMn are i.i.d. rvs.

3. Observations are discrete valued.

Assumptions on the protocol

1. Each terminal has access to all the communication.

2. Transmission depends on local data and previous communication.

- interactive communication over multiple rounds.
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Secure Computing of Functions

COMMUNICATION NETWORK
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Fm ≡ F: Public Communication

U1 U2 Ua
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)

Secure computability of g by A:

Pr

“

G
(n)
i = g (Xn

M) , i ∈ A
”

≈ 1 : Recoverability

I (g (Xn
M) ∧ F) ≈ 0 : Secrecy

◮ Single-letter function: g (Xn
M) = (g (XM1) , ..., g (XMn)).

◮ Notation: G = g (XM) , Gn = g (Xn
M).

When is a given function g securely computable?
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Secret Key Generation

◮ [Maurer 1993, Ahlswede-Csiszár ‘93, Csiszár-Narayan ‘04]
Agreeing on secret bits using public communication.

COMMUNICATION NETWORK

F1 F2
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Fm ≡ F: Public Communication

≡ K: Secret Key

I(K ∧ F) ∼= 0

◮ Terminals in A form estimates of the key.
- Recoverability:

Pr (K1 = K2 = ... = Ka = K) ≈ 1.

- Security:
I(K ∧ F) ≈ 0.
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Secret Key Capacity

Rate of the secret key = 1
n
H(K).

Secret key capacity C(A) = maximum achievable rate of a secret key.

For two terminals

K1 K2 ≡ K: Secret Key

FXn Y n

[Maurer ‘93, Ahlswede-Csiszár ‘93]

C = I(X ∧ Y ).

8 / 21



Optimum Rate SK for Two Terminals

◮ Maurer-Ahlswede-Csiszár

- Common randomness (CR) generated: Xn or Y n.

- Rate of communication required = min{H(X|Y ); H(Y |X)}.

- Decomposition:
H(X) = H(X | Y ) + I(X ∧ Y ),
H(Y ) = H(Y | X) + I(X ∧ Y ).

◮ Csiszár-Narayan

- Common randomness generated: Xn, Y n.

- Rate of communication required = H(X|Y ) + H(Y |X).

- Decomposition:
H(X,Y ) = H(X | Y ) + H(Y | X) + I(X ∧ Y ).

◮ A generalized decomposition: [Tyagi ISIT ’11]
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Secret Key Capacity

[Csiszár-Narayan ‘04]

Omniscience: Having an access to all the randomness.

R(A) ≡ Communication for omniscience at A.

Total Randomness: H(XM)

Randomness Recovered as SK

Communication Required to Share the Randomness: R(A)

SK capacity:
C = H(XM) − R(A).

RCO(A) can be characterized in a single-letter-form.
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Secure Computing of Functions

COMMUNICATION NETWORK

F1 F2

A

Xn

1 Xn

2

Fa

Xn

a
Xn

m

Fm ≡ F: Public Communication

U1 U2 Ua

G
(n)
1

Um

G
(n)
2 G

(n)
a ≡ Estimates of g (Xn

M
)

Secure computability of g by A:

Pr

“

G
(n)
i = G

n
, i ∈ A

”

≈ 1 : Recoverability

I (g (Xn
M) ∧ F) ≈ 0 : Secrecy

When is a given function g securely computable?

11 / 21



A Necessary Condition

Secret Key Generation

COMMUNICATION NETWORK
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Fm ≡ F: Public Communication

≡ K: Secret Key

I(K ∧ F) ∼= 0

[Csiszár-Narayan ‘04]

C(A) = H (XM) − R(A),
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A Necessary Condition

Secret Key Generation

COMMUNICATION NETWORK

F1 F2
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Fm ≡ F: Public Communication

≡ K: Secret Key

I(K ∧ F) ∼= 0

[Csiszár-Narayan ‘04]

C(A) = H (XM) − R(A),

If g is securely computable by A,

H(G) ≤ C(A).

12 / 21



Is H(G) < C(A) sufficient?

All terminals wish to compute: A = M

[TNG ‘10]

If H(G) < C(M) ⇒ a protocol for SC of g by M exists.
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Is H(G) < C(A) sufficient?

All terminals wish to compute: A = M

[TNG ‘10]

If H(G) < C(M) ⇒ a protocol for SC of g by M exists.

An Example for m = 2

Pr(X1 6= X2) = δ

1 1

0

δ

δ

1 − δ

1 − δ

X1 X2

Pr(X1 = 1) = p

0

◮ g(x1, x2) = x1 + x2 mod 2 ⇒ H(G) = h(δ).

◮ C({1, 2}) = I(X1 ∧ X2) = h((1 − p)δ + p(1 − δ)) − h(δ).

◮ g is securely computable if

2h(δ) < h((1 − p)δ + p(1 − δ)).
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Example: Secure Computation of Parity

Binary Symmetric Sources: p = 1
2

◮ Secure computability condition: h(δ) < 1 − h(δ).

◮ P : parity check matrix of a linear SW code for X1 given X2.

◮ I(Gn ∧ Xn
1 ) = 0 ⇒ I(Gn ∧ F1) = 0.

◮ K: location of Xn
1 in the coset of the standard array (for P).

◮ Rate of K = 1 − h(δ).

◮ I(K ∧ F1) = 0.

◮ Can show: I(K ∧ F1, G
n) = 0.

◮ I(Gn ∧ F2, F1) = I(Gn ∧ F2 | F1)e≤ I(K ∧ F1, G
n) = 0.

Xn

1 Xn

2
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Is H(G) < C(A) sufficient?

All terminals wish to compute: A = M [TNG ‘10]

If H(G) < C(M) ⇒ a protocol for SC of g by M exists.

Counterexample for A ( M

Xn

2Xn

1

A

X1 ⊥⊥ X2Xn

1

◮ g(x1, x1, x2) = x2.

◮ Let H(X2) < H(X1) = C(A).→ H(G) < C(A) is satisfied.

However, g is clearly not securely computable.

15 / 21



A New Necessary Condition

If Gn is securely computable by A:

COMMUNICATION NETWORK

F1 F2

A

Xn
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Fm

G
(n)
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(n)
2 G

(n)
a

≡ F: Public Communication

Gn: Side Information for Decoding

Provide Gn as side information to terminals in Ac.

- Available only for decoding but not for communicating.

Gn forms a secret key for all terminals, termed an aided secret key.

- Let Cg,A(M) be that largest achievable rate of such a key.
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Gn: Side Information for Decoding

Provide Gn as side information to terminals in Ac.

- Available only for decoding but not for communicating.

Gn forms a secret key for all terminals, termed an aided secret key.

- Let Cg,A(M) be that largest achievable rate of such a key.

For a g securely computable by A,

H(G) ≤ Cg,A(M)
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Aided Secret Key Capacity

Theorem

The aided secret key capacity is

Cg,A(M) = H(XM) − Rg,A(M),

where

Rg,A(M) = min. sum rate of communication for omniscience at M

when Gn is available as side information for decoding to terminals in Ac.
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Characterization of Securely Computable Functions

Theorem

If g is securely computable by A : H(G) ≤ Cg,A(M).

Conversely, g is securely computable by A if: H(G) < Cg,A(M).

For securely computable function g:

◮ Omniscience can be obtained at A using F ⊥⊥
∼

Gn.

◮ Noninteractive communication suffices.

◮ Randomization is not needed.
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Sketch of the Proof

Consider random binning of appropriate rate at each terminal:

◮ To allow omniscience at M,
with Gn given to the terminals in Ac for decoding.

◮ To keep bin indices independent of Gn.
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given to the terminals in Ac only for decoding.

3. Observe: I(FM ∧ Gn) ≤

m
X

i

I
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.

4. To prove:
With high probability I

`

Fi ∧ Gn, FM\{i}

´

∼= 0, for each i.
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Independence Properties of Random Mappings
The Balanced Coloring Lemma

◮ To prove:

With high probability I
`

Fi ∧ Gn, FM\{i}

´

∼= 0, for each i.

◮ Shall show:

For almost all (y, z):

Fi | {G
n = y, FM\{i} = z} ≈ uniform.

◮ Family of distributions on Xn
i :

˘

PXn

i
|{Gn=y,FM\{i}=z

¯

.

◮ Seek conditions for random mappings to be uniformly distributed

- w.r.t. a given family of distributions.
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Independence Properties of Random Mappings
The Balanced Coloring Lemma

◮ Balanced Coloring Lemma:

[R. Ahlswede-I. Csiszár, ’98], [I. Csiszár-P.N., ’04]

Given a family of distributions with probabilities uniformly bounded
above,

Pr (random coloring ≈ uniform, w.r.t. all pmfs in the family) ≥ q,

where q depends on the size of the family, the uniform bound and the
rate of coloring.

◮ For the case at hand: a slightly generalized version is applied.

- q = q(n) grows to 1 super-exponentially in n.
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Secure Computability of Multiple Functions

COMMUNICATION NETWORK

F1 F2 Fm

Xn

1 Xn

2 Xn

m

≡ F: Public Communication

g1 g2 gm

Secrecy Condition: I (F ∧ Gn
1 , ..., Gn

m) ≈ 0.

Which functions g1, ..., gm are securely computable?

Omniscience is not allowed in general

◮ For m = 2: X1 ⊥⊥ X2 gi(x1, x2) = xi.
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