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Capacity

Receiver with no CSI [Gelfand-Pinsker, ’80]:

Cap = max [(UAY)—I({UAS)

Pusxy

where

U—o—S8,X ——Y, Pyxs=W.

Receiver with full CSI [Wolfowitz, ’60]:

C=maxI(XANY |S).

Px|s



Reliability Function

Definition: The reliability function E(R), R > 0, of the DMC W with noncausal
CSI, is the largest number E > 0 such that for every § > 0 and for all sufficiently
large n, there exist n-length block codes (f, ¢) of rate greater than R — ¢ and

e(f,¢) < exp[—n(E —d)].



Prior Results and New Contributions

Prior Results:

e Somekh Baruch-Merhav, ’04, Moulin-Wang, '04: Lower bounds on F(R) for
Gelfand-Pinsker channel.

e Shannon-Gallagher-Berlekamp, ’67: Upper bounds for E(R) for DMC without

states.

e Csiszar-Korner-Marton, ’77: Alternative proof of upper bounds using strong

converse for fixed type codewords.

e Wolfowitz, '60: Strong converse for DMC with states, causal transmitter CSI and

no receiver CSI. An analog for noncausal CSI was not available.

e Haroutunian, '01: Upper bound for F(R) for noncausal transmitter CSI and full

receiver CSI.
Contributions:

e Strong converse for the Gelfand-Pinsker channel.

e Upper bound for E(R) for the Gelfand-Pinsker channel.



Key Idea for Strong Converse

e Upper bound for the rate of codes with codewords that are conditionally typical
over large message dependent subsets of a typical set of state sequences.

e Note: A direct extension of the Csiszar-Korner-Marton approach would have
entailed a claim over a subset of typical state sequences not depending on the

transmitted message; however, its validity is unclear.

e For a DMC without states, the Csiszar-Korner-Marton approach provides an
image size characterization of a good codeword set. In the same spirit, our key
technical lemma provides an image size characterization for good codeword sets

for the noncausal DMC model, which now involves auxiliary rvs.



Results

Theorem: (Strong Converse) Given 0 < € < 1 and a sequence of (M,,n) codes
(fn, dn) With e(fn, ¢n) < €, it holds that

1
limsup — log M,, < Cgp.
n M

Theorem: (Sphere Packing Bound) For 0 < R < Cgp, it holds that
E(R) < Esp(R),

where
Esp(R) = min max min_ |D(Ps||Ps) + D(V||W | PsPxs)]
Ps Px|s VEV(R,PsPx|s)
with
V(R,f’SX):{V:XXSHyS.t. max I(U/\Y)—I(U/\S)<R}.

Pusxy=Py|sxPsxV

Remark 1. For the case when the receiver, too, possesses (full) CSI, the sphere
packing bound above coincides with that obtained earlier in [Haroutunian, ’01].
Remark 2. The terms D(Pg||Ps) and D(V||W | PsPx|s), respectively, account for
the shortcomings of a given code for the corresponding “bad” state pmf and “bad”

channel.



Results

Technical Lemma: Given a pmf Pg on S and conditional pmf P x1s, let (f, @) be a
(M, n)-code. For each m € M, let A(m) be a subset of S which satisfies the

following conditions

A(m) < TZ,
1 -
—log | A(m)|| = H(Ps),
flms) € T2 (s). seA(m).

Furthermore, let (f, ¢) satisfy one of the following two conditions:
W”(¢_1( )| fm,s),s) = 1, s A(m),
Z W™(p~ (m) | f(m,s),s) = 1.

SEA(m)

Then for all n sufficiently large,

1
—logM <I(UAY)—I(UAS)
n

where PUSXY = PU|SX155'15X|SW-

Observe: The subsets A(m) of S are message-dependent.



Outline of Proof of Technical Lemma

Wn(¢p=t(m) | f(m,s),s) > 1 —c¢, s € A(m)
B(m) = {(f(m,s),s) € X" x S":s € A(m)}, m € M

C(m) = o 1 (m)N 1.

Py] wn(C(m) | f(m,s),s) >1—

s € A(m)

£
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mo = argmin,, ||C(m)|.
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Outline of Proof of Technical Lemma
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Outline of Proof of Technical Lemma

Image-size characterization

o Lloggy(B(mg),1—€/2) =2 H(S|U)+t

e Lloggw(B(mg),1—€¢/2) = H(Y|U)+t

where 0 < ¢t <min{I(UAY), I(UAS)}.

= LlogM < I(UAY)—I(UAS).




Outline of Proof of Strong Converse

Fix 0 <e < 1.
Given a (M, n)-code (f,¢) with e(f, ) <.

FEzxtraction of subsets of T[I’JS] with “good code behavior:”

po({s e T w0 ) | fmos)9) > 1) = 20

\ 4
"~

A(m)

Extraction of sets A(m) from A(m):

— Partition A(m) into (polynomially many) conditional types of f(m,s) given s;
take the largest cell to be A(m).

— A(m) satisfies all the conditions of the Lemma.

By the Lemma,

1 _
ElogM < I(UANY)—=I(UANS).



